《平行四边形的性质2》习题

合集下载

平行四边形练习题及答案

平行四边形练习题及答案

平行四边形练习题及答案1. 判断题:平行四边形的对角线是否一定相等?- 答案:错误。

只有矩形和正方形的对角线相等。

2. 选择题:下列哪个选项不是平行四边形的性质?- A. 对边相等- B. 对角相等- C. 对角线互相平分- D. 邻角互补- 答案:B。

平行四边形的对角不一定相等,这是矩形和正方形的特殊性质。

3. 计算题:如果一个平行四边形的一边长为10厘米,且相邻的两边夹角为60度,求对边的长度。

- 答案:由于平行四边形的邻角互补,所以另一个角也是60度。

这意味着平行四边形是一个菱形。

在菱形中,所有边长相等,所以对边的长度也是10厘米。

4. 证明题:证明平行四边形的对角线互相平分。

- 答案:设平行四边形为ABCD,对角线AC和BD相交于点E。

由于AB平行于CD,根据平行线的性质,∠BAC=∠DCA,同理∠ABC=∠BCD。

因此,△ABC和△CDA是相似三角形。

根据相似三角形的性质,我们可以得出AE/EC = BE/ED。

同理,我们可以证明AE/EC = BD/DC。

因此,AE = EC且BE = ED,证明了对角线互相平分。

5. 应用题:一个平行四边形的面积是64平方厘米,已知一边长为8厘米,求另一边的长度。

- 答案:平行四边形的面积公式是底乘以高。

设另一边的长度为x厘米,高为h厘米。

根据面积公式,8h = 64,解得h = 8厘米。

由于平行四边形的对边相等,另一边的长度也是8厘米。

练习题答案解析通过这些练习题,学生可以检验自己对平行四边形性质的理解,并通过计算和证明题来加深对平行四边形几何特性的认识。

这些题目覆盖了平行四边形的基本性质、面积计算以及证明题,有助于培养学生的逻辑推理能力和空间想象能力。

希望这些练习题和答案能够帮助学生更好地掌握平行四边形的相关知识。

在解决实际问题时,学生应该灵活运用所学知识,结合图形的特点进行分析和计算。

《平行四边形的性质》典型例题

《平行四边形的性质》典型例题

《平行四边形的性质》典型例题例1 一个平行四边形的一个内角是它邻角的3倍,那么这个平行四边形的四个内角各是多少度?例2 已知:如图,ABCD 的周长为60cm,对角线AC 、BD 相交于点O ,AOB ∆的周长比BOC ∆的周长多8cm ,求这个平行四边形各边的长.例3 已知:如图,在ABCD 中,BD AC 、交于点O ,过O 点作EF 交AB、CD于E 、F ,那么OE、OF 是否相等,说明理由.例4 已知:如图,点E 在矩形AB CD的边BC上,且DE AF AD DE ⊥=,,垂足为F .求证:.DC AF =例 5 O是A BCD 对角线的交点,OBC ∆的周长为59,38=BD ,24=AC ,则=AD ________,若OBC ∆与OAB ∆的周长之差为15,则=AB ______,AB CD 的周长=______.D CA B O例6 已知:如图,ABC D的周长是cm 36,由钝角顶点D向AB ,BC 引两条高DE ,DF ,且cm DE 34=,cm DF 35=.求这个平行四边形的面积.例7 如图,已知:AB CD中,BC AE ⊥于E ,CD AF ⊥于F ,若︒=∠60EAF ,cm BE 2=,cm FD 3=.求:AB、B C的长和ABCD 的面积.参考答案例1 分析 根据平行四边形的对角相等,邻角互补可以求出四个内角的度数.解 设平行四边形的一个内角的度数为x,则它的邻角的度数为3x ,根据题意,得1803=+x x ,解得45=x ,∴.1353=x∴这个平行四边形的四个内角的度数分别为45°,135°,45°,135°.例2 分析 由平行四边形对边相等,可知=+BC AB 平行四边形周长的一半=30cm ,又由AOB ∆的周长比BOC ∆的周长多8cm,可知8=-BC AB cm ,由此两式,可求得各边的长.解 ∵四边形ABCD 为平行四边形,∴.,,OO AO BC AD CD AB === 60=+++BC AD CD AB ,∴.30=+BC AB8)(=++-++OC BC OB OB AB AO ,∴.8=-BC AB∴.11,19====AD BC CD AB答:这个平行四边形各边长分别为19cm ,11cm,19cm,11cm.说明:学习本题可以得出两个结论:(1)平行四边形两邻边之和等于平行四边形周长的一半.(2)平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差.例3 分析 观察图形,DOF BOE CFO AEO CDO ABO ∆≅∆∆≅∆∆≅∆,,,从而可说明.OF OE =证明 在ABCD 中,BD AC 、 交于O ,∴.OC AO =CD AB // ,∴CFO AEO FCO EAO ∠=∠∠=∠,,∴)(AAS CFO AEO ∆≅∆,∴.OF OE =例4 分析 观察图形,AFD ∆与DCE ∆都是直角三角形,且锐角DEC ADF ∠=∠,斜边DE AD =,因此这两个直角三角形全等。

(完整版)平行四边形的性质判定练习题

(完整版)平行四边形的性质判定练习题

第一部分 平行四边形的性质练习题 例题1、平行四边形得周长为50cm ,两邻边之差为5cm,求各边长。

变题1.平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________. 变题2.四边形ABCD 是平行四边形,∠BAC=90°,AB=3,AC=4,求AD 的长。

例题2.平行四边形ABCD 中,∠A-∠B=20°,求平行四边形各内角的度数。

变题3.平行四边形ABCD 中,AE 平分∠DAB, ∠DEA=20°,则∠C=_________,∠B_________. 变题4.如图,在平行四边形ABCD 中,∠BAC=34°, ∠ACB=26°,求∠DAC 与∠D 的度数。

例题3.如图,在平行四边形ABCD 中,CE ⊥AD,CF ⊥BA 交BA 的延长线于F ,∠FBC=30°,CE=3cm,CF=5cm,求平行四边形ABCD 的周长。

变题5.如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边形面积。

1、如图,四边形ABCD 是平行四边形,AB=6cm,BC=8cm ,∠B=70°,则AD=________,CD=______,∠D=_______,∠A=______,∠C=_______.2、平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________.3、平行四边形得周长为50cm ,两邻边之差为5cm,则长边是________ ,短边是__________.4、平行四边形ABCD 中,∠A-∠B=20°, 则∠A=_______ ∠B=________5、.平行四边形ABCD 中,AE 平分∠DAB, ∠DEA=20°,则∠C=____,∠B_____.6、平行四边形 ABCD 中,∠A+∠C=200°.则:∠A= _______,∠B= _________ .7、如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边形面积。

