电化学公式总结
电化学 化学反应速率知识点
化学反应速率公式:ν=tc∆∆ 单位:mol·L -1·s -1 mol·L -1·min -1 平均反应速率 不同物质的速率的比值一定等于化学方程式中相应的化学计量数之比)()(气气nY mX + )()(气气qW pZ +一.影响化学反应速率的条件对速率这部分内容,常用的一条规律是:同一化学反应的速率可以用不同的物质来表示,其数值可能不同,但意义可以一样;并且用不同物质表示的化学反应速率之比等于方程式中相应计量数之比。
另外,对于可逆反应,条件改变对速率的影响总是同方向的,V 正和V 逆的变化是增大都增大,减小都减小,决不会一个增大一个减小。
影响化学反应速率的主要因素是反应物本身的性质,但可以发生变化的是外界因素,常有如下方面: 1、浓度在其他条件不变时,增大反应物的浓度,会使单位体积所含活化分子数增多,有效碰撞次数增多,反应速率加快;减少反应物浓度,会使单位体积所含活化分子数减少,有效碰撞次数减少,反应速率减小。
2、压强在其他条件不变时,对于有气体参加的化学反应,增大压强,相当于增大气体浓度,反应速率加快;减小压强,相当于减小气体浓度,反应速率减小。
注意:对于参加反应的固体、液体或溶液,由于改变压强,对它们的浓度改变很小,可以认为它们的反应速率与压强无关。
对于气体反应体系,有以下几种情况:(1)恒温时:增大压强体积缩小浓度增大反应速率加快。
(2)恒容时:①充入气体反应物浓度增大总压增大速率加快②充入“惰气”总压增大,但各分压不变,即各物质的浓度不变,反应速率不变。
(3)恒压时:充入“惰气”体积增大各反应物浓度减小反应速率减慢。
总之,压强改变,若引起浓度改变,速率则改变。
3、温度在其他条件不变时,温度每升高10℃,化学反应速率增大到原来的2—4倍。
4、使用催化剂能改变化学反应的途径,使原来难以进行的化学反应分成几步易进行的反应,从而大幅度改变了化学反应的速率。
物化期末公式总结
物化期末公式总结一、热力学方面的公式1. 热力学第一定律:ΔU = Q + W这个公式表示了能量的守恒,其中,ΔU是系统内能的变化,Q是系统吸收或释放的热量,W是系统对外界做功。
2. 热力学第二定律:ΔS≥0这个公式表示了熵的增加趋势,系统在无限接近绝对零度时,熵趋于最小。
3. 热力学第三定律:绝对零度熵为0这个公式表示了在绝对零度下,熵为0。
4. 焓的变化:ΔH = ΔU + PΔV这个公式表示了焓的变化,其中,ΔH是焓的变化,ΔU是系统内能的变化,P是压强,ΔV 是体积的变化。
5. 熵的变化:ΔS = Q/T这个公式表示了熵的变化,其中,ΔS是熵的变化,Q是系统吸收或释放的热量,T是温度。
二、化学反应方程的计算1. 物质的量与摩尔质量:物质的量n = m/M其中,n是物质的量,m是物质的质量,M是摩尔质量。
2. 化学反应的平衡常数:Kc = ([C]^c[D]^d) / ([A]^a[B]^b)其中,[C]、[D]、[A]、[B]分别表示化学反应中的物质浓度,a、b、c、d分别表示化学反应中物质的摩尔系数。
3. 反应速率与物质浓度的关系:v = k[A]^a[B]^b其中,v表示反应速率,k表示速率常数,[A]、[B]分别表示反应物质的浓度。
三、电化学方面的公式1. Faraday定律:m = nFz其中,m是电化学反应的产物质量,n是电子数,F是法拉第定数,z是电化学反应的化学当量。
2. 电池方程:Ecell = Ecathode - Eanode这个公式表示了电池的电动势,Ecell是电池的电动势,Ecathode是阴极半反应的标准电势,Eanode是阳极半反应的标准电势。
3. 纳仑方程:Ecell = E°cell - (RT/nF)lnQ这个公式表示了电池的电动势,E°cell是标准电动势,R是理想气体常量,T是温度,n 是电子数,F是法拉第定数,Q是反应物质浓度的比值。
电导率电化学测试公式(一)
- 电导率电化学测试公式1. 电导率的定义和计算公式- 电导率是描述电解质溶液导电能力的物理量,通常用符号κ表示。
