七年级有理数混合运算及易错题练习

合集下载

(易错题精选)初中数学有理数的运算易错题汇编附答案解析

(易错题精选)初中数学有理数的运算易错题汇编附答案解析

(易错题精选)初中数学有理数的运算易错题汇编附答案解析一、选择题1.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.81 B.508 C.928 D.1324【答案】B【解析】【分析】类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数×73+百位上的数×72+十位上的数×7+个位上的数.【详解】解:孩子自出生后的天数是:1×73+3×72+2×7+4=508,故选:B.【点睛】本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数字列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.2.电影《流浪地球》中有一个名词“洛希极限”,它是指两大星体之间可以保持平稳运行的最小距离,其中地球与木星之间的洛希极限约为10.9万公里,数据“10.9万”用科学记数法表示正确的是()A.10.9×104B.1.09×104C.10.9×105D.1.09×105【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将10.9万用科学记数法表示为:1.09×105.故选D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.广西北部湾经济区包括南宁、北海、钦州、防城港、玉林、崇左六个市,户籍人口约2400万,该经济区户籍人口用科学记数法可表示为()A.2.4×103B.2.4×105C.2.4×107D.2.4×109【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将2400万用科学记数法表示为:2.4×107.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如果a是实数,下列说法正确的是()A.2a和a都是正数B.(-a+2可能在x轴上C.a的倒数是1aD.a的相反数的绝对值是它本身【答案】B【解析】【分析】A、根据平方和绝对值的意义即可作出判断;B、根据算术平方根的意义即可作出判断;C、根据倒数的定义即可作出判断;D、根据绝对值的意义即可作出判断.【详解】A、2a和a都是非负数,故错误;B、当a=0时,(-a+2在x轴上,故正确;C、当a=0时,a没有倒数,故错误;D、当a≥0时,a的相反数的绝对值是它本身,故错误;故答案为:B.【点睛】本题考查了算术平方根,绝对值,倒数,乘方等知识点的应用,比较简单.5.在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学计数法可以表示为( )亿次/秒 A .81.2510⨯B .91.2510⨯C .101.2510⨯D .812.510⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:12.5亿亿次/秒=1.25×109亿次/秒,故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.根据如图的程序运算:当输入x =50时,输出的结果是101;当输入x =20时,输出的结果是167.如果当输入x 的值是正整数,输出的结果是127,那么满足条件的x 的值最多有( )A .3个B .4个C .5个D .6个【答案】D【解析】【分析】根据程序中的运算法则计算即可求出所求.【详解】根据题意得:2x +1=127,解得:x =63;2x +1=63,解得:x =31;2x +1=31,解得:x =15;2x +1=15,解得:x =7;2x +1=7,解得:x =3;2x +1=3,解得:x =1,则满足条件x 的值有6个,故选:D.【点睛】此题考查了代数式求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.7.清代·袁牧的一首诗《苔》中的诗句:“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084用科学记数法表示为()A.8.4×10-5B.8.4×10-6C.84×10-7D.8.4×106【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】8.现有若干张卡片,分别是正方形卡片A、B和长方形卡片C,卡片大小如图所示.如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片张数为()A.1 B.2 C.3 D.4【答案】C【解析】试题分析:(a+2b)(a+b)=22++,则C类卡片需要3张.a ab b32考点:整式的乘法公式.9.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4 B.6 C.7 D.10【答案】B【解析】【分析】把8.1555×1010写成不用科学记数法表示的原数的形式即可得.【详解】∵8.1555×1010表示的原数为81555000000,∴原数中“0”的个数为6,故选B.【点睛】本题考查了把科学记数法表示的数还原成原数,科学记数法的表示的数a×10n还成成原数时, n>0时,小数点就向右移动n位得到原数;n<0时,小数点则向左移动|n|位得到原数.10.若(x +y ﹣1)2+|x ﹣y +5|=0,则x =( )A .﹣2B .2C .1D .﹣1【答案】A【解析】【分析】由已知等式,利用非负数的性质列出方程组,求出方程组的解得到x 即可.【详解】解:∵(x +y ﹣1)2+|x ﹣y +5|=0, ∴1050x y x y +-=⎧⎨-+=⎩, 解得:23x y =-⎧⎨=⎩, 故选:A.【点睛】本题主要考查了非负数的性质和二元一次方程组的解法,根据两个非负数的和为零则这两个数均为零得出方程组是解决此题的的关键.11.若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a <-5B .b +d <0C .||||a c <D .c d <【答案】D【解析】【分析】根据数轴得到-5<a<b<0<c<d ,且a d b c >>>,再依次判断各选项即可得到答案.【详解】由数轴得-5<a<b<0<c<d ,且a d b c >>>,∴A 错误;∵b+d>0,故B 错误; ∵a c >,∴C 错误; ∵d c >,c>0, ∴c d <D 正确,故选:D.【点睛】此题考查数轴上数的大小关系,绝对值的性质,有理数的加法法则.12.按如图所示的运算程序,能使输出结果为10的是( )A .x =7,y =2B .x =﹣4,y =﹣2C .x =﹣3,y =4D .x =12,y =3 【答案】D【解析】【分析】 根据运算程序,结合输出结果确定的值即可.【详解】解:A 、x =7、y =2时,输出结果为2×7+22=18,不符合题意;B 、x =﹣4、y =﹣2时,输出结果为2×(﹣4)﹣(﹣2)2=﹣12,不符合题意;C 、x =﹣3、y =4时,输出结果为2×(﹣3)﹣42=﹣22,不符合题意;D 、x =12、y =3时,输出结果为2×12+32=10,符合题意; 故选:D .【点睛】 此题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解本题的关键.13.2018年我市用于资助贫困学生的助学金总额是445800000元,将445800000用科学记数法表示为( )A .744.5810⨯B .84.45810⨯C .94.45810⨯D .100.445810⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.由此即可解答.【详解】445800000用科学记数法表示为: 445800000=84.45810⨯.故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.一周时间有604800秒,604800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯ 【答案】B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】604800的小数点向左移动5位得到6.048,所以数字604800用科学记数法表示为56.04810⨯,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值.15.去年端午节假期第一天,国内游客人数达3050万人次,将数据“3050万”用科学记数法表示为( )A .63.0510⨯B .630.510⨯C .73.0510⨯D .83.0510⨯【答案】C【解析】【分析】根据科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】3050万=30500000=73.0510⨯,故选:C .【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16.据报道,2019年元旦小长假云南省红河州共接待游客约为7038000人,将7038000用科学记数法表示为( )A .570.3810⨯B .67.03810-⨯C .67.03810⨯D .60.703810⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将7038000用科学记数法表示为:7.038×106.故选:C .【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.2018年4月10日,“2018博鳌亚洲论坛”在我国海南省博鳌小镇如期举行,据统计,在刚刚过去的一年,亚洲经济总量为29.6万亿美元,高居全球七大洲之首.数据“29.6万亿”用科学记数法可表示为( )A .2.96×108B .2.96×1013C .2.96×1012D .29.6×1012【答案】B【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】18.12010-的倒数是( ) A .2010-B .2010C .12010D .12010- 【答案】A【解析】【分析】 根据倒数的定义求解.【详解】解:根据互为倒数的两个数乘积为1可知:12010-的倒数为-2010. 故选A .【点睛】 本题考查倒数的定义,题目简单.19.桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为( ) A .0.278 09×105B .27.809×103C .2.780 9×103D .2.780 9×104【答案】D【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】27 809=2.780 9×410,故选D .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值20.地球上海洋面积约为361000000平方公里,361000000用科学记数法可表示为( )A .90.36110⨯B .73.6110⨯C .83.6110⨯D .736110⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】 361000000=83.6110⨯,故选:C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.。

《易错题》七年级数学上册第一单元《有理数》-解答题专项(含答案)

《易错题》七年级数学上册第一单元《有理数》-解答题专项(含答案)

一、解答题1.计算:(1)14-25+13(2)42111|23|()823---+-⨯÷ 解析:(1)2;(2)4【分析】 (1)根据有理数的加减运算,即可求出答案;(2)先计算乘方、绝对值、然后计算乘除,再计算加减运算,即可得到答案.【详解】解:(1)14251311132-+=-+=;(2)42111|23|()823---+-⨯÷=111834--+⨯⨯ =26-+=4.【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则进行解题.2.计算(1)18()5(0.25)4+----(2)2﹣412()(63)7921-+⨯- (3)1373015-⨯ (4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦. 解析:(1)3;(2)37;(3)﹣236;(4)72【分析】 (1)本式为简单的有理数加减运算,从左到右先将分数进行计算,再从左到右计算即可. (2)按照有理数混合运算的顺序,利用乘法分配律直接去括号,再进行运算. (3)将﹣71315分解为﹣7﹣1315,再利用乘方分配律进行计算即可. (4)分别根据有理数的乘方计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:(1)18()5(0.25)4+---- =118544--+ =3;(2)2﹣412()(63)7921-+⨯- =4122(63)(63)(63)7921⎡⎤-⨯--⨯-+⨯-⎢⎥⎣⎦ =2﹣(﹣36+7﹣6),=2﹣(﹣35)=37;(3)1373015-⨯ =﹣7×30+(﹣1315)×30 =﹣210﹣26=﹣236;(4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦ =341(92)149--⨯-⨯-÷ =912-+=72. 【点睛】此题考查了有理数的混合运算注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.3.计算:(1)()()128715--+--; (2)()()3241223125---÷+⨯--. 解析:(1)2-;(2)7.【分析】(1)先去括号,再进行有理数运算即可;(2)根据有理数混合运算顺序和运算法则计算可得.【详解】解:(1)12﹣(﹣8)+(﹣7)﹣15=12+8﹣7﹣15=(12+8)+(﹣7﹣15)=20﹣22=﹣2(2)﹣12﹣(﹣2)3÷45+3×|1﹣(﹣2)2|=﹣12﹣(﹣8)×54+3×|1﹣4|=﹣12+10+3×|﹣3|=﹣12+10+9=7【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.4.出租车司机张师傅11月1日这一天上午的营运全在一条东西向的街道上进行,如果规定向东为正,那么他这天上午载了五位乘客所行车的里程如下(单位:km):8+,6-,3+,7-,1+.(1)将最后一名乘客送到目的地时,张师傅距出车地点的位置如何?(2)若汽车耗油为0.08L/km,则这天上午汽车共耗油多少升?解析:(1)在出车地点西边1千米处;(2)2升【分析】(1)计算张师傅行驶的路程的和即可;(2)计算出每段路程的绝对值的和后乘以0.08,即为这天上午汽车共耗油数.【详解】解:(1)规定向东为正,则向西为负,(+8)+(-6)+(+3)+(-7)+(+1)=8-6+3-7+1=-1千米.答:将最后一名乘客送到目的地,张师傅在出车地点西边1千米处.(2)(8+6+3+7+1)×0.08=2升.答:这天午共耗油2升.【点睛】本题考查了有理数的混合运算,注意要针对不同情况用不同的计算方法.5.表格记录的是龙岗区图书馆上周借书情况:(规定:超过200册记为正,少于200册记为负).请你列式计算以下问题:(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?解析:(1)188册;(2)25册;(3)202册【分析】(1)由题意可知,周五借出的册数少于200册,即可解答.(2)根据正负数的定义分别求出周三、周四的册数,再解答即可.(3)将5天的册数分别求出,再求平均数即可.【详解】解:(1)200-12=188册.(2)(200+8)-(200-17)=208-183=25册.(3)[(200+21)+(200+10)+(200-17)+(200+8)+(200-12)]÷5=202册.答:上星期五借出188册书,上星期四比上星期三多借出25册,上周平均每天借出202册.【点睛】主要考查正负数在实际生活中的应用,有理数加减乘除混合运算的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.6.计算:(1)13 |38|44⎛⎫--+- ⎪⎝⎭(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦解析:(1)4;(2)13;(3)14-;(4)26.【分析】(1)先把绝对值化简,再进一步计算可得答案;(2)先计算乘方、除法转化为乘法,再进一步计算即可;(4)先算括号里面的,再把除法化为乘法,进一步计算即可;(4)利用乘法分配律展开,再进一步计算即可.【详解】(1)13 |38|44⎛⎫--+- ⎪⎝⎭=13544-- =5-1=4; (2)2202111(1)236⎛⎫-+⨯-÷ ⎪⎝⎭ =11269-+⨯⨯ =-1+43 =13; (3)22110.51339⎛⎫⨯-÷ ⎪⎝⎭ =2111()1369⨯-÷ =519()3610⨯-⨯=14-; (4)157(48)2812⎡⎤⎛⎫-⨯--+ ⎪⎢⎥⎝⎭⎣⎦=157(48)()(48)(48)2812-⨯---⨯+-⨯ =24+30-28=26.【点睛】 本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则. 7.计算:(1)231+-+;(2)()3202111024⎡⎤-⨯+-÷⎣⎦. 解析:(1)6;(2)12-【分析】 (1)先化简绝对值,再算加法即可求解;(2)先算乘方,再算括号里面的,最后算乘除即可.【详解】(1)原式=2+3+1=6;(2)原式=1(108)4-⨯-÷=124-⨯÷=1124-⨯⨯=12- 【点睛】 此题考查有理数的混合运算,掌握运算顺序和运算法则是解答此题的关键.8.计算:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦(2)121123436⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ 解析:(1)10;(2)3【分析】(1)先算乘方和小括号,再算中括号,后算加减即可;(2)把除法转化为乘法,再用乘法的分配率计算即可.【详解】解:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦ 1[4(1)5]=+--⨯1(45)10=++=;(2)1211121(36)23436234⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121(36)(36)(36)234=-⨯-+⨯--⨯- 182493=-+=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.9.计算题:(1)()()121876---+-+;(2)()231513221428⎫⎛---⨯-+ ⎪⎝⎭; (3)2111(3)[]()63⨯--÷-. 解析:(1)29;(2)5-;(3)4【分析】(1)根据有理数的加减法即可解答本题;(2)根据有理数的乘方和乘法分配律即可解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【详解】解:(1)|-12|-(-18)+(-7)+6=12+18+(-7)+6=30+(-7)+6=23+6=29;(2)23151(32)(21)428---⨯-+ =3513132()428-+⨯-+ =35131323232428-+⨯-⨯+⨯ =-1+24-80+52=-5;(3)16×[1-(-3)2]÷(−13) =16×(1-9)×(-3) =16×(-8)×(-3) =4.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 10.计算:(1)113623⎛⎫-⨯- ⎪⎝⎭(2)2233(3)3(2)|4|-÷-+⨯-+-解析:(1)2;(2)-21.【分析】(1)根据有理数的混合运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)113623⎛⎫-⨯-⎪⎝⎭ =1136623-⨯+⨯ =332-+=2;(2)2233(3)3(2)|4|-÷-+⨯-+-=993(8)4-÷+⨯-+=1244--+=-21.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.11.计算:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭. 解析:(1)0;(2)1-.【分析】(1)原式先把除法转换为乘法,再逆用乘法分配律进行计算即可得到答案;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【详解】解:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭ 45355171271234⎛⎫=⨯--⨯+⨯ ⎪⎝⎭ 4535571271212=-⨯-⨯+ 43517712⎛⎫=--+⨯ ⎪⎝⎭ 5012=⨯ 0=;(2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭ ()98427427⎛⎫-⨯+-⨯- ⎝=⎪⎭98=-+1=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.12.计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.13.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭. 解析:12-. 【分析】 根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可.【详解】 原式311222⎛⎫=-++-=- ⎪⎝⎭. 【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键.14.计算:(1)5721()()129336--÷- (2)22115()(3)(12)23-+÷-⨯---⨯ 解析:(1)37;(2)50.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】 (1)原式=572()(36)152824371293--⨯-=-++=. (2)原式=15(3)(3)(14)2145650-+⨯-⨯---⨯=-++=. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 15.定义:数轴上给定不重合两点A ,B ,若数轴上存在一点M ,使得点M 到点A 的距离等于点M 到点B 的距离,则称点M 为点A 与点B 的“平衡点”.请解答下列问题:(1)若点A 表示的数为-3,点B 表示的数为1,点M 为点A 与点B 的“平衡点”,则点M 表示的数为_______;(2)若点A 表示的数为-3,点A 与点B 的“平衡点”M 表示的数为1,则点B 表示的数为________;(3)点A 表示的数为-5,点C ,D 表示的数分别是-3,-1,点O 为数轴原点,点B 为线段CD 上一点.①设点M 表示的数为m ,若点M 可以为点A 与点B 的“平衡点”,则m 的取值范围是________;②当点A 以每秒1个单位长度的速度向正半轴方向移动时,点C 同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为t (0t >)秒,求t 的取值范围,使得点O 可以为点A 与点B 的“平衡点”.解析:(1)-1;(2)5;(3)①43t -≤≤-;②26t ≤≤且 5t ≠【分析】(1)根据平衡点的定义进行解答即可;(2)根据平衡点的定义进行解答即可;(3)①先得出点B 的范围,再得出m 的取值范围即可;②根据点A 和点C 移动的距离,求得点A 、C 表示的数,再由平衡点的定义得出答案即可.【详解】解:(1)(1)点M 表示的数=312-+=−1; 故答案为:−1;(2)点B 表示的数=1×2−(−3)=5;故答案为:5;(3)①设点B 表示的数为b ,则31b -≤≤-,∵点A 表示的数为-5,点M 可以为点A 与点B 的“平衡点”, ∴m 的取值范围为:43m -≤≤-, 故答案为:43m -≤≤-;②由题意得:点A 表示的数为5t -,点C 表示的数为33t -, ∵点O 为点A 与点B 的平衡点, ∴点B 表示的数为:5t -, ∵点B 在线段CD 上, 当点B 与点C 相遇时,2t =, 当点B 与点D 相遇时,6t =, ∴26t ≤≤,且 5t ≠,综上所述,当26t ≤≤且 5t ≠时,点O 可以为点A 与点B 的“平衡点”. 【点睛】本题考查了实数与数轴,掌握数轴上点的表示方法,以及两点的中点表示方法是解题的关键. 16.计算(1)21145()5-÷⨯- (2)21(2)8(2)()2--÷-⨯-.解析:(1)4125;(2)2. 【分析】第(1)和(2)小题都属于有理数的混合运算,根据混合运算的运算顺序:先算乘方,并利用有理数的除法法则将除法转化为乘法,再计算乘法,最后计算加减即可求出结果. 【详解】解:(1)21145()5-÷⨯-11116()55=-⨯⨯-16125=+ 4125=; (2)21(2)8(2)()2--÷-⨯-1148()()22=-⨯-⨯-42=- 2=.【点睛】本题考查了有理数的混合运算,解题的关键是确定正确的运算顺序并运用运算法则准确计算.17.计算:()22131********⎛⎫-+--⨯--⎪⎝⎭. 解析:13 【分析】运用乘法的分配律去括号,再按有理数混合运算的顺序计算. 【详解】解:原式()19692=-+---()85=--13=【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键. 18.计算:(﹣1)2014+15×(﹣5)+8 解析:8 【分析】先算乘方,再算乘法,最后算加法,由此顺序计算即可. 【详解】 原式=1+15×(﹣5)+8=1﹣1+8=8. 【点睛】此题考查有理数的混合运算,注意运算的顺序与符号的判定.19.某粮库6天内粮食进、出库的吨数如下(“+”表示进库,“-”表示出库) +25,-22,-14,+35,-38,-20(1)经过这6天,仓库里的粮食是增加了还是减少了?)(2)经过这6天,仓库管理员结算时发现库里还存280吨粮,那么6天前仓库里存粮多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少装卸费? 解析:(1)减少了34吨;(2)314吨;(3)770元 【分析】(1)求出6天的数据的和即可判断; (2)根据(1)中结果计算即可; (3)求出数据的绝对值的和,再乘5即可; 【详解】解:(1)25−22−14+35−38−20=−34<0, 答:经过6天,粮库里的粮食减少了34吨; (2)280+34=314(吨), 答:6天前粮库里的存量314吨;(3)(25+22+14+35+38+20)×5=770(元), 答:这6天要付出770元装卸费. 【点睛】本题考查有理数混合运算的实际应用,正确理解题意,列出算式是解题的关键. 20.计算: (1)117483612⎛⎫-+-⨯ ⎪⎝⎭; (2)20213281(2)(3)3---÷⨯-.解析:(1)36-;(2)26. 【分析】(1)利用乘法分配律进行简便运算即可; (2)先算乘方,再算乘除,最后计算加减即可. 【详解】 解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭ 1174848483612=-⨯+⨯-⨯16828=-+- 36=-;(2)20213281(2)(3)3---÷⨯-31(89)8=---⨯⨯127=-+ 26=. 【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键. 21.计算: (1)6÷(-3)×(-32) (2)-32×29-+(-1)2019-5÷(-54) 解析:(1)3;(2)1. 【分析】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可. 【详解】解:(1)原式=6×1-3⎛⎫⎪⎝⎭ ×(-32)=3;(2)原式=-9×29+(-1)-5×4-5⎛⎫ ⎪⎝⎭=-2-1+4 =1. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 22.(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯-解析:(1)-29;(2)13. 【分析】(1)利用乘法分配律进行简便运算,即可得出结果; (2)先计算有理数的乘方与乘法,再进行加减运算即可. 【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭37(1242424)812=-⨯-⨯+⨯(24914)=--+29=-;(2)431(2)2(3)----⨯- 1(8)(6)=----- 186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键. 23.计算 (1)442293⎛⎫-÷⨯- ⎪⎝⎭2; (2)313242⎛⎫⨯⨯- ⎪⎝⎭3()32490.5234-⨯-÷+-. 解析:(1)16-;(2)34【分析】(1)按照有理数的四则运算进行运算即可求解;(2)按照有理数的四则运算法则进行运算即可,先算乘方,注意符号. 【详解】 解:(1)原式944163616499=-⨯⨯=-⨯=-, (2)原式113924()(8)8444=⨯--⨯-⨯+ 39324=-++34=, 【点睛】本题考查有理数的加减乘除乘方运算法则,先算乘方,再算乘除,最后算加减,有括号先算括号内的,计算过程中细心即可. 24.计算:2202013(1)(2)4(1)2-÷-⨯---+-.解析:33 【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的. 【详解】解:2202013(1)(2)4(1)2-÷-⨯---+-=1(2)4192-÷⨯--+ =192(2)4-⨯⨯--+=3641-+ =33. 【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.25.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10. (1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米? (3)守门员全部练习结束后,他共跑了多少米? 解析:(1)回到了球门线的位置;(2)11米;(3)56米 【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10)=(5+10+13)-(4+8+6+10)=28-28=0.答:守门员最后回到了球门线的位置;(2)(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10|=5+4+10+8+6+13+10=56(米).答:守门员全部练习结束后,他共跑了56米.【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.26.某路公交车从起点经过A,B,C,D站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数))到终点下车还有多少人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算.解析:(1)30;(2)B,C;(3)71.5元.【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A、B、C、D站以及终点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价0.5元,然后计算即可得解.【详解】解:(1)根据题意可得:到终点前,车上有16+15-3+12-4+7-10+8-11=30,即30人;故到终点下车还有30人.故答案为:30;(2)根据图表:A 站人数为:16+15-3=28(人) B 站人数为:28+12-4=36(人) C 站人数为:36+7-10=33(人) D 站人数为:33+8-11=30(人) 易知B 和C 之间人数最多. 故答案为:B ;C ;(3)根据题意:(16+28+36+33+30)×0.5=71.5(元). 答:该出车一次能收入71.5元. 【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键.27.画一条数轴,把1-12,0,3各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.解析:数轴表示见解析;-3<112-<0<112<3. 【分析】先画出数轴,把各数依次表示出来,从左到右用“<”把各数连接起来即可. 【详解】解:112-的相反数是112,0的相反数是0,3的相反数是-3,在数轴上的表示如图所示:从左到右用“<”连接为:-3<112-<0<112<3. 故答案为:-3<112-<0<112<3. 【点睛】本题考查的是数轴的特点、相反数的定义及有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想. 28.(1)()()()()413597--++---+;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭.解析:(1)-6;(2)715. 【分析】(1)原式根据有理数的加减法法则进行计算即可得到答案; (2)原式把除法转换为乘法,再进行乘法运算即可得到答案.【详解】解:(1)()()()()413597--++---+ =-4-13-5+9+7 =-22+9+7 =-13+7 =-6;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭ =174435⨯⨯ =715. 【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键. 29.计算下列各题:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭;(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭. 解析:(1)19-;(2) 3.- 【分析】(1)利用乘法的分配律把原式化为:()()()1573636362912⨯--⨯-+⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(2)先计算乘方运算与小括号内的运算,同步把除法转化为乘法,再计算乘法运算,最后计算减法运算即可得到答案. 【详解】解:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭;()()()1573636362912=⨯--⨯-+⨯- 182021=-+-19=-(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭()4452741993⎛⎫=⨯⨯---+⨯ ⎪⎝⎭16733⎛⎫=--- ⎪⎝⎭16733=-+ 93.3=-=-【点睛】本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握以上知识是解题的关键. 30.计算(1))()()(2108243-+÷---⨯-; (2))()(22000112376⎡⎤--⨯--÷-⎥⎢⎦⎣. 解析:(1)20-;(2)116-.【分析】(1)先计算有理数的乘方与乘法,再计算有理数的除法,然后计算有理数的加减法即可得;(2)先计算有理数的乘方,再计算有理数的加减乘除法即可得. 【详解】(1)原式108412=-+÷-,10212=-+-, 20=-;(2)原式())(112976=--⨯-÷-,())(11776=--⨯-÷-,)(7176=-+÷-,116=--,116=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键.。

