图像拼接原理及方法

合集下载

无人机图像拼接算法的研究及实现

无人机图像拼接算法的研究及实现

无人机图像拼接算法的研究及实现随着近年来无人机技术的飞速发展,无人机图像拼接技术也得到了广泛的应用。

该技术可以将无人机拍摄得到的相邻区域的图像进行拼接,生成高分辨率的全景图像,提供了一种高效的地图制作和空中监测的手段。

本文将从无人机图像拼接的原理入手,分析其算法的研究,介绍常见的图像拼接算法以及其应用场景,并在最后给出一个无人机图像拼接的实现实例。

一、无人机图像拼接原理无人机的航拍图像拼接是借助现代数字图像处理技术来实现的。

该技术需要处理大量的数据,并结合图像的特征进行定位,将相邻图像进行拼接,生成全景图像。

以下是无人机图像拼接的原理图:如图所示,相机通过对地面连续拍摄,得到多幅重叠区域较多的图像。

在无人机图像拼接中,首先需要对相机进行标定,得到相机的内外参数。

然后,根据每张拍摄的图像的特征,例如SIFT特征,计算出每幅图像的特征点。

接着,通过匹配不同图像之间的特征点,建立不同图像之间的关系。

最后,运用优化算法对关系进行优化,完成图像拼接,生成全景图像。

二、无人机图像拼接的算法研究目前,无人机图像拼接的算法主要有以下几种:1. 基于特征点匹配的无人机图像拼接算法这种算法主要的思路是在多副图像上提取一些稀有的、具有代表性的特征点。

然后根据特征点的相似程度进行匹配,得到匹配点对。

匹配点对的质量好坏非常重要,其正确率和准确度直接决定了拼接后的图像质量。

这种算法的核心是对特征点的提取和匹配两个部分的处理。

由于SIFT, SURF和ORB等算子在特征提取和匹配上有着良好的效果,因此应用广泛。

2. 基于区域分割的无人机图像拼接算法该算法主要是先将输入的拍摄图像进行区域分割,将该图像分为多个区域,然后根据区域之间的相似度,通过一系列的变换操作,将这些不同区域的图像配准后合并起来生成全景图像。

这种算法具有很好的兼容性和可扩展性,能够处理不同场景和不同光照下的图像拼接。

但是该算法也存在着一些缺陷,例如耗费计算时间比较长而导致对计算机处理性能的要求比较高。

图像拼接算法研究

图像拼接算法研究

图像拼接算法研究引言图像拼接是一项在计算机视觉领域中被广泛研究和应用的技术。

它的目的是将多张部分重叠的图像融合成一张完整的图像,从而实现对大尺寸场景或广角视野的展示。

随着数字摄影技术的发展和智能手机的普及,图像拼接技术也逐渐受到了更多的关注和需求。

一、图像拼接的基本原理图像拼接的基本原理是通过将多张图像进行对齐、配准和融合等处理,最终合成一张完整的图像。

一个典型的图像拼接过程包括以下几个步骤:1. 特征提取和匹配在图像拼接之前,首先需要对图像进行特征提取,通常使用SIFT、SURF等算法来检测图像中的关键点和描述子。

然后,通过比较不同图像中的特征点,利用匹配算法找出相对应的特征点对。

2. 图像对齐和配准根据匹配得到的特征点对,可以利用几何变换来对图像进行对齐和配准。

最常用的变换包括平移、旋转、缩放和透视变换等。

通过变换参数的优化,可以使得多张图像在对应的特征点处重叠得更好。

3. 图像融合在完成对齐和配准后,下一步就是将图像进行融合。

常用的融合方法包括加权平均法、多分辨率融合法和无缝克隆法等。

这些方法在保持图像平滑过渡和消除拼接痕迹方面都有一定的优势和适用场景。

二、图像拼接算法的发展与研究现状随着数字图像处理和计算机视觉技术的不断发展,图像拼接算法也得到了长足的发展和改进。

早期的图像拼接算法主要依赖于几何变换和像素级别的处理,但是随着深度学习和神经网络的兴起,基于特征的图像拼接方法逐渐成为主流。

1. 传统方法传统的图像拼接方法主要基于光流估计、图像配准和基础几何变换等技术。

例如,基于RANSAC算法的特征点匹配和单应性矩阵估计,可以实现对图像进行准确的拼接和质量控制。

然而,这些方法在处理拼接边缘和重叠区域的细节时往往存在一定的问题。

2. 基于特征的方法基于特征的图像拼接方法主要利用卷积神经网络(CNN)或循环神经网络(RNN)等深度学习模型进行特征提取和匹配。

这些方法通过学习局部特征表示和上下文关系,可以进一步提高拼接图像的质量和鲁棒性。

全景图像拼接技术综述与改进

全景图像拼接技术综述与改进

全景图像拼接技术综述与改进概述:全景图像拼接技术是指将多张相互有重叠区域的图像通过某种算法的处理,合成为一张无缝衔接的全景图像的过程。

全景图像拼接技术在虚拟现实、摄影、地理信息系统等领域具有广泛应用。

本文将对全景图像拼接技术的原理、算法以及当前的改进方法进行综述。

一、全景图像拼接技术的原理全景图像拼接技术的实现主要包含以下几个步骤:1. 特征提取与匹配:通过检测图像中的特征点,并计算特征描述子,从而实现不同图像之间的特征匹配。

2. 图像对齐:通过特征点匹配结果,确定图像之间的相对位置关系,并进行图像的配准,使得其能够对齐。

3. 图像融合:将对齐后的图像进行融合,消除拼接边缘的不连续性,实现无缝衔接的全景图像输出。

二、当前的全景图像拼接算法1. 基于特征点的算法:例如SIFT(尺度不变特征变换)和SURF(加速稳健特征)算法,通过提取图像的局部特征点,并进行匹配。

这种算法能够识别出旋转、尺度和视角变化,但对于大尺度图像的拼接效果有限。

2. 基于全局变换的算法:例如全景图像的球面投影映射(Spherical Projection Mapping)算法和全景图像的柱面投影映射(Cylindrical Projection Mapping)算法。

这些算法通过将图像映射为球面或柱面,并进行参数化变换来实现图像的拼接,能够处理大尺度图像,但在局部区域的拼接上可能存在一定的失真。

3. 基于深度学习的算法:近年来,深度学习技术在图像处理领域取得了重大突破。

通过使用深度卷积神经网络,如Pix2Pix和CycleGAN等模型,能够将拼接任务转化为图像到图像的转换问题,取得了较好的拼接效果。

三、全景图像拼接技术的改进方法1. 自动拼接线选取算法:采用自适应拼接线选取算法,根据特征点的分布和拼接图像的几何结构,自动选择合适的拼接线,减少拼接过程中的人工干预,提高拼接效率和准确性。