它的计算公式为:κ = G / (L * A)其中,G是电解质溶液的电导率,L是电极间距离,A是电极的截面积。
这个公式告诉我们,电导率与电解质的导电能力成正比,与电极间距离和电极截面积成反比。
2. 电导率与浓度的关系- 对于一定温度下的电解质溶液,电导率和其浓度之间存在一定的关系,可以用以下公式表示:κ = κ0 + k * c其中,κ0是电解质的极限电导率,k是一个与电解质性质相关的常数,c是电解质的浓度。
这个公式告诉我们,电解质溶液的电导率随着浓度的增加而增加。
3. 电导率与温度的关系- 温度对电解质溶液的电导率也有显著的影响,其关系可以用以下公式表示:κ = κ0 * exp(-β * T)其中,κ0是电解质的极限电导率,β是与电解质性质相关的常数,T是温度。
这个公式告诉我们,随着温度的升高,电解质的电导率会降低。
4. 电导率与电化学测试的应用- 电导率电化学测试广泛应用于水质检测、环境监测和工业生产中。
例如,通过测定水体中的电导率可以间接反映水中的导电物质浓度,进而判断水质的优劣;在环境监测中,电导率测试可以用来判断土壤中盐分的含量;在工业生产中,电导率测试可以用来监控化工生产中的离子浓度,确保产品质量。
通过以上列举的电导率电化学测试公式和相关解释,我们可以看到电导率与电解质的浓度、温度等因素密切相关,其测试在实际生产和科研中具有重要作用。
深入理解这些公式,可以帮助我们更好地应用电导率电化学测试于实际工作中。
第六章电化学
第六章 电化学(一)主要公式及其适用条件1、法拉第定律——电极反应的B 物质的质量 zF It M v m /B B B =式中:v B 为参加电极反应的物质B 的计量系数;M B 为物质B 的摩尔质量;I 为电流强度;t 为通电时间;z 为电极反应进行了1mol 反应进度时得(或者失)电子的物质的量;F =96485C ·mol -1,称为法拉第常数。
此定律不受任何外界条件和参加电极过程各有关物质性质的影响。
2、离子迁移数-++-++-++++=+=+U U U Q Q Q t υυυdef=;-+--+--+--+=+=+U U U Q Q Q t υυυdef = 上述两式中:t +和t -分别为正、负离子的迁移数;Q +和Q -分别为在一定时间内正、负离子迁移的电量,Q ++Q -则为通过溶液的总电量;υ+和υ-分别为正、负离子定向迁移的速率;U +和U -分别称为正、负离子的电迁移率,即电势梯度∆ϕ/l =1V ·m -1时离子运动的速率,其单位为m 2·S -1·V -1。
上式适用于强电解质稀溶液。
3、电导的定义 l A R I G //defκ==式中:R 为导体的电阻;A 为导体的截面积;l 为导体的长度。
4、电导率 ρκ/1/==AR l式中:ρ称为电阻率;l =1m 、A =1m 2时的电导,称为电导率κ。
5、摩尔电导率 c A -=∞m m ΛΛ式中:∞m Λ为无限稀释时的摩尔电导率,亦称为极限摩尔电导率;当温度、电解质溶液一定时A 为常数,其单位为S ·m 3.5·mol -1.5。
此式只适用于强电解质稀溶液。
7、柯尔劳施离子独立运动定律的数学表示式 ∞m Λ=v +∞--∞++m,m,ΛΛv 式中:v +及v -分别为正、负离子的化学计量数;∞+m ,Λ及∞-m ,Λ分别为正、负离子的极限摩尔电导率。
此式适用于无限稀释的电解质(不论其强弱)溶液。
电化学反应焓变计算公式
电化学反应焓变计算公式1. 引言1.1 电化学反应焓变的概念电化学反应焓变是指在化学反应中释放或吸收的热量。
焓变计算是研究这些热量变化的重要手段,可以帮助我们了解化学反应的热力学性质。
在电化学反应中,电子转移是引发反应的主要原因,因此焓变计算也与电子传递过程密切相关。
在电化学反应中,如果反应过程放出热量,则焓变为负值;反之,吸收热量则焓变为正值。
焓变的计算公式可以通过热力学原理和电化学理论推导得出,具体计算方法包括根据反应物和产物的化学式及反应热值进行计算。