平行四边形的性质(第2课时)同步课件

平行四边形的性质(第2课时)同步课件

对角相等,邻角互补 对角线互相平分
作业布置
“习题6.2” 第2、3题
课程结束
课堂练习
2.如图,▱ABCD的对角线AC,BD相交于点O,且AC+BD =16,CD=6,则△ABO的周长是( B ) A.10 B.14 C.20 D.22
课堂练习
3.如图,EF过▱ABCD对角线的交点O,交AD于E,交BC 于F,若▱ABCD的周长为18,OE=1.5,则四边形EFCD的 周长为( C) A.14 B.13 C.12 D.10
课堂练习
4.如图,在▱ABCD中,对角线AC,BD相交于点O,AE⊥BD
于点E,CF⊥BD于点F,连接AF,CE,则下列结论:
①CF=AE;
②OE=OF;
③DE=BF;
④图中共有四对全等三角形.
其中正确结论的个数是( B )
A.4
B.3
C.2
D.1
课堂练习
5.如图,若▱ABCD的周长为36 cm,过点D分别作AB,BC边
求证:OA=OC,OB=OD.
证明:∵四边形ABCD是平行四边形, ∴AB=CD(平行四边形的对边相等). AB∥CD(平行四边形的定义).
A
O
B
∴∠BAO=∠DCO,∠ABO=∠CDO.
∴△ABO≌△CDO.
∴OA=OC,OB=OD.
D C
探究新知
归纳总结
对角线的性质:平行四边形的对角线互相平分. 数学表达式:如图, ∵四边形ABCD是平行四边形,
课堂练习
(2)解:∵四边形ABCD是平行四边形, ∴AB=CD,AD=BC,OA=OC, ∵EF⊥AC, ∴AE=CE, ∵△BEC的周长是10, ∴BC+BE+CE=BC+BE+AE=BC+AB=10, ∴▱ABCD的周长=2(BC+AB)=20.

人教版八年级下册数学平行四边形第2课时平行四边形的对角线性质 同步练习

人教版八年级下册数学平行四边形第2课时平行四边形的对角线性质 同步练习

18.1 平行四边形第2课时平行四边形的对角线性质基础训练知识点1 平行四边形的性质——对角线互相平分1.如图,▱ABCD的对角线AC,BD相交于点O,则下列说法一定正确的是( )A.AO=ODB.AO⊥ODC.AO=OCD.AO⊥AB2.如图,在平行四边形ABCD中,AB=3 cm,BC=5 cm,对角线AC,BD相交于点O,则OA的取值范围是( )A.2 cm<OA<5 cmB.2 cm<OA<8 cmC.1 cm<OA<4 cmD.3 cm<OA<8 cm3.(2016·丽水)如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为( )A.13B.17C.20D.264.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC.若AB=4,AC=6,则BD的长是( )A.8B.9C.10D.115.如图,在▱ABCD中,对角线AC与BD交于点O,AE⊥BD于E,CF⊥BD于F,则图中全等的三角形共有( )A.7对B.6对C.5对D.4对6.如图,▱ABCD的对角线AC与BD相交于O,OE⊥BD于O交BC于E,连接DE,若△CED的周长是21 cm,则▱ABCD的周长是.知识点2 平行四边形的面积7.将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积.则这样的折纸方法共有( )A.1种B.2种C.4种D.无数种8.如图,在平行四边形ABCD中,点A1,A2,A3,A4和C1,C2,C3,C4分别是AB和CD的五等分点,点B1,B2和D1,D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为1,则平行四边形ABCD的面积为( )A.2B.错误!未找到引用源。

C.错误!未找到引用源。

D.159.如图,过▱ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的▱AEMG的面积S1与▱HCFM的面积S2的大小关系是( )A.S1>S2B.S1<S2C.S1=S2D.2S1=S210.如图,在平行四边形ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则图中阴影部分的面积为( )A.3B.6C.12D.24易错点容易把未知条件当作已知条件使用11.如图,在平行四边形ABCD中,AC和BD相交于点O,OE⊥AD于点E,OF⊥BC于点F.试说明:OE=OF.提升训练考查角度1 利用平行四边形的对角线性质证明线段相等(构造法)12.如图,已知▱ABCD和▱EBFD的顶点A,E,F,C在一条直线上,求证:AE=CF.考察角度2 利用平行四边形对角线性质解坐标问题13.如图,已知点A(-4,2),B(-1,-2),▱ABCD的对角线交于坐标原点O.(1)请直接写出点C,D的坐标;(2)写出从线段AB到线段DC的变换过程;(3)直接写出▱ABCD的面积.探究培优拔尖角度1 利用平行四边形平行性质求面积14.(2016·永州)如图,四边形ABCD为平行四边形,∠BAD的平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求▱ABCD的面积.拔尖角度2 利用平行四边形对角线性质探究面积15.探究:如图①,▱ABCD中,AC,BD交于点O,过点O的直线交AD于E,交BC于F.(1)求证:四边形AEFB与四边形DEFC的周长相等.(2)直线EF是否将▱ABCD的面积分成二等份?试说明理由.应用:张大爷家有一块平行四边形的菜园,园中有一口水井P,如图②所示,张大爷计划把菜园平均分成两块分别种植西红柿和茄子,且使两块地共用这口水井,请你帮助张大爷把地分开.参考答案1.【答案】C2.【答案】C3.【答案】B4.【答案】C解:在▱ABCD中,OA=OC,OB=OD,所以AO=错误!未找到引用源。