2. 拼接失真校正算法:解决基于全局变换的算法中局部区域存在的失真问题。

图像的拼接----RANSAC算法

图像的拼接----RANSAC算法

图像的拼接----RANSAC算法⼀、全景拼接的原理1.RANSAC算法介绍RANSAC算法的基本假设是样本中包含正确数据(inliers,可以被模型描述的数据),也包含异常数据(outliers,偏离正常范围很远、⽆法适应数学模型的数据),即数据集中含有噪声。

这些异常数据可能是由于错误的测量、错误的假设、错误的计算等产⽣的。

同时RANSAC也假设,给定⼀组正确的数据,存在可以计算出符合这些数据的模型参数的⽅法。

2.使⽤RANSAC算法来求解单应性矩阵在进⾏图像拼接时,我们⾸先要解决的是找到图像之间的匹配的对应点。

通常我们采⽤SIFT算法来实现特征点的⾃动匹配,SIFT算法的具体内容参照我的上⼀篇博客。

SIFT是具有很强稳健性的描述⼦,⽐起图像块相关的Harris⾓点,它能产⽣更少的错误的匹配,但仍然还是存在错误的对应点。

所以需要⽤RANSAC算法,对SIFT算法产⽣的128维特征描述符进⾏剔除误匹配点。

由直线的知识点可知,两点可以确定⼀条直线,所以可以随机的在数据点集中选择两点,从⽽确定⼀条直线。

然后通过设置给定的阈值,计算在直线两旁的符合阈值范围的点,统计点的个数inliers。

inliers最多的点集所在的直线,就是我们要选取的最佳直线。

RANSAC算法就是在⼀原理的基础上,进⾏的改进,从⽽根据阈值,剔除错误的匹配点。

⾸先,从已求得的匹配点对中抽取⼏对匹配点,计算变换矩阵。

然后对所有匹配点,计算映射误差。

接着根据误差阈值,确定inliers。

最后针对最⼤inliers集合,重新计算单应矩阵H。

3.基本思想描述:①考虑⼀个最⼩抽样集的势为n的模型(n为初始化模型参数所需的最⼩样本数)和⼀个样本集P,集合P的样本数#(P)>n,从P中随机抽取包含n 个样本的P的⼦集S初始化模型M;②余集SC=P\S中与模型M的误差⼩于某⼀设定阈值t的样本集以及S构成S*。

S*认为是内点集,它们构成S的⼀致集(Consensus Set);③若#(S*)≥N,认为得到正确的模型参数,并利⽤集S*(内点inliers)采⽤最⼩⼆乘等⽅法重新计算新的模型M*;重新随机抽取新的S,重复以上过程。

如何利用图像处理技术实现图像拼接

如何利用图像处理技术实现图像拼接

如何利用图像处理技术实现图像拼接图像拼接是指将多个不完整或局部的图像拼接在一起,以生成一张完整的图像。

图像拼接技术在计算机视觉和图形学领域中得到广泛应用,可以用于实现全景图像、卫星地图、医学影像等各种应用场景。

利用图像处理技术实现图像拼接主要包括以下几个步骤:特征提取、特征匹配、几何校正和图像融合。

特征提取是图像拼接的关键步骤之一。

特征提取是为了提取图像中具有代表性和稳定性的特征点或者特征描述子,以用于后续的特征匹配。

常见的特征提取方法包括SIFT(尺度不变特征变换)、SURF(加速稳健特征)和ORB(Oriented FAST and Rotated BRIEF)等。

接下来是特征匹配。

特征匹配是为了找到两幅图像中对应的特征点,从而建立它们之间的几何关系,为后续的几何校正做准备。

特征匹配方法可以根据特征描述子的相似度、几何关系和一致性进行选择。

常见的特征匹配算法包括FLANN(快速库近似最近邻搜索)和RANSAC(随机抽样一致性)等。

几何校正是指通过对图像进行变换和旋转,将特征匹配后的图像对准。

在几何校正过程中,需要计算图像之间的旋转和平移变换矩阵。

对于大规模的图像拼接任务,可能需要考虑相机畸变校正和透视变换等问题。

几何校正方法包括仿射变换和透视变换等。

最后是图像融合。

图像融合是将拼接后的图像进行混合和平滑处理,使得拼接的边界平滑自然,达到无缝融合的效果。

图像融合方法主要包括线性混合、多分辨率融合和优化算法等。

通过合理选择图像融合方法,可以获得更好的拼接效果。

除了以上步骤,还可以通过一些先进的技术来提升图像拼接效果。

例如,利用深度学习可以提取更高级的图像特征,并实现更准确的特征匹配。

多视图几何和结构光等技术也可以用于实现更精确的几何校正。

总之,利用图像处理技术实现图像拼接是一个复杂而有挑战性的任务。

通过特征提取、特征匹配、几何校正和图像融合等步骤的组合应用,可以实现高质量的图像拼接结果。

随着计算机视觉和图形学技术的不断发展,图像拼接的方法和效果也在不断提升,为各种应用场景提供了更好的解决方案。

图像拼接方法总结

图像拼接方法总结

图像拼接方法总结图像拼接方法总结 (1)引言 (1)1 基于网格的拼接 (3)2基于块匹配的拼接(也叫模板匹配) (4)3基于比值法拼接 (6)4 基于FFT的相位相关拼接 (7)基于特征的图像配准方法 (9)5 Harris角点检测算法 (10)6基于SIFT尺度不变特征的图像拼接 (15)SIFT主要思想及特点 (16)SIFT算法详细过程 (16)SIFT匹配算法实现 (20)7 基于surf 的图像配准 (22)SURF算法介绍 (22)算法详细过程 (23)8 基于最大互信息的图像配准 (24)9 基于小波的图像拼接 (27)10 基于轮廓特征的图像拼接技术 (27)引言首先研究了图像拼接的基本技术,包括图像预处理、图像配准、图像融合,图像的预处理包括:图像预处理的主要目的是为了:降低图像配准的难度,提高图像配准精度。

图像预处理包括:图像投影、图像去噪、图像修正等。

图像配准采用的算法主要有两类:一类是基于区域的算法,是指利用两张图像间灰度的关系来确定图像间坐标变化的参数,其中包括基于空间的像素配准算法包括(1基于块匹配,2基于网格匹配,3基于比值匹配),基于频域的算法(4既是基于FFT的相位相关拼接)等。