七年级-有理数混合运算及易错题练习

七年级-有理数混合运算及易错题练习

有理数混合运算练习题一、选择题:1、近似0。

036490有______个有效数字( )A、6 B。

5 C。

4 D.32。

下面关于0得说法正确得就是( ):①就是整数,也就是有理数②就是正数,不就是负数③不就是整数,就是有理数④就是整数,也就是自然数A、①②B。

②③C.①④D。

①③3.用四舍五入法把0、06097精确到千分位得近似值得有效数字就是( )A。

0,6,0 B.0,6,1,0 C。

0,6,1 D、6,14。

如果一个近似数就是1、60,则它得精确值x得取值范围就是( )A.1。

594<x〈1、605B.1。

595≤x〈1.605 C、1。

595<x≤1、604 D、1。

601〈x<1、6055。

乐乐学了七年级数学第二章《有理数及其运算》之后,总结出下列结论:①相反数等于本身得有理数只有0;②倒数等于本身得有理数只有1;③0与正数得绝对值都就是它本身;④立方等于本身得有理数有3个、其中,您认为正确结论得有几个 ( ) A。

1 B、2 C.3 D.46、实数a,b,c在数轴上得位置如图所示,下列式子正确得就是( )A、b+c>0B、a+b<a+c C。

ac〉 D。

ab>ac7。

已知abc>0,a>c,ac〈0,下列结论正确得就是( )A。

a<0,b〈0,c>0 ﻩB。

a>0,b〉0,c<0 C、a>0,b<0,c〈0ﻩD、a<0,b>0,c>0 8。

对于两个非零有理数a、b定义运算*如下:a*b=,则(-3)*()=( )A。

-3 B、 C.3 D。

—9、若“!”就是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算正确得就是( )A.2012B.2011 C。