《平行四边形的性质》第二课时教案 (公开课)2022年1

《平行四边形的性质》第二课时教案 (公开课)2022年1

平行四边形的性质(二)一、教学目标:1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2.能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.3.培养学生的推理论证能力和逻辑思维能力.二、重点、难点1.重点:平行四边形对角线互相平分的性质,以及性质的应用.2.难点:综合运用平行四边形的性质进行有关的论证和计算.3.难点的突破方法:〔1〕本节课的主要内容是平行四边形的性质3,它是通过旋转平行四边形,得到平行四边形是中心对称图形和对角线互相平分的性质.这一节综合性较强,教学中要注意引导学生.要注意让学生稳固根底知识和根本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.〔2〕教学时要讲明线段互相平分的意义和表示方法.如图,设四边形HEFG 的对角线HF、EG相交于点O,假设HF与EG互相平分,那么有OH=OF,OE =OG.〔3〕在平行四边形中,从一条边上的任意一点,向对边画垂线,这点与垂足间的距离(或从这点到对边垂线段的长,或者说这条边和对边的距离),叫做以这条边为底的平行四边形的高.这里所说的“底〞是相对高而言的.在平行四边形中,有时高是指垂线段本身,如作平行四边形的高,就是指作垂线段.所以平行四边形的高,在作图时一般是指垂线段本身.在进行计算时,它的意义是距离,即长度.〔4〕平行四边形的面积等于它的底和高的积,即=a·h.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高,如图〔1〕.要防止学生发生如图〔2〕的错误.为了区别,有时也可以把高记成、,说明它们所对应的底是a或AB.〔5〕学完本节后,归纳总结一下平行四边形比一般四边形多哪些性质,平行四边形有哪些性质.可以按边、角、对角线进行总结.通过复习总结,使学生掌握这些知识,也培养学生随时复习总结的习惯,并提高他们归纳总结的能力.三、课堂引入1.复习提问:〔1〕什么样的四边形是平行四边形?四边形与平行四边形的关系是:〔2〕平行四边形的性质:①具有一般四边形的性质〔内角和是〕.②角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.2.【探究】:请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转,观察它还和EFGH重合吗?你能从图中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:〔1〕平行四边形是中心对称图形,两条对角线的交点是对称中心;〔2〕平行四边形的对角线互相平分.四、例习题分析例1〔补充〕:如图,ABCD的对角线AC、BD相交于点O,EF过点O 与AB、CD分别相交于点E、F.求证:OE=OF,AE=CF,BE=DF.证明:在ABCD中,AB∥CD,∴∠1=∠2.∠3=∠4.又 OA=OC(平行四边形的对角线互相平分),∴△AOE≌△COF〔ASA〕.∴OE=OF,AE=CF〔全等三角形对应边相等〕.∵ABCD,∴ AB=CD〔平行四边形对边相等〕.∴ AB—AE=CD—CF.即BE=FD.※【引申】假设例1中的条件都不变,将EF转动到图b的位置,那么例1的结论是否成立?假设将EF向两方延长与平行四边形的两对边的延长线分别相交〔图c和图d〕,例1的结论是否成立,说明你的理由.解略例1是性质3的直接运用,然后对它进行了引申,可以根据学生实际情况选讲,并归纳结论:过平行四边形对角线的交点作直线交对边或对边的延长线,所得的对应线段相等.例1与后面的三个图形是一组重要的根本图形,熟悉它的性质对解答复杂问题是很有帮助的.例2〔教材P85的例2〕四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.分析:由平行四边形的对边相等,可得BC、CD的长,在Rt△ABC中,由勾股定理可得AC的长.再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积计算公式:平行四边形的面积=底×高〔高为此底上的高〕,可求得ABCD的面积.〔平行四边形的面积小学学过,再次强调“底〞是对应着高说的,平行四边形中,任一边都可以作为“底〞,“底〞确定后,高也就随之确定了.〕3.平行四边形的面积计算解略〔参看教材P85〕.例2是复习稳固小学学过的平行四边形面积计算.这个例题比小学计算平行四边形面积的题加深了一步,需要应用勾股定理,先求得平行四边形一边上的高,然后才能应用公式计算.在以后的解题中,还会遇到需要应用勾股定理来求高或底的问题,在教学中要注意使学生掌握其方法.平行四边形的性质总体说明〔1〕本节的主要内容包含平行四边形的性质。

(完整版)平行四边形的性质习题(有答案)

(完整版)平行四边形的性质习题(有答案)

平行四边形的性质测试题一、选择题(每题 3 分共 30 分)1.下边的性质中,平行四边形不必定具备的是()A.对角互补B.邻角互补C.对角相等D.内角和为 360°2.在中,∠ A:∠ B:∠ C:∠ D 的值能够是()A .1:2:3:4B .1:2:1:2C .1:1:2:2 D.1: 2:2:13.平行四边形的对角线和它的边能够构成全等三角形()A.3对B.4 对 C .5对D. 6 对A D 4.以下图,在中,对角线 AC、BD交于点 O,?以下式子中一O 定建立的是()B CA.AC⊥ BD B . OA=OC C. AC=BD D .AO=OD5.以下图,在中, AD=5,AB=3,AE均分∠ BAD交BC A D边于点 E,则线段 BE、 EC的长度分别为()BE C A .2和3 B.3和2 C .4和1 D .1和46.的两条对角线订交于点 O,已知 AB=8cm,BC=6cm,△AOB的周长是 18cm,那么△ AOD的周长是()A .14cmB .15cmC .16cmD .17cm7.平行四边形的一边等于14,它的对角线可能的取值是()A .8cm和 16cmB .10cm和 16cmC . 12cm和 16cmD . 20cm和 22cm 8.如图,在中,以下各式不必定正确的选项是()A.∠ 1+∠ 2=180° B .∠ 2+∠ 3=180C.∠ 3+∠ 4=180°D.∠ 2+∠4=180°9.如图,在中,∠ ACD=70°,AE⊥ BD于点E,则∠ ABE等于()A、20°B、25° C 、 30° D 、35°10.如图,在△ MBN中, BM=6,点 A、C、D 分别在 MB、NB、MN上,四边形 ABCD为平行四边形,∠NDC=∠ MDA,那么的周长是()二、填空题(每题 3 分共 18 分)11.在中,∠ A:∠ B=4:5,则∠ C=______.12.在中, AB:BC=1:2,周长为 18cm,则 AB=______cm,AD=_______cm.13.在中,∠A=30°,则∠ B=______,∠C=______,∠D=________.14.如图,已知:点 O是的对角线的交点, ?AC=?48mm,?BD=18mm,AD=16mm,那么△ OBC的周长等于 _______mm.15.如图,在中,E、F是对角线BD上两点,要使△ ADF≌△ CBE,还需增添一个条件是 ________.16.如图,在中,EF∥ AD,MN∥ AB,那么图中共有_______?个平行四边形.三、解答题17.已知:如图,在中,E、F是对角线AC?上的两点,AE=CF.BE与DF的大小有什么关系,并说明原因。

平行四边形性质和判定习题(答案详细)

平行四边形性质和判定习题(答案详细)

平行四边形性质和判定习题(答案详细)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(平行四边形性质和判定习题(答案详细))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为平行四边形性质和判定习题(答案详细)的全部内容。