另一类是基于特征拼接的算法,是利用图像中的明显特征(点,线,边缘,轮廓,角点)来计算图像之间的变换,而不是利用图像中全部的信息,其中包括5 Harris角点检测算法,6 SIFT(角点)尺度不变特征转换算法,7 surf(角点,这种方法是sift方法的改进,速度提高)特征算法,第三类是8 基于最大互信息的拼接,9 基于小波(将拼接工作由空间域转向小域波,即先对要拼接的图像进行二进小波变换,得到图像的低频、水平、垂直三个分量,然后对这三个分量进行基于区域的拼接,分别得到三个分量的拼接结果,最后进行小波重构即可获得完整的图像)。

图像的融合:1直接平均值法、2基于小波变换、3线性加权法4 最大值法5 多元回归算法1 基于网格的拼接优缺点:计算量大,精度高,很难选择初始步长。

图像处理技术中的图像分块与拼接方法

图像处理技术中的图像分块与拼接方法

图像处理技术中的图像分块与拼接方法图像分块与拼接是一种常见的图像处理方法,它可以将一幅图像分割成多个小块,在处理和传输过程中更加高效地处理图像。

本文将介绍图像分块与拼接的原理和常用方法。

图像分块是将一幅图像划分为一定大小的块的过程,每个块在图像上是连续的,并且没有重叠。

图像分块的目的是为了更好地处理大型图像,可以提高算法的运行效率以及减少处理和传输过程中的存储空间。

常用的图像分块方法有两种:固定大小和自适应大小。

固定大小的图像分块方法是将图像平均划分为相同大小的块。

例如,如果一幅图像的尺寸是M×N,而块的大小为m×n,那么图像将被分为(M/m)×(N/n)个块。

这种方法简单直接,但在处理不规则的图像时可能会导致信息的丢失。

自适应大小的图像分块方法是根据图像的内容和特征来划分不同大小的块。

例如,可以根据图像的边缘检测结果来决定分块的位置,边缘部分更可能是图像的显著特征,因此可以将其分块处理。

这种方法能够更好地保留图像的细节信息,但计算复杂度相对较高。

图像拼接是将多个小块重新组合成一幅完整的图像的过程。

图像拼接的目的是恢复原始图像的完整性,使得处理后的图像可以更好地显示和分析。

常见的图像拼接方法有两种:重叠区域法和无重叠区域法。

重叠区域法是在拼接过程中,将相邻块的一部分区域进行重叠,通过图像的亮度和颜色分布来进行补偿和平滑处理。

这种方法能够更好地消除拼接处的不连续性,但在处理复杂纹理和细节的图像时可能会引入伪影。

无重叠区域法是将相邻块直接拼接在一起,不进行重叠处理。

这种方法简单快捷,但在处理纹理丰富和细节信息丰富的图像时可能会导致明显的不连续性。

除了以上提到的方法,还有一些高级的图像分块与拼接方法,如基于特征的分块与拼接、基于深度学习的分块与拼接等。

这些方法通过利用图像自身的特征和结构信息,能够更好地实现图像的分块和拼接,提高图像处理的效果和质量。

总之,图像分块与拼接是图像处理中常用的方法之一,对于大型图像的处理和传输具有重要意义。

图像拼接实验报告

图像拼接实验报告

图像拼接一、实验原理及实验结果图像拼接就是将一系列针对同一场景的有重叠部分的图片拼接成整幅图像,使拼接后的图像最大程度地与原始场景接近,图像失真尽可能小。

基于SIFT算法则能够对图像旋转、尺度缩放、亮度变化保持不变性,对视角变化,仿射变换,噪声也能保持一定程度的稳定性。

本次实验运用SIFT匹配算法来提取图像的特征点,采用随机抽样一致性算法求解单应性矩阵并剔除错误的匹配对。

最后用加权平均融合法将两帧图像进行拼接。

具体过程为:首先选取具有重叠区域的两帧图像分别作为参考图像和待拼接图像,然后使用特征提取算法提取特征点,并计算特征点描述子,根据描述子的相似程度确定互相匹配的特征点对。

再根据特征点对计算出待拼接图像相对于参考图像的单应性矩阵,并运用该矩阵对待拼接图像进行变换,最后将两帧图像进行融合,得到拼接后的图像。

1.特征点检测与匹配特征点检测与匹配中的尺度空间理论的主要思想就是利用高斯核对原始图像进行尺度变换,获得图像多尺度下的尺度空间表示序列,再对这些序列就行尺度空间的特征提取。

二维的高斯核定义为:G(x,y,σ)=12πσ2e−(x2+y2)2σ2⁄对于二维图像I(x,y),在不同尺度σ下的尺度空间表示I(x,y,σ)可由图像I(x,y)与高斯核的卷积得到:L(x,y,σ)=G(x,y,σ)∗I(x,y)其中,*表示在x 和 y方向上的卷积,L表示尺度空间,(x,y)代表图像I上的点。

为了提高在尺度空间检测稳定特征点的效率,可以利用高斯差值方程同原图像进行卷积来求取尺度空间极值:D(x,y,σ)=(G(x,y,kσ)−G(x,y,σ))∗I(x,y)= L(x,y,kσ)−L(x,y,σ)其中k为常数,一般取k=√2。

SIFT算法将图像金字塔引入了尺度空间,首先采用不同尺度因子的高斯核对图像进行卷积以得到图像的不同尺度空间,将这一组图像作为金字塔图像的第一阶。

接着对其中的2倍尺度图像(相对于该阶第一幅图像的2倍尺度)以2倍像素距离进行下采样来得到金字塔图像第二阶的第一幅图像,对该图像采用不同尺度因子的高斯核进行卷积,以获得金字塔图像第二阶的一组图像。