焓变计算的准确性对于理解化学反应的机理、对活化能和反应速率的研究具有重要意义。
通过电化学反应焓变的计算,可以预测化学反应的热力学性质,为工业生产和环境改善提供理论依据。
电化学反应焓变的概念及其计算公式在化学领域具有重要意义,也为相关研究及应用提供了理论基础。
1.2 焓变计算的重要性焓变计算在电化学领域中具有非常重要的意义。
电化学反应焓变是指化学反应在恒定压力下的焓变,它描述了化学反应伴随的热效应。
焓变的计算可以帮助我们了解电化学反应的热力学特性,包括反应是否放热或吸热、反应的熵变等重要信息。
焓变计算可以帮助我们预测电化学反应的方向。
根据焓变的正负可以判断反应是放热还是吸热,从而确定反应是向前进行还是向后进行。
这对于优化电化学反应条件和设计新的电化学反应过程具有重要意义。
焓变计算可以帮助我们评估电化学反应的能量效率。
通过计算焓变,我们可以确定反应的能量转化效率,从而指导实际操作中如何更好地利用电化学反应释放或吸收的能量。
焓变计算也对电化学反应机理的研究具有重要意义。
通过研究焓变的变化规律,可以揭示电化学反应的机理,为进一步优化反应条件和提高反应效率提供理论基础。
焓变计算在电化学领域中发挥着至关重要的作用,它不仅可以帮助我们深入理解电化学反应的热力学特性,还可以指导实际操作和反应机制的研究。
未来,随着电化学领域的不断发展和深入研究,焓变计算将继续发挥重要作用,并为电化学反应的研究和应用提供更加可靠的理论支持。
电化学公式总结知识讲解
活化极化
欧姆极化
浓度极化
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
电电流不为零时,电极电势偏离平衡电位的现象为极化。 活化极化:活化极化与一串连续步骤组成的电极过程中的某个最缓慢步骤
的活化能有关,这步骤需要有较高的活化能用以激活参加电极反应的粒子, 完成电子的转移。这额外部分能量,就靠电极的活化极化提供。是电极极 化的一种基本形式。 欧姆极化:欧姆极化是由于电解液、电极材料以及导电材料之间存在的接 触电阻所引起的极化。 浓度极化:电化学过程中,由于电极表面附近的离子在电极上发生反应而 消耗,结果使表面与溶液间产生浓度差,从而使电极电位偏离可逆电位而 存在电势损失的现象称为浓度极化。
介导电化学edc计算公式
介导电化学edc计算公式电化学 EDC 计算电化学等效电路 (EDC) 模型是一种用于分析电化学系统的数学模型。
它将电化学系统表示为一个由电阻器、电容器和电源组成的电路网络。
通过求解该电路,可以确定系统的电化学行为。
材料和设备电化学工作站参考电极对电极工作电极电解液步骤1. 组装电化学电池。
将参考电极、对电极和工作电极连接到电化学工作站。
将电解液添加到电池中。
2. 设置电化学参数。
设置扫描速率、扫描范围和工作电极电位等电化学参数。
3. 进行电化学测量。
使用电化学工作站对系统进行电化学测量,例如循环伏安图或交流阻抗谱。
4. 拟合 EDC 模型。
将电化学测量数据拟合成 EDC 模型。
这可以通过使用非线性拟合算法来完成。
5. 提取 EDC 参数。
从拟合的 EDC 模型中提取电化学参数,例如电阻、电容和电荷转移电阻。
计算公式电阻串联电阻:总电阻 = R1 + R2 + ... + Rn并联电阻:1/总电阻 = 1/R1 + 1/R2 + ... + 1/Rn电容串联电容:总电容 = 1/(1/C1 + 1/C2 + ... + 1/Cn)并联电容:总电容 = C1 + C2 + ... + Cn电荷转移电阻从交流阻抗谱中提取电荷转移电阻注意事项EDC 模型是一个近似模型,可能不适用于所有电化学系统。
拟合 EDC 模型需要仔细选择拟合参数。
EDC 模型的参数可以随着电化学条件的变化而变化。
应用EDC 模型广泛应用于电化学系统的研究和分析,包括:电池和超级电容器腐蚀研究生物传感器电解合成。
电化学极化
18