平行四边形性质和判定习题1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若 M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).2.如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.3.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.4.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.5.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.6.如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形.7.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.8.在▱ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.9.如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.10.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?11.如图:已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.12.已知:如图,在▱ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.13.如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上.求证:EF和GH互相平分.14.如图:▱ABCD中,MN∥AC,试说明MQ=NP.15.已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.16.如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)17.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证:AF=CE;(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.18.如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2(1)求证:D是EC中点;(2)求FC的长.19.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.20.如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么;(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?21.如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1)当AB≠AC时,证明:四边形ADFE为平行四边形;(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.22.如图,以△ABC的三边为边,在BC的同侧分别作三个等边三角形即△ABD、△BCE、△ACF,那么,四边形AFED是否为平行四边形?如果是,请证明之,如果不是,请说明理由.23.在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.请直接应用上述信息解决下列问题:当点P分别在△ABC内(如图2),△ABC外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证明.24.如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC"改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).25.在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD分割成四个部分,使含有一组对顶角的两个图形全等;(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有_________组;(2)请在图中的三个平行四边形中画出满足小强分割方法的直线;(3)由上述实验操作过程,你发现所画的两条直线有什么规律?26.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC 方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.27.已知平行四边形的三个顶点的坐标分别为O(0,0)、A(2,0)、B(1,1),则第四个顶点C的坐标是多少?28.已知平行四边形ABCD的周长为36cm,过D作AB,BC边上的高DE、DF,且cm,,求平行四边形ABCD的面积.29.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣3,),B(﹣2,3),C(2,3),点D在第一象限.(1)求D点的坐标;(2)将平行四边形ABCD先向右平移个单位长度,再向下平移个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?(3)求平行四边形ABCD与四边形A1B1C1D1重叠部分的面积?30.如图所示.▱ABCD中,AF平分∠BAD交BC于F,DE⊥AF交CB于E.求证:BE=CF.答案与评分标准1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若 M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).考点:平行四边形的判定与性质;全等三角形的判定与性质。

平行四边形习题含答案

平行四边形习题含答案

平行四边形习题含答案平行四边形习题含答案平行四边形是初中数学中的一个重要概念,它在几何学中有着广泛的应用。

掌握平行四边形的性质和解题方法,对于解决与平行四边形相关的问题非常有帮助。

本文将介绍一些平行四边形的习题,并提供相应的答案。

1. 问题一:已知平行四边形ABCD,AB = 8cm,BC = 6cm,求平行四边形的面积。

解答:平行四边形的面积可以通过底边与高的乘积来计算。

由于平行四边形的边平行且相等,所以可以将底边取为AB或CD,高取为BC或AD。

我们选择底边为AB,高为BC。

则平行四边形的面积为8cm × 6cm = 48cm²。

2. 问题二:已知平行四边形ABCD,AB = 10cm,BC = 6cm,角BAD的度数为60°,求平行四边形的周长。

解答:平行四边形的周长可以通过将相邻边的长度相加再乘以2来计算。

由于平行四边形的边平行且相等,所以可以将相邻边的长度相加后再乘以2。

在这个问题中,AB = CD = 10cm,BC = AD = 6cm。

所以平行四边形的周长为(10cm + 6cm) × 2 = 32cm。

3. 问题三:已知平行四边形ABCD,AB = 12cm,BC = 8cm,对角线AC的长度为10cm,求平行四边形的面积。

解答:对角线AC将平行四边形分成两个全等的三角形。

我们可以利用三角形的面积公式计算每个三角形的面积,然后将两个三角形的面积相加得到平行四边形的面积。

设高为h,根据勾股定理,可以得到h² = AC² - (AB/2)² = 10² - (12/2)² = 100 - 36 = 64。

所以h = √64 = 8cm。

每个三角形的面积为(12cm ×8cm) / 2 = 48cm²。

因此,平行四边形的面积为48cm² + 48cm² = 96cm²。

平行四边形练习题及答案

平行四边形练习题及答案

平行四边形练习题及答案平行四边形是初中数学中的重要概念之一,它具有特殊的性质和特点。

通过练习题的形式,我们可以更好地理解和掌握平行四边形的相关知识。

本文将为大家提供一些平行四边形的练习题及答案,希望能对大家的学习有所帮助。

1. 练习题一:已知平行四边形ABCD中,AB = 6cm,BC = 8cm,角A的度数为60°,求AD的长度。

解答:由平行四边形的性质可知,平行四边形的对边长度相等。

因此,AD = BC =8cm。

2. 练习题二:已知平行四边形EFGH中,EF = 10cm,GH = 15cm,角E的度数为120°,求FG的长度。

解答:由平行四边形的性质可知,平行四边形的对边长度相等。

因此,FG = EH =15cm。

3. 练习题三:已知平行四边形IJKL中,IJ = 12cm,KL = 18cm,角I的度数为135°,求JK的长度。

解答:由平行四边形的性质可知,平行四边形的对边长度相等。

因此,JK = IL = 18cm。

4. 练习题四:已知平行四边形MNOP中,MN = 5cm,NO = 7cm,角M的度数为45°,求OP的长度。

解答:由平行四边形的性质可知,平行四边形的对边长度相等。

因此,OP = MN = 5cm。

5. 练习题五:已知平行四边形QRST中,QR = 9cm,ST = 12cm,角Q的度数为30°,求RS 的长度。

解答:由平行四边形的性质可知,平行四边形的对边长度相等。

因此,RS = QT =9cm。

通过以上练习题,我们可以发现平行四边形的一个重要性质:平行四边形的对边长度相等。

这个性质在解题过程中起到了关键的作用,帮助我们求解未知的边长。

除了对边长度相等外,平行四边形还具有其他一些重要的性质。

例如,平行四边形的对角线互相平分,即对角线互相等长。

这个性质在解题过程中也经常被用到。

练习题只是帮助我们巩固平行四边形的相关知识点,实际问题中,平行四边形的应用非常广泛。

平行四边形的性质(2)

平行四边形的性质(2)

教学目标:
1、知识与技能:探索并掌握平行四边形对角线互相平分的性质,掌握平行线之间的距离的功概念。

2、过程与方法:
利用平行四边形的对边相等的性质,借助三角形全等的知识,通过合理推理,探索平行四边形的对角线互相平分的性质。

3、情感态度与价值观:
在探索平行四边形的性质活动中,培养学生的探究、合作精神,增强推理的能力。

教学重点:
史学史掌握平行四边形的对角线互相平分的性质。

教学难点:
平行四边形性质的综合运用。

教学互动设计:
一、回顾、思考
1、定义与性质——
2、利用定义与性质解题————
①、已知平行四边形的一角,可求;
②、已知平行四边形的两邻边,可求;
3、练一练