D.2012×201110.若a与b互为相反数,c与d互为倒数,则代数式—得值就是( )A.0 B 、1 C 。

初一七年级数学有理数混合运算专题练习及答案

初一七年级数学有理数混合运算专题练习及答案

初一七年级数学有理数混合运算专题练习及答案(总60页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--初一七年级有理数混合运算专题练习及答案1.计算(1)27﹣18+(﹣7)﹣32;(2);(3);(4).2.(1)(﹣4)﹣(﹣3)﹣(﹣6)+(﹣2)(2)7×1÷(﹣9+19)(3)(﹣+﹣+)×(﹣24)(4)﹣13﹣(1﹣)×[2﹣(﹣3)2](5)﹣22×|﹣3|+(﹣6)2×(﹣)﹣|+|÷(﹣)3.(6)[2﹣(+﹣)×24]÷5×(﹣1)2003.3.计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)4﹣8×(﹣)3(3)(4)4.计算:(1)﹣15+(﹣8)﹣(﹣11)﹣12(2)(3)(4)﹣23+[(﹣4)2﹣(1﹣32)×3].5.计算(1)(﹣)÷×(﹣)÷(﹣)(2)﹣3﹣[﹣5+(1﹣×)÷(﹣2)](3)(4﹣3)×(﹣2)﹣2÷(﹣)(4)[50﹣(﹣+)×(﹣6)2]÷(﹣7)2.6.计算:(1);(2)﹣24+3﹣16﹣5;(3);(4);(5);(6);(7);(8);(9);(10);(11);(12)(﹣)×2+(﹣)×(﹣2)+×(﹣7).7.计算(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)(3)(4)(5).8.计算:(1)5﹣(﹣2)+(﹣3)﹣(+4)(2)(﹣﹣+)×(﹣24)(3)(﹣3)÷××(﹣15)(4)﹣14+|(﹣2)3﹣10|﹣(﹣3)÷(﹣1)2017.9.计算:(1)+﹣﹣+﹣.(2)1﹣++﹣﹣3(3)(﹣+)÷(﹣)×+(﹣1)100(4)﹣102﹣[(1﹣)×][2﹣(﹣3)2](5)﹣2﹣{8+(﹣1)2﹣[(﹣4)×2÷(﹣2)+×(﹣6)]}(6)+|﹣(﹣)2﹣|÷﹣|﹣2﹣3|﹣.10.计算(1)(﹣)+(+)+(﹣)+(﹣)(2)(+3)+(﹣5)+(﹣2)+(﹣32)(3)﹣(+)﹣(+)+(4)﹣14﹣×[2﹣(﹣3)2].11.计算题(1)(﹣4)﹣(﹣1)+(﹣6)÷2(2)﹣3﹣[﹣2﹣(﹣8)×(﹣)](3)﹣25(4).12.计算题(1)﹣3+8﹣15﹣6(2)(﹣)×(﹣1)÷(﹣2)(3)(﹣+﹣)÷(﹣)(4)(﹣6)÷(﹣)2﹣72+2×(﹣3)213.计算:(1)25×﹣(﹣25)×+25÷(﹣);(2)2﹣23÷[()2﹣(﹣3+)]×5.14.计算下列各题(1)﹣28﹣(﹣15)+(﹣17)﹣(+5)(2)(﹣1)2017+(﹣3)2×|﹣|﹣42÷(﹣2)4 15.计算(1)(﹣1)﹣(+6)﹣+(2)﹣9×(﹣11)﹣3÷(﹣3)(3)8×(﹣)﹣(﹣4)×(﹣)+(﹣8)×(4)(﹣24)×(+﹣).16.计算:(1)(﹣28)÷(﹣6+4)+(﹣1)×5;(2)÷.17.有理数计算.(1)﹣+(﹣)+(+3)﹣(﹣)+(﹣1)2013(2)(﹣12)×(﹣+)+(﹣32)÷2.18.细心算一算(1)19+(﹣6)+(﹣5)+(﹣3)(2)(﹣81)÷×÷(﹣16)(3)(﹣24)×(﹣﹣)(4)﹣|﹣5|+(﹣3)3÷(﹣22)(5)﹣14﹣(﹣1)3﹣[2﹣(﹣3)2](6)﹣99×36.19.计算,能简算的要简算.(1)1+(﹣2)+|﹣2|﹣5(2)(+)+(﹣)﹣(+)﹣(﹣)﹣(+1)(3)(﹣81)÷×÷(﹣16)(4)﹣14﹣×[2﹣(﹣4)2](5)(﹣370)×(﹣)+×﹣5×(﹣25%)20.计算(1)[2﹣5×(﹣)2]÷(﹣)(2)(﹣24)×(﹣1﹣)(3)﹣14﹣(1﹣)÷×[(﹣2)2﹣6].21.计算:(1)20+(﹣14)﹣(﹣18)﹣13;(2)﹣2;(3)(﹣7)×(﹣5)﹣90÷(﹣15)(4)(5)﹣14﹣(1﹣)×22.计算(1)16﹣(﹣10+3)+(﹣2)(2)(﹣4)2×﹣27÷(﹣3)3(3)﹣12﹣()2×(﹣﹣)÷23.计算:(1)+(﹣)+(﹣)+(2)(3)(4)﹣14﹣(1﹣)×24.计算下列各题.(1)99×(﹣7)(2)﹣24+(﹣2)2﹣(﹣1)11×(﹣)÷﹣|﹣2|(3)[(﹣+)×(﹣36)+2]÷(﹣14)25.(1)7+(﹣5)﹣(﹣3)+(6)(2)(﹣2)÷(2)×(﹣)(3)25×+(﹣25)×+25×(﹣)(4)(﹣99)×99(5)﹣12017﹣[2﹣(1﹣×)]×[32﹣(﹣2)2](6)|﹣|+[×22﹣(﹣)2].26.计算下列各式:(1)(2).27.计算(1)(﹣3)﹣(﹣2)﹣(﹣2)﹣(+)﹣(﹣1)(2)﹣4×(﹣2)﹣6×(﹣2)+17×(﹣2)﹣19÷(3)﹣12+×[﹣22+(﹣3)2×(﹣2)+(﹣3)]÷(﹣)2 28.计算(1)﹣﹣(2)72×(﹣+﹣)(3)×[÷(﹣)](4)[﹣(﹣)÷]÷.29.计算:(1)(2)(3).30.计算(1)1+(﹣2)+|﹣2﹣3|﹣5﹣(﹣9)(2)×()×(3)()×(﹣12)(4)﹣3﹣[﹣5+(1﹣2×)÷(﹣2)].31.计算:(1)﹣20+3+5﹣7(2)(﹣36)×(﹣+﹣);(3)(﹣4)﹣(﹣5)+(﹣4)﹣(+3)32.计算:(1)﹣+(﹣15)﹣(﹣17)﹣|﹣12|;(2)[﹣22+(﹣2)3]﹣(﹣2)×(﹣3);(3)()÷();(4);(5)﹣14+[1﹣(1﹣×2)]÷|2﹣(﹣3)2|;(6)[(﹣3)2﹣22﹣(﹣5)2]××(﹣2)4.33.计算:(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9);(2)﹣﹣(﹣)﹣;(3);(4);(5);(6)(﹣2)3﹣2×(﹣3)+|2﹣5|﹣(﹣1)2010.34.计算:(1)13+5×(﹣2)﹣(﹣4)÷(﹣8);(2)÷(﹣2)﹣×(﹣1)+;(3)[1﹣(+﹣)×(﹣2)3]÷(﹣3);(4)﹣24﹣[3+÷(﹣1)×(2)2]+(﹣1)2016×()2016.35.计算:(1)(﹣2)﹣(﹣5)﹣(+3)﹣(﹣);(2)﹣27÷×(﹣)+4﹣4×(﹣);(3)[(﹣1)2014+(1﹣)×]÷(﹣32+2);(4)[﹣﹣()3+﹣]÷(﹣).36.有理数计算题(1)12﹣(﹣5)﹣(﹣18)+(﹣5)(2)﹣+4+8﹣3(3)(﹣3)×(﹣)÷(﹣1)(4)(+﹣)×(﹣12)(5)32﹣50÷22×(﹣)﹣1(6)﹣32÷[(﹣)2×(﹣3)3+(1﹣1÷)].37.(1)871﹣+53﹣+43.(2)4×(﹣3)2+6.(3)﹣+(4).38.计算:(1)﹣3﹣7;(2)(﹣)+(﹣)﹣(﹣3);(3)﹣+(﹣)﹣(﹣17)﹣|﹣12|(4)(5)(﹣81)÷(6)〔1﹣(1﹣×)〕×|2﹣(﹣3)2|﹣(﹣62).39.计算(1)﹣8﹣(﹣15)+(﹣9)﹣(﹣12)(2)(3)﹣(3﹣5)+32×(﹣3)(4)(5)|(6).40.计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)(﹣8)+4÷(﹣2);(3)(﹣10)÷(﹣)×5;(4)[1﹣(1﹣×)]×[2﹣(﹣3)2].41.计算(1)23﹣17﹣(﹣7)+(﹣16)(2)(﹣4)+|﹣8|+(﹣3)3﹣(﹣3)(3)﹣24÷(2)2﹣3×(﹣)(4)×(﹣2)3﹣[4÷(﹣)2+1]+(﹣1)2008.42.计算题.(1)﹣5+2﹣13+4(2)(﹣2)×(﹣8)﹣9÷(﹣3)(3)(﹣18)×(﹣)(4)﹣(﹣3)++(﹣16)+(﹣)(5)(6)(7)(简便方法)(8)(﹣2)3﹣2×(﹣3)+|2﹣5|﹣(﹣1)2010.43.计算题(1)(﹣1)2013+(﹣4)÷(﹣5)×(﹣)(2)﹣42+3×(﹣2)2+(﹣6)÷(﹣)2(3)(﹣1)3﹣(﹣1)×|2﹣(﹣3)2|(4)36×()(﹣)﹣4×.44.计算:(1)(﹣)+(﹣)+(﹣)+;(2)﹣﹣﹣+;(3)﹣20+(﹣14)﹣(﹣18)﹣13(4)3×(﹣4)+28÷(﹣7)(5)(﹣)××(﹣2)×(﹣8)(6)(7)(8)(﹣24)×(﹣﹣);(9)18×(﹣)+13×﹣4×.(10).45.耐心算一算:(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣19);(2);(3)﹣÷×(﹣)×|﹣|;(4).46.计算(1)﹣20﹣(+14)+(﹣18)﹣(﹣13);(2)﹣3﹣﹣(﹣)+(﹣2);(3)18﹣6÷(﹣)×(﹣);(4)﹣48÷(﹣2)3×(﹣1)2016﹣22(5)[2﹣5×(﹣)2]÷(﹣);(6)﹣32﹣×[(﹣5)2×(﹣)﹣240÷(﹣4)×].47.计算(1)23+(+76)+(﹣36)+(﹣23)(2)﹣40﹣(﹣19)+(﹣24)(3)(﹣)×(﹣1)÷(﹣2)(4)﹣10+8÷(﹣2)3﹣(﹣2)2×(﹣3)(5)﹣14﹣(1﹣)××[﹣(﹣2)2](6)30﹣(+﹣)×36(7)[25×+25×﹣25×]×[(﹣5)26﹣2﹣526].48.计算:(1)(﹣3)2﹣(﹣3)3﹣22+(﹣22)(2)﹣[(﹣)﹣(﹣)+(﹣)+4](3)(﹣4)÷(﹣3)×45÷(﹣5)(4)(﹣)××.49.计算(1)(﹣10)+(+7)(2)12﹣(﹣18)+(﹣7)﹣15(3)+(﹣)++(﹣)+(﹣)(4)|﹣22+(﹣3)2|﹣(﹣)3(5)2×(﹣3)2﹣33﹣6÷(﹣2)(6)﹣81÷×(﹣)(7)+(﹣)﹣(﹣)+(﹣)﹣(+)(8)(﹣1)2008+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣)(9)﹣32×(﹣)2+(﹣+)×(﹣24).50.认真计算,并写清解题过程(1)﹣10÷×÷(﹣2)(2)(﹣4)﹣(﹣3)﹣(﹣6)+(﹣2)(3)(4)(5)×(﹣36)(6).参考答案一、解答题(共50小题)1.计算(1)27﹣18+(﹣7)﹣32;(2);(3);(4).【分析】(1)先化简,再分类计算即可;(2)先判定符号,再化为连乘计算;(3)利用乘法分配律简算;(4)先算乘方,再算括号里面的减法,再算乘法,最后算括号外面的减法.【解答】解:(1)27﹣18+(﹣7)﹣32=27﹣18﹣7﹣32=27﹣57=﹣30;(2)=﹣7××=﹣;(3)=﹣×(﹣24)﹣×(﹣24)+×(﹣24)=18+20﹣21=17;(4)=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.【点评】此题考查有理数的混合运算,注意抓组运算顺序,根据数字特点灵活运用运算定律简算.2.(1)(﹣4)﹣(﹣3)﹣(﹣6)+(﹣2)(2)7×1÷(﹣9+19)(3)(﹣+﹣+)×(﹣24)(4)﹣13﹣(1﹣)×[2﹣(﹣3)2](5)﹣22×|﹣3|+(﹣6)2×(﹣)﹣|+|÷(﹣)3.(6)[2﹣(+﹣)×24]÷5×(﹣1)2003.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算括号中的运算,再计算乘除运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(5)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣4+3+6﹣2=﹣1+4=2;(2)原式=7÷10=;(3)原式=12﹣4+9﹣10=7;(4)原式=﹣1﹣××(﹣7)=﹣1+=;(5)原式=﹣12﹣15+1=﹣26;(6)原式=(2﹣9﹣4+18)×(﹣)=﹣﹣1=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.(2)4﹣8×(﹣)3(3)(4)【分析】(1)减法转化为加法,计算可得;(2)先计算乘方,再计算乘法,最后计算加法即可得;(3)将除法转化为乘法,再利用乘方分配律计算可得;(4)根据有理数混合运算顺序和运算法则计算可得.【解答】解:(1)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)原式=4﹣8×(﹣)=4+1=5;(3)原式=(﹣﹣+)×36=﹣×36﹣×36+×36=﹣27﹣20+21=﹣26;(4)原式=÷﹣×16=×﹣=﹣=﹣.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.(2)(3)(4)﹣23+[(﹣4)2﹣(1﹣32)×3].【分析】(1)将减法转化为加法,再计算加法即可得;(2)将除法转化为乘法,再计算乘法即可得;(3)先计算括号内,再计算除法即可;(4)根据有理数的混合运算顺序和法则计算可得.【解答】解:(1)原式=﹣15+(﹣8)+11+(﹣12)=﹣35+11=﹣24;(2)原式=﹣×(﹣)××(﹣2)=﹣;(3)原式=(﹣)÷(﹣﹣)=(﹣)÷(﹣)=﹣×(﹣)=;(4)原式=﹣8+[16﹣(1﹣9)×3]=﹣8+[16﹣(﹣8)×3]=﹣8+(16+24)=﹣8+40=32.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和法则.5.计算(1)(﹣)÷×(﹣)÷(﹣)(2)﹣3﹣[﹣5+(1﹣×)÷(﹣2)](3)(4﹣3)×(﹣2)﹣2÷(﹣)(4)[50﹣(﹣+)×(﹣6)2]÷(﹣7)2.【分析】(1)原式从左到右依次计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式先计算乘除运算,再计算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣×××=﹣;(2)原式=﹣3+5+(1﹣)×=﹣3+5+=2;(3)原式=﹣+7+=3;(4)原式=(50﹣28+33﹣6)×=49×=1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.6.计算:(1);(2)﹣24+3﹣16﹣5;(3);(4);(5);(6);(7);(8);(9);(10);(11);(12)(﹣)×2+(﹣)×(﹣2)+×(﹣7).【分析】(1)(2)(5)(8)可直接按照有理数的混合运算进行;(3)(7)(9)(10)(11)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(4)(6)可利用分配律计算;(12)可利用结合律进行运算,最后得出结果.【解答】解:(1)原式=﹣+﹣=﹣=3﹣6=﹣3;(2)原式=﹣21﹣16﹣5=﹣37﹣5=﹣42;(3)原式=﹣8××=﹣8;(4)原式=×8﹣×﹣×=6﹣1﹣=;(5)原式=﹣×﹣8÷2=﹣2﹣4=﹣6;(6)原式=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣8+9﹣2=1﹣2=﹣1;(7)原式=﹣9×﹣[25×(﹣)﹣240×(﹣)×﹣2]=﹣3﹣(﹣15+15﹣2)=﹣3+2=﹣1;(8)原式=×(﹣)﹣×(﹣)=﹣1+1=0;(9)原式=﹣1﹣××(2﹣9)=﹣1﹣×(﹣7)=﹣1+=;(10)原式=﹣9﹣125×﹣18÷9=﹣9﹣20﹣2=﹣31;(11)原式=﹣1﹣(﹣)×﹣8=﹣1+2﹣8=﹣7;(12)原式=(﹣)×2﹣×7=﹣×﹣×=﹣×(+)=﹣×10=﹣105.【点评】本题考查的是有理数的运算.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.7.计算(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)(3)(4)(5).【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用乘法分配律计算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)原式变形后利用乘法分配律计算即可得到结果;(5)原式先计算乘方运算,以及括号中的运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)原式=﹣32+21﹣4=﹣36+21=﹣15;(3)原式=18﹣20=﹣2;(4)原式=﹣(100﹣)×36=﹣(3600﹣)=﹣3599;(5)原式=﹣1﹣××(2﹣9)=﹣1+=.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.8.计算:(1)5﹣(﹣2)+(﹣3)﹣(+4)(2)(﹣﹣+)×(﹣24)(3)(﹣3)÷××(﹣15)(4)﹣14+|(﹣2)3﹣10|﹣(﹣3)÷(﹣1)2017.【分析】(1)将减法转化为加法,再利用加法的交换律和结合律简便计算可得;(2)运用乘法的分配律计算可得;(3)将除法转化为乘法,再计算乘法即可得;(4)根据有理数的混合运算顺序和法则计算可得.【解答】解:(1)原式=5+2﹣3﹣4=5﹣3+2﹣4=2﹣2=0;(2)原式=×24+×24﹣×24=18+15﹣18=15;(3)原式=(﹣3)×××(﹣15)=4×4×5=80;(4)原式=﹣1+|﹣8﹣10|﹣(﹣3)÷(﹣1)=﹣1+18﹣3=14.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.9.计算:(1)+﹣﹣+﹣.(2)1﹣++﹣﹣3(3)(﹣+)÷(﹣)×+(﹣1)100(4)﹣102﹣[(1﹣)×][2﹣(﹣3)2](5)﹣2﹣{8+(﹣1)2﹣[(﹣4)×2÷(﹣2)+×(﹣6)]}(6)+|﹣(﹣)2﹣|÷﹣|﹣2﹣3|﹣.【分析】(1)直接将各数相加减即可;(2)将分母相等的项合并,将分母不等的项通分即可得出值;(3)先计算括号里的值,再去括号,再乘除,最后加减即可求值;(4)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(5)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(6)先乘方后乘除最后算加减,有绝对值的先算绝对值里面的.【解答】(1)原式=﹣﹣+﹣=﹣+﹣=﹣+﹣=﹣=﹣;(2)原式=﹣++1﹣3+﹣=﹣﹣+﹣=+﹣=﹣﹣=﹣﹣=﹣=﹣;(3)原式=(﹣)÷(﹣)×+(﹣1)100=××+1=1+1=2;(4)原式=﹣102﹣[][2﹣32]=﹣100﹣×(2﹣9)=﹣100﹣×(﹣7)=﹣100+=﹣98;(5)原式=﹣2﹣{8+1﹣[﹣8÷(﹣2)﹣]}=﹣2﹣{9+1}=﹣2﹣10=﹣12;(6)原式=+||÷﹣|﹣5|﹣=﹣+×25﹣5﹣5=+﹣10=﹣=﹣.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.(3)整式中如果有多重括号应按照先去小括号,再去中括号,最后大括号的顺序进行.10.计算(1)(﹣)+(+)+(﹣)+(﹣)(2)(+3)+(﹣5)+(﹣2)+(﹣32)(3)﹣(+)﹣(+)+(4)﹣14﹣×[2﹣(﹣3)2].【分析】(1)原式结合后,相加即可得到结果;(2)原式结合后,相加即可得到结果;(3)原式结合后,相加即可得到结果;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=(﹣﹣)+[(+)+(﹣)]=﹣10;(2)原式=(3﹣2)+(﹣5﹣32)=1﹣38=﹣36;(3)原式=(﹣)+(﹣+)=﹣=﹣;(4)原式=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11.计算题(1)(﹣4)﹣(﹣1)+(﹣6)÷2(2)﹣3﹣[﹣2﹣(﹣8)×(﹣)](3)﹣25(4).【分析】(1)先化简,再计算加减法;(2)按照有理数混合运算的顺序,先乘除后算加减,有括号的先算括号里面的;(3)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(4),先将乘法变为乘法,再运用乘法的分配律计算.【解答】解:(1)原式=﹣4+1﹣3=﹣6;(2)原式=﹣3﹣(﹣2﹣1)=﹣3+3=0;(3)===2﹣12=﹣10;(4)======﹣3.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.(3)整式中如果有多重括号应按照先去小括号,再去中括号,最后大括号的顺序进行.12.计算题(1)﹣3+8﹣15﹣6(2)(﹣)×(﹣1)÷(﹣2)(3)(﹣+﹣)÷(﹣)(4)(﹣6)÷(﹣)2﹣72+2×(﹣3)2【分析】(1)利用加法的交换律和结合律,依据法则计算可得;(2)将除法转化为乘法,再进一步计算可得;(3)将除法转化为乘法,再利用乘法分配律计算可得;(4)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=﹣24+8=﹣16;(2)原式=(﹣)×(﹣)÷(﹣)=×(﹣)=﹣;(3)原式=(﹣+﹣)×(﹣24)=﹣×(﹣24)+×(﹣24)﹣×(﹣24)=12﹣18+8=2;(4)原式=(﹣6)×9﹣49+2×9=﹣54﹣49+18=﹣85.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.13.计算:(1)25×﹣(﹣25)×+25÷(﹣);(2)2﹣23÷[()2﹣(﹣3+)]×5.【分析】(1)根据有理数的乘除法和乘法分配律可以解答本题;(2)根据有理数的乘除法和加减法可以解答本题.【解答】解:(1)25×﹣(﹣25)×+25÷(﹣)=25×+25×+25×(﹣4)=25×()=25×(﹣)=﹣;(2)2﹣23÷[()2﹣(﹣3+)]×5=====﹣13.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.14.计算下列各题(1)﹣28﹣(﹣15)+(﹣17)﹣(+5)(2)(﹣1)2017+(﹣3)2×|﹣|﹣42÷(﹣2)4【分析】(1)根据减去一个数等于加上这个数的相反数的减法法则,将有理数减法变成有理数加法进行运算即可(2)根据有理数的运算法则,先乘方,后乘除,最后加减,有括号先算括号里的运算顺序即可【解答】解:(1)原式=﹣28+15﹣17﹣5=﹣35(2)原式=﹣1+9×﹣16÷16=﹣1+2﹣1=0【点评】本题考查有理数的运算法则和运算顺序,熟练掌握有理数的法则和运算顺序是本题的关键15.计算(1)(﹣1)﹣(+6)﹣+(2)﹣9×(﹣11)﹣3÷(﹣3)(3)8×(﹣)﹣(﹣4)×(﹣)+(﹣8)×(4)(﹣24)×(+﹣).【分析】(1)先全部化为假分数,再计算同分母分数加减,最后计算减法;(2)先计算乘除运算,再计算加法;(3)先计算乘法,再计算减法;(4)先用乘法分配律展开,再计算乘法,最后计算加减.【解答】解:(1)原式=﹣﹣﹣+=﹣4﹣3=﹣7;(2)原式=99+1=100;(3)原式=﹣﹣﹣=﹣8;(4)原式=﹣24×+(﹣24)×+(﹣24)×(﹣)=﹣12﹣20+14=﹣18.【点评】本题主要考查有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.16.计算:(1)(﹣28)÷(﹣6+4)+(﹣1)×5;(2)÷.【分析】(1)原式先计算乘除运算,再计算加减运算即可求出值;(2)原式先计算乘方运算,再计算除法运算即可求出值.【解答】解:(1)原式=(﹣28)÷(﹣2)+(﹣5)=14﹣5=9;(2)原式=(﹣++)×36=9﹣30+12+54=45.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.有理数计算.(1)﹣+(﹣)+(+3)﹣(﹣)+(﹣1)2013(2)(﹣12)×(﹣+)+(﹣32)÷2.【分析】(1)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.(2)运用乘法的分配律去括号,再按有理数混合运算的顺序计算.【解答】解:(1)﹣+(﹣)+(+3)﹣(﹣)+(﹣1)2013=﹣+3+﹣1=﹣+﹣1=﹣1=﹣(2)(﹣12)×(﹣+)+(﹣32)÷2=﹣12×+12×﹣12×+(﹣9)÷2=﹣4+9﹣10﹣=5﹣10﹣=﹣5﹣=﹣【点评】本题考查的是有理数的运算能力.解题过程中注意符号是关键.18.细心算一算(1)19+(﹣6)+(﹣5)+(﹣3)(2)(﹣81)÷×÷(﹣16)(3)(﹣24)×(﹣﹣)(4)﹣|﹣5|+(﹣3)3÷(﹣22)(5)﹣14﹣(﹣1)3﹣[2﹣(﹣3)2](6)﹣99×36.【分析】(1)省略加号,再加减;(2)先确定符号,再都化成乘法进行计算;(3)根据乘法分配律进行计算;(4)先计算绝对值和乘方,再加减;(5)先计算括号里的和乘方运算,再加减;(6)把﹣99化成﹣100+,再利用乘法分配律进行计算.【解答】解:(1)原式=19﹣6﹣5﹣3=19﹣14=5;(2)原式=81×××=1;(3)原式=﹣24×+24×+24×=﹣8+3+4=﹣1;(4)原式=﹣5+=;(5)原式=﹣1+1﹣[2﹣9]=﹣1+1﹣(﹣7)=7;(6)原式=(﹣100+)×36=﹣100×36+×36=﹣3600+=﹣3599.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键;同时对于数很大的情况,要进行适当变形再进行计算,如第(6)小题,有一个因数为带分数时,可以转化为一个整数与一个真分数的和的形式,利用乘法分配律进行计算,但要注意所化成的真分数的分母能和另一个因数进行约分才可以.19.计算,能简算的要简算.(1)1+(﹣2)+|﹣2|﹣5(2)(+)+(﹣)﹣(+)﹣(﹣)﹣(+1)(3)(﹣81)÷×÷(﹣16)(4)﹣14﹣×[2﹣(﹣4)2](5)(﹣370)×(﹣)+×﹣5×(﹣25%)【分析】根据有理数混合运算的运算方法,求出每个算式的值各是多少即可.【解答】解:(1)1+(﹣2)+|﹣2|﹣5=﹣1+2﹣5=1﹣5=﹣4(2)(+)+(﹣)﹣(+)﹣(﹣)﹣(+1)=[(+)﹣(﹣)]+[(﹣)﹣(+)]﹣(+1)=1﹣1﹣1=﹣1(3)(﹣81)÷×÷(﹣16)=﹣36×÷(﹣16)=(﹣16)÷(﹣16)=1(4)﹣14﹣×[2﹣(﹣4)2]=﹣1﹣×[2﹣16]=﹣1﹣×[﹣14]=﹣1+2=1(5)(﹣370)×(﹣)+×﹣5×(﹣25%)=370×+×+×=(370++)×=400×=100【点评】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.计算(1)[2﹣5×(﹣)2]÷(﹣)(2)(﹣24)×(﹣1﹣)(3)﹣14﹣(1﹣)÷×[(﹣2)2﹣6].【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式利用乘法分配律计算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=(2﹣)×(﹣4)=﹣8+5=﹣3;(2)原=﹣12+40+9=37;(3)原式=﹣1﹣×3×(﹣2)=﹣1+=.【点评】此题考查了有理数的混合运算,以及运算律,熟练掌握运算法则是解本题的关键.21.计算:(1)20+(﹣14)﹣(﹣18)﹣13;(2)﹣2;(3)(﹣7)×(﹣5)﹣90÷(﹣15)(4)(5)﹣14﹣(1﹣)×【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式利用减法法则变形,计算即可求出值;(3)原式先计算乘除运算,再计算加减运算即可求出值;(4)原式逆用乘法分配律计算即可求出值;(5)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式=20+18+(﹣14)+(﹣13)=11;(2)原式=﹣2﹣﹣3+1=﹣5;(3)原式=35+6=41;(4)原式=﹣3×(﹣120﹣7+37)=﹣×(﹣90)=350;(5)原式=﹣1﹣××(﹣7)=﹣1+=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.计算(1)16﹣(﹣10+3)+(﹣2)(2)(﹣4)2×﹣27÷(﹣3)3(3)﹣12﹣()2×(﹣﹣)÷【分析】(1)先计算括号内的,再计算加减可得;(2)先计算乘方,再计算乘除,最后计算加减可得;(3)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=16﹣(﹣7)+(﹣2)=16+7﹣2=21;(2)原式=16×﹣27÷(﹣27)=2﹣(﹣1)=2+1=3;(3)原式=﹣1﹣×(﹣1)×=﹣1+=﹣.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.23.计算:(1)+(﹣)+(﹣)+(2)(3)(4)﹣14﹣(1﹣)×【分析】(1)根据有理数的加法可以解答本题;(2)根据有理数的除法和加减法可以解答本题;(3)根据有理数的乘法和加减法可以解答本题;(4)根据有理数的乘法和加减法可以解答本题.【解答】解:(1)+(﹣)+(﹣)+=[+(﹣)]+[(﹣)+]=12+0=12;(2)=(﹣)×(﹣36)=18+20+(﹣21)=17;(3)=(﹣1)+﹣1=﹣;(4)﹣14﹣(1﹣)×=﹣1﹣=﹣1﹣=﹣1+=﹣.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.24.计算下列各题.(1)99×(﹣7)(2)﹣24+(﹣2)2﹣(﹣1)11×(﹣)÷﹣|﹣2|(3)[(﹣+)×(﹣36)+2]÷(﹣14)【分析】(1)原式变形后,利用乘法分配律计算即可得到结果;(2)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式中括号中利用乘法分配律计算,再利用除法法则变形,计算即可得到结果.【解答】解:(1)原式=(100﹣)×(﹣7)=﹣700+=﹣699;(2)原式=﹣16+4+2﹣3﹣2=﹣15;(3)原式=(﹣16+15﹣6+2)×(﹣)=﹣×(﹣)=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.(1)7+(﹣5)﹣(﹣3)+(6)(2)(﹣2)÷(2)×(﹣)(3)25×+(﹣25)×+25×(﹣)(4)(﹣99)×99(5)﹣12017﹣[2﹣(1﹣×)]×[32﹣(﹣2)2](6)|﹣|+[×22﹣(﹣)2].【分析】(1)先算同分母分数,再算加减法;(2)将除法变为乘法,再约分计算即可求解;(3)(4)根据乘法分配律计算;(5)(6)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)7+(﹣5)﹣(﹣3)+(6)=(7+3)+(﹣5+6)=11+1=12;(2)(﹣2)÷(2)×(﹣)=××=;(3)25×+(﹣25)×+25×(﹣)=25×(﹣﹣)=25×0=0;(4)(﹣99)×99=(﹣100+)×99=﹣100×99+×99=﹣9900+1=﹣9899;(5)﹣12017﹣[2﹣(1﹣×)]×[32﹣(﹣2)2]=﹣1﹣[2﹣(1﹣)]×[9﹣4]=﹣1﹣×5=﹣1﹣5=﹣6;(6)|﹣|+[×22﹣(﹣)2]=+[×4﹣]=+[2﹣]=﹣=﹣.【点评】考查了有理数的混合运算,注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.26.计算下列各式:(1)(2).【分析】(1)根据有理数的混合运算顺序,先算乘方,再算乘除,最后算加减,进行计算即可得解;(2)根据有理数的混合运算顺序,先算乘方,再算乘除,最后算加减,后面的利用乘法分配律进行计算即可得解.【解答】解:(1)9××(﹣)+4+4×(﹣),=﹣6+4﹣6,=﹣12+4,=﹣8;(2)﹣÷(﹣)2×(﹣1)3+(+﹣)×24,=﹣×4×(﹣1)+×24+×24﹣×24,=1+33+56﹣90,=90﹣90,=0.【点评】本题考查了有理数的混合运算,熟记运算顺序是解题的关键,注意利用运算定律使运算更加简便.27.计算(1)(﹣3)﹣(﹣2)﹣(﹣2)﹣(+)﹣(﹣1)(2)﹣4×(﹣2)﹣6×(﹣2)+17×(﹣2)﹣19÷(3)﹣12+×[﹣22+(﹣3)2×(﹣2)+(﹣3)]÷(﹣)2【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘除法和加减法可以解答本题;(3)根据有理数的乘除法和加减法可以解答本题.【解答】解:(1)(﹣3)﹣(﹣2)﹣(﹣2)﹣(+)﹣(﹣1)=(﹣3)+2+2+(﹣1)+1=1;(2)﹣4×(﹣2)﹣6×(﹣2)+17×(﹣2)﹣19÷=(﹣4﹣6+17)×(﹣2)﹣(19+)×9=7×(﹣)﹣19×9﹣8=(﹣18)﹣171﹣8=﹣197;(3)﹣12+×[﹣22+(﹣3)2×(﹣2)+(﹣3)]÷(﹣)2=﹣1+=﹣1+=﹣1+=﹣1﹣=﹣.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.28.计算(1)﹣﹣(2)72×(﹣+﹣)(3)×[÷(﹣)](4)[﹣(﹣)÷]÷.【分析】(1)根据减法的性质计算即可.(2)根据乘法分配律计算即可.(3)首先计算小括号里面的减法,然后计算中括号里面的除法,最后计算中括号外面的乘法即可.(4)首先计算小括号里面的减法,然后计算中括号里面的除法和减法,最后计算中括号外面的除法即可.【解答】解:(1)﹣﹣=﹣(+)=﹣4=(2)72×(﹣+﹣)=72×﹣72×+72×﹣72×=36﹣24+18﹣6=12+18﹣6=24(3)×[÷(﹣)]=×[÷]=×=4(4)[﹣(﹣)÷]÷=[﹣÷]×10=[﹣]×10=×10=1【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意乘法分配律和减法的性质的应用.29.计算:(1)(2)(3).【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式从左到右依次计算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=1+﹣=2﹣=1;(2)原式=﹣××=﹣;(3)原式=﹣8+﹣=﹣8.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.30.计算(1)1+(﹣2)+|﹣2﹣3|﹣5﹣(﹣9)(2)×()×(3)()×(﹣12)(4)﹣3﹣[﹣5+(1﹣2×)÷(﹣2)].【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算括号中的运算,再计算乘除运算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式先计算乘除运算,再计算加减运算即可求出值.【解答】解:(1)原式=1﹣2+5﹣5+9=8;(2)原式=×(﹣)××=﹣;(3)原式=﹣5﹣8+9=﹣4;(4)原式=﹣3+5﹣=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.31.计算:(1)﹣20+3+5﹣7(2)(﹣36)×(﹣+﹣);(3)(﹣4)﹣(﹣5)+(﹣4)﹣(+3)【分析】(1)根据有理数的加法法则计算即可;(2)利用乘法分配律计算即可;(3)根据解法交换律以及结合律计算即可;【解答】解:(1)﹣20+3+5﹣7=﹣27+8=﹣19(2)(﹣36)×(﹣+﹣)=﹣36×(﹣)﹣36×﹣36×(﹣)=16﹣30+21=7(3)(﹣4)﹣(﹣5)+(﹣4)﹣(+3)=﹣4﹣3+5﹣4=﹣8+1=﹣6【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键,记住先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.32.计算:(1)﹣+(﹣15)﹣(﹣17)﹣|﹣12|;(2)[﹣22+(﹣2)3]﹣(﹣2)×(﹣3);(3)()÷();(4);(5)﹣14+[1﹣(1﹣×2)]÷|2﹣(﹣3)2|;(6)[(﹣3)2﹣22﹣(﹣5)2]××(﹣2)4.【分析】(1)先去括号,绝对值符号,再进行计算;(2)先去括号和乘方,再算乘,最后算减;(3)转换成乘法后,运用分配律进行计算;(4)有括号,先算括号里的,再算除法;(5)先算乘方,再算乘除,最后算加减,有括号,先算括号里的;(6)先算乘方,再算乘法,有括号,先算括号里的.【解答】解:(1)原式=﹣﹣15+17﹣12=﹣+17=﹣;(2)原式=(﹣4﹣8)﹣6=﹣12﹣6=﹣18;(3)原式=﹣18+108﹣30+21=81;(4)原式=﹣÷[×(﹣27)﹣4]=﹣÷(﹣16)=;(5)原式=﹣1+[1﹣(1﹣1)]÷7=﹣1+=﹣;(6)原式=(9﹣4﹣25)×××16=(﹣20)×××16=﹣600.【点评】本题考查的是有理数的运算能力,注意要正确掌握运算顺序:先算乘方,再算乘除,最后算加减,有括号,先算括号里的.使用分配律简便的要用分配律进行计算.时刻注意符号问题.33.计算:(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9);(2)﹣﹣(﹣)﹣;(3);(4);(5);(6)(﹣2)3﹣2×(﹣3)+|2﹣5|﹣(﹣1)2010.【分析】(1)利用减去一个数等于加上这个数的相反数将减法运算化为加法运算,再利用加法运算律将符合相同的数结合,利用同号两数相加的法则计算,再利用异号两数相加的法则计算,即可得到结果;(2)原式第三项利用减去一个数等于加上这个数的相反数化为加法运算,最后一项利用负数的绝对值等于它的相反数并将分数化为小数,利用同号及异号两数相加的法则计算,即可得到结果;(3)利用乘法分配律给括号中每一项都乘以﹣60,约分后相加,即可得到结果;(4)根据运算顺序从左到右依次计算,利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果;(5)原式第一项表示1三次幂的相反数,第二项第一个因式括号中两数相加,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,计算后相加即可得到结果;(6)原式第一项表示3个﹣2的乘积,第二项利用异号两数相乘的法则计算,第三项先利用减法法则计算,再利用负数的绝对值等于它的相反数计算,最后一项利用﹣1的偶次幂为1计算,将结果相加即可得到最后结果.【解答】解:(1)原式=[(﹣3)+(﹣4)+(﹣11)]+9=﹣18+9=﹣9;(2)原式=﹣+﹣=(+)﹣(+)=56﹣13=43;(3)原式=(﹣60)×﹣(﹣60)×﹣(﹣60)×=﹣40+5+4=﹣31;(4)原式=(﹣81)×××(﹣)=;(5)原式=﹣1﹣××(﹣)=﹣1+=﹣;(6)原式=(﹣8)+6+3﹣1=﹣2+3﹣1=0.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.34.计算:(1)13+5×(﹣2)﹣(﹣4)÷(﹣8);(2)÷(﹣2)﹣×(﹣1)+;(3)[1﹣(+﹣)×(﹣2)3]÷(﹣3);(4)﹣24﹣[3+÷(﹣1)×(2)2]+(﹣1)2016×()2016.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=13﹣10﹣=2;(2)原式=﹣×+×+=﹣++=;(3)原式=(1+6+3﹣)×(﹣)=﹣﹣3+=﹣3;(4)原式=﹣16﹣3﹣×(﹣)×+1=﹣16﹣3+3+1=﹣15.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.35.计算:(1)(﹣2)﹣(﹣5)﹣(+3)﹣(﹣);(2)﹣27÷×(﹣)+4﹣4×(﹣);(3)[(﹣1)2014+(1﹣)×]÷(﹣32+2);(4)[﹣﹣()3+﹣]÷(﹣).【分析】(1)根据有理数的加减运算法则计算;(2)根据有理数的混合运算法则计算;(3)根据有理数的混合运算法则计算;(4)根据有理数的混合运算法则计算.【解答】解:(1)(﹣2)﹣(﹣5)﹣(+3)﹣(﹣)=(﹣2+)+(5﹣3)=﹣2+2=0;(2)﹣27÷×(﹣)+4﹣4×(﹣)=27××+4+=+4+=;(3)[(﹣1)2014+(1﹣)×]÷(﹣32+2)=(1+×)÷(﹣7)=﹣×=﹣;(4)[﹣﹣()3+﹣]÷(﹣)=×48+×48﹣×48+×48=+6﹣36+4=﹣24.【点评】本题考查的是有理数的混合运算,掌握有理数的混合运算法则是解题的关键.36.有理数计算题(1)12﹣(﹣5)﹣(﹣18)+(﹣5)(2)﹣+4+8﹣3(3)(﹣3)×(﹣)÷(﹣1)(4)(+﹣)×(﹣12)(5)32﹣50÷22×(﹣)﹣1(6)﹣32÷[(﹣)2×(﹣3)3+(1﹣1÷)].【分析】(1)(3)(5)(6)根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.(2)应用加法交换律和加法结合律,求出算式的值是多少即可.(4)应用乘法分配律,求出算式的值是多少即可.【解答】解:(1)12﹣(﹣5)﹣(﹣18)+(﹣5)=17+18﹣5=35﹣5=30(2)﹣+4+8﹣3=(﹣﹣3)+(4+8)=﹣10+13=3(3)(﹣3)×(﹣)÷(﹣1)=÷(﹣1)=﹣2(4)(+﹣)×(﹣12)=×(﹣12)+×(﹣12)﹣×(﹣12)=﹣5﹣8+9=﹣4(5)32﹣50÷22×(﹣)﹣1=9+﹣1=(6)﹣32÷[(﹣)2×(﹣3)3+(1﹣1÷)]=﹣9÷[﹣3﹣1]=﹣9÷[﹣4]=【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.37.(1)871﹣+53﹣+43.(2)4×(﹣3)2+6.(3)﹣+(4).【分析】(1)根据加法交换律和结合律,以及减法的性质简便计算;直接运用乘法的分配律计算;(2)(3)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(4)多次运用乘法的分配律计算.【解答】解:(1)871﹣+53﹣+43=871+(53+43)﹣(+)=871+97﹣100=868.(2)4×(﹣3)2+6=4×9+6=36+6=42.(3)﹣+=﹣+﹣|﹣9﹣9|+×=﹣18+2=﹣16(4)=(﹣﹣)×60×(﹣﹣)=(﹣﹣)×60×(﹣1)=﹣×60+×60+×60=﹣36+30+35=29.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.38.计算:(1)﹣3﹣7;(2)(﹣)+(﹣)﹣(﹣3);(3)﹣+(﹣)﹣(﹣17)﹣|﹣12|(4)(5)(﹣81)÷(6)〔1﹣(1﹣×)〕×|2﹣(﹣3)2|﹣(﹣62).【分析】(1)根据有理数的减法可以解答本题;(2)根据有理数的加减法可以解答本题;(3)根据有理数的加减法可以解答本题;(4)根据乘法分配律可以解答本题;(5)根据有理数的乘除法可以解答本题;(6)根据有理数的乘法和加减法可以解答本题;【解答】解:(1)﹣3﹣7=(﹣3)+(﹣7)=﹣10;(2)(﹣)+(﹣)﹣(﹣3)=﹣1+3=2;(3)﹣+(﹣)﹣(﹣17)﹣|﹣12|=﹣+(﹣)+17﹣12=﹣11;(4)=(﹣32)+21+(﹣4)=﹣15;(5)(﹣81)÷=81×=1;(6)〔1﹣(1﹣×)〕×|2﹣(﹣3)2|﹣(﹣62)=[1﹣(1﹣)]×|2﹣9|﹣(﹣36)=[1﹣]×7+36=+36==.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.39.计算(1)﹣8﹣(﹣15)+(﹣9)﹣(﹣12)(2)(3)﹣(3﹣5)+32×(﹣3)(4)(5)|(6).【分析】(1)先化简再计算加减法;根据有理数的加法法则计算即可求解;(2)将除法变为乘法,再约分计算即可求解;(3)(5)(6)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(4)直接运用乘法的分配律计算.【解答】解:(1)﹣8﹣(﹣15)+(﹣9)﹣(﹣12)=﹣8+15﹣9+12=﹣17+27=10;(2)=﹣×××=﹣;(3)﹣(3﹣5)+32×(﹣3)=2+9×(﹣3)=2﹣27=﹣25;(4)=30﹣×36﹣×36+×36=30﹣28﹣30+33=5;(5)|=﹣9+×(﹣)+4=﹣9﹣1+4=﹣6;(6)=9﹣7÷7﹣×4=9﹣1﹣1=7.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.40.计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)(﹣8)+4÷(﹣2);(3)(﹣10)÷(﹣)×5;(4)[1﹣(1﹣×)]×[2﹣(﹣3)2].【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算除法运算,再计算加减运算即可得到结果;(3)原式从左到右依次计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=12+18﹣7﹣15=30﹣22=8;(2)原式=﹣8﹣2=﹣10;(3)原式=10×5×5=250;(4)原式=(1﹣1+)×(2﹣9)=﹣.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.41.计算(1)23﹣17﹣(﹣7)+(﹣16)(2)(﹣4)+|﹣8|+(﹣3)3﹣(﹣3)(3)﹣24÷(2)2﹣3×(﹣)(4)×(﹣2)3﹣[4÷(﹣)2+1]+(﹣1)2008.【分析】(1)根据有理数的加法法则计算即可;(2)先计算乘方、绝对值即可;(3)先算乘方,再算乘除,最后算加减即可;(4)先算乘方,再算乘除,最后算加减即可;【解答】解:(1)23﹣17﹣(﹣7)+(﹣16)=23﹣17+7﹣16=﹣3(2)(﹣4)+|﹣8|+(﹣3)3﹣(﹣3)=﹣4+8﹣27+3=﹣20(3)﹣24÷(2)2﹣3×(﹣)=﹣24×+×=﹣+=﹣=﹣(4)×(﹣2)3﹣[4÷(﹣)2+1]+(﹣1)2008.=﹣2﹣(9+1)+1=﹣11【点评】本题考查有理数的混合运算,注意:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,学会在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.。