左边的实线为线①,右边的实线为线②, 左边的虚线为线③
FφM
图6-1电位对活化吉布斯自由能的影响
19
M0时, ⅱ)当紧密双电层电位差 >
对于电极反应A+e=D可把电子看成反应物参与 反应,发生了电子的转移过程。 强烈地影响电子 M 的吉布斯自由能。 Ge 1mol电子的标准吉布斯自由能 可用下式表示:
Ge e e F M 当 =0时, 当 ﹥0时, M M Ge e =0时减少了 比 φM 所以线①下降了 M F 变为虚线③了。
G e 线①
F M
20
﹥0表示电极电位正移了,还原反应难以进行。
M
M 0 G 所以还原反应活化自由能 比 时 G c增大 了,还原反应要想进行必须 M 越过的能垒增加了,但增大的只是 F 中的一部 分,这个分数是用表示:
JK
J J
15
(3)电极电位与电化学反应吉布斯自由能的关系 (6-2)式表示 , 由两部分组成: G G 一部分是化学作用力引起的自由能, 一部分是电场作用力引起的自由能。 当没有电场作用时, G , G 仅由化学因素决 定, 即由 G , 决定,反应速度只与 , 有 Gc c 关。 Gc G c
(1 ) F F J A J 0 exp( ) exp( ) RT RT (6-19b) 6-19式表示了单电子转移步骤(z=1)的极化电流密 度与过电位的关系,称为Butler-Volmer方程式。
27
这里要注意的是:
e a) 在Butler-Volmer方程式中 阴极极化时 为负值, 阳极极化时 为正值, 阴极极化过电位 K
电化学
电化学:研究电现象和化学现象之间相互关系以及电能和化学能之间相互转化规律的科学。
prim ary cellelectrolytic cell原电池电解池化学能电能Zn + Cu 2+ Cu + Zn 2+最大非体积功(可逆电功) W r ’ = Δr G Өm,298K = - 212.55 kJ/mol§7.1 电解质溶液和法拉第定律electrolyte solution & Faraday ’s law电子导体、离子导体铜—锌电池,即丹聂尔电池 Daniell cell :电化学:研究电现象和化学现象之间相互关系以及电能和化学能之间相互转化规律的科学。
prim ary cellelectrolytic cell原电池电解池化学能电能Zn + Cu 2+Cu + Zn 2+最大非体积功(可逆电功) W r ’ = Δr G Өm,298K = - 212.55 kJ/mol§7.1 电解质溶液和法拉第定律electrolyte solution & Faraday ’s law电子导体、离子导体铜—锌电池,即丹聂尔电池 Daniell cell :失电子,氧化: 得电子,还原:Zn – 2e → Zn 2+ Cu 2+ + 2e → Cu电池反应:Zn + Cu 2+ ═ Zn 2++ Cu 电极 electrode :正/负极 positive /negative pole :外电路电流方向或电势高低 (常用于原电池) 阴/阳极 cathode /anode :电极反应的性质(常用于电解池) 阴/阳离子 anion /catione失电子,氧化: 得电子,还原: 2Cl - - 2e → Cl 2 2H + + 2e → H 2 阳极 阴极电解反应:2HCl (aq) ═ H 2 + Cl 2 Δr G Өm,298K = 262.46 kJ/mole氧化(阳极): 还原(阴极): Zn – 2e → Zn 2+ Zn 2+ + 2e → Zn 2Cl - - 2e → Cl 20.763Zn φϕ=-V ,2 1.358Cl φϕ=V电镀 electroplating阳极溶解: 阴极析出: Cu – 2e → Cu 2+ Cu 2++ 2e → Cu阳极泥电解精炼 electrorefining很明显,在电极上发生反应的物质的数量和通过的电量成正比。
电化学原理及应用电流公式的推导