二、情境导课
(1)图中有哪些三角形是全等的?
(2)能设法验证你的结论吗?
想一想
由本题你又能得出平行四边形怎样的性质?
平行四边形的性质:
a
b
d
o平行四边形的对角线互相平分。

三、利用定义、性质解题
因为 ad、ab 已知,
所以,利用平行四边形的性质“”可求出它们;(2)点 o 是,
利用平行四边形的性质“”可知ob是bd的一半。

(3)求 bd 的长应摆在△中用定理来计算。

中考数学总复习《平行四边形的性质》练习题及答案

中考数学总复习《平行四边形的性质》练习题及答案

中考数学总复习《平行四边形的性质》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图,在▱ABCD中,E为BC的中点,DE、AC交于点F,则EFDF的值为()A.1B.13C.23D.122.在□ ABCD中,∠A=70∘,则∠B度数为()A.110∘B.100∘C.70∘D.20∘3.如图,在□ABCD中,对角线AC,BD交于点O,下列结论一定成立的是()A.AC⊥BD B.AO=OD C.AC=BD D.OA=OC4.如图,▱ABCD中,CE平分∠BCD,交AB于点E,AE=3,BE=5,DE=4,则CE的长为()A.4√5B.5√5C.5√2D.6√25.如图,在平行四边形ABCD中,⊥A=130°,在AD上取DE=DC,则⊥ECB的度数是()A.65°B.50°C.60°D.75°6.已知▱ABCD中,∠A+∠C=70°,则∠B的度数为()A.125°B.135°C.145°D.155°7.在平行四边形ABCD中,若⊥A+⊥C=80°,则⊥B的度数是()A.140°B.100°C.40°D.120°8.如图,在▱ABCD中,点F是线段CD上一点,点A作▱BFGE,当点F从点C向点D运动过程中,四边形BFGE的面积的变化情况是()A.保持不变B.一直减小C.一直增大D.先增大后减小9.如图,在平行四边形ABCD中,⊥BAD的平分线交BC于点E,⊥ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13B.14C.15D.1610.如图,在⊥ABCD中,点E是DC边上一点,连接AE,BE,若AE,BE分别是⊥DAB,⊥CBA的角平分线,且AB=4,则⊥ABCD的周长为()A.10B.8 C.5 D.1211.如图,▱ABCD的对角线AC,BD交于点O,EF和GH过点O,且点E,H在边DC上,点G,F 在边AB上,若▱ABCD的面积为10,则阴影部分的面积为()A.6B.4C.3D.5212.如图,平行四边形ABFC的对角线x∈(1,e)相交于点E,点O为AC的中点,连接BO并延长,交FC的延长线于点D,交AF于点G,连接AD、OE,若平行四边形ABFC的面积为48,则SΔEOG的面积为()A.4B.5C.2D.3二、填空题13.如图,E是⊥ABCD边BC上一点,且AB=BE,连结AE,并延长AE与DC的延长线交于点F,⊥F=70°,则⊥D=度.14.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点处.若∠1=∠2=50∘,则为.15.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若⊥BOC的周长比⊥AOB的周长大2cm,则CD=cm.16.在平行四边形ABCD中,⊥BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于.17.如图,已知⊥ABC的三个顶点的坐标分别为A(﹣2,0),B(﹣1,2),C(2,0).请直接写出以A,B,C为顶点的平行四边形的第四个顶点D的坐标18.如图,E、F分别是⊥ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S⊥APD=10cm2,S⊥BQC=20cm2,则阴影部分的面积为cm2.三、综合题19.如图,▱ABCD中,以A为圆心,DA的长为半径画弧,交BA于点F,作⊥DAB的角平分线,交CD于点E,连接EF.(1)求证:四边形AFED是菱形;(2)若AD=4,⊥DAB=60°,求四边形AFED的面积.20.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC 是等边三角形.(1)求证:四边形ABCD是菱形.(2)若AC=8,AB=5,求ED的长.21.如图,在▱ABCD中AE⊥BC于E,AF⊥CD于F,且CE=CF.(1)求证:AE=AF;(2)求证:四边形ABCD是菱形.22.如图,四边形ABCD是平行四边形,点E在BC的延长线上,且CE=BC,AE=AB,AE、DC相交于点O,连接DE.(1)求证:四边形ACED是矩形;(2)若⊥AOD=120°,AC=4,求对角线CD的长.23.图1,图2都是8×8的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,在每个正方形网格中标注了6个格点,这6个格点简称为标注点.(1)请在图1,图2中,以4个标注点为顶点,各画一个平行四边形(两个平行四边形不全等);(2)图2中所画的平行四边形的面积为.24.如图,在平行四边形ABCD中,AB≠BC,连接AC,AE是⊥BAD的平分线,交边DC的延长线于点F.(1)证明:CE=CF;(2)若⊥B=60°,BC=2AB,试判断四边形ABFC的形状,并说明理由.(如图2所示)参考答案1.【答案】D2.【答案】A3.【答案】D4.【答案】A5.【答案】A6.【答案】C7.【答案】A8.【答案】A9.【答案】D10.【答案】D11.【答案】D12.【答案】C13.【答案】4014.【答案】105°15.【答案】416.【答案】217.【答案】(3,2),(﹣5,2),(1,﹣2)18.【答案】3019.【答案】(1)证明:∵AE为⊥DAB的角平分线∴⊥DAE=⊥EAF∵AB//CD∴⊥DEA=⊥EAF∴⊥DAE=⊥DEA∴AD=DE∵AD=AF∴DE=AF∵DE//AF∴四边形AFED为平行四边形∵AD=DE∴四边形AFED是菱形.(2)解:连接DF交AE于点O,如图所示:∵⊥DAB=60°,DA=AF ∴⊥DAF为等边三角形∵AD=4∴DF=4,DO=2∴AO= 2√3,AE= 4√3∴S四边形AFED= 12×4×4√3= 8√3.20.【答案】(1)证明:∵四边形ABCD是平行四边形∴AO=CO∵⊥EAC是等边三角形∴EA=EC∴EO⊥AC∴四边形ABCD是菱形(2)解:∵四边形ABCD是菱形,AC=8∴AO=CO=4,DO=BO在Rt⊥ABO中,BO=√AB2−AO2=3∴DO=BO=3在Rt⊥EAO中,EO=√EA2−AO2=4√3∴ED=EO-DO=4√3-3.21.【答案】(1)证明:∵AE⊥BC于E,AF⊥CD于F.∴△ACE与△ACF为直角三角形∵CE=CF,AC=AC∴Rt△ACE≌Rt△ACF(HL)∴AE=AF;(2)证明:∵在▱ABCD中,AE⊥BC于E,AF⊥CD于F ∴∠B=∠D∵AE=AF(已证)∴△ABE≌△ADF(AAS)∴AB=AD∴▱ABCD为菱形.22.【答案】(1)证明:四边形ABCD是平行四边形AD⊥BC,AD=BC,AB=DCCE=BCAD=CE,AD⊥CE四边形ACED是平行四边形AB=DC,AE=ABAE=DC四边形ACED是矩形;(2)解:四边形ACED是矩形,OA= 12AE,OC=12CD,AE=CD,OA=OC⊥AOC=180°-⊥AOD=180°-120°=60°⊥AOC是等边三角形OC=AC=4CD=8.23.【答案】(1)解:如图1,如图2;(2)624.【答案】(1)证明:如图(1)∵AE 是⊥BAD 的平分线 ∴⊥BAF=⊥DAF∵在平行四边形ABCD 中 ∴AB⊥DF ,AD⊥BC ∴⊥BAF=⊥F ,⊥DAF=⊥CEF ∴⊥F=⊥DAF=⊥CEF ∴CE=FC(2)解:四边形ABFC 是矩形 理由:如图(2)∵⊥B=60°,AD⊥BC ∴⊥BAD=120° ∵⊥BAF=⊥DAF ∴⊥BAF=60°则⊥ABE 是等边三角形可得AB=BE=AE ,⊥BEA=⊥AFC=60° ∵BC=2AB ∴AE=BE=EC∴⊥ABC 是直角三角形,⊥BAC=90° 在⊥ABE 和⊥FCE 中 ∵{∠ABE =∠FCE BE =EC ∠BEA =∠CEF ∴⊥ABE⊥⊥FCE (ASA ) ∴AB=FC 又∵AB⊥FC∴四边形ABFC 是平行四边形 再由⊥BAC=90°故四边形ABFC 是矩形.。