(易错题精选)初中数学有理数的运算技巧及练习题

(易错题精选)初中数学有理数的运算技巧及练习题

(易错题精选)初中数学有理数的运算技巧及练习题一、选择题1.设n 是自然数,则n n 1(1)(1)2+-+-的值为( ) A .0B .1C .﹣1D .1或﹣1 【答案】A【解析】试题分析:当n 为奇数时,(n +1)为偶数, n n 1(1)(1)2+-+-=(1)12-+=0; 当n 为偶数时,(n +1)为奇数,n n 1(1)(1)2+-+-=1(1)2+-=0. 故选A .点睛:本题考查有理数乘方,解答本题的关键是明确有理数乘方的计算方法,利用分类讨论的数学思想解答.2.2017年常州市实现地区生产总值约6622亿元,将6622用科学记数法表示为( ) A .40.662210⨯B .36.62210⨯C .266.2210⨯D .116.62210⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将6622用科学记数法表示为:36.62210⨯.故选B.【点睛】本题考查科学计数法的表示方法. 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值及n 的值.3.电影《流浪地球》中有一个名词“洛希极限”,它是指两大星体之间可以保持平稳运行的最小距离,其中地球与木星之间的洛希极限约为10.9万公里,数据“10.9万”用科学记数法表示正确的是( )A .10.9×104B .1.09×104C .10.9×105D .1.09×105【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将10.9万用科学记数法表示为:1.09×105.故选D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.广西北部湾经济区包括南宁、北海、钦州、防城港、玉林、崇左六个市,户籍人口约2400万,该经济区户籍人口用科学记数法可表示为()A.2.4×103B.2.4×105C.2.4×107D.2.4×109【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将2400万用科学记数法表示为:2.4×107.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.如果a是实数,下列说法正确的是()A.2a和a都是正数B.(-a+2可能在x轴上C.a的倒数是1aD.a的相反数的绝对值是它本身【答案】B【解析】【分析】A、根据平方和绝对值的意义即可作出判断;B、根据算术平方根的意义即可作出判断;C、根据倒数的定义即可作出判断;D、根据绝对值的意义即可作出判断.【详解】A 、2a 和a 都是非负数,故错误;B 、当a=0时,(-a +2,2a )在x 轴上,故正确;C 、当a=0时,a 没有倒数,故错误;D 、当a≥0时,a 的相反数的绝对值是它本身,故错误;故答案为:B.【点睛】本题考查了算术平方根,绝对值,倒数,乘方等知识点的应用,比较简单.6.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是( )A .0a b +=B .0a b -=C .a b <D .0ab >【答案】A【解析】由题意可知a<0<1<b ,a=-b ,∴a+b=0,a-b=2a<0,|a|=|b|,ab<0,∴选项A 正确,选项B 、C 、D 错误,故选A.7.在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学计数法可以表示为( )亿次/秒 A .81.2510⨯B .91.2510⨯C .101.2510⨯D .812.510⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:12.5亿亿次/秒=1.25×109亿次/秒,故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8.据不完全统计,长春市2018年中考人数只有47000多人,比2017年减少1.2万余人,创历史新低.数据47000用科学记数法表示为( )A .44.710⨯B .34710⨯C .44.710-⨯D .50.4710⨯【答案】A【解析】【分析】 科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将47000用科学记数法表示为:4.7×104.故选A .【点睛】本题主要考查科学记数法的表示方法,科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.下列说法中,正确的是( )A .在数轴上表示-a 的点一定在原点的左边B .有理数a 的倒数是1aC .一个数的相反数一定小于或等于这个数D .如果a a =-,那么a 是负数或零【答案】D【解析】【分析】根据实数与数轴的对应关系、倒数、相反数、绝对值的定义来解答.【详解】解:A 、如果a<0,那么在数轴上表示-a 的点在原点的右边,故选项错误;B 、只有当a≠0时,有理数a 才有倒数,故选项错误;C 、负数的相反数大于这个数,故选项错误;D 、如果a a =-,那么a 是负数或零是正确.故选D.【点睛】本题考查了数轴、倒数、相反数、绝对值准确理解实数与数轴的定义及其之间的对应关系.倒数的定义:两个数的乘积是1,则它们互为倒数;相反数的定义:只有符号不同的两个数互为相反数;绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.10.和﹣的关系是( )A .互为倒数B .互为相反数C .互为负倒数D .以上都不对【答案】C【解析】【分析】根据相反数及倒数的定义求解.【详解】解:∵×(﹣)=-1,∴和﹣互为负倒数,故选C.【点睛】判断两个式子之间的关系,一般有互为相反数、互为倒数和互为负倒数等几种. 11.-2的倒数是()A.-2 B.12C.12D.2【答案】B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握12.已知|m+3|与(n﹣2)2互为相反数,那么m n等于()A.6 B.﹣6 C.9 D.﹣9【答案】C【解析】【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出m、n的值,然后代入代数式进行计算即可得解.【详解】∵|m+3|与(n﹣2)2互为相反数,∴|m+3|+(n﹣2)2=0,∴m+3=0,n﹣2=0,解得m=﹣3,n=2,所以,m n =(﹣3)2=9.故选C .【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A .81B .508C .928D .1324【答案】B【解析】【分析】类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数×73+百位上的数×72+十位上的数×7+个位上的数.【详解】解:孩子自出生后的天数是:1×73+3×72+2×7+4=508,故选:B .【点睛】本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数字列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.14.2018年我市用于资助贫困学生的助学金总额是445800000元,将445800000用科学记数法表示为( )A .744.5810⨯B .84.45810⨯C .94.45810⨯D .100.445810⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.由此即可解答.【详解】445800000用科学记数法表示为: 445800000=84.45810⨯.故选B.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.2019 年 1 月 3 日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为 384 000km,把 384 000km 用科学记数法可以表示为()A.38.4 ×10 4 km B.3.84×10 5 km C.0.384× 10 6 km D.3.84 ×10 6 km【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】科学记数法表示:384 000=3.84×105km故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.2019年春节联欢晚会在某网站取得了同时在线人数超34200000的惊人成绩,创下了全球单平台网络直播记录,将数34200000用科学记数法表示为( )A.8⨯D.634.210⨯3.42100.34210⨯C.8⨯B.73.4210【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将34200000用科学记数法表示为:3.42×107.故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.一周时间有604800秒,604800用科学记数法表示为()A.2⨯D.60.6048106.04810⨯⨯B.56048106.04810⨯C.6【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】604800的小数点向左移动5位得到6.048,所以数字604800用科学记数法表示为56.04810⨯,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值.18.下列用科学记数法表示正确的是( )A .10.000567 5.6710-=-⨯B .40.0012312.310=⨯C .20.0808.010-=⨯D .5696000 6.9610--=⨯【答案】C【解析】分析: 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解: A. 40.000567 5.6710--=-⨯,故错误;B. 30.0012312.310,-=⨯故错误;C. 20.0808.010-=⨯,正确;D. 5696000 6.9610-=⨯,故错误.故选:C.点睛: 本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.19.计算(-2)100+(-2)99的结果是( )A .2B .2-C .992-D .992【答案】D【解析】解:原式=(﹣2)99[(﹣2)+1]=﹣(﹣2)99=299.故选D .20.根据如图的程序运算:当输入x=50时,输出的结果是101;当输入x=20时,输出的结果是167.如果当输入x 的值是正整数,输出的结果是127,那么满足条件的x的值最多有()A.3个B.4个C.5个D.6个【答案】D【解析】【分析】根据程序中的运算法则计算即可求出所求.【详解】根据题意得:2x+1=127,解得:x=63;2x+1=63,解得:x=31;2x+1=31,解得:x=15;2x+1=15,解得:x=7;2x+1=7,解得:x=3;2x+1=3,解得:x=1,则满足条件x的值有6个,故选:D.【点睛】此题考查了代数式求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.。

有理数的混合运算计算题七年级

有理数的混合运算计算题七年级

有理数的混合运算计算题七年级一、有理数混合运算的运算顺序1. 先算乘方,再算乘除,最后算加减。

2. 同级运算,按照从左到右的顺序进行。

3. 如果有括号,先算括号里面的(先小括号,再中括号,最后大括号)。

二、典型例题1. 计算:(-2)+3×(-4)-(-5)÷(1)/(2)- 解析:- 按照运算顺序,先算乘除。

- 这里有乘法3×(-4)= - 12,除法(-5)÷(1)/(2)=(-5)×2=-10。

- 然后算加减。

- 原式变为(-2)+(-12)-(-10)。

- 去括号得-2 - 12 + 10。

- 先算-2-12=-14,再算-14 + 10=-4。

2. 计算:2×(-3)^2-4×(-2)+10- 解析:- 先算乘方。

- (-3)^2=(-3)×(-3)=9。

- 再算乘除。

- 原式变为2×9-4×(-2)+10,2×9 = 18,4×(-2)=-8。

- 最后算加减。

- 式子变为18-(-8)+10,去括号得18 + 8+10,先算18+8 = 26,再算26+10 = 36。

3. 计算:[1-(1 - 0.5×(1)/(3))]×[2-(-3)^2]- 解析:- 先算小括号里面的。

- 在小括号1 - 0.5×(1)/(3)中,先算乘法0.5×(1)/(3)=(1)/(2)×(1)/(3)=(1)/(6),再算减法1-(1)/(6)=(5)/(6)。

- 再算中括号里面的。

- 第一个中括号里1-(1 - 0.5×(1)/(3))=1-(5)/(6)=(1)/(6),第二个中括号里2-(-3)^2=2 - 9=-7。

- 最后算两个中括号的乘积。

- (1)/(6)×(-7)=-(7)/(6)。

三、练习题1. 3 - 4×(-2)+(-1)^2023- 解析:- 先算乘方,(-1)^2023=-1。

七年级 有理数混合运算及易错题练习

七年级 有理数混合运算及易错题练习

七年级有理数混合运算及易错题练习七年级-有理数混合运算及易错题练习有理数的混合运算练习一、选择题:1.大约0.036490有效数字()a.6b.5c.4d.32.下面关于0的说法正确的是():① 它是一个整数和一个有理数。

② 这是一个正数,不是负数。

③ 它不是一个整数,而是一个有理数。

④ 它是一个整数和一个自然数a.①②b.②③c.①④d.①③3.用四舍五入法把0.06097精确到千分位的近似值的有效数字是()a.0,6,0b.0,6,1,0c.0,6,1d.6,14.如果一个近似数是1.60,则它的精确值x的取值范围是()a、 1.5940b。

a+bbcd。

ab>ac7.已知abc>0,a>c,ac<0,下列结论正确的是()a.a<0,b<0,c>0b、 a>0,b>0,c<0c。

a> 0,b<0,c<0d。

a<0,b>0,c>0ab?2a?3b,则(-3)*(2b8.对于两个非零有理数a、b定义运算*如下:a*b=a.-3b.2) =333摄氏度-229摄氏度。

如果“!”是一个操作符号,1=1,2!=2×1,3!=3×2×1,4!=四×三×二×一然后计算2022!正确的答案是()2021!a.2021b.2021c.2022年D2022×二亿零二百一十二万二百一十一1(a?b)10.若a与b互为相反数,c与d互为倒数,则代数式-的值是()(CD)21003a。