使用OpenCV实现图像拼接的代码示例

使用OpenCV实现图像拼接的代码示例

使用OpenCV实现图像拼接的代码示例图像拼接技术是一种将多个图像拼接在一起形成全景图或更大的图像的技术。

它在许多领域都有广泛的应用,例如在计算机视觉、医学影像、地理信息系统等领域。

在本文中,我将介绍如何使用OpenCV 实现图像拼接,以及图像拼接的原理和应用。

1. OpenCV简介OpenCV是一个开源的计算机视觉库,它提供了丰富的图像处理和计算机视觉算法。

它支持多种编程语言,包括C++、Python等,同时可以运行在多种操作系统上,如Windows、Linux等。

OpenCV提供了丰富的图像处理函数和算法,包括图像拼接、特征检测、相机标定等。

2.图像拼接的原理图像拼接的原理是通过找到多个图像之间的重叠区域,然后将它们拼接在一起形成全景图或更大的图像。

在图像拼接的过程中,需要通过特征匹配的方法找到图像之间的重叠区域,然后通过图像配准的方法将它们拼接在一起。

图像拼接的过程可以分为以下几个步骤:2.1特征提取在图像拼接的过程中,需要首先从每个图像中提取特征点,这些特征点可以是角点、边缘点等。

常用的特征提取算法包括Harris角点检测、SIFT、SURF等。

2.2特征匹配在提取了特征点之后,需要对这些特征点进行匹配,找到图像之间的重叠区域。

匹配的过程可以使用欧几里德距离、汉明距离等来度量两个特征点之间的相似度。

2.3图像配准一旦找到了图像之间的重叠区域,就可以使用图像配准的方法将它们拼接在一起。

图像配准的方法可以是通过图像的平移、旋转、缩放等变换将它们对齐。

2.4图像融合最后,需要对拼接在一起的图像进行融合,使得拼接后的图像看起来更加自然。

3.使用OpenCV实现图像拼接接下来,我将介绍如何使用OpenCV来实现图像拼接。

在OpenCV 中,有一个名为Stitcher的类可以用来实现图像拼接。

3.1导入OpenCV库首先需要导入OpenCV库,可以使用以下Python代码来实现:```pythonimport cv2```3.2读入图像使用cv2.imread()函数可以读入图像,例如:```pythonimage1 = cv2.imread('image1.jpg')image2 = cv2.imread('image2.jpg')```3.3创建Stitcher对象接下来,可以创建一个Stitcher对象来实现图像拼接:```pythonstitcher = cv2.Stitcher_create()```3.4图像拼接最后,可以使用stitcher.stitch()函数来实现图像拼接:```python(result, pano) = stitcher.stitch([image1, image2])```其中,result是一个整数,表示图像拼接的状态,如果result为0,表示图像拼接成功。

计算机视觉技术中的图像拼接方法与技巧

计算机视觉技术中的图像拼接方法与技巧

计算机视觉技术中的图像拼接方法与技巧随着计算机视觉技术的发展,图像拼接技术逐渐成为计算机视觉领域中的重要应用之一。

图像拼接技术可以将多张图像融合为一张完整的大图像,从而拓展了图像处理和分析的范围。

本文将介绍图像拼接技术的方法和一些关键的技巧。

首先,图像拼接的基本原理是将多张局部重叠的图像通过几何变换和图像融合算法进行拼接。

几何变换主要包括平移、旋转、缩放和透视变换等。

平移变换是最简单的变换,通过调整图像的位置来对齐相邻图像的特征点。

旋转变换是将图像按照一定角度进行旋转以达到对齐的目的。

缩放变换可以根据图像的比例尺进行大小调整。

透视变换是在平面图像中重建三维景深。

在进行图像拼接时,一些关键的技巧可以提高拼接结果的质量和准确性。

首先,特征点检测和匹配是图像拼接中的关键一步。

特征点是图像中的显著像素点,可以通过角点检测、边缘检测等方法进行提取。

特征点匹配是将相邻图像的特征点进行对应,常见的匹配算法有SIFT、SURF和ORB等。

在进行特征点匹配时,需要考虑到图像的尺度变化、旋转和视角变化。

其次,图像拼接中的图像融合算法也是非常重要的。

常用的图像融合算法有均值融合、最大像素值融合、混合融合和多重分辨率融合等。

均值融合是将多张图像进行简单的平均处理,适用于图像拼接中的平滑过渡。

最大像素值融合是选择每个像素位置上的最大像素值,适用于多视点拼接。

混合融合是利用权重进行图像叠加,可以根据不同区域的特征进行加权融合。

多重分辨率融合是将图像分解成不同尺度的金字塔,在多个尺度上进行融合操作。

此外,为了提高图像拼接的准确性,需要考虑图像的校正和去除畸变。

图像校正可以通过相机标定来实现,校正后的图像能够消除由于镜头形变引起的影响。

去除畸变则可以通过抗畸变算法来实现,例如极点校正和拉普拉斯畸变校正等。

在实际应用中,图像拼接技术被广泛用于全景照片的生成、虚拟现实和增强现实、卫星图像的拼接以及医学影像的拼接等领域。

例如,在全景照片生成中,通过利用图像拼接技术,可以将多张相机连续拍摄的照片拼接成一张完整的全景照片。

图像拼接技术

图像拼接技术

图像拼接技术图像拼接技术简介图像拼接是将同⼀场景的多个重叠图像拼接成较⼤的图像的⼀种⽅法,在医学成像、计算机视觉、卫星数据、军事⽬标⾃动识别等领域具有重要意义。

图像拼接的输出是两个输⼊图像的并集。

所谓图像拼接就是将两张有共同拍摄区域的图像⽆缝拼接在⼀起。

这种应⽤可应⽤于车站的动态检测、商城的⼈流检测、⼗字路⼝的交通检测等,给⼈以全景图像,告别⽬前的监控墙或视频区域显⽰的时代,减轻⼯作⼈员“眼”的压⼒。

基本思想:图像拼接并⾮简单的将两张有共同区域的图像把相同的区域重合起来,由于两张图像拍摄的⾓度与位置不同,虽然有共同的区域,但拍摄时相机的内参与外参均不相同,所以简单的覆盖拼接是不合理的。

因此,对于图像拼接需要以⼀张图像为基准对另外⼀张图像进⾏相应的变换(透视变换),然后将透视变换后的图像进⾏简单的平移后与基准图像的共同区域进⾏重合。

说明:1、图像预处理是为了增强图像的特征,预处理可以包含:灰度化、去燥、畸变校正等。

2、特征点提取可⽤的⽅法有:sift、surf、fast、Harris等,sift具有旋转与缩放不变性,surf为sift的加速,检测效果都不错,在此先⽤sift进⾏实现。

3、单应性矩阵求取时要清楚映射关系,是第⼀张图像空间到第⼆张图像空间的映射,还是第⼆张图像到第⼀张图像的映射,这个在变换的时候很重要。

4、判断左右(上下)图像是为了明确拼接关系,建议将左右图像的判断放在求取单应性矩阵之前,这样映射关系不⾄于颠倒。

否则将会出现拼接成的图像有⼀半是空的。

通常⽤到五个步骤:特征提取 Feature Extraction:在所有输⼊图像中检测特征点图像配准 Image Registration:建⽴了图像之间的⼏何对应关系,使它们可以在⼀个共同的参照系中进⾏变换、⽐较和分析。