中考数学复习专题之平行四形的性质与判定,考点过关与基础练习题

中考数学复习专题之平行四形的性质与判定,考点过关与基础练习题

24.平行四边形➢考点分类考点1平行四边形的性质例1如图所示,在ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF(2)连接DE,若AD=2AB,求证:DE⟂AF.考点2平行四边形的判定例2如图所示,DE是ABC的中位线,延长DE至F,使EF=DE,连接BF.(1)求证:BF=DC(2)求证:四边形ABFD是平行四边形.考点3平行四边形综合探究例3如图1,在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于F.(1)当∠ABC=90°时,G是EF的中点,联结DB,DG(如图2),请直接写出∠BDG 的度数(2)当∠ABC=120°时,FG∥CE,且FG=CE,分别联结DB、DG(如图3),求∠BDG 的度数.➢真题演练1.如图,四边形ABCD是平行四边形,O是对角线AC与BD的交点,AB⊥AC,若AB=8,AC=12,则BD的长是()A.20B.21C.22D.232.在平行四边形ABCD中,已知∠A+∠C=200°,则∠A=()A.40°B.60°C.80°D.100°3.如图,平行四边形ABCD的对角线AC,BD相交于点O.点E为BC的中点,连接EO 并延长交AD于点F,∠ABC=60°,BC=2AB.下列结论:①S▱ABCD=AB•AC;②AD=4OE;③EF⊥AC;④S△BOE=14S△ABC.其中正确结论的个数是()A.4B.3C.2D.14.如图,在Rt △ABC 中,∠B =90°,BC =4,AC =5,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是( )A .3B .6C .8D .105.如图,在▱ABCD 中,AD =BD ,∠ADC =105°,点E 在AD 上,∠EBA =60°,则ED AE的值是( )A .23B .√3C .√32D .√336.如图,⟂ABCD 的对角线AC ,BD 交于点O ,AE 平分⟂BAD ,交BC 于点E ,且⟂ADC =60°,AD =2AB ,连接OE ,下列结论:⟂⟂CAD =30°;⟂OD =AB ;⟂S 平行四边形ABCD =AC •CD ;⟂S 四边形OECD =32S ⟂AOD :⟂OE =14AD .其中成立的个数是( )A .1个B .2个C .3个D .4个7.如图,点O 是平行四边形ABCD 对角线的交点,EF 过点O 分别交AD ,BC 于点E ,F .下列结论:①OE =OF ;②AB =BF ;③∠DOC =∠OCD ;④∠CFE =∠DEF ,其中正确结论的个数是( )A .4个B .3个C .2个D .1个8.如图,平行四边形ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=3,AO=2,BC=5,则AE的长为.9.如图,在平行四边形ABCD中,AD=5,AB=3,∠BAD的平分线AE交BC于E点,则EC的长为.10.如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=3BG,S▱BEPG =1.5,则S▱AEPH=.11.如图,在平行四边形ABCD中,E,F分别是AB,BC的中点,EH⊥AC,垂足为H,与AF交于点G,若AC=24,GF=6√5,则EG的长为.12.在平行四边形ABCD中,∠C=45°,AD=BD,点P为边CD上的动点(点P不与点D重合),连接AP,过点P作EP⊥AP交直线BD于点E.(1)如图①,当点P为线段CD的中点时,求证:P A=PE;(2)如图②,当点P在线段CD上时,求证:DE﹣DA=√2DP.13.已知:如图,▱ABCD 中,F 是AB 中点,连接DF ,DF 延长线交CB 的延长线于点E ,连接AE . 求证:(1)△AFD ≌△BFE ;(2)若BF =BC ,∠EDC =60°,判断四边形AEBD 的形状,并证明你的结论.➢ 课后练习1.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,AE 平分∠BAD ,分别交BC ,BD 于点E 、P .连接OE ,∠ADC =60°,AB =12BC =1,则下列结论: ①∠CAD =30°;②BD =2√3;③S 平行四边形ABCD =AB •AC ; ④AD =4OE .其中结论正确的个数是( )A .1个B .2个C .3个D .4个2.如图,平行四边形ABCD 中,对角线AC 、BD 相交于O ,过点O 作OE ⊥AC 交AD 于点E ,若AE =4,DE =3,AB =5,则AC 的长为( )A .3√2B .4√2C .5√2D .5√223.如图,已知在▱ABCD中,E为AD的中点,CE的延长线交BA的延长线于点F,则下列结论正确的有()个.①F A:FB=1:2;②BE:CF=1:2;③AE:BC=1:2;④S△ABE:S△FBC=1:4.A.1个B.2个C.3个D.4个4.如图,在平行四边形ABCD中,CE平分∠BCD,交AB于点E,AE=3,EB=5,ED=4.则CE的长是()A.2√2B.6√2C.5√5D.4√55.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上(E 不与A、B重合),连接EF、CF,则下列结论中正确个数是()①∠DCF=12∠BCD;②EF=CF;③S△BEC<2S△CEF;④∠DFE=4∠AEFA.4B.3C.2D.16.如图,在平行四边形ABCD中,E为CD上一点,且CE=BC,AE=DE,AE=4,∠DAE =60°,则下列结论:①∠AEB=90°;②平行四边形ABCD周长是24;③∠ABE=∠EBC=30°;④BE2=48;⑤E为CD中点.正确的结论有()A.2个B.3个C.4个D.5个7.如图,平行四边形ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD边于G,交AD延长线于F,若BC=6,DF=4,EF=2AE,则△ABE的面积为.8.如图,在▱ABCD中,AE⊥BC于E,AF⊥DC交DC的延长线于点F,且∠EAF=60°,BE=1,平行四边形ABCD面积为6√3.则AF=.9.如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有(填序号).10.如图,在平行四边形ABCD中,AD=12,AB=6,以AD为底边向右作腰长为10的等腰△ADP,Q为边BC上一点,BQ=4,连接PQ,则PQ的最小值为.11.在平面直角坐标系中,O为原点,点A(√3,0),点B(0,1),点E是边AB中点,把△ABO绕点A顺时针旋转,得△ADC,点O,B旋转后的对应点分别为D,C.记旋转角为α.(1)如图①,当点D恰好在AB上时,求点D的坐标;(2)如图②,若α=60°时,求证:四边形OECD是平行四边形.12.如图,在▱ABCD中,AE平分∠BAD交对角线BD于点E,CF平分∠DCB交对角线BD 于点F,连接AF,CE.(1)若∠BCF=50°,求∠ADC的度数;(2)求证:四边形AECF为平行四边形.➢冲击A+如图,在△ABC中,AB=BC,AB为⊙O的直径,AC与⊙O相交于点D,过点D做DE⊥BC于点E,CB延长线交⊙O于点F.(1)求证:DE为⊙O的切线;(2)若BE=1,BF=2,求AD的长.。