电化学原理及应用电流公式的推导1. 介绍电化学原理•电化学是研究电学与化学之间相互关系的科学领域。
•电化学主要研究电解过程中发生的化学变化以及电性质与化学性质之间的关系。
•电化学在能源转换、催化剂、腐蚀等领域有广泛的应用。
2. 电化学电流的概念及定义•电流是指单位时间内通过导体横截面的电荷量。
•电化学电流是指在电化学反应中由于离子传输而产生的电流。
•电化学电流可由电极反应速率与电子转移率相乘得到。
3. 应用电流公式的推导•应用电流公式是用来计算电化学电流的数学表达式。
•推导电化学电流公式需要考虑电解物质浓度、电荷数、电极面积等因素。
3.1 法拉第定律•法拉第定律描述了电化学反应的电流与物质转化之间的关系。
•根据法拉第定律,电化学电流(I)与物质转化反应速率(v)成正比:I = n * F * v,其中n为电荷数,F为法拉第常数。
3.2 扩散电流的计算•扩散电流是由于电解质溶液中离子的扩散而产生的电流。
•扩散电流可以通过伯耳定律来计算:i_d = n * F * A * C * \frac{dC}{dx},其中i_d为扩散电流,A为电极面积,C为溶液中离子浓度,dC/dx为浓度梯度的变化率。
3.3 极化电流的计算•极化电流是由于电极上的反应导致的电流。
•极化电流可以通过电化学反应速率方程来计算:I_p = n * F * k *\Theta,其中I_p为极化电流,k为反应速率常数,\Theta为反应进行的程度。
3.4 总电流的计算•总电流可以由扩散电流和极化电流之和得到:I = i_d + I_p。
4. 应用电流公式的应用•应用电流公式可以用于电化学实验的设计和分析。
•通过计算电化学电流,可以评估电极反应速率、溶液离子浓度对电流的影响。
5. 总结•电化学原理是研究电学与化学关系的学科。
•应用电流公式可以帮助我们计算电化学电流。
•扩散电流和极化电流是构成总电流的两个重要部分。
•应用电流公式在电化学实验中有重要的应用价值。
电化学与电分析化学归纳
一、名词解释:2010 28分1. 电化学生物传感器2. 循环伏安法3. 塔菲尔(Tafel)公式4. 极限电流与扩散电流5.双电层6. 能斯特方程7. 标准电极和参比电极2009 10分1 电极上法拉第和非法拉第过程。
2形式电势(formal potential)。
3 双电层。
4 原电池(galvanic cell)和电解池(electrolytic cell)5准参比电极(quasireference electrode, QRE)2008 15分1. 极限电流与扩散电流2. 电化学催化3. 浓差极化4. 化学修饰电极5. 电镀与化学镀2007 24分1. 能斯特方程2. 化学修饰电极3. 原电池与电解池4. 物质的传质的三种途径5. 双电层6. 微电极与常规电极2006 15分1. 循环伏安法2. 电化学催化3. 常规电极与微电极4. 极限电流与扩散电流5. Tafel方程2005 15分1.标准电极电位与条件电位2.双电层3.极限电流与扩散电流4.半电池的形式电势(Eo’)5.交流伏安法。
二、简述回答下列问题2010 32分1. 电极极化及其产生原因。
2. 物质传质的途径。
3. 请举出几种分离方法与电化学相结合的分析应用实例及原理。
4. 举出电化学分析中常用的5种碳材料电极。
2009 20分(简述题)1线扫伏安法和电势阶跃法 2 电化学阻抗谱和交流伏安法3 薄层电化学和溶出分析4 旋转圆盘电极和纳米阵列电极5 生物电化学传感器和微全分析系统2008 40分1. 简述双电层,通常双电层包括几部分?2. 简述电极过程;请列出四种不同类型的电极过程并各举一例。
3. 阐述电极极化及其产生原因。
4. 简述物质传质的几种途径。
5. 请给出塔菲尔(Tafel)公式并具体说明每一项符号的意义。
2006 10分1. 循环伏安法及其应用。
2. 标准电极与参比电极?实验中常采用何种参比电极代替标准电极并请给出各参比电极的单电极电位。
电流密度和通电氧化时间对氧化膜的计算公式