⼤致可以分为以下⼏个类1. 直接使⽤图像的像素值的算法,例如,correlation methods2. 在频域处理的算法,例如,基于快速傅⾥叶变换(FFT-based)⽅法;3. 低⽔平特征的算法low level features,通常⽤到边缘和⾓点,例如,基于特征的⽅法,4. ⾼⽔平特征的算法high-level features,通常⽤到图像物体重叠部分,特征关系,例如,图论⽅法(Graph-theoretic methods)图像变形 Warping:图像变形是指将其中⼀幅图像的图像重投影,并将图像放置在更⼤的画布上。

图像拼接的原理和应用

图像拼接的原理和应用

图像拼接的原理和应用一、图像拼接的原理图像拼接是一种将多幅图像拼接成一幅大图的技术。

它可以帮助我们扩展视野,获得更大范围的图像信息。

图像拼接的原理主要包括以下几个方面:1.特征提取:在进行图像拼接之前,首先需要提取图像中的特征点。

常用的特征点提取算法包括SIFT(尺度不变特征变换)和SURF(加速稳健特征)等。

2.特征匹配:通过计算图像中的特征点相似度,找到各图像间的对应关系。

常用的特征匹配算法包括基于特征点的匹配和基于区域的匹配。

3.几何变换:图像在进行拼接时,需要进行几何变换,使得各图像间的特征点能够对齐。

常用的几何变换包括相似变换、仿射变换和投影变换等。

4.图像融合:在完成图像对齐后,需要对图像进行融合,使得拼接后的图像看起来自然。

图像融合常使用的方法有无缝融合、多频段融合和多重层次融合等。

二、图像拼接的应用图像拼接技术广泛应用于许多领域,下面列举了几个常见的应用场景:1.地理测绘:通过对不同角度的航拍图像进行拼接,可以生成高分辨率的地图。

这对于土地利用分析、城市规划和灾害监测等方面非常重要。

2.视频制作:在电影和电视制作中,图像拼接技术可以将不同的视频镜头进行平滑过渡,使得观众无法察觉画面的转换,增强观赏性。

3.虚拟现实:在虚拟现实领域,图像拼接可以用于构建虚拟环境。

通过拼接多个图像,可以实现用户的全方位观察和交互体验。

4.医学影像:在医学影像的处理中,图像拼接可以帮助医生获取更全面、准确的病灶信息。

比如,可以将多张断层扫描合成一张完整的三维影像。

5.工业检测:在工业领域,图像拼接技术可以实现对大尺寸或复杂结构的物体进行检测和分析。

比如,可以拼接多张图像构成一张全景图,提供更全面的视角。

三、图像拼接的优缺点图像拼接技术的应用带来了许多便利,但同时也存在一些限制和缺点。

优点:•视角扩展:通过图像拼接,可以将多张图像拼接成一张大图,扩展视野范围,获得更全面的信息。

•画面连续:通过拼接图像,可以实现画面的连续性,使得观看者无法感知画面的变换,提升用户体验。

图像融合拼接方法

图像融合拼接方法

图像融合拼接方法图像融合拼接是指将多幅图像进行合并处理,形成一幅新的图像。

它在计算机视觉、图像处理领域具有重要应用,可以用于拼接全景图、生成虚拟实境等。

本文将介绍几种常见的图像融合拼接方法。

一、传统图像融合拼接方法1.1 直观图像融合拼接方法直观图像融合拼接方法是最简单的一种方法,它直接将两幅图像进行叠加。

例如,在拼接两张风景照片时,可以将两个图像的像素值相加或取平均值,从而合并成一幅新的图像。

这种方法的优点是操作简单,但缺点是容易导致拼接处的边缘不连续,不够自然。

1.2 重叠区域混合融合拼接方法重叠区域混合融合拼接方法通过将两幅图像在重叠区域内进行像素值的平滑过渡,实现更自然的融合效果。

常用的方法有线性混合、高斯混合等。

线性混合是指在重叠区域内,按照一定的权重将两幅图像的像素值进行逐点插值,从而形成新的图像。

而高斯混合则是通过使用高斯模糊滤波器,降低重叠区域内图像的对比度,实现平滑过渡。

1.3 多尺度图像融合拼接方法多尺度图像融合拼接方法是一种层次化的拼接方法。

它首先将两幅图像进行金字塔分解,分别得到不同尺度的图像金字塔。

然后,在每一层金字塔上进行拼接处理,得到对应尺度的融合结果。

最后将各层结果合并,得到最终的融合图像。

这种方法能够有效处理图像的尺度变化,并保持较高的拼接质量。

二、深度学习图像融合拼接方法随着深度学习技术的发展,越来越多的研究者开始将其应用于图像融合拼接中,取得了很好的效果。

深度学习图像融合拼接方法主要包括基于生成对抗网络(GAN)的方法、基于卷积神经网络(CNN)的方法等。

2.1 基于生成对抗网络的图像融合拼接方法基于生成对抗网络的图像融合拼接方法是将两幅图像作为输入,通过生成器和判别器的协同训练,使生成器能够生成与真实图像相似的图像。

这种方法可以有效地学习到图像的分布特征,从而生成更自然的融合结果。

2.2 基于卷积神经网络的图像融合拼接方法基于卷积神经网络的图像融合拼接方法主要通过卷积层、池化层和全连接层等结构,对输入图像进行特征提取和融合操作。

拼接图像教案初中

拼接图像教案初中

拼接图像教案初中教学目标:1. 让学生掌握图像拼接的基本原理和技巧;2. 培养学生对图像处理的兴趣和审美能力;3. 提高学生运用信息技术解决实际问题的能力。

教学内容:1. 图像拼接的概念和原理;2. 图像拼接的方法和技巧;3. 图像拼接的应用实例。

教学过程:一、导入(5分钟)1. 向学生展示一些有趣的图像拼接作品,引发学生的兴趣;2. 提问:“你们听说过图像拼接吗?你们觉得图像拼接有什么用处?”二、讲解图像拼接的概念和原理(10分钟)1. 解释图像拼接的定义:将多张图像按照一定的方式拼接在一起,形成一张完整的图像;2. 讲解图像拼接的原理:基于图像的像素信息和色彩信息进行拼接;3. 介绍图像拼接的常用软件工具,如Photoshop、GIMP等。