八年级平行四边形(二)

八年级平行四边形(二)
C .8cm和14cm D .8cm和12cm
【答案】B
4、如图,在平行四边形ABCD中,AB= AC,若平行四边形ABCD的周长为38 ,△ABC的周长比平行四边形ABCD的周长少l0 ,求平行四边形ABCD的一组邻边的长.
【提示】△ABC的周长: =28
平行四边形ABCD的周长:
【答案】
5、如图,平行四边形ABCD中,BE平分∠ABC且交边AD于点E,如果AB=6 ,BC=l0 ,试求:
题型二:证明线段互相平分
例1、已知:如图.平行四边形ABCD中,E、F分别是AB、CD的中点,G、H分别在AD、BC上,AG =CH.求证:EF与GH互相平分.
【提示】根据本题要证得结论可以分析出本题只要证明四边形GFHE是平行四边形即可.连结GF、FH、HE、EG
例2、如图,平行四边形ABCD的对角线AC和BD交于O,E、F分别为OB、OD的中点,过O任作一直线分别交AB、CD于G、H.求证:GF∥EH.
【注意】边:对边平行,对边相等;角:对角相等,邻角互补;对角线:对角线互相平分。
知识点3:平行四边形的判定
根据定义来判定:两组对边分别平行的四边形叫做平行四边形,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形。
1.平行四边形判定定理l:如果一个四边形的两组对边分别相等,那么这个四边形是平行四边形.
【提示】AD EF BC.
1、专题精讲
题型一:证明线段相等
例1、己知:如图,在平行四边形ABCD中,AC、BD交于点O,EF过点O,分别交CB,AD的延长线于点E、F,求证:AE=CF.
【提示】易证△DOF≌△BOE,DF=BE,AF CE,证得四边形AECF为平行四边形.(△DOF≌△BOE及已知条件,根据对角线互相平分的四边形是平行四边形,证得四边形AECF为平行四边形.)

平行四边形的性质(2)

平行四边形的性质(2)

平行四边形的性质有: 平行四边形的性质有: 对边相等 对边平行 AB=CD;AD=BC ; AB∥CD;AD∥BC ;
平行四边形
对角相等 邻角互补
∠ABC = ∠ADC; ∠BAC = ∠BCD
∠ ABC + ∠ BAC = 180
0
对角线互相平分OA=OC;OB=OD ;
小结:平行四边形的性质是证明线段相等和 平行四边形的性质是证明线段相等和 角相等的重要依据和方法。 角相等的重要依据和方法。
A
6
பைடு நூலகம்30º
C
D
8
B
E F
C
3.如图在 如图在
ABCD中,E,F是对角线 上的两 中 是对角线AC上的两 是对角线
请你说明∠ 点,且AE=CF.请你说明∠ ADF=∠CBE的理由 且 请你说明 ∠ 的理由
A
1 3
D E
F
2 6 4
B
5
C
E C A
l1
l2 F D B
夹在两平行线间的平行线段相等。 夹在两平行线间的平行线段相等。 一条直线上的任一点到另一条直线的 距离,叫做这两条平行线的距离。 距离,叫做这两条平行线的距离。
1、如图,l1 ∥ l2 ,AB∥CD,则 A 、如图, ∥ , AB与CD是否相等,为什么? 是否相等, 与 是否相等 为什么? • 2、矩形是平行四边形吗? 、矩形是平行四边形吗?
平行四边形不具有的性质有哪( 、 平行四边形不具有的性质有哪( B、E ) A、对边平行 、 C、对边相等 、 B、对角互补 、 D、对角线互相平分 、
E 、对角线互相垂直
如图,l1 // l2, 线段AB//CD//EF, 且点 如图, 线段 A、 C、 E在 l1 上 , B、 D、 F在 l2 上 , 、 、 在 、 、 在 的长短相等吗? 则 AB、 CD、 EF的长短相等吗 ? 为 、 、 的长短相等吗 什么? 什么?