电流密度和通电氧化时间对氧化膜的计算公
式
在电化学氧化过程中,电流密度和通电氧化时间是影响氧化膜形成的两个重要
因素。
通过恰当的计算公式,我们可以预测并优化氧化膜的形成。
首先,让我们来了解电流密度对氧化膜的影响。
电流密度定义为通过单位面积
的电流,通常用mA/cm²表示。
较高的电流密度可以加速氧化膜的形成速度,但可
能会导致薄膜中存在孔洞或缺陷。
较低的电流密度可以产生更均匀且致密的氧化膜,但相对形成速度较慢。
为了平衡这两种影响,我们可以使用以下公式来计算所需的电流密度:
电流密度(mA/cm²)= 所需的氧化膜厚度(μm)/ 通电氧化时间(小时)/
0.09
其中0.09是氧化膜的比容。
接下来,我们来讨论通电氧化时间对氧化膜的计算。
通电氧化时间是指在一个
特定的电流密度下,将待氧化的物体暴露在电解液中的时间。
通电氧化时间的选择取决于所需的氧化膜厚度。
我们可以使用以下公式来计算通电氧化时间:通电氧化时间(小时)= 所需的氧化膜厚度(μm)/ 电流密度(mA/cm²)/
0.09
这个公式可以帮助我们确定通过控制电流密度和通电氧化时间来实现所需氧化
膜厚度的目标。
总结一下,电流密度和通电氧化时间对氧化膜的形成起着重要的作用。
通过以
上所提供的计算公式,我们可以根据所需氧化膜厚度来确定合适的电流密度和通电氧化时间,从而优化氧化膜形成的过程。
中考化学电学公式总结(优选32篇)
中考化学电学公式总结(优选32篇)中考化学电学公式总结第1篇初中物理电学知识点总结一、电场基本规律1、库仑定律(1)定律内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力的方向在它们的连线上。
(2)表达式:k=×109N?m2/C2——静电力常量(3)适用条件:真空中静止的点电荷。
2、电荷守恒定律:电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中,电荷的总量保持不变。
(1)三种带电方式:摩擦起电,感应起电,接触起电。
(2)元电荷:最小的带电单元,任何带电体的带电量都是元电荷的整数倍,e=×10-19C——密立根测得e的值。
二、电场能的性质1、电场能的基本性质:电荷在电场中移动,电场力要对电荷做功。
2、电势φ(1)定义:电荷在电场中某一点的电势能Ep与电荷量的比值。
(2)定义式:φ——单位:伏(V)——带正负号计算(3)特点:○1电势具有相对性,相对参考点而言。
但电势之差与参考点的选择无关。
○2电势一个标量,但是它有正负,正负只表示该点电势比参考点电势高,还是低。
○3电势的大小由电场本身决定,与Ep和q无关。
○4电势在数值上等于单位正电荷由该点移动到零势点时电场力所做的功。
(4)电势高低的判断方法○1根据电场线判断:沿着电场线电势降低。
φA>φB○2根据电势能判断:正电荷:电势能大,电势高;电势能小,电势低。
负电荷:电势能大,电势低;电势能小,电势高。
结论:只在电场力作用下,静止的电荷从电势能高的地方向电势能低的`地方运动。
3、电势能Ep(1)定义:电荷在电场中,由于电场和电荷间的相互作用,由位置决定的能量。
电荷在某点的电势能等于电场力把电荷从该点移动到零势能位置时所做的功。
(2)定义式:——带正负号计算(3)特点:○1电势能具有相对性,相对零势能面而言,通常选大地或无穷远处为零势能面。
第七章 电化学习题讲解
a v av av
m v mv mv
v
v
v
a m / m
7.电解质溶液的离子强度及平均活度系数的估算
(1)
I1 2
mB zB2
(2) lg =-A z+ z I
二、可逆电池
{ 1.可逆电池的条件
电池反应可逆 能量可逆
I 1 (0.00112 0.02 32 0.06112 ) 0.121 2
lg =-A z+ z I
4.Ag+1/2Cl2=AgCl反应在25℃,100kPa下进 行放热127.07kJ mol-1,若设计成可逆电池,在 可逆电池中进行,则放热32.998 kJ mol-1。该反 应的