三、演示图像拼接的方法和技巧(10分钟)1. 使用Photoshop软件进行图像拼接的演示,讲解每一步的操作方法和注意事项;2. 强调图像拼接的关键步骤:选择合适的图像、调整大小和位置、处理边缘 overlapping 区域;3. 展示一些图像拼接的技巧,如透视变换、色彩调整、图像融合等。

四、学生实践操作(15分钟)1. 让学生分组进行实践操作,选择两张图像进行拼接;2. 引导学生根据实际情况选择合适的拼接方法和技巧;3. 提供技术支持,帮助学生解决操作过程中遇到的问题。

五、展示和评价(5分钟)1. 让学生展示自己的拼接作品,分享制作过程中的心得体会;2. 邀请其他同学对展示作品进行评价,从创意、技术、美观等方面进行打分;3. 教师对学生的作品进行总结性评价,给予鼓励和建议。

六、拓展应用(5分钟)1. 让学生思考图像拼接在实际生活中的应用场景,如海报设计、网页制作等;2. 引导学生尝试运用图像拼接技术解决实际问题;3. 鼓励学生发挥创意,创作出更多有趣的图像拼接作品。

教学反思:本节课通过讲解、演示和实践相结合的方式,让学生掌握了图像拼接的基本原理和技巧。

在实践操作环节,学生分组进行图像拼接,提高了团队合作能力。

基于SIFT算法的图像拼接技术研究与实现

基于SIFT算法的图像拼接技术研究与实现

基于SIFT算法的图像拼接技术研究与实现图像拼接技术是指将多张照片合成一张更大的画面,以获取更广阔的视野或更宽广的视角。

这种技术可以用于旅游景点的浏览、建筑物的全景展示等多个领域,因此在现代科技中被广泛使用。

本文将主要介绍使用SIFT算法实现图像拼接的技术原理和应用。

一、SIFT算法简介SIFT(Scale-Invariant Feature Transform)算法可以提取图像中的局部特征并具有旋转不变性和尺度不变性。

这种算法在图像相关应用中非常实用,如图像识别、图像匹配、图像拼接等方面都有广泛的应用。

SIFT算法一般分为以下步骤:1. 尺度空间构建通过利用高斯卷积阶段来判断不同图像之间的尺度差异,将每张照片分成多层尺度的图像金字塔。

2. 关键帧检测在每层尺度中,通过计算高斯差分的方法来检测出图像中的局部极值点,这些极值点被认为是图像的不变特征点。

3. 方向确定在每个不变特征点周围的区域内,确定一个代表性角度作为该点的方向。

4. 关键帧描述在确定了特征点的方向之后,通过建立局部图像的梯度方向直方图,对每个不变特征点进行描述,转化为一个向量。

二、SIFT算法在图像拼接中的应用在图像拼接中,SIFT算法主要用于检测出两张图像中的重叠区域,并对这些区域进行融合。

通常,我们可以通过以下过程来利用SIFT算法进行图像拼接。

1. 特征点检测首先,我们需要分别对每张要拼接的图像进行SIFT算法检测,获得每张图像中的不变特征点。

2. 特征点匹配接下来,我们需要对不变特征点进行匹配,以便找到两张图像中的重叠区域。

这里可以采用诸如RANSAC等算法,去除错误匹配点。

3. 配准和融合最后,经过特征点匹配后,我们可以对两张图像进行配准和融合。

配准通常使用图像变形等方法进行。

融合通常采用平均法、最大值法或者自适应加权融合等不同的方法。

三、SIFT算法图像拼接实例以下是使用SIFT算法进行图像拼接的示例。

我们使用三张图片进行图像拼接。

图像拼接原理及方法

图像拼接原理及方法

第一章绪论1、1 图像拼接技术的研究背景及研究意义图像拼接(image mosaic)就是一个日益流行的研究领域,她已经成为照相绘图学、计算机视觉、图像处理与计算机图形学研究中的热点。

图像拼接解决的问题一般式,通过对齐一系列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率与更大的视野。

早期的图像拼接研究一直用于照相绘图学,主要就是对大量航拍或卫星的图像的整合。

近年来随着图像拼接技术的研究与发展,它使基于图像的绘制(IBR)成为结合两个互补领域——计算机视觉与计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化场景描述(Visual Scene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景与增加合成物体真实感的贴图,图像拼接可以使IBR从一系列真就是图像中快速绘制具有真实感的新视图。

在军事领域网的夜视成像技术中,无论夜视微光还就是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说360 度的环形图片了。

但就是在实际应用中,很多时候需要将360 度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。

使用图像拼接技术,在根据拍摄设备与周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360 度景物的多幅图像进行拼接,从而实时地得到超大视角甚至就是360 度角的全景图像。

这在红外预警中起到了很大的作用。

微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目视觉机器人的视野范围明显小于双目视觉机器人的视野。

利用图像拼接技术,拼接机器人双目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。

在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360 度全景图像,用来虚拟实际场景。

这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。

图像拼接算法

图像拼接算法

图像拼接算法1. 简介图像拼接是将多幅图像拼接成一幅大图的过程。

在计算机视觉和图像处理领域中,图像拼接广泛应用于全景图像拼接、卫星图像拼接、医学图像拼接等诸多领域。

图像拼接算法基于特征点匹配和图像变换等技术,能够将多幅图像的内容无缝地拼接在一起,形成一幅完整的图像。

2. 图像拼接算法的基本原理图像拼接算法的基本原理主要包括以下几个步骤:2.1 特征点提取与匹配在图像拼接过程中,首先需要提取每幅图像的特征点,常用的特征点提取算法有SIFT、SURF、ORB等。

然后通过特征点的描述子,使用匹配算法(如FLANN、KNN等)来找到多幅图像之间的特征点对应关系,从而实现匹配。

2.2 图像变换在特征点匹配的基础上,需要进行图像变换,将多幅图像对齐。

常用的图像变换方法包括仿射变换、透视变换等。

通过计算变换矩阵,可以将特征点在不同图像中的位置转换到同一个坐标系下,实现图像对齐。

2.3 图像融合图像对齐后,还需要进行图像融合,将多幅图像拼接在一起形成一幅完整的图像。

常用的图像融合方法有重叠区域平均法、无缝融合法等。

通过合理地选择图像融合方法,可以使得拼接后的图像在视觉上看起来更加自然、连贯。

3. 常见的图像拼接算法3.1 SIFT算法SIFT(Scale-invariant Feature Transform)算法是一种高效的特征点提取算法,它能够提取出物体的尺度不变特征,并且对旋转、尺度、亮度的变换具有一定的鲁棒性。