3.1.1平行四边形的性质(2)湘教版

3.1.1平行四边形的性质(2)湘教版
A
C O
B
2012年3月13日星期二
D
18
如图,在平面直角坐标系中, 如图,在平面直角坐标系中, OBCD的顶点 的顶点 O﹑B﹑D的坐标如图所示,则顶点 的 ﹑ ﹑ 的坐标如图所示 则顶点C的 的坐标如图所示,
Y
坐标为( C ) 坐标为(
A. (3,7) C. (7,3) B. (5,3)
D(2,3)
老大 老二 老三 老四
当四个孩子看到时,争论不休, 当四个孩子看到时,争论不休,都认为自己的地 同学们,你认为老人这样分合理吗?为什么? 少,同学们,你认为老人这样分合理吗?为什么?
2012年3月13日星期二 12
A
老大 老二

D O
M 老三
老四
B
C
2012年3月13日星期二
13
说一说
如图, 如图,在 ABCD中, 中 BD=14cm,
10
平行四边形的性质: 平行四边形的性质:
平行四边形的对角线互相平分 平行四边形的对角线互相平分. 对角线互相平分 符号语言: 符号语言: ∵四边形ABCD是平行四边形 四边形ABCD ABCD是平行四边形
∴ OA=OC A
O
D C
B
OB=OD
2012年3月13日星期二
11
一位饱经苍桑的老人,经过一辈子的辛勤劳动, 一位饱经苍桑的老人,经过一辈子的辛勤劳动, 到 勤劳动 晚年的时候,终于拥有了一块平行四边形的土地, 晚年的时候,终于拥有了一块平行四边形的土地,由于年 迈体弱,他决定把这块土地分给他的四个孩子, 迈体弱,他决定把这块土地分给他的四个孩子,他是这样 分的: 分的:
数学八年级下册
2012年3月13日星期二

3.4 平行四边形的性质(2)

3.4 平行四边形的性质(2)

A E O
D
F C
B
变式3:已知:如图,在□ ABCD中,在BD的延长 线上分别截取BE、DF,且BE=DF,试说明:四边 形AECF是平行四边形。
A
D B E
O
F
C
注意: 当发现题中给出的条件是关于对角线的条件时,往往用对D中,E、F分别是AD、 BC上的点,且AE=CF,连接AF、BE、EC、 DF分别交于点G、H。试说明四边形EGFH是 A E 平行四边形。 D
B
C
O A D
例题2: 在□ABCD中, 对角线AC和BD相交于点O,点E、F分别是 点E、F在BD上,BE=DF, OB、OD的中点, 四边形AECF是平行四边形吗?为什么?
A E O
D
F C
B
讨论:AF与CE 有怎样的关系?并证明。
变式2:在□ABCD中,点E、F在BD上, BE=DF,试说明四边形AECF是平行四边形。
G B F H C
2、如图,已知四边形ABCD的对角线AC、BD交于 点P,过点P作直线,交AD于点E,交BC于点F若PE =PF,且AP+AE=CP+CF.求证:四边形ABCD 为平行四边形.
3.4 平行四边形(2)
探索
1、如图,在四边形ABCD中,AB=CD,AD=CB,四边 形ABCD是否是平行四边形?为什么?
2、如图,在四边形ABCD中,AB=CD,AB∥CD,四边 形ABCD是否是平行四边形?为什么? 3、如图,在四边形ABCD中,AC与BD交于点O, OA=OC,OB=OD,四边形ABCD是否是平行四边形? 为什么?
D
C
D
C
O A B A B
练习: 1、下列条件中,
①AB=CD,AB∥CD;②AB=CD,BC=DA;

6_1;6_2平行四边形的性质(1)(2)(王晓导学案)

6_1;6_2平行四边形的性质(1)(2)(王晓导学案)

课题 6.1平行四边形的性质(1)提炼与归纳批注与反思3、以下图是两组对边分别平行的四边形:即:AB∥CD,AD∥BC,那么三角形ABC和三角形ACD有什么关系?为什么?(1)AB与CD之间有什么样的数量关系?AD与BC呢?为什么?(2)各对角之间有什么样的数量关系?为什么?4、平行四边形的性质:平行四边形的相等;平行四边形的相等;平行四边形的互补;『水平训练提升』【当堂训练】——技能拓展应用,搭建晋级平台一、填空题1、已知:平行四边形ABCD中,一边AB=12 cm,AD=6,则BC=______ cm, CD=______ cm.2、如图,在ABCD中,对角线AC、BD相交于点O,图中全等三角形共有________对.3、ABCD中,若∠A∶∠B=1∶3,那么∠A=________,∠B=________,∠C=________,∠D=________.4、已知:□ABCD中,4,7,AB cm BC cm==则它的周长为()A、11cmB、22cmC、28cmD、44cm二解答题:1、如图,四边形ABCD是平行四边形,BD⊥AD,求BC,CD及BD的长.2、.已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长是多少?提炼与归纳批注与反思【学习目标】1、掌握平行四边形相关概念和性质。

2、探索并掌握平行四边形的对边相等,对角相等的性质。

【学习重点】探索平行四边形的性质。

【学习难点】平行四边形性质的理解。

『知识学习探究』【自主学习】建立自信,克服畏惧,尝试新知一、温故而知新1.两直线平行,同位角,内错角,同旁内角。

2.能够完全重合的两个三角形叫做;全等三角形的边对应角。

【合作探究】1、同学们拿出准备好的剪刀、白纸一张。

将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。

(1)你拼出了怎样的四边形?小组交流;(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平行四边形的性质2》习题
随堂练习
1.在平行四边形中,周长等于48,
①已知一边长12,求各边的长
②已知AB =2BC ,求各边的长
③已知对角线AC 、BD 交于点O ,△AOD 与△AOB 的周长的差
是10,求各边的长
2.如图,ABCD 中,AE ⊥BD ,∠EAD =60°,AE =2cm ,AC +BD =14cm ,则△OBC 的周长是____ ___cm .
3.ABCD 一内角的平分线与边相交并把这条边分成cm 5,cm 7的两条线段,则ABCD
的周长是__ ___cm .
课后练习
1.判断对错
(1)在ABCD 中,AC 交BD 于O ,则AO =OB =OC =OD . ( )
(2)平行四边形两条对角线的交点到一组对边的距离相等. ( )
(3)平行四边形的两组对边分别平行且相等. ( )
(4)平行四边形是轴对称图形. ( )
2.在 ABCD 中,AC =6、BD =4,则AB 的范围是 .
3.在平行四边形ABCD 中,已知AB 、BC 、CD 三条边的长度分别为(x +3),(x -4)和16,则这个四边形的周长是 .
4.公园有一片绿地,它的形状是平行四边形,绿地上要修
几条笔直的小路,如图,AB =15cm ,AD =12cm ,AC ⊥BC ,
求小路BC ,CD ,OC 的长,并算出绿地的面积.。

相关文档
最新文档