(1)计算该化学反应的△rSm
解:
S体
QR T
4000 13.42J 298.15
K 1
mol 1
(2)当反应自发进行时(即不做电功)求环 境的熵变和总熵变
rS环
Q环 T
40000 134.2J 298.15
K 1
mol 1
S孤 S体 S环 147.6J K 1 mol1
F
96500
Ag (CN )32 / Ag
Ag / Ag
0.059lg[Ag ]
A(g CN)32- Ag+ +3CN-
Cu e Cu2 Cu e Cu
2Cu Cu2 Cu
ln K zFE RT
8.25℃时,Pt│H2(p)│HI(a)│AuI(s)│Au的电 池电动势E=0.543V,已知
常用的电化学计算公式
常用的电化学计算公式(1) Cottrell 方程: 2/12/12/10)(t C nFAD t i π= 施加恒电势,即从无电化学反应的电势阶跃到发生电化学反应的电势,过程中电流与时间的变化关系。
根据电流随时间的衰减规律可以判断电极过程的控制步骤;常用于测定溶液态物质的扩散系数或定量地研究修饰电极膜内的电荷传输过程。
使用该方程必须满足半无限扩散的条件。
(2) Rendle-Sevcik 方程: C nFAD RT nF i p 2/12/14463.0ν⎟⎠⎞⎜⎝⎛=半无限扩散的条件下的线性扫描可逆波方程式,表示了电流与电势扫描速度的关系。
常用此方程测定物质的扩散系数或测定电极的电化学面积。
(3) Heyrovsky-Ilkovic 方程:()()RT E E nF i i i 3.2log 2/1lim −=⎭⎫⎩⎨⎧− 应用于扩散控制的可逆电化学反应,以E 对ii i −lim lg 作图为一直线,由直线的斜率可以求得n 值。
由直线在0lg lim =−ii i 时的截距可以求得E 1/2。
(4)Butler-V olmer 方程:()()()⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡−−Γ−⎦⎤⎢⎣⎡−Γ=RT E E nF RT E E nF nFAk i R O s E '0'01exp exp αα 该式包括了电极反应动力学和热力学过程及其电化学性质以及各有关参数,如电流(i ),E ,k s ,α以及浓度之间的关系。
在特定的条件下,即平衡的情况(i =0),该式为Nernst 公式。
(5) Levich 方程:C nFAD i Lev 6/12/13/262.0γω=对于可逆的电化学反应,使用旋转园盘电极,如果选择一定值范围且符合层流要求,可以得到稳态对流扩散过程。
利用电流与ω1/2成正比,可以判断电极反应的控制步骤,还可利用I-ω1/2关系的斜率来估计反应电子数。
(6) Michaelis-Menten 方程: Mcat cat K C C k nFA i +Γ= 此方程与酶促反应的动力学的表达形式一致,其应用条件要求酶促反应的速度比扩散过程慢,即催化电流受酶促反应的动力学控制,常用该方程求算米氏常数。
条件电势的计算公式
条件电势的计算公式条件电势是指在一定条件下,电极与溶液之间的电势差。
它是电化学反应中的重要参数,可以用来描述电化学反应的方向和速率。
条件电势的计算公式是基于纳斯特方程和法拉第定律的,下面我们来详细介绍一下。
纳斯特方程纳斯特方程是描述电化学反应中电势差与反应物浓度之间关系的方程。
它的数学表达式为:E=E°-RT/nF lnQ其中,E是电极电势,E°是标准电极电势,R是气体常数,T是温度,n是电子转移数,F是法拉第常数,Q是反应物浓度的乘积。
纳斯特方程的意义在于,它可以用来计算电极电势与反应物浓度之间的关系。
当反应物浓度发生变化时,电极电势也会发生变化。
因此,纳斯特方程可以用来预测电化学反应的方向和速率。
法拉第定律法拉第定律是描述电化学反应中电荷转移与电流之间关系的定律。