0b。

1c.-1D。

无法确定。

二、填空:1111.?2?(?2)2?_____;?(?3)?(?)?3?_____如果错了!未找到参考源。

<0,错误!未找到参考源。

<0,然后是ac0。

13如果有理数m<n<0,(m+n)(MN)的符号是(填入正或负)14(?0.125)96?(?8)95? 15.如果│ x-3│ + │ y+15│ = 0,然后3x+2Y=____16.若│x│=3,│y│=2,且xy<0,则x+y的值等于________17.如果规定符号“※”的意义是:a※b=AB,那么3※(-3)的值等于_______a?b18。

7年级数学有理数的混合运算

7年级数学有理数的混合运算

七年级数学有理数的混合运算题题目一:(-2)+3×(-4)解析:先算乘法,3×(-4)=-12,再算加法,(-2)+(-12)=-14。

题目二:4-(-3)×2解析:先算乘法,(-3)×2=-6,再算减法,4-(-6)=4+6=10。

题目三:(-5)×(-3)+(-2)解析:先算乘法,(-5)×(-3)=15,再算加法,15+(-2)=13。

题目四:6÷(-2)+(-4)解析:先算除法,6÷(-2)=-3,再算加法,-3+(-4)=-7。

题目五:(-3)×2-(-4)÷2解析:先算乘法和除法,(-3)×2=-6,(-4)÷2=-2,再算减法,-6-(-2)=-6+2=-4。

题目六:4×(-2)+3×(-3)解析:先算乘法,4×(-2)=-8,3×(-3)=-9,再算加法,-8+(-9)=-17。

题目七:(-6)÷(-2)-(-3)解析:先算除法,(-6)÷(-2)=3,再算减法,3-(-3)=3+3=6。

题目八:5×(-2)+(-4)×(-3)解析:先算乘法,5×(-2)=-10,(-4)×(-3)=12,再算加法,-10+12=2。

题目九:(-3)×3-(-2)÷2解析:先算乘法和除法,(-3)×3=-9,(-2)÷2=-1,再算减法,-9-(-1)=-9+1=-8。

题目十:4÷(-2)+(-3)×2解析:先算除法和乘法,4÷(-2)=-2,(-3)×2=-6,再算加法,-2+(-6)=-8。

题目十一:(-5)×2-(-4)÷(-2)解析:先算乘法和除法,(-5)×2=-10,(-4)÷(-2)=2,再算减法,-10-2=-12。

《易错题》七年级数学上册第一单元《有理数》-解答题专项经典习题(含答案)

《易错题》七年级数学上册第一单元《有理数》-解答题专项经典习题(含答案)

一、解答题1.计算(1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()34011 1.950.50|5|5---+-⨯⨯--+.解析:(1)14;(2)0【分析】(1)先计算乘法和除法,再计算加法;(2)分别计算乘方、乘法和绝对值,再计算加法和减法.【详解】解:(1)原式=2124633⎛⎫⎛⎫-⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭()162=+-14=;(2)原式011055=-++-+=0.【点睛】本题考查有理数的混合运算.(1)中注意要先把除法化为乘法再计算;(2)中注意多个有理数相乘时,只要有一个因数为0,那么积就为0.2.把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来. |3|-,5-,12,0, 2.5-,22-,(1)--. 解析:见解析,|-3|>-(-1)>12>0>-2.5>-22>-5. 【分析】先在数轴上表示出各数,从右到左用“>”连接起来即可.【详解】解:|3|=3-;224=--,(1)=1--如图所示,,由图可知,|-3|>-(-1)>12>0>-2.5>-22>-5. 【点睛】 本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键. 3.计算(1)18()5(0.25)4+----(2)2﹣412()(63)7921-+⨯- (3)1373015-⨯ (4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦. 解析:(1)3;(2)37;(3)﹣236;(4)72【分析】 (1)本式为简单的有理数加减运算,从左到右先将分数进行计算,再从左到右计算即可. (2)按照有理数混合运算的顺序,利用乘法分配律直接去括号,再进行运算. (3)将﹣71315分解为﹣7﹣1315,再利用乘方分配律进行计算即可. (4)分别根据有理数的乘方计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:(1)18()5(0.25)4+---- =118544--+ =3;(2)2﹣412()(63)7921-+⨯- =4122(63)(63)(63)7921⎡⎤-⨯--⨯-+⨯-⎢⎥⎣⎦ =2﹣(﹣36+7﹣6),=2﹣(﹣35)=37;(3)1373015-⨯ =﹣7×30+(﹣1315)×30 =﹣210﹣26=﹣236;(4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦ =341(92)149--⨯-⨯-÷2=72. 【点睛】此题考查了有理数的混合运算注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.4.计算 ①()115112236⎛⎫--+--- ⎪⎝⎭ ②()32112114132⎛⎫⎛⎫-÷-⨯--- ⎪ ⎪⎝⎭⎝⎭③524312(4)()12(152)2-÷-⨯-⨯-+④()()213132123242834⎛⎫⎛⎫-÷--+-⨯- ⎪ ⎪⎝⎭⎝⎭ ⑤222019111()22(1)2⎡⎤---÷--⨯-÷-⎢⎥⎣⎦ 解析:①-2;②458-;③-10;④-9;⑤-13. 【分析】 ①先去括号和绝对值,在进行加减运算即可.②先运算乘方,去括号,再将除法改为乘法,最后进行混合运算即可.③先运算乘方,再去括号,最后进行混合运算即可.④先运算乘方,利用乘法分配律去括号,再将除法改为乘法,最后进行混合运算即可. ⑤先运算乘方,再将除法改为乘法,再去括号,去绝对值,最后进行混合运算即可.【详解】①原式14171236=+-- 386176666=+-- 2=-. ②原式3274()(3)()48=-⨯-⨯--- 2798=-+8③原式3132(4)12(1516)4=-÷-⨯-⨯-+ 181214=⨯-⨯ 10=-.④原式()()()()1171542242424834=⨯--⨯--⨯-+⨯- 8335690=-++-9=-.⑤原式11(12)2(1)4=---÷-⨯÷- 1(142)2=-+-⨯-⨯1(6)2=-+-⨯112=--13=-.【点睛】本题考查有理数的混合运算,掌握有理数混合运算的顺序是解答本题的关键.5.(1)在图所示的数轴上标出以下各数:52-,-5.5,-2,+5, 132 (2)比较以上各数的大小,用“<”号连接起来; (3) 若点A 对应 5.5-,点B 对应132,请计算点A 与点B 之间的距离.解析:(1)画图见解析;(2) 5.5-<52-<2-<132<+5;(3)9. 【分析】(1)先画数轴,根据数轴上原点左边的为负数,原点右边的为正数,在数轴上描出对应各数的点即可得到答案;(2)根据数轴上的数,右边的数大于左边的数,直接用“<”连接即可得到答案;(3)数轴上点A 与点B 对应的数分别为,a b ,则AB a b =-或b a -,根据以上结论代入数据直接计算即可得到答案.【详解】解:(1)如图,在数轴上表示各数如下:(2)因为数轴上的数,右边的数总大于左边的数:所以按从小到大排列各数为:5.5-<52-<2-<132<+5 (3)因为:A 表示 5.5-,B 表示132, 所以:点A 与点B 之间的距离为: ()13 5.5 3.5 5.599.2AB =--=+== 【点睛】本题考查的是利用数轴上的点表示有理数,利用数轴比较有理数的大小,数轴上两点之间的距离,绝对值的含义,掌握以上知识是解题的关键.6.表格记录的是龙岗区图书馆上周借书情况:(规定:超过200册记为正,少于200册记为负).(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?解析:(1)188册;(2)25册;(3)202册【分析】(1)由题意可知,周五借出的册数少于200册,即可解答.(2)根据正负数的定义分别求出周三、周四的册数,再解答即可.(3)将5天的册数分别求出,再求平均数即可.【详解】解:(1)200-12=188册.(2)(200+8)-(200-17)=208-183=25册.(3)[(200+21)+(200+10)+(200-17)+(200+8)+(200-12)]÷5=202册. 答:上星期五借出188册书,上星期四比上星期三多借出25册,上周平均每天借出202册.【点睛】主要考查正负数在实际生活中的应用,有理数加减乘除混合运算的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.7.计算:(1)13|38|44⎛⎫--+- ⎪⎝⎭(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦解析:(1)4;(2)13;(3)14-;(4)26.【分析】(1)先把绝对值化简,再进一步计算可得答案;(2)先计算乘方、除法转化为乘法,再进一步计算即可;(4)先算括号里面的,再把除法化为乘法,进一步计算即可;(4)利用乘法分配律展开,再进一步计算即可.【详解】(1)13 |38|44⎛⎫--+- ⎪⎝⎭=13 544 --=5-1 =4;(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭=1 1269-+⨯⨯=-1+4 3=13;(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭=211 1()1 369⨯-÷=519() 3610⨯-⨯=14 -;(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦=157(48)()(48)(48)2812-⨯---⨯+-⨯ =24+30-28=26.【点睛】 本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则. 8.某校七年级(1)至(4)班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:(2)这4个班实际共购书多少本?(3)书店给出一种优惠方案:一次购买不少于15本,其中2本书免费.若每本书的售价为30元,请计算这4个班整体购书的最低总花费是多少元?解析:(1)42,+3,22;(2)118本;(3)3120元.【分析】 (1)由于4班实际购入21本,且实际购买数量与计划购买数量的差值=-9,即可得计划购书量=30,进而可把表格补充完整;(2)把每班实际数量相加即可;(3)根据已知求出总费用即可.【详解】解:(1)由于4班实际购入21本书,实际购入数量与计划购入数量的差值=-9,可得计划购入数量=30(本),所以一班实际购入30+12=42本,二班实际购入数量与计划购入数量的差值=33-30=3本,3班实际购入数量=30-8=22本.故答案依次为42,+3,22;(2)4个班一共购入数量=42+33+22+21=118(本);(3)由118157÷=余13得,如果每次购买15本,则可以购买7次,且最后还剩13本书需单独购买,得最低总花费=30×(15-2)×7+30×13=3120(元)..【点睛】本题考查了正负数的应用.在生活实际中利用正负数的计算能力,并通过相关运算来比较大小,进而得出最佳方案;这里要注意,生活中在选择方案时,要注意所有可能的情况. 9.计算:(1)231+-+;(2)()3202111024⎡⎤-⨯+-÷⎣⎦.解析:(1)6;(2)12-【分析】 (1)先化简绝对值,再算加法即可求解;(2)先算乘方,再算括号里面的,最后算乘除即可.【详解】(1)原式=2+3+1=6;(2)原式=1(108)4-⨯-÷=124-⨯÷=1124-⨯⨯=12- 【点睛】此题考查有理数的混合运算,掌握运算顺序和运算法则是解答此题的关键.10.计算下列各式的值:(1)1243 3.55-+-(2)131(48)64⎛⎫-+⨯- ⎪⎝⎭(3)22350(5)1--÷--解析:(1)-24.3;(2)-76;(3)-12【分析】(1)先将减法化为加法,再计算加法即可;(2)利用乘法分配律计算即可;(3)先计算乘方,再计算除法,最后计算减法.【详解】解:(1)原式=24 3.2( 3.5)-++-=-24.3;(2)原式=131(48)(48)(48)64⨯--⨯-+⨯- =488(36)-++-=-76;(3)原式=950251--÷-=921---=9(2)(1)-+-+-=-12.【点睛】本题考查有理数的混合运算.熟记运算顺序和每一步的运算法则是解题关键. 11.计算:(1)113623⎛⎫-⨯- ⎪⎝⎭(2)2233(3)3(2)|4|-÷-+⨯-+-解析:(1)2;(2)-21.【分析】(1)根据有理数的混合运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)113623⎛⎫-⨯-⎪⎝⎭ =1136623-⨯+⨯ =332-+=2;(2)2233(3)3(2)|4|-÷-+⨯-+-=993(8)4-÷+⨯-+=1244--+=-21.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.12.计算:()22216232⎫⎛-⨯--⎪⎝⎭ 解析:2【分析】原式先计算乘方,再运用乘法分配律计算,最后进行加减运算即可.【详解】解:()22216232⎫⎛-⨯-- ⎪⎝⎭=2136()432⨯-- =213636432⨯-⨯- =24-18-4=2.【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.13.计算:(1)()110822⎫⎛---÷-⨯- ⎪⎝⎭(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭解析:(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯- ⎪⎝⎭=1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.14.某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(运进大米记作“+”,运出大米记作“-”,例如:当天运进大米8吨,记作8+吨;当天运出大米15吨,记作15-吨)若经过这一周,该粮仓存有大米88吨.(1)求星期五粮仓大米的进出情况;(2)若大米进出粮仓的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用. 解析:(1)星期五粮仓当天运出大米20吨;(2)2700元.【分析】(1)根据有理数的加法,可得答案;(2)根据单位费用乘以总量,可得答案.【详解】(1)m=88﹣(132﹣32+26﹣23﹣16+42﹣21)=﹣20,∴星期五粮仓当天运出大米20吨;(2)(|﹣32|+|+26|+|﹣23|+|﹣16|+|﹣20|+|+42|+|﹣21|)×15=2700(元),答:这一周该粮仓需要支付的装卸总费用为2700元.【点睛】本题考查了用正负数表示相反意义的量及有理数加减法的应用,第(2)问利用单位费用乘以总量是解题关键.15.在数轴上表示下列各数:14, 1.5,3,0,2.5,52----,并将它们按从小到大的顺序排列.解析:图见解析,153 1.50 2.542--<-<-<<<【分析】在数轴上表示出各数,再按照从左到右的顺序用“<”号把它们连接起来即可.【详解】解: 5=-5--如图所示:故:153 1.50 2.542--<-<-<<<.【点睛】本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.16.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“-”表示成绩小于14秒.-1.2+0.70-1-0.3+0.20.3+0.5解析:9秒.【分析】根据平均成绩的计算方法,先列式计算表格中所有数据的平均数,再加上标准成绩即可得出结果.【详解】解:1.20.7010.30.20.30.50.18-++--+++=-(秒)140.113.9-=(秒).答:这个小组8名男生的平均成绩是13.9秒.【点睛】此题考查了有理数的混合运算的实际应用,正确理解题目中正数和负数的含义是列式计算的关键.17.某农户家准备出售10袋大米,称得质量如下:(单位:千克)182,180,175,173,182,185,183,181,180,183(1)填空:以180千克作为基准数,可用正、负数表示这10袋大米的质量与180的差为 ;(2)试计算这10袋大米的总质量是多少千克?解析:(1)+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)1804千克【分析】(1)规定超出基准数为正数,则不足部分用负数表示,即可;(2)把第(1)题10个数相加,再加上180×10,即可.【详解】(1)以180千克为基准数,超过180千克的记作正数,低于180千克的记作负数,那么各袋大米的质量分别为:+2,0,−5,-7,+2,+5,+3,+1,0,+3,故答案是:+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)(+2+0−5-7+2+5+3+1+0+3)+ 180×10=1804(千克),答:这10袋大米的总质量是1804千克.【点睛】本题主要考查正负数的意义以及有理数的加减法的实际应用,熟练掌握有理数的加减法运算法则,是解题的关键.18.计算:(1)14-25+13(2)42111|23|()823---+-⨯÷ 解析:(1)2;(2)4【分析】 (1)根据有理数的加减运算,即可求出答案;(2)先计算乘方、绝对值、然后计算乘除,再计算加减运算,即可得到答案.【详解】解:(1)14251311132-+=-+=;(2)42111|23|()823---+-⨯÷=111834--+⨯⨯ =26-+=4.【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则进行解题.19.计算题:(1)3×(﹣4)﹣28÷(﹣7);(2)﹣12020+(﹣2)3×1123⎛⎫-+⎪⎝⎭.解析:(1)﹣8;(2)13.【分析】(1)先计算乘除,再计算加减,即可得到答案;(2)先计算乘方、然后计算乘法和括号内的运算,再计算加法即可.【详解】解:(1)3×(﹣4)﹣28÷(﹣7)=(﹣12)+4=﹣8;(2)﹣12020+(﹣2)3×1123⎛⎫-+⎪⎝⎭.=-1+(-8)×16⎛⎫-⎪⎝⎭=4 13 -+=13.【点睛】本题考查了有理数的加减乘除运算,解题的关键是熟练掌握运算法则进行解题.20.计算:(1)157(36)2612⎛⎫--⨯-⎪⎝⎭(2)2138(2)3⎛⎫⨯-+÷-⎪⎝⎭解析:(1)33;(2)1.【分析】(1)根据乘法分配律可以解答本题;(1)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)原式=157(36)(36)(36)2612⨯--⨯--⨯-= -18+30+21=33;(2)原式= -1+2=1.【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.21.计算:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭; (2)20213281(2)(3)3---÷⨯-. 解析:(1)36-;(2)26.【分析】(1)利用乘法分配律进行简便运算即可;(2)先算乘方,再算乘除,最后计算加减即可.【详解】解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭ 1174848483612=-⨯+⨯-⨯ 16828=-+-36=-;(2)20213281(2)(3)3---÷⨯- 31(89)8=---⨯⨯ 127=-+26=.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.22.计算:(1)6÷(-3)×(-32) (2)-32×29-+(-1)2019-5÷(-54) 解析:(1)3;(2)1.【分析】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】解:(1)原式=6×1-3⎛⎫ ⎪⎝⎭ ×(-32)=3; (2)原式=-9×29+(-1)-5×4-5⎛⎫ ⎪⎝⎭=-2-1+4=1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.23.计算(1)(-5)+(-7);(2)(-1)100×5+(-2)4÷4解析:(1)-12;(2)9【分析】(1)同号相加,取相同符号,并把绝对值相加,据此计算即可;(2)先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:(1)(-5)+(-7)=-(5+7)=-12.(2)(-1)100×5+(-2)4÷4=5+16÷4=5+4=9.【点睛】本题主要考查了有理数的加法及有理数的混合运算,熟练掌握运算法则是解本题的关键.24.计算:|﹣2|﹣32+(﹣4)×(12 -)3解析:1 62 -【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:|﹣2|﹣32+(﹣4)×(12 -)3=2﹣9+(﹣4)×(﹣18)=2+(﹣9)+1 2=162 -.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.25.计算:(1)152|18|()263-⨯-+; (2)20203221124(2)3()3-+÷--⨯. 解析:(1)6;(2)-5【分析】(1)先去掉绝对值,然后根据乘法分配律即可解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)152|18|()263-⨯-+ =18×(12﹣56+23) =18×12﹣18×56+18×23=9﹣15+12=6;(2)20203221124(2)3()3-+÷--⨯ =﹣1+24÷(﹣8)﹣9×19=﹣1+(﹣3)﹣1=﹣5.【点睛】 此题主要考查有理数的混合运算,熟练掌握混合运算顺序是解题关键.26.探索代数式222a ab b -+与代数式2()a b -的关系(1)当5a =,2b =-时,分别计算两个代数式的值.(2)你发现了什么规律?(3)利用你发现的规律计算:2220182201820192019-⨯⨯+解析:(1)49, 49;(2)a 2−2ab +b 2=(a−b )2;(3)1.【分析】(1)将a 、b 的值分别代入a 2−2ab +b 2与(a−b )2计算可得;(2)根据(1)中的两式的计算结果即可归纳总结出关系式;(3)原式变形后,利用完全平方公式计算可得结果.【详解】解:(1)当a =5,b =−2时,a 2−2ab +b 2=52−2×5×(−2)+(−2)2=25+20+4=49,(a−b )2=[5−(−2)]2=72=49;(2)根据(1)的计算,可得规律:a 2−2ab +b 2=(a−b )2;(3)20182−2×2018×2019+20192=(2018−2019)2=(−1)2=1.【点睛】本题考查了代数式的求值及完全平方公式的应用,解题的关键是掌握代数式的求值方法以及利用完全平方公式简便运算.27.(1)()()()()413597--++---+;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭. 解析:(1)-6;(2)715. 【分析】 (1)原式根据有理数的加减法法则进行计算即可得到答案;(2)原式把除法转换为乘法,再进行乘法运算即可得到答案.【详解】解:(1)()()()()413597--++---+=-4-13-5+9+7=-22+9+7=-13+7=-6;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭ =174435⨯⨯ =715. 【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.28.阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x x x ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a b a b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a b a b c+++++的值. 解析:(1)2或2-或0;(2)-1.【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可.【详解】(1)0ab ≠∴①0,0a b >>,==1+1=2a b a b a b a b++; ②0,0a b <<,==11=2a b a b a b a b+-----; ③0ab <,=1+1=0a b a b+-, 综上所述,当0ab ≠时,a b a b+的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=- 即a b c ,,中有两正一负, ∴==()1b c a c a b a b c a b c a b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键.29.高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?解析:(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧; (2)所走的路程是这组数据的绝对值的和,然后乘以0.2,即可求得耗油量.【详解】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;(2)(17971531168516)0.2++-+++-+-+++-+-++++⨯,=97×02,=19.4(升).答:这次养护共耗油19.4升.【点睛】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.也考查了有理数的加减运算.30.某市质量监督局从某公司生产的婴幼儿奶粉中,随意抽取了20袋进行检查,超过标准质量的部分记为正数,不足的部分记为负数,抽查的结果如下表: 与标准质量的偏差(单位:克)10- 5- 0 5+ 10+ 15+ 袋数 1 5 55 3 1 (2)若每袋奶粉的标准质量为480克,则抽样检测的这些奶粉的总质量是多少克? 解析:(1)多1.75克;(2)9635克【分析】(1)先计算出平均质量,若正则比标准质量多,若负则比标准质量少;(2)抽样总质量等于标准总质量加上超出的质量,或等于平均每袋质量乘以抽取的袋数.【详解】解:(1)()()15505551035110203520 1.571-÷=÷=⎡⨯+-⨯+⎤⎣⨯++⨯++⎦⨯⨯(克).所以这批样品每袋的平均质量比标准质量多1.75克.(2)()5428001.56793+⨯=(克)所以抽样检测的这些奶粉的总质量为9635克.【点睛】本题考查了有理数的混合运算和正负数的意义.有理数混合运算的顺序:先算乘除再算加减,有括号的先算括号里面的.。