SIFT算法在图像拼接过程中被广泛应用,在特征点的匹配和图像变换中发挥着重要作用。

3.2 RANSAC算法RANSAC(Random Sample Consensus)算法是一种鲁棒性较好的参数估计算法,它能够通过采样和迭代的方式,从一组可能含有外点的数据中估计出最优参数。

在图像拼接中,RANSAC算法常用来估计图像间的几何变换关系,从而实现图像对齐。

3.3 多频段融合算法多频段融合算法是一种基于图像金字塔的融合方法,它将图像分解为不同尺度的图像金字塔,然后通过逐层融合的方式将图像进行拼接。

Matlab中的图像拼接与矩阵计算技术详解

Matlab中的图像拼接与矩阵计算技术详解

Matlab中的图像拼接与矩阵计算技术详解Matlab是一款用于数值计算和可视化的软件。

在图像处理领域,Matlab提供了丰富的函数和工具箱,其中包括图像拼接和矩阵计算技术。

本文将详细介绍Matlab中的图像拼接与矩阵计算技术,并探讨其在实际应用中的作用和优势。

一、图像拼接技术的基本原理图像拼接是将多张图像合并成一张大图的技术。

在Matlab中,图像拼接主要通过矩阵计算来实现。

首先,需要将每张图像转换为矩阵的形式,然后对这些矩阵进行相应的运算,最后再将运算结果转换为图像的形式。

图像拼接的基本原理包括以下几个步骤:1. 加载图像:在Matlab中,可以使用imread函数加载图像。

通过指定图像的文件路径,可以将图像读取为一个矩阵。

2. 处理图像:在进行图像拼接之前,通常需要对图像进行一些预处理操作,例如调整图像的大小、裁剪、旋转等。

Matlab提供了一系列函数和工具箱来进行图像处理,可以根据实际需求选择合适的方法。

3. 图像对齐:在将多张图像拼接成一张大图之前,需要确保它们在空间上对齐。

通常情况下,图像对齐可以通过特征点匹配来实现。

Matlab中的图像拼接工具箱提供了多种特征点匹配算法,例如SIFT、SURF等。

4. 图像拼接:一旦完成了图像对齐,就可以开始进行图像拼接了。

在Matlab中,可以使用矩阵计算技术来对图像进行拼接。

具体来说,可以将多个图像的矩阵按照一定的规则进行组合,然后通过矩阵运算来生成新的矩阵,最后再将新的矩阵转换为图像。

二、矩阵计算技术在图像拼接中的应用在Matlab中,矩阵计算技术在图像拼接中发挥着重要的作用。

通过矩阵计算,可以对图像进行精确的位置调整、旋转、缩放等操作,在保证图像对齐的同时,还能保持图像的质量和清晰度。

1. 位置调整:通过对图像进行平移操作,可以将它们对齐在同一个平面上。

在Matlab中,可以使用矩阵加法来实现图像的平移,即将图像的矩阵与一个平移矩阵相加,从而改变图像的位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论1.1图像拼接技术的研究背景及研究意义图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。

图像拼接解决的问题一般式,通过对齐一系列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。

早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。

近年来随着图像拼接技术的研究和发展,它使基于图像的绘制( IBR )成为结合两个互补领域――计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化场景描述(Visual Seene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以使IBR从一系列真是图像中快速绘制具有真实感的新视图。

在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说360度的环形图片了。

但是在实际应用中,很多时候需要将360度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。

使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360度景物的多幅图像进行拼接,从而实时地得到超大视角甚至是360度角的全景图像。

这在红外预警中起到了很大的作用。

微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目视觉机器人的视野范围明显小于双目视觉机器人的视野。

利用图像拼接技术,拼接机器人双目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。

在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360度全景图像,用来虚拟实际场景。

这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。

这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和仰视,同时允许在环视的过程中动态地改变焦距。

这样的全景图像相当于人站在原地环顾四周时看到的情形。

在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。

所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键环节圆。

在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对来自同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术将遥感卫星拍摄到的有失真地面图像拼接成比较准确的完整图像,作为进一步研究的依据。

从以上方面可以看出,图像拼接技术的应用前景十分广阔,深入研究图像拼接技术有着很重要的意义1.2图像拼接算法的分类图像拼接作为这些年来图像研究方面的重点之一,国内外研究人员也提出了很多拼接算法。

图像拼接的质量,主要依赖图像的配准程度,因此图像的配准是拼接算法的核心和关键。

根据图像匹配方法的不同仁阔,一般可以将图像拼接算法分为以下两个类型:(1) 基于区域相关的拼接算法。

这是最为传统和最普遍的算法。

基于区域的配准方法是从待拼接图像的灰度值出发,对待配准图像中一块区域与参考图像中的相同尺寸的区域使用最小二乘法或者其它数学方法计算其灰度值的差异,对此差异比较后来判断待拼接图像重叠区域的相似程度,由此得到待拼接图像重叠区域的范围和位置,从而实现图像拼接。

也可以通过FFT变换将图像由时域变换到频域,然后再进行配准。

对位移量比较大的图像,可以先校正图像的旋转,然后建立两幅图像之间的映射关系。

当以两块区域像素点灰度值的差别作为判别标准时,最简单的一种方法是直接把各点灰度的差值累计起来。

这种办法效果不是很好,常常由于亮度、对比度的变化及其它原因导致拼接失败。

另一种方法是计算两块区域的对应像素点灰度值的相关系数,相关系数越大,则两块图像的匹配程度越高。

该方法的拼接效果要好一些,成功率有所提高。

(2) 基于特征相关的拼接算法。

基于特征的配准方法不是直接利用图像的像素值,而是通过像素导出图像的特征,然后以图像特征为标准,对图像重叠部分的对应特征区域进行搜索匹配,该类拼接算法有比较高的健壮性和鲁棒性。