它的数学表达式为:i=nFk[A]α[B]β其中,i是电流强度,n是电子转移数,F是法拉第常数,k是反应速率常数,[A]和[B]分别是反应物A和B的浓度,α和β分别是反应物A和B的反应级数。
法拉第定律的意义在于,它可以用来计算电流强度与反应物浓度之间的关系。
当反应物浓度发生变化时,电流强度也会发生变化。
因此,法拉第定律可以用来预测电化学反应的速率。
条件电势的计算公式条件电势的计算公式是基于纳斯特方程和法拉第定律的。
它的数学表达式为:E=E°-RT/nF lnQ+i/nF(RT/nF)(dlnk/dln[A])其中,E是条件电势,E°是标准电极电势,R是气体常数,T是温度,n是电子转移数,F是法拉第常数,Q是反应物浓度的乘积,i是电流强度,k是反应速率常数,[A]是反应物A的浓度,dlnk/dln[A]是反应速率常数对反应物A浓度的导数。
条件电势的意义在于,它可以用来计算电极电势与反应物浓度和电流强度之间的关系。
当反应物浓度和电流强度发生变化时,条件电势也会发生变化。
因此,条件电势可以用来预测电化学反应的方向和速率。
【初中物理】初中化学电功物理公式总结
【初中物理】初中化学电功物理公式总结1.电功(w):电流所做的功叫电功,2.电气工作单位:国际单位:焦耳。
常用单位为:度(KWH),1度=1 KWH=3.6×106焦耳。
3.测量电功的工具:电能表(电度表)4.电功率计算公式:w=uit(单位:w)→ 焦炭(J);U→ 伏特(V);我→ 安全(a);T→ 秒)。
5.利用w=uit计算电功时注意:①式中的w.u.i和t是在同一段电路;②计算时单位要统一;③已知任意的三个量都可以求出第四个量。
6.以下公式也可用于计算电力:w=i2rt;w=pt;w=UQ(q为电量);7.电功率(p):电流在单位时间内做的功。
单位有:瓦特(国际);常用单位有:千瓦8.电力计算公式:(单位:P)→ 瓦特(W);W→ 焦炭T→ 秒;U→ 伏特(V);我→ 安全(a)9.利用计算时单位要统一,①如果w用焦、t用秒,则p的单位是瓦;②如果w用千瓦时、t用小时,则p的单位是千瓦。
10.正确的公式也可用于计算电力:P=I2R和P=U2/R11.额定电压(u0):用电器正常的电压。
12.额定功率(P0):电器在额定电压下的功率。
13.实际电压(u):实际加在用电器两端的电压。
14.实际功率(P):电器在实际电压下的功率。
当u>u0时,则p>p0;灯很亮,易烧坏。
当u<u0时,则p<p0;灯很暗,当u=u0时,则p=p0;正常发光。
(如果相同的电阻器或灯泡在不同的电压下连接,则存在;例如,当实际电压为额定电压的一半时,实际功率为额定功率的1/4。
例如,“220v100w”指额定电压为220伏、额定功率为100瓦的灯泡。
如果连接在110伏电路中,实际功率为25瓦。
)15.焦耳定律:电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻成正比,跟通电时间成正比。
16.焦耳定律公式:q=i2rt(单位:q)→ 焦炭我→ 安培(a);R→ EU(ω);T→ 秒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活化极化
欧姆极化
浓度极化
Hale Waihona Puke 燃料电池常用公式吉布斯自由能与能斯特方程
任意电极的能斯特方程
电极极化
当通过电极的电流不为零时,电极电势偏离平衡电位的现象为极化。 活化极化:活化极化与一串连续步骤组成的电极过程中的某个最缓慢步骤 的活化能有关,这步骤需要有较高的活化能用以激活参加电极反应的粒子, 完成电子的转移。这额外部分能量,就靠电极的活化极化提供。是电极极 化的一种基本形式。 欧姆极化:欧姆极化是由于电解液、电极材料以及导电材料之间存在的接 触电阻所引起的极化。 浓度极化:电化学过程中,由于电极表面附近的离子在电极上发生反应而 消耗,结果使表面与溶液间产生浓度差,从而使电极电位偏离可逆电位而 存在电势损失的现象称为浓度极化。