(易错题精选)初中数学有理数的运算综合训练

(易错题精选)初中数学有理数的运算综合训练

(易错题精选)初中数学有理数的运算综合训练一、选择题1.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km.用科学记数法表示1.496亿是()A.70.149610⨯1.49610⨯D.81.49610⨯C.8⨯B.714.9610【答案】D【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.详解:数据1.496亿用科学记数法表示为1.496×108.故选D.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.下列运算正确的是()A.a5⋅a3 = a8B.3690000=3.69×107C.(-2a)3 =-6a3D.02016=0【答案】A【解析】【分析】分别根据同底数幂的乘法,科学记数法,幂的乘方和积的乘方,零指数幂求出每个式子的值,再判断即可.【详解】A、结果是a8,故本选项符合题意;B、结果是3.69×106,故本选项不符合题意;C、结果是-8a3,故本选项不符合题意;D、结果是1,故本选项不符合题意;故选:A.【点睛】此题考查同底数幂的乘法,科学记数法,幂的乘方和积的乘方,零指数幂,能正确求出每个式子的值是解题关键.3.9万亿13==⨯,88900000000008.8910故选A.【点睛】本题主要考查科学记数法,科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a<10,n 为正整数.)4.如图是张小亮的答卷,他的得分应是( )A .40分B .60分C .80分D .100分【答案】A【解析】【分析】 根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a 与b 互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a 与b 互为相反数,故选A .【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.5.2018-2019学年度七星关区区级配套“教育精准扶贫”资金约1410000元,1410000用科学计数法表示为( )A .61.4110⨯B .71.4110⨯C .51.4110⨯D .41.4110⨯【答案】A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将1410000用科学记数法表示为61.4110⨯,故选:A .【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.据民政部网站消息截至2018年底,我国60岁以上老年人口已经达到2.56亿人.其中2.56 亿用科学记数法表示为()A.2.56×107B.2.56×108C.2.56×l09D.2.56×l010【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【详解】解:2.56亿=256000000=2.56×108,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.现有若干张卡片,分别是正方形卡片A、B和长方形卡片C,卡片大小如图所示.如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片张数为()A.1 B.2 C.3 D.4【答案】C【解析】试题分析:(a+2b)(a+b)=2232++,则C类卡片需要3张.a ab b考点:整式的乘法公式.8.2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为()A.81.810⨯D.100.1810⨯⨯C.91810⨯B.81.810【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1800000000=1.8×109,故选C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是()A.﹣1 B.﹣2 C.﹣3 D.﹣6【答案】A【解析】【分析】由正方体各个面之间的关系知道,它的展开图中相对的两个面之间应该隔一个正方形,可以得到相对面的两个数,相加后比较即可.【详解】解:根据展开图可得,2和﹣2是相对的两个面;0和1是相对的两个面;﹣4和3是相对的两个面,∵2+(﹣2)=0,0+1=1,﹣4+3=﹣1,∴原正方体相对两个面上的数字和的最小值是﹣1.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析解答问题.10.小王利用计算机设计了一个程序,输入和输出的数据如下表:输入…12345…输出 (1)225310417526…那么,当输入数据8时,输出的数据是()A.861B.863C.865D.867【答案】C 【解析】【分析】根据图表找出输出数字的规律:输出的数字中,分子就是输入的数,分母是输入的数字的平方加1,直接将输入数据代入即可求解.【详解】 输出数据的规律为2+1n n , 当输入数据为8时,输出的数据为288+1=865. 故答案选:C.【点睛】本题考查的知识点是有理数的混合运算,解题的关键是熟练的掌握有理数的混合运算.11.2018年4月8日11-日,博鳌亚洲论坛2018年年会在海南博鳌句型,本次年会的主题为“开放创新的亚洲,繁荣发展的世界”.开幕式上,博鳌亚洲论坛副理事长周小川致辞中提到:“一带一路”区域基础设施投资缺口每年超过6000亿美元.6000亿用科学计数法可以表示为( )A .3610⨯亿B .4610⨯亿C .30.610⨯亿D .40.610⨯亿 【答案】A【解析】【分析】科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:6000亿3610=⨯⨯亿,故选A .【点睛】此题考查科学计数法的表示方法.科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.按如图所示的运算程序,能使输出结果为10的是( )A.x=7,y=2 B.x=﹣4,y=﹣2 C.x=﹣3,y=4 D.x=12,y=3【答案】D【解析】【分析】根据运算程序,结合输出结果确定的值即可.【详解】解:A、x=7、y=2时,输出结果为2×7+22=18,不符合题意;B、x=﹣4、y=﹣2时,输出结果为2×(﹣4)﹣(﹣2)2=﹣12,不符合题意;C、x=﹣3、y=4时,输出结果为2×(﹣3)﹣42=﹣22,不符合题意;D、x=12、y=3时,输出结果为2×12+32=10,符合题意;故选:D.【点睛】此题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解本题的关键.13.去年端午节假期第一天,国内游客人数达3050万人次,将数据“3050万”用科学记数法表示为()A.63.0510⨯B.630.510⨯C.73.0510⨯D.83.0510⨯【答案】C【解析】【分析】根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】3050万=30500000=73.0510⨯,故选:C.【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.一根1m长的小棒,第一次截去它的12,第二次截去剩下的12,如此截下去,第五次后剩下的小棒的长度是()A.12m B.15m C.116m D.132m【答案】D【解析】【分析】根据题意和乘方的定义可以解答本题.【详解】 解:第一次是12m ,第二次是211112224⎛⎫⨯== ⎪⎝⎭m ,第三次是31111122228⎛⎫⨯⨯== ⎪⎝⎭m ,第四次是411216⎛⎫= ⎪⎝⎭m ,…, ∴第五次后剩下的小棒的长度是511232⎛⎫= ⎪⎝⎭m , 故选:D .【点睛】本题考查了有理数的乘方运算,此题的关键是联系生活实际,从中找出规律,利用有理数的乘方解答.15.将数47300000用科学记数法表示为( )A .547310⨯B .647.310⨯C .74.7310⨯D .54.7310⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将47300000用科学记数法表示为74.7310⨯,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16.6万亿=296000000000000=2.96×1013.故选B .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示的关键是要正确确定a 的值以及n 的值.17.12010-的倒数是( )A .2010-B .2010C .12010D .12010- 【答案】A【解析】【分析】 根据倒数的定义求解.【详解】解:根据互为倒数的两个数乘积为1可知:12010-的倒数为-2010. 故选A .【点睛】 本题考查倒数的定义,题目简单.18.北京市将在2019年北京世园会园区、北京新机场、2022年冬奥会场馆等地,率先开展5G 网络的商用示范.目前,北京市已经在怀柔试验场对5G 进行相应的试验工作.现在4G 网络在理想状态下,峰值速率约是100Mbps ,未来5G 网络峰值速率是4G 网络的204.8倍,那么未来5G 网络峰值速率约为( )A .1×102 MbpsB .2.048×102 MbpsC .2.048×103 MbpsD .2.048×104 Mbps 【答案】D【解析】【分析】已知4G 网络的峰值速率,5G 网络峰值速率是4G 网络的204.8倍,可得5G 网络峰值速率,通过化简,用科学计数法表示即可.【详解】解:由题干条件可得,5G 网络峰值速率:100Mbps×204.8=20480 Mbps=2.048×104 Mbps ,故选D.【点睛】本题考查了文字语言转化为数学语言的能力,灵活理解题干的内容并化简是解题的关键.19.2019年我省实施降成本的30条措施,全年为企业减负960亿元以上,用科学记数法表示数据960亿为( )A .79.610⨯B .89.610⨯C .99.610⨯D .109.610⨯【答案】D【解析】【分析】科学记数法的表示形式为a 10n ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:960亿=96000000000=109.610故选:D.【点睛】此题主要考查科学记数法,熟练确定a 和n 是解题的关键.20.已知|m+3|与(n ﹣2)2互为相反数,那么m n 等于( )A .6B .﹣6C .9D .﹣9【答案】C【解析】【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】∵|m+3|与(n ﹣2)2互为相反数,∴|m+3|+(n ﹣2)2=0,∴m+3=0,n ﹣2=0,解得m=﹣3,n=2,所以,m n =(﹣3)2=9.故选C .【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.。

《有理数的运算》易错题集:有理数的混合运算_20190725_152623

《有理数的运算》易错题集:有理数的混合运算_20190725_152623

《有理数的运算》易错题集:有理数的混合运算选择题1.的所有可能的值有()A.1个 B.2个 C.3个 D.4个2.当a<0,化简,得()A.﹣2 B.0 C.1 D.23.绝对值小于3的所有整数的和与积分别是()A.0,﹣2 B.0,0 C.3,2 D.0,24.计算(﹣3)2+4的结果是()A.﹣5 B.﹣2 C.10 D.135.计算48÷(+)之值为何()A.75 B.160 C. D.906.A,B,C,D,E五个景点之间的路线如图所示.若每条路线的里程a(km)及行驶的平均速度b(km/h)用(a,b)表示,则从景点A到景点C用时最少的路线是()A.A⇒E⇒C B.A⇒B⇒C C.A⇒E⇒B⇒C D.A⇒B⇒E⇒C7.2005年10月12日,我国自主研制的神舟六号载人飞船上天,运行在距地球大约343千米的圆形轨道上,速度大约为468千米/分.14日,航天员费俊龙在返回仓内连续做了4个前滚翻,用时约3分钟.那么费俊龙的一个前滚翻飞越的行程相当于哪种交通工具5小时的行程()A.自行车B.汽车C.磁悬浮列车D.飞机8.×(﹣2)+(﹣)×2=()A.﹣2 B.0 C.1 D.29.下列判断:①若ab=0,则a=0或b=0或a=0、b=0;②若a2=b2,则a=b;③若ac2=bc2,则a=b;④若|a|>|b|,则(a+b)•(a﹣b)是正数.其中正确的有()A.①④B.①②③C.①D.②③10.下列式子中,不能成立的是()A.﹣(﹣2)=2 B.﹣|﹣2|=﹣2 C.23=6 D.(﹣2)2=411.1克大米约50粒,如果每人每天浪费1粒大米,那么全国13亿人每天就要浪费大米约()A.26千克B.260千克C.2600千克D.26000千克12.计算:﹣12+(﹣1)3÷(﹣1)﹣1×(﹣1)3=()A.﹣1 B.1 C.﹣3 D.313.下列各式中,运算过程正确的是()A.2a2+3a3=5a5B.1﹣(5﹣3)=1﹣5﹣3=﹣7C.3×()×6=3×(﹣2)=﹣6 D.(﹣5)2×()=﹣10×()=2 14.一根绳子15米,截去它的后,再接上米,这时绳子的长度是()A.15米B.米C.米D.米15.1999年11月1日起,国家对个人在银行的存款利息征收利息税,税率为20%(即存款到期后利息的20%),储户取款时由银行代扣代收,小杨于2006年1月9日存入期限为1年的人民币24000元,年利率为2.25%,到期时小杨拿回本息和为()A.24540元B.24432元C.24506元D.24423元16.规定以下运算法则:=,则=()A.B.C.D.17.已知a,b,c是有理数,且a+b+c=0,abc(乘积)是负数,则的值是()A.3 B.﹣3 C.1 D.﹣118.我国股票交易中,每买卖一次需付交易款的6.5‰的手续费,某投资者以每股x元买进“贵州茅台”1000股,每股上涨1.3元后全部卖出,则对该投资者的本次投资行为,下面说法正确的是()A.每股低于99.35元买进才可以盈利B.盈利1283.10元C.每股低于198.70元买进时均可盈利D.每股130元卖进不亏不赚19.计算1÷(﹣1)+0÷(﹣4)×(﹣1)+1的结果是()A.﹣1 B.﹣4 C.0 D.﹣620.(﹣3)2﹣(﹣2)3的结果是()A.﹣1 B.1 C.﹣17 D.1721.如果+,﹣,×这三个运算符号,在下列表达式:5____4____6____3的空格中每一个恰只用到一次,那么下面五个数值中可能成为运算结果的是()A.9 B.10 C.15 D.19填空题22.按图中的程序运算:当输入的数据为4时,则输出的数据是.23.计算:(﹣3)2﹣|﹣10|=.24.阳阳和明明玩上楼梯游戏,规定一步只能上一级或二级台阶,玩着玩着两人发现:当楼梯的台阶数为一级、二级、三级…逐步增加时,楼梯的上法数依次为1,2,3,5,8,13,21,…(这就是著名的裴波那数列),请你仔细观察这列数的规律后回答:(1)上10级台阶共有种上法.(2)这列数的前2003个数中共有个偶数.25.校学生会生活委员发现同学们在食堂吃午餐时浪费现象十分严重,于是决定写一张标语贴在食堂门口,告诫大家不要浪费粮食.请你帮他把标语中的有关数据填上.(已知1克大米约52粒)如果每人每天浪费1粒大米,全国13亿人口,每天就要大约浪费大米吨.26.从2004年4月18日零时起,全国铁路实施第五次大面积提速,从重庆到达州市某次列车提速前运行时刻表如下:该次列车现在提速后,每小时比原来快44 km,起始时刻为8:00,则该次列车终到时刻为.区间起始时刻终到时刻运行时间(h)全程里程(km)重庆﹣﹣﹣达州9:0016:007462 27.如图,在长方形草地内修建了宽为2米的道路,则草地面积为米2.28.对有理数a,b,定义运算a*b=,则4*5=.29.计算:﹣5×(﹣2)3+(﹣39)=.30.计算:(﹣3)2﹣1=.=.《有理数的运算》易错题集:有理数的混合运算参考答案选择题1.C;2.A;3.B;4.D;5.C;6.D;7.B;8.A;9.A;10.C;11.D;12.B;13.C;14.D;15.B;16.A;17.D;18.A;19.C;20.D;21.D;填空题22.2.5;23.﹣1;24.89;668;25.25;26.12:12;27.144;28.﹣20;29.1;30.8;;。

专题01 有理数的混合运算易错(原卷版)-2020-2021学年七年级数学寒假温故知新汇编(人教版)

专题01 有理数的混合运算易错(原卷版)-2020-2021学年七年级数学寒假温故知新汇编(人教版)

2020-2021学年七年级数学寒假温故知新汇编(人教版)专题01 有理数的混合运算易错【典型例题】1.(2021·二连浩特市第二中学七年级期末)计算:(1)2314(3)13()42⨯--+---; (2)21293()12323-÷+-⨯+.【专题训练】一、解答题1.(2021·桥柱中学七年级期末)计算:233131(2)642⎛⎫⎡⎤-÷⨯--+--- ⎪⎣⎦⎝⎭.2.(2021·北京大兴区·七年级期末)计算: 3218234233⎛⎫---⨯-- ⎪⎝⎭.3.(2021·沈阳市第一二六中学七年级期末)计算:4211(10.5)3(3)3⎡⎤---⨯⨯--⎣⎦4.(2021·辽宁沈阳市·七年级期末)计算:202031(1)(3)(3)3-+-÷-⨯-.5.(2021·前郭尔罗斯蒙古族自治县海勃日戈镇中学七年级期末)计算:()()241110.5123⎡⎤---⨯⨯--⎣⎦6.(2021·青海西宁市·七年级期末)计算:32138232⎛⎫--⨯-⨯-- ⎪⎝⎭7.(2021·广东潮州市·七年级期末)计算:313(2)|5|34⎛⎫-+--⨯- ⎪⎝⎭8.(2021·广东揭阳市·七年级期末)计算:32019421(2)63(1)532⎛⎫-÷+⨯--⨯- ⎪⎝⎭9.(2021·江苏连云港市·七年级期末)计算:(1)()()32343⨯--⨯-; (2)21152238⎛⎫⎛⎫-÷÷⨯- ⎪ ⎪⎝⎭⎝⎭.10.(2021·北京平谷区·七年级期末)计算:(1)2(1)(14)(12)--++--- ; (2)213(1)(73)224-÷+-⨯--11.(2021·安徽利辛县教育局七年级期末)计算:(1)7|9|(11)3------; (2)221712()()341212-+--++-12.(2021·中卫市第二中学七年级期末)计算题.(1)-52+(-36)×(5511)4612--; (2)23()(34)2-+--÷7-∣-34∣×(-3)213.(2021·西藏达孜县中学七年级期末)计算(1)()()231524-⨯+-÷ ; (2)3521124228342⎛⎫⎛⎫-⨯+÷-+- ⎪ ⎪⎝⎭⎝⎭14.(2021·河北秦皇岛市·七年级期末)计算:(1)()2153-+----; (2)()()3242323⎡⎤⎛⎫---⨯--- ⎪⎢⎥⎝⎭⎣⎦15.(2021·甘肃定西市·七年级期末)计算(1)3172(2)3-÷-⨯; (2)()()3201712(2)312-⨯-÷--⨯-.16.(2021·天津七年级期末)计算: (1)3571491236⎛⎫--+÷ ⎪⎝⎭; (2)3241(2)(3)(4)212⎡⎤-+-⨯-⨯÷-⎢⎥⎣⎦.17.(2021·江阴市周庄中学七年级期末)计算:(1)()150.2584-----; (2)()()224123125---÷+⨯--.18.(2021·甘肃白银市·七年级期末)计算(1)4353()(2)24228-+⨯--÷-; (2)1031(1)2()162-÷+-⨯19.(2021·辽宁锦州市·七年级期末)计算:(1)()()()()57320-+-----; (2)()2124232-+-÷⨯--..20.(2021·辽宁大连市·七年级期末)计算:(1)1(12)(4)273⎛⎫++-+-⨯ ⎪⎝⎭; (2)103(1)2(2)4-⨯+-÷.21.(2021·黑龙江哈尔滨市·七年级期末)计算下列各题:(1)232(3)36(2)⨯---÷-; (2)117511318126936⎡⎤⎫⎛-+++-÷ ⎪⎢⎥⎝⎭⎣⎦.22.(2021·辽宁抚顺市·)计算:(1)()()5328---+-+; (2)()()23122|4|-⨯+-÷-.23.(2021·山东师范大学第二附属中学七年级期末)完成下列各题:(1)计算:()15324368⎛⎫-⨯-+ ⎪⎝⎭; (2)计算:213(12)||6(1)2-+-⨯--÷-.。

七年级数学有理数混合运算之易错点测试一(含答案)

七年级数学有理数混合运算之易错点测试一(含答案)

七年级数学有理数混合运算之易错点测试一一、单选题(共10道,每道10分)
1.计算的结果为()
A.-4
B.-3
C.-2
D.
答案:B
试题难度:三颗星知识点:有理数混合运算
2.计算的结果为()
A.-9
B.-60
C.3
D.-1
答案:C
试题难度:三颗星知识点:有理数混合运算
3.计算的结果为()
A.-34
B.-35
C.-22
D.-10
答案:A
试题难度:三颗星知识点:有理数混合运算
4.计算的结果为()
A.5
B.-13
C.11
D.-17
答案:A
试题难度:三颗星知识点:有理数混合运算
5.计算的结果为()
A.37
B.-5
C.67
D.2
答案:A
试题难度:三颗星知识点:有理数混合运算
6.计算的结果为()
A. B.0
C. D.
答案:C
试题难度:三颗星知识点:有理数混合运算
7.计算的结果为()
A.-7
B.-53
C. D.-5
答案:D
试题难度:三颗星知识点:有理数混合运算
8.计算的结果为()
A.-14
B.147
C.142
D.
答案:C
试题难度:三颗星知识点:有理数混合运算
9.计算的结果为()
A. B.
C. D.
答案:A
试题难度:三颗星知识点:有理数混合运算
10.计算的结果为()
A. B.-9
C. D.
答案:D
试题难度:三颗星知识点:有理数混合运算。