基于特征的配准方法有两个过程:特征抽取和特征配准。

首先从两幅图像中提取灰度变化明显的点、线、区域等特征形成特征集冈。

然后在两幅图像对应的特征集中利用特征匹配算法尽可能地将存在对应关系的特征对选择出来。

一系列的图像分割技术都被用到特征的抽取和边界检测上。

如ca nny算子、拉普拉斯高斯算子、区域生长。

抽取出来的空间特征有闭合的边界、开边界、交叉线以及其他特征。

特征匹配的算法有:交叉相关、距离变换、动态编程、结构匹配、链码相关等算法。

1.3本文的主要工作和组织结构本文的主要工作:(1) 总结了前人在图像拼接方面的技术发展历程和研究成果。

(2) 学习和研究了前人的图像配准算法。

(3) 学习和研究了常用的图像融合算法。

(4) 用matlab实现本文中的图像拼接算法⑸总结了图像拼接中还存在的问题,对图像拼接的发展方向和应用前景进行展望。

本文的组织结构:第一章主要对图像拼接技术作了整体的概述,介绍了图像拼接的研究背景和应用前景,以及图像拼接技术的大致过程、图像拼接算法的分类和其技术难点。

第二章主要介绍讨论了图像预处理中的两个步骤,即图像的几何校正和噪声点的抑制。

第三章主要介绍讨论了图像配准的多种算法。

第四章主要介绍讨论了图像融合的一些算法。

第五章主要介绍图像拼接软件实现本文的算法。

第六章主要对图像拼接中还存在的问题进行总结,以及对图像拼接的发展进行展望。

1.4本章小结本章主要对图像拼接技术作了整体的概述,介绍了图像拼接的研究背景和应用前景,以图像拼接算法的分类和其技术难点,并且对全文研究内容进行了总体介绍。

第二章图像拼接的基础理论及图像预处理2.1图像拼接图像拼接技术主要有三个主要步骤:图像预处理、图像配准、图像融合与边界平滑,图像拼接技术主要分为三个主要步骤:图像预处理、图像配准、图像融合与边界平滑,图像预处理主要指对图像进行几何畸变校正和噪声点的抑制等,让参考图像和待拼接图像不存在明显的几何畸变。

在图像质量不理想的情况下进行图像拼接,如果不经过图像预处理,很容易造成一些误匹配。

图像预处理主要是为下一步图像配准做准备,让图像质量能够满足图像配准的要求。

图像配准主要指对参考图像和待拼接图像中的匹配信息进行提取,在提取出的信息中寻找最佳的匹配,完成图像间的对齐。

图像拼接的成功与否主要是图像的配准。

待拼接的图像之间,可能存在平移、旋转、缩放等多种变换或者大面积的同色区域等很难匹配的情况,一个好的图像配准算法应该能够在各种情况下准确找到图像间的对应信息,将图像对齐。

图像融合指在完成图像匹配以后,对图像进行缝合,并对缝合的边界进行平滑处理,让缝合自然过渡。

由于任何两幅相邻图像在采集条件上都不可能做到完全相同,因此,对于一些本应该相同的图像特性,如图像的光照特性等,在两幅图像中就不会表现的完全一样。

图像拼接缝隙就是从一幅图像的图像区域过渡到另一幅图像的图像区域时,由于图像中的某些相关特性发生了跃变而产生的。

图像融合就是为了让图像间的拼接缝隙不明显,拼接更自然22图像的获取方式图像拼接技术原理是根据图像重叠部分将多张衔接的图像拼合成一张高分辨率全景图。

这些有重叠部分的图像一般由两种方法获得:一种是固定照相机的转轴,然后绕轴旋转所拍摄的照片;另一种是固定照相机的光心,水平摇动镜头所拍摄的照片。

其中,前者主要用于远景或遥感图像的获取,后者主要用于显微图像的获取,它们共同的特点就是获得有重叠的二维图像。

2.3图像的预处理2.3.1图像的校正当照相系统的镜头或者照相装置没有正对着待拍摄的景物时候,那么拍摄到的景物图像就会产生一定的变形。

这是几何畸变最常见的情况。

另外,由于光学成像系统或电子扫描系统的限制而产生的枕形或桶形失真,也是几何畸变的典型情况。

几何畸变会给图像拼接造成很大的问题,原本在两幅图像中相同的物体会因为畸变而变得不匹配,这会给图像的配准带来很大的问题。

因此,解决几何畸变的问题显得很重要。

图象校正的基本思路是,根据图像失真原因,建立相应的数学模型,从被污染或畸变的图象信号中提取所需要的信息,沿着使图象失真的逆过程恢复图象本来面貌。

实际的复原过程是设计一个滤波器,使其能从失真图象中计算得到真实图象的估值,使其根据预先规定的误差准则,最大程度地接近真实图象。

232图像噪声的抑制图像噪声可以理解为妨碍人的视觉感知,或妨碍系统传感器对所接受图像源信息进行理解或分析的各种因素,也可以理解成真实信号与理想信号之间存在的偏差。

一般来说,噪声是不可预测的随机信号,通常采用概率统计的方法对其进行分析。

噪声对图像处理十分重要,它影响图像处理的各个环节,特别在图像的输入、采集中的噪声抑制是十分关键的问题。

若输入伴有较大的噪声,必然影响图像拼接的全过程及输出的结果。

根据噪声的来源,大致可以分为外部噪声和内部噪声;从统计数学的观点来定义噪声,可以分为平稳噪声和非平稳噪声。

各种类型的噪声反映在图像画面上,大致可以分为两种类型。

一是噪声的幅值基本相同,但是噪声出现的位置是随机的,一般称这类噪声为椒盐噪声。

另一种是每一点都存在噪声,但噪声的幅值是随机分布的,从噪声幅值大小的分布统计来看,其密度函数有高斯型、瑞利型,分别成为高斯噪声和瑞利噪声,又如频谱均匀分布的噪声称为白噪声等。

1•均值滤波所谓均值滤波实际上就是用均值替代原图像中的各个像素值。

均值滤波的方法是,对将处理的当前像素,选择一个模板,该模板为其邻近的若干像素组成,用模板中像素的均值来替代原像素的值。

如图2.4所示,序号为0是当前像素,序号为1至8是邻近像素。

求模板中所有像素的均值,再把该均值赋予当前像素点((x, y),作为处理后图像在该点上的灰度g(x,y),即丄2V区刃g(x,y)二必w (2-2-2-1)图2.2.2.1模板示意图2•中值滤波中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术。

它的核心算法是将模板中的数据进行排序,这样,如果一个亮点(暗点)的噪声,就会在排序过程中被排在数据序列的最右侧或者最左侧,因此,最终选择的数据序列中间位置上的值一般不是噪声点值,由此便可以达到抑制噪声的目的。

取某种结构的二维滑动模板,将模板内像素按照像素值的大小进行排序,生成单调上升(或下降)的二维数据序列。

二维德中值滤波输出为(2-2-2-2 )其中,f(x,y) , g (x,y)分别为原图像和处理后的图像,w二维模板,k ,1为模板的长宽,Med为取中间值操作,模板通常为 3 3、55区域,也可以有不同形状,如线状、圆形、十字形、圆环形。

相关文档
最新文档