有理数混合运算易错题及考点题综合训练

有理数混合运算易错题及考点题综合训练

有理数及其运算易错及考点题训练专训一:有理数中的七种易错类型类型1 对有理数有关概念理解不清造成错误1.下列说法正确的是( )A .最小的正整数是0B .-a 是负数C .符号不同的两个数互为相反数D .-a 的相反数是a2.已知|a|=7,则a = .类型2 误认为|a|=a ,忽略对字母a 分情况讨论3.如果一个数的绝对值等于它本身,那么这个数一定是()A .负数B .负数或零C .正数或零D .正数4.已知a =8,|a|=|b|,则b 的值等于( )A .8B .-8C .0D .±8类型3 对括号使用不当导致错误5.计算:-7-5.6.计算:2-⎝ ⎛⎭⎪⎫-15+14-12.类型4 忽略或不清楚运算顺序7.计算:3×42+43÷2.8.计算:-81÷94×49÷(-16).类型5混淆-a n 与(-a )n的意义 9.计算-24正确的是( )A .8B .-8C .16D .-1610.计算:-24÷(-2)2+2×(-2)3.类型6乘法运算中确定符号与加法运算中的符号规律相混淆11.计算:⎝ ⎛⎭⎪⎫-214×⎝ ⎛⎭⎪⎫-345.12.计算:-36×⎝⎛⎭⎪⎫712-56-1.类型7 除法没有分配律13.计算:24÷⎝ ⎛⎭⎪⎫13-18-16.专训二:有理数中的几种热门考点考点1 有理数的定义、分类1.在下列各数中:+6,-8.25,-0.49,-23,-18,负有理数有( ) A .1个 B .2个 C .3个 D .4个考点2 相反数、倒数、绝对值2.(1)化简下列各式:⎪⎪⎪⎪⎪⎪-12= ;|+(-3)|= ;-⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-35= (2)-5的相反数是 ;-13的绝对值是 ;54的倒数是 . 3.式子|m -3|+5的值随m 的变化而变化,当m = 时,|m -3|+5有最小值,最小值是 .4.已知a ,b 分别是两个不同的点A ,B 所表示的有理数,且|a|=5,|b|=2,它们在数轴上的位置如图所示.(1)试确定数a ,b.(2)表示a ,b 两数的点相距多远?(3)若C 点在数轴上,C 点到B 点的距离是C 点到A 点距离的13,求C 点表示的数. (第4题)考点3 有理数的大小比较5.在-12,-13,-2,-1这四个数中,最大的数是( ) A .-12 B .-13C .-2D .-16.如图,数轴上A ,B 两点分别对应有理数a ,b ,则下列结论正确的是( )(第6题)A .a <bB .a +b <0C .a -b >0D .ab >07.已知a ,b 是有理数,且a ,b 异号,则|a +b|,|a -b|,|a|+|b|的大小关系为________________________________________________________________________.8.比较a 与a 3的大小.考点4有理数的运算9.下列等式成立的是( )A .|-2|=2B .-(-1)=-1C .1÷(-3)=13D .-2×3=610.若四个有理数之和的14是3,其中三个数分别是-10,+8,-6,则第四个数是()A .+8B .-8C .+20D .+1111.计算下列各题:(1)17-23÷(-2)×3;(2)2×(-5)+23-3÷12;(3)10+8÷(-2)2-(-4)×(-3);(4)(-24)÷⎝ ⎛⎭⎪⎫2232+512×⎝ ⎛⎭⎪⎫-16-(0.5)2.考点5 非负数性质的应用12.当a 为有理数,下列说法中正确的是( )A .⎝ ⎛⎭⎪⎫a +12 0162为正数 B .-⎝ ⎛⎭⎪⎫a -12 0162为负数 C .a +⎝ ⎛⎭⎪⎫12 0162为正数 D .a 2+12 016为正数 13.若|a +1|+(b -2)2=0,求(a +b )9+a 6的值.考点6 科学记数法的应用14.今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相.新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场将建的4个航站楼的总面积约为126万m 2.用科学记数法表示126万为( )A .126×104B .1.26×105C .1.26×106D .1.26×10715.若一个数等于5.8×1021,则这个数的整数位数是( )A .20B .21C .22D .2316.把390 000用科学记数法表示为 ,用科学记数法表示的数 5.16×104的原数是W.17.太阳的半径约为696 000 km ,用科学记数法表示为 .考点7 数学思想方法的应用类型1 数形结合思想18.如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c.根据图中各点位置,下列式子正确的是( )(第18题)A .(a -1)(b -1)>0B .(b -1)(c -1)>0C .(a +1)(b +1)<0D .(b +1)(c +1)<0类型2 转化思想19.下列各式可以写成a -b +c 的是( )A .a -(+b )-(+c )B .a -(+b )-(-c )C .a +(-b )+(-c )D .a +(-b )-(+c )20.计算:⎣⎢⎡⎦⎥⎤113-⎝ ⎛⎭⎪⎫-234÷⎝ ⎛⎭⎪⎫-712.类型3 分类讨论思想21.比较2a 与-2a 的大小.考点8 有理数中的探究与创新22.一组数1,1,2,x ,5,y ,…,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y 表示的数为( )A .8B .9C .13D .1523.按一定规律排列的一列数:21,22,23,25,28,213,…,若x ,y ,z 表示这列数中的连续三个数,猜测x ,y ,z 满足的关系式是 .24.观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是 . 25.填在下面各正方形(如图)中的四个数之间都有一定的规律,据此规律得出a +b +c = .(第25题)26.如图是某种细胞分裂示意图,这种细胞每过30 min 便由1个分裂成2个.(第26题)根据此规律求:(1)这样的一个细胞经过第四个30 min 后可分裂成多少个细胞?(2)这样的一个细胞经过3 h 后可分裂成多少个细胞?(3)这样的一个细胞经过n (n 为正整数)h 后可分裂成多少个细胞?。

七年级有理数混合运算易错题

七年级有理数混合运算易错题

七年级有理数混合运算易错题一、有理数混合运算易错题。

1. 计算:-2^2 (-3)^3×(-1)^2023÷ (-1)^2022解析:先算乘方,这里要注意符号。

对于-2^2,根据乘方运算顺序,先计算指数,再取相反数,所以-2^2=-4;(-3)^3=-27,( 1)^2023=-1,( 1)^2022=1。

原式=-4-(-27)×(-1)÷1接着算乘法(-27)×(-1) = 27。

则原式=-4 27÷1=-4-27=-31。

2. 计算:(-1(1)/(2))^2÷(-(3)/(4))^3×(-1(1)/(3))解析:先将带分数化为假分数,-1(1)/(2)=-(3)/(2),-1(1)/(3)=-(4)/(3)。

然后算乘方,(-(3)/(2))^2=(9)/(4),(-(3)/(4))^3=-(27)/(64)。

原式=(9)/(4)÷(-(27)/(64))×(-(4)/(3))再算除法,除以一个数等于乘以它的倒数,(9)/(4)÷(-(27)/(64))=(9)/(4)×(-(64)/(27))=-(16)/(3)。

最后算乘法-(16)/(3)×(-(4)/(3))=(64)/(9)。

3. 计算:4 5×(-(1)/(2))^3解析:先算乘方,(-(1)/(2))^3=-(1)/(8)。

原式=4 5×(-(1)/(8))再算乘法5×(-(1)/(8))=-(5)/(8)。

最后算减法4-(-(5)/(8)) = 4+(5)/(8)=(32 + 5)/(8)=(37)/(8)。

4. 计算:(-2)^3×0.5 (-1.6)^2÷(-2)^2解析:先算乘方,(-2)^3=-8,(-1.6)^2 = 2.56,(-2)^2 = 4。

《易错题》七年级数学上册第一单元《有理数》-解答题专项经典题

《易错题》七年级数学上册第一单元《有理数》-解答题专项经典题

一、解答题1.计算:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭;(2)2331(2)592-+-⨯--÷. 解析:(1)1-;(2)47-.【分析】(1)原式先计算乘方和括号内,然后再计算乘法即可得到答案;(2)原式先计算乘方和化简绝对值,再计算乘除法,最后计算加减运算即可得到答案.【详解】解:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭ 3414⎛⎫=⨯- ⎪⎝⎭ 144⎛⎫=⨯- ⎪⎝⎭1=-.(2)2331(2)592-+-⨯--÷ 21(8)593=-+-⨯-⨯ 1406=---47=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.2.计算:(1)5721()()129336--÷- (2)22115()(3)(12)23-+÷-⨯---⨯ 解析:(1)37;(2)50.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】 (1)原式=572()(36)152824371293--⨯-=-++=. (2)原式=15(3)(3)(14)2145650-+⨯-⨯---⨯=-++=. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.3.计算(1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦; (5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦. 解析:(1)3;(2)3;(3)667-;(4)3-;(5)315.4【分析】 (1)先把运算统一为省略加号的和的形式,再利用加法的运算律,把互为相反数的两数先加,从而可得答案;(2)先把除法转化为乘法,再利用乘法的分配律把运算化为:()()()1573636363612-⨯-+⨯--⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(3)把原式化为:()233662557-⨯+-⨯-⨯,逆用乘法的分配律,同步进行乘法运算,最后计算减法即可得到答案; (4)先计算小括号内的运算与乘方运算,再计算中括号内的运算,再计算乘法运算,最后计算加减运算即可得到答案;(5)先计算乘方运算,同步把除法转化为乘法,再计算小括号内的减法运算,同步进行乘法运算,最后计算加法运算即可得到答案.【详解】解:(1)28()5(0.4)5+---- 2850.45=--+ 3.=(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ ()157363612⎛⎫=-+-⨯- ⎪⎝⎭()()()1573636363612=-⨯-+⨯--⨯-123021=-+3.=(3)2336()(2)()(6)575⨯---⨯-+-⨯ ()233662557=-⨯+-⨯-⨯ 2366557⎛⎫=-⨯+- ⎪⎝⎭ 667=-- 667=- (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦()()1132212⎡⎤⎛⎫=---+-⨯--- ⎪⎢⎥⎝⎭⎣⎦ ()313212⎛⎫=---+⨯-+ ⎪⎝⎭ ()31212⎛⎫=---⨯-+ ⎪⎝⎭131=--+3.=-(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦ ()()1=2.5101632100⨯-⨯-- ()1164=--- 1164=-+ 315.4= 【点睛】本题考查的是含乘方的有理数的混合运算,乘法分配律的应用,掌握运算法则与运算顺序是解题的关键.4.出租车司机张师傅11月1日这一天上午的营运全在一条东西向的街道上进行,如果规定向东为正,那么他这天上午载了五位乘客所行车的里程如下(单位:km ):8+,6-,3+,7-,1+.(1)将最后一名乘客送到目的地时,张师傅距出车地点的位置如何?(2)若汽车耗油为0.08L/km,则这天上午汽车共耗油多少升?解析:(1)在出车地点西边1千米处;(2)2升【分析】(1)计算张师傅行驶的路程的和即可;(2)计算出每段路程的绝对值的和后乘以0.08,即为这天上午汽车共耗油数.【详解】解:(1)规定向东为正,则向西为负,(+8)+(-6)+(+3)+(-7)+(+1)=8-6+3-7+1=-1千米.答:将最后一名乘客送到目的地,张师傅在出车地点西边1千米处.(2)(8+6+3+7+1)×0.08=2升.答:这天午共耗油2升.【点睛】本题考查了有理数的混合运算,注意要针对不同情况用不同的计算方法.5.计算:(1)9-(-14)+(-7)-15;(2)12×(-5)-(-3)÷3 74(3)-15+(-2)3÷193⎛⎫--- ⎪⎝⎭(4)(-10)3+[(-8)2-(5-32)×9]解析:(1)1;(2)14;(3)1147-;(4)-900.【分析】(1)先将减法化为加法,再分别把正数和负数相加,将结果相加;(2)先分别计算乘除,再计算加法;(3)先分别计算乘方和括号内的,再计算除法,最后计算加法;(4)先分别计算乘方和括号内的,再将结果相加即可.【详解】解:(1)原式=914(7)(15)++-+-=23(22)+-=1;(2)原式=74 60(3)3 ---=6074 -+=14;(3)原式=115(8)(9)3-+-÷-- =2815(8)()3-+-÷-=315(8)()28-+--=6157-+=1147-; (4)原式=[]100064(4)9-+--⨯=1000(6436)-++=1000100-+=-900.【点睛】本题考查有理数的混合运算.熟记有理数混合运算的运算顺序和每一步的运算法则是解题关键.6.计算:(1)412115(2)5⎡⎤⎛⎫----⨯-÷- ⎪⎢⎥⎝⎭⎣⎦(2)1111243812⎛⎫÷-+- ⎪⎝⎭(要求简便方法计算) 解析:(1)-21;(2)17-【分析】 (1)先进行幂的运算,再算括号里面的,去括号应注意括号前的负号,再算加减. (2)除数和被除数同时乘24可得1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦再算括号里的可得出答案. 【详解】解:(1)原式=﹣16﹣[-11+1]÷(-2) =﹣16-5=-21;(2)原式=1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦=[]1832÷-+-1(7)=÷-=17- 【点睛】本题考查的是有理数的加减、乘除以及乘方的运算,熟练掌握运算法则是解题的关键. 7.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减产记为负)(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?解析:(1)该厂本周实际生产自行车1409辆;(2)产量最多的一天比产量最少的一天多生产自行车26辆;(3)该厂工人这一周工资总额是70558元.【分析】(1)根据每天的增减量,依次相加,可得答案;(2)根据每天的增减量,用最多的一天减去最少的一天即可; (3)该厂一周工资=实际自行车产量×50+超额自行车产量×12.【详解】解:(1)1400+5-2-4+13-10+16-9=1409(辆),答:该厂本周实际生产自行车1409辆;(2)16-(-10)=26(辆),答:产量最多的一天比产量最少的一天多生产自行车26辆;(3)50×1409+12×9=70558.答:该厂工人这一周工资总额是70558元.【点睛】本题考查有理数加、减运算的应用,用正数和负数表示.明白“+”是比计划多、“-”是比计划少是解题的关键.8.计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.9.321032(2)(3)5-÷---⨯解析:﹣31.【分析】根据有理数的混合运算法则计算即可.【详解】解:321032(2)(3)5-÷---⨯=10-32÷(﹣8)-9×5=10-(﹣4)-45=10+4-45=14-45=﹣31.【点睛】此题主要考察了有理数的混合运算,解题关键是掌握有理数混合运算法则.10.某市质量监督局从某公司生产的婴幼儿奶粉中,随意抽取了20袋进行检查,超过标准质量的部分记为正数,不足的部分记为负数,抽查的结果如下表:(2)若每袋奶粉的标准质量为480克,则抽样检测的这些奶粉的总质量是多少克? 解析:(1)多1.75克;(2)9635克【分析】 (1)先计算出平均质量,若正则比标准质量多,若负则比标准质量少;(2)抽样总质量等于标准总质量加上超出的质量,或等于平均每袋质量乘以抽取的袋数.【详解】解:(1)()()15505551035110203520 1.571-÷=÷=⎡⨯+-⨯+⎤⎣⨯++⨯++⎦⨯⨯(克).所以这批样品每袋的平均质量比标准质量多1.75克.(2)()5428001.56793+⨯=(克)所以抽样检测的这些奶粉的总质量为9635克.【点睛】 本题考查了有理数的混合运算和正负数的意义.有理数混合运算的顺序:先算乘除再算加减,有括号的先算括号里面的.11.计算:(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)131121346⎛⎫-⨯-+ ⎪⎝⎭解析:(1)1;(2)9-【分析】(1)先算括号里面的,再算括号外面的即可;(2)根据乘法分配律计算即可;【详解】(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 11463⎡⎤=-+-⨯⎢⎥⎣⎦, 121=-+=;(2)131121346⎛⎫-⨯-+ ⎪⎝⎭, ()()()431121212346=-⨯--⨯+-⨯,16929=-+-=-;【点睛】本题主要考查了有理数的混合运算,准确计算是解题的关键.12.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A和点B刚好对着直尺上的刻度2和刻度8.(1)写出点A和点B表示的数;(2)写出在点B左侧,并与点B距离为9.5厘米的直尺左端点C表示的数;(3)若直尺长度为a厘米,移动直尺,使得直尺的长边CD的中点与数轴上的点A重合,求此时左端点C表示的数.解析:(1)点A表示的数是-3,点B表示的数是3;(2)点C表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A和点B表示的数是互为相反数,即可得到结果;(2)利用点B表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a个单位计算即可.【详解】(1)∵AB=8-2=6,点A和点B表示的数是互为相反数,∴点A表示的数是-3,点B表示的数是3;(2)点C表示的数是:3-9.5=-6.5;(3)∵直尺长度为a厘米,直尺中点表示的数是-3,∴直尺此时左端点C表示的数-3-0.5a.【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.13.在数轴上表示下列各数:14, 1.5,3,0,2.5,52----,并将它们按从小到大的顺序排列.解析:图见解析,153 1.50 2.542--<-<-<<<【分析】在数轴上表示出各数,再按照从左到右的顺序用“<”号把它们连接起来即可.【详解】解: 5=-5--如图所示:故:153 1.50 2.542--<-<-<<<.【点睛】本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.14.某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(运进大米记作“+”,运出大米记作“-”,例如:当天运进大米8吨,记作8+吨;当天运出大米15吨,记作15-吨)某粮仓大米一周进出情况表(单位:吨)星期一星期二星期三星期四星期五星期六星期日32-26+23-16-m42+21-若经过这一周,该粮仓存有大米88吨.(1)求星期五粮仓大米的进出情况;(2)若大米进出粮仓的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用.解析:(1)星期五粮仓当天运出大米20吨;(2)2700元.【分析】(1)根据有理数的加法,可得答案;(2)根据单位费用乘以总量,可得答案.【详解】(1)m=88﹣(132﹣32+26﹣23﹣16+42﹣21)=﹣20,∴星期五粮仓当天运出大米20吨;(2)(|﹣32|+|+26|+|﹣23|+|﹣16|+|﹣20|+|+42|+|﹣21|)×15=2700(元),答:这一周该粮仓需要支付的装卸总费用为2700元.【点睛】本题考查了用正负数表示相反意义的量及有理数加减法的应用,第(2)问利用单位费用乘以总量是解题关键.15.把4-,4.5,0,12-四个数在数轴上分别表示出来,再用“<”把它们连接起来.解析:数轴表示见解析,140 4.52-<-<<.【分析】先根据数轴的定义将这四个数表示出来即可,再根据数轴上的表示的数,左边的总小于右边的用“<”将它们连接起来即可得.【详解】将这四个数在数轴上分别表示出来如下所示:则140 4.52-<-<<.【点睛】本题考查了数轴,熟练掌握数轴的定义是解题关键.16.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“-”表示成绩小于14秒.-1.2+0.70-1-0.3+0.20.3+0.5解析:9秒.【分析】根据平均成绩的计算方法,先列式计算表格中所有数据的平均数,再加上标准成绩即可得出结果.【详解】解:1.20.7010.30.20.30.50.18-++--+++=-(秒)140.113.9-=(秒).答:这个小组8名男生的平均成绩是13.9秒.【点睛】此题考查了有理数的混合运算的实际应用,正确理解题目中正数和负数的含义是列式计算的关键.17.计算:-32+2×(-1)3-(-9)÷2 1 3⎛⎫ ⎪⎝⎭解析:70【分析】先计算乘方,然后计算乘除,再计算加减,即可得到答案.【详解】解:原式=92(1)(9)9-+⨯---⨯=9281--+=70.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行解题.18.设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※.(1)计算20210※和()20212-※的值. (2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立. 解析:(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一)【分析】(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算;(2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;(3)按照题意要求写一组具体的,,a x y 的值再验算即可.【详解】解:(1)根据题意得:202102021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;(2)因为0y <,所以30y ->,所以()()232|3|236y y y y -=⨯-=⨯-=-※;(3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+,所以,()a x y a x a y +=+※※※不成立.【点睛】本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可.19.计算:(﹣1)2014+15×(﹣5)+8 解析:8【分析】先算乘方,再算乘法,最后算加法,由此顺序计算即可.【详解】原式=1+15×(﹣5)+8=1﹣1+8=8. 【点睛】此题考查有理数的混合运算,注意运算的顺序与符号的判定.20.计算(1)(-5)+(-7);(2)(-1)100×5+(-2)4÷4解析:(1)-12;(2)9【分析】(1)同号相加,取相同符号,并把绝对值相加,据此计算即可;(2)先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:(1)(-5)+(-7)=-(5+7)=-12.(2)(-1)100×5+(-2)4÷4=5+16÷4=5+4=9.【点睛】本题主要考查了有理数的加法及有理数的混合运算,熟练掌握运算法则是解本题的关键.21.(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯- 解析:(1)-29;(2)13.【分析】(1)利用乘法分配律进行简便运算,即可得出结果;(2)先计算有理数的乘方与乘法,再进行加减运算即可.【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭ 37(1242424)812=-⨯-⨯+⨯ (24914)=--+29=-;(2)431(2)2(3)----⨯-1(8)(6)=-----186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键.22.计算:(1)31113+(0.25)(4)3444---+-- (2)31(2)93--÷(3)1125100466()46311-⨯-⨯-⨯ 解析:(1)21;(2)-35;(3)-392【分析】(1)有理数加减混合运算,从左到右以此计算,有小括号先算小括号里面的,可以使用加减交换律和结合律使得计算简便;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减;(3)有理数的混合运算,可以使用乘法分配律使得计算简便.【详解】解:(1)31113+(0.25)(4)3444---+-- =311113+434444-+ =3111(13+4)(3)4444+- =183+=21(2)31(2)93--÷ =893--⨯=827--=35-(3)1125100466()46311-⨯-⨯-⨯ =11101004664633⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=11101004466664633+-⨯-⨯-⨯⨯ =40011120+---=392-【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.23.点A 、B 在数轴上所表示的数如图所示,回答下列问题:(1)将A 在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C ,求出B 、C 两点间的距离是多少个单位长度?(2)若点B 在数轴上移动了m 个单位长度到点D ,且A 、D 两点间的距离是3,求m 的值.解析:(1)B 、C 两点间的距离是3个单位长度;(2)m 的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C 所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC =|2﹣5|=3;(2)分类考虑当点D 在点A 的左侧与右侧,利用AD=3,求出点D 所表示的数,再利用BD=m 求出m 的值即可.【详解】解:(1)点C 所表示的数为﹣3﹣1+9=5,∴BC =|2﹣5|=3.(2)当点D 在点A 的右侧时,点D 所表示的数为﹣3+3=0,所以点B 移动到点D 的距离为m =|2﹣0|=2,当点D 在点A 的左侧时,点D 所表示的数为﹣3﹣3=﹣6,所以点B 移动到点D 的距离为m =|2﹣(﹣6)|=8,答:m 的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD 的距离分类讨论点D 的位置是解题关键. 24.计算:(1)152|18|()263-⨯-+; (2)20203221124(2)3()3-+÷--⨯. 解析:(1)6;(2)-5【分析】(1)先去掉绝对值,然后根据乘法分配律即可解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)152|18|()263-⨯-+ =18×(12﹣56+23) =18×12﹣18×56+18×23=9﹣15+12=6;(2)20203221124(2)3()3-+÷--⨯ =﹣1+24÷(﹣8)﹣9×19=﹣1+(﹣3)﹣1=﹣5.【点睛】此题主要考查有理数的混合运算,熟练掌握混合运算顺序是解题关键.25.已知:b是最小的正整数,且a、b满足(c-5)2+|a+b|= 0请回答问题:(1)请直接写出a、b、c的值:a=,b=,c=,(2)数轴上a,b,c所对应的点分别为A,B,C,则B,C两点间的距离为;(3)在(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动了t秒,①此时A表示的数为;此时B表示的数为;此时C表示的数为;②若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.解析:(1)-1;1;5;(2)4;(3)①-1-t;1+2t;5+5t;②BC-AB的值为2,不随着时间t的变化而改变.【分析】(1)先根据b是最小的正整数,求出b,再根据c2+|a+b|=0,即可求出a、c;(2)由(1)得B和C的值,通过数轴可得出B、C的距离;(3)①在(2)的条件下,通过运动速度和运动时间可表示出A、B、C;②先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.【详解】解:(1)∵b是最小的正整数,∴b=1.∵(c-5)2+|a+b|=0,∴a=-1,c=5;故答案为:-1;1;5;(2)由(1)知,b=1,c=5,b、c在数轴上所对应的点分别为B、C,B、C两点间的距离为4;(3)①点A以每秒1个单位长度的速度向左运动,运动了t秒,此时A表示的数为-1-t;点B以每秒2个单位长度向右运动,运动了t秒,此时B表示的数为1+2t;点C以5个单位长度的速度向右运动,运动了t秒,此时C表示的数为5+5t.②BC-AB的值不随着时间t的变化而改变,其值是2,理由如下:∵点A都以每秒1个单位的速度向左运动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴BC=5+5t–(1+2t)=3t+4,AB=1+2t–(-1-t)=3t+2,∴BC-AB=(3t+4)-(3t+2)=2.【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.26.探索代数式222a ab b -+与代数式2()a b -的关系(1)当5a =,2b =-时,分别计算两个代数式的值.(2)你发现了什么规律?(3)利用你发现的规律计算:2220182201820192019-⨯⨯+解析:(1)49, 49;(2)a 2−2ab +b 2=(a−b )2;(3)1.【分析】(1)将a 、b 的值分别代入a 2−2ab +b 2与(a−b )2计算可得;(2)根据(1)中的两式的计算结果即可归纳总结出关系式;(3)原式变形后,利用完全平方公式计算可得结果.【详解】解:(1)当a =5,b =−2时,a 2−2ab +b 2=52−2×5×(−2)+(−2)2=25+20+4=49,(a−b )2=[5−(−2)]2=72=49;(2)根据(1)的计算,可得规律:a 2−2ab +b 2=(a−b )2;(3)20182−2×2018×2019+20192=(2018−2019)2=(−1)2=1.【点睛】本题考查了代数式的求值及完全平方公式的应用,解题的关键是掌握代数式的求值方法以及利用完全平方公式简便运算.27.计算下列各题:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; (2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭. 解析:(1)19-;(2) 3.-【分析】 (1)利用乘法的分配律把原式化为:()()()1573636362912⨯--⨯-+⨯-,再计算乘法运算,最后计算加减运算即可得到答案; (2)先计算乘方运算与小括号内的运算,同步把除法转化为乘法,再计算乘法运算,最后计算减法运算即可得到答案.【详解】解:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭;()()()1573636362912=⨯--⨯-+⨯- 182021=-+-19=-(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭ ()4452741993⎛⎫=⨯⨯---+⨯ ⎪⎝⎭ 16733⎛⎫=--- ⎪⎝⎭ 16733=-+ 9 3.3=-=- 【点睛】本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握以上知识是解题的关键.28.阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x x x ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a b a b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a b a b c+++++的值. 解析:(1)2或2-或0;(2)-1.【分析】 (1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可.【详解】(1)0ab ≠∴①0,0a b >>,==1+1=2a b a b a b a b ++; ②0,0a b <<,==11=2a b a b a b a b+-----;③0ab <,=1+1=0a b a b +-, 综上所述,当0ab ≠时,a b a b +的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=- 即a b c ,,中有两正一负,∴==()1b c a c a b a b c a b c a b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键.29.高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?解析:(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧; (2)所走的路程是这组数据的绝对值的和,然后乘以0.2,即可求得耗油量.【详解】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;(2)(17971531168516)0.2++-+++-+-+++-+-++++⨯, =97×02,=19.4(升).答:这次养护共耗油19.4升.【点睛】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.也考查了有理数的加减运算.30.计算(1))()()(2108243-+÷---⨯-;(2))()(22000112376⎡⎤--⨯--÷-⎥⎢⎦⎣. 解析:(1)20-;(2)116-. 【分析】(1)先计算有理数的乘方与乘法,再计算有理数的除法,然后计算有理数的加减法即可得;(2)先计算有理数的乘方,再计算有理数的加减乘除法即可得.【详解】(1)原式108412=-+÷-,10212=-+-,20=-;(2)原式())(112976=--⨯-÷-, ())(11776=--⨯-÷-, )(7176=-+÷-, 116=--, 116=-. 【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键.。

有理数混合运算易错题

有理数混合运算易错题

有理数混合运算易错题
(原创版)
目录
1.有理数混合运算的概念
2.有理数混合运算的常见错误
3.如何避免有理数混合运算的错误
4.提高有理数混合运算能力的方法
正文
有理数混合运算是指在数学中,将加、减、乘、除等运算应用于有理数的过程。

这些运算可能会涉及到两个或更多的有理数,并且可能会包含括号以及其他的运算符。

这种运算方式在数学题目中非常常见,但是也常常会导致学生犯错。

有理数混合运算的常见错误主要包括以下几点:
首先,学生可能会在运算顺序上犯错。

在有理数的混合运算中,乘除的优先级高于加减,学生需要按照这个优先级进行运算。

如果学生没有按照这个优先级进行运算,就可能会导致答案错误。

其次,学生可能会在括号的使用上犯错。

括号可以改变运算的顺序,如果学生没有正确地使用括号,就可能会导致答案错误。

再次,学生可能会在有理数的乘法和除法中犯错。

在有理数的乘法和除法中,负数的运算规则尤其需要注意。

如果学生没有正确地处理负数,就可能会导致答案错误。

那么,如何避免这些错误呢?
首先,学生需要理解有理数混合运算的规则,包括运算的优先级,括号的作用等。

只有理解了规则,才能在实际运算中避免错误。

其次,学生需要多做练习,通过大量的练习来提高自己的运算能力,从而减少错误的发生。

最后,学生需要学会检查。

在完成题目后,学生应该检查自己的运算是否符合规则,是否存在明显的错误。

总的来说,有理数混合运算是数学学习中的一个重要部分,也是学生容易犯错的部分。

有理数混合运算易错题及考点题综合训练

有理数混合运算易错题及考点题综合训练

有理数及其运算易错及考点题训练专训一:有理数中的七种易错类型类型1 对有理数有关概念理解不清造成错误1.下列说法正确的是( )A .最小的正整数是0B .-a 是负数C .符号不同的两个数互为相反数D .-a 的相反数是a2.已知|a|=7,则a = .类型2 误认为|a|=a ,忽略对字母a 分情况讨论3.如果一个数的绝对值等于它本身,那么这个数一定是()A .负数B .负数或零C .正数或零D .正数4.已知a =8,|a|=|b|,则b 的值等于( )A .8B .-8C .0D .±8类型3 对括号使用不当导致错误5.计算:-7-5.6.计算:2-⎝ ⎛⎭⎪⎫-15+14-12.类型4 忽略或不清楚运算顺序7.计算:3×42+43÷2.8.计算:-81÷94×49÷(-16).类型5混淆-a n 与(-a )n的意义 9.计算-24正确的是( )A .8B .-8C .16D .-1610.计算:-24÷(-2)2+2×(-2)3.类型6乘法运算中确定符号与加法运算中的符号规律相混淆11.计算:⎝ ⎛⎭⎪⎫-214×⎝ ⎛⎭⎪⎫-345.12.计算:-36×⎝ ⎛⎭⎪⎫712-56-1.类型7 除法没有分配律13.计算:24÷⎝ ⎛⎭⎪⎫13-18-16.专训二:有理数中的几种热门考点考点1 有理数的定义、分类1.在下列各数中:+6,-8.25,-0.49,-23,-18,负有理数有( ) A .1个 B .2个 C .3个 D .4个考点2 相反数、倒数、绝对值2.(1)化简下列各式:⎪⎪⎪⎪⎪⎪-12= ;|+(-3)|= ;-⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-35= (2)-5的相反数是 ;-13的绝对值是 ;54的倒数是 . 3.式子|m -3|+5的值随m 的变化而变化,当m = 时,|m -3|+5有最小值,最小值是 .4.已知a ,b 分别是两个不同的点A ,B 所表示的有理数,且|a|=5,|b|=2,它们在数轴上的位置如图所示.(1)试确定数a ,b.(2)表示a ,b 两数的点相距多远?(3)若C 点在数轴上,C 点到B 点的距离是C 点到A 点距离的13,求C 点表示的数. (第4题)考点3 有理数的大小比较5.在-12,-13,-2,-1这四个数中,最大的数是( ) A .-12 B .-13C .-2D .-16.如图,数轴上A ,B 两点分别对应有理数a ,b ,则下列结论正确的是( )(第6题)A .a <bB .a +b <0C .a -b >0D .ab >07.已知a ,b 是有理数,且a ,b 异号,则|a +b|,|a -b|,|a|+|b|的大小关系为________________________________________________________________________.8.比较a 与a 3的大小.考点4有理数的运算9.下列等式成立的是( )A .|-2|=2B .-(-1)=-1C .1÷(-3)=13D .-2×3=610.若四个有理数之和的14是3,其中三个数分别是-10,+8,-6,则第四个数是()A .+8B .-8C .+20D .+1111.计算下列各题:(1)17-23÷(-2)×3;(2)2×(-5)+23-3÷12;(3)10+8÷(-2)2-(-4)×(-3);(4)(-24)÷⎝ ⎛⎭⎪⎫2232+512×⎝ ⎛⎭⎪⎫-16-(0.5)2.考点5 非负数性质的应用12.当a 为有理数,下列说法中正确的是( )A .⎝ ⎛⎭⎪⎫a +12 0162为正数 B .-⎝ ⎛⎭⎪⎫a -12 0162为负数 C .a +⎝ ⎛⎭⎪⎫12 0162为正数 D .a 2+12 016为正数 13.若|a +1|+(b -2)2=0,求(a +b )9+a 6的值.考点6 科学记数法的应用14.今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相.新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场将建的4个航站楼的总面积约为126万m 2.用科学记数法表示126万为( )A .126×104B .1.26×105C .1.26×106D .1.26×10715.若一个数等于5.8×1021,则这个数的整数位数是( )A .20B .21C .22D .2316.把390 000用科学记数法表示为 ,用科学记数法表示的数5.16×104的原数是W.17.太阳的半径约为696 000 km ,用科学记数法表示为 .考点7 数学思想方法的应用类型1 数形结合思想18.如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c.根据图中各点位置,下列式子正确的是( )(第18题)A .(a -1)(b -1)>0B .(b -1)(c -1)>0C .(a +1)(b +1)<0D .(b +1)(c +1)<0类型2 转化思想19.下列各式可以写成a -b +c 的是( )A .a -(+b )-(+c )B .a -(+b )-(-c )C .a +(-b )+(-c )D .a +(-b )-(+c )20.计算:⎣⎢⎡⎦⎥⎤113-⎝ ⎛⎭⎪⎫-234÷⎝ ⎛⎭⎪⎫-712.类型3 分类讨论思想21.比较2a 与-2a 的大小.考点8 有理数中的探究与创新22.一组数1,1,2,x ,5,y ,…,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y 表示的数为( )A .8B .9C .13D .1523.按一定规律排列的一列数:21,22,23,25,28,213,…,若x ,y ,z 表示这列数中的连续三个数,猜测x ,y ,z 满足的关系式是 .24.观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是 . 25.填在下面各正方形(如图)中的四个数之间都有一定的规律,据此规律得出a +b +c = .(第25题)26.如图是某种细胞分裂示意图,这种细胞每过30 min 便由1个分裂成2个.(第26题)根据此规律求:(1)这样的一个细胞经过第四个30 min 后可分裂成多少个细胞?(2)这样的一个细胞经过3 h 后可分裂成多少个细胞?(3)这样的一个细胞经过n (n 为正整数)h 后可分裂成多少个细胞?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数混合运算练习题一、选择题:1.近似0.036490有______个有效数字( )A.6B.5C.4D.32.下面关于0的说法正确的是( ):①是整数,也是有理数 ②是正数,不是负数③不是整数,是有理数 ④是整数,也是自然数A.①②B.②③C.①④D.①③3.用四舍五入法把0.06097精确到千分位的近似值的有效数字是( )A.0,6,0B.0,6,1,0C.0,6,1D.6,14.如果一个近似数是1.60,则它的精确值x 的取值范围是( )≤≤5.乐乐学了七年级数学第二章《有理数及其运算》之后,总结出下列结论:①相反数等于本身的有理数只有0;②倒数等于本身的有理数只有1;③0和正数的绝对值都是它本身;④立方等于本身的有理数有3个.其中,你认为正确结论的有几个 ( )A .1B .2C .3D .46.实数a ,b ,c 在数轴上的位置如图所示,下列式子正确的是( )A.b+c>0B.a+b<a+cC.ac>bcD.ab>ac7.已知abc >0,a >c ,ac <0,下列结论正确的是( )A.a<0,b<0,c>0B.a>0,b>0,c<0C.a>0,b<0,c<0D.a<0,b>0,c>08.对于两个非零有理数a 、b 定义运算*如下:a*b=b b a ab 232-+,则(-3)*(32)=( ) A .-3 B .23 C .3 D .-23 9.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算!2011!2012正确的是( ) A .2012 B .2011 C .20112012 D .2012×2011 10.若a 与b 互为相反数,c 与d 互为倒数,则代数式3100)(b a +-2)(1cd 的值是( ) A .0 B .1 C .-1 D .无法确定二、填空题: 11.2112(2)_____(3)()3_____33-⨯-=⨯-÷-⨯=; 12.若<0,<0,则ac 0.13.若有理数m <n <0时,确定(m+n )(m ﹣n )的符号为 .(填正或负) 14.=-⨯-9596)8()125.0(15.若│x-3│+│y+15│=0,则3x+2y=_________.16.若│x │=3,│y │=2,且xy <0,则x+y 的值等于________17.如果规定符号“※”的意义是:a ※b=ba ab - ,则3※(-3)的值等于_________ 18.现定义两种运算“?”“*”,对于任意两个整数,a?b=a+b-1,a*b=a ×b-1, 则8*(3?5)的结果是________19.若0,0≠≠b a ,≠c 0,求b b a a+c c +的可能取值为________ 20.(1)人体中约有2万5千亿= 个红细胞(用科学计数法表示)。

(2)374.4万精确到 ___位,它有 个有效数字,分别是 .21.=++⋅⋅⋅+++-++⋅⋅⋅+++)20122010642()20112009531(22.如图,是一个有理数混合运算程序的流程图,请根据这个程序回答问题:当输入的x 为-16时,最后输出的结果y 是_______23.在有理数的原有的运算中,我们补充定义先运算“※”.如:当a ≥b 时,a ※b=b 2;a <b 时,a ※b=a ,则当x=2时,则(1※x )?x -(3※x )=______(“?”表示乘法)三、综合计算题:24.计算下列各题:(1)-8-[-7+(1-×0.6)÷(-3)] (2)(﹣÷(3)(2﹣3+1)÷(﹣1) (4))34(1573)152(43)34()513(-÷+-⨯-+÷- (5))21()43()32(6)3(42+÷-+-⨯--⨯- (6)2)6(1)]43(361)2411[(-÷-+++(7)52555(2)4757123÷--⨯-÷ (8)4)21(21)1(22⨯-+÷- (9)211(10.5)2(3)3⎡⎤⎡⎤--⨯⨯--⎣⎦⎢⎥⎣⎦ (10))5()4131(12-÷-⨯ (11)(-121)-(+141)+(-221)-(-343)-(-141)+4 (12)|-221|+(-3.7)+|-(+2.7)|-|-(721)| (13)(﹣11)×+(+5)×+(﹣137)÷5+(+113)÷5;25.如果规定△表示一种运算,且a △b=2a b ab-,求:3△(4△12)的值. 26.若a=(-1)+(-1)2+(-1)3+…+(-1)2011,且(ab +3)2+|b +c|=0,求cb a 53- 27.在等式3×□-2×□=15的两个方格内分别填入一个数,使这两个数互为相反数且等式成立。

28.对于有理数a ,b ,定义:a*b=2a-3b;(1)若x ,y 均为有理数,试计算[(x-y )*(x+y )]*x 的值。

(2)对于(1)的运算结果,计算x=1,y=-2时的值. 29.若定义一种新的运算为a*b=,计算[(3*2)]*.30.已知(a +1)2+(2b -4)2+1-c =0,求c ab 3+b c a -的值。

31.定义一种新运算*,观察下列式子:1*3=1×3+3=6; 3*2=3×2+2=8; 3*5=3×5+5=20; 5*3=5×3+3=18.(1)请你仿照上述运算方法,计算-3*7的值;(写出过程)(2)请猜想:a*b=______,b*a=_____;(3)若a ≠b ,则a*b_______b*a (填“=”或“≠”).32.观察下列各式:11×2 =1- 12 ,12×3 =12 - 13 ,13×4 =13 -14……,请你猜想其规律,用正整数n 表示出来,并计算12 -16 -112 -…-1462的值。

易错题 练习题1.如果│a+b │=│a │+│b │成立,那么( )A .a ,b 同号B .a ,b 为一切有理数C .a ,b 异号D .a ,b 同号或a ,b 中至少有一个为零2.有一列数a 1,a 2,a 3,a 4,…,a n ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a 1=2,则a 2012值为( )A .2B .-1C .21 D .2012 3.①0(5)5--=-; ②(3)(9)12-+-=-;③293342⎛⎫⨯-=- ⎪⎝⎭; ④(36)(9)4-÷-=-. 其中正确的个数是( )A.1个B.2个C.3个D.4个4.已知3=x 则x=_______;5-=x 则x=_______;5.绝对值不大于4的负整数是________ 绝对值小于4.5而大于3的整数是______6.在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是_______7.用“都”、“不都”、“都不”填空:(1)如果ab ≠0,那么a ,b________为零;(2)如果ab >0,且a +b >0,那么a ,b________为正数;(3)如果ab <0,且a +b <0,那么a ,b________为负数;(4)如果ab=0,且a +b=0,那么a ,b________为零.8.填空:(3)a ,b 为有理数,则-ab 是_________;(4)a ,b 互为相反数,则(a +b)a 是________.9.已知n 为自然数,用“一定”、“不一定”或“一定不”填空:(1)(-1)2+n ______是负数;(2)(-1)12+n ______是负数;(3)(-1)n +(-1)1+n ______是零.10.用“一定”、“不一定”或“一定不”填空:(1)有理数的平方________是正数;(2)一个负数的偶次幂________大于这个数的相反数;(3)小于1的数的平方________小于原数;(4)一个数的立方________小于它的平方.11.探索规律:①331=,个位数字是3;②932=;个位数字是9;③2733= ,个位数字是7;④8134=, 个位数字是1;⑤24335=, 个位数字是3;⑥72936=, 个位数字是9; 73的个位数字是2187;……;20113的个位数字是12.计算:(1)()⎪⎭⎫ ⎝⎛-÷-⨯⎪⎭⎫ ⎝⎛-8144122 (2))31()2(618-⨯-÷- (3)⎥⎦⎤⎢⎣⎡-+-⨯-)95(32)3(2 (4)⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-⨯-⨯-23232122 (5))()(32322)2(2-⨯+-÷-- (6)45211)215(2131-÷-⨯- 13.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值为5.试求下式的值:14.已知︱a ︱=5,︱b ︱=8,且︱a+b ︱= -(a+b),试求a+b 的值。

15.若|a|=4,|b|=2,且|a +b|=a +b ,求a -b 的值.16.已知︱a ︱=5,︱b ︱=8,且∣ab ∣= -ab,试求a+b 的值。

相关文档
最新文档