中考复习之图形的旋转经典题(含答案)-汇总

合集下载

中考数学元复习《图形的旋转》练习题含答案

中考数学元复习《图形的旋转》练习题含答案

中考数学复习图形的旋转一、选择题1.下列图形中是中心对称图形的有( B )A.1个B.2个C.3个D.4个2.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB 的延长线上,连结AD.下列结论一定正确的是( C )A.∠ABD=∠E B.∠CBE=∠CC.AD∥BC D.AD=BC,第2题图),第3题图) 3.如图,在平面直角坐标系中,点B,C,E在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是( A )A.△ABC绕点C顺时针旋转90°,再向下平移3个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移1个单位D.△ABC绕点C逆时针旋转90°,再向下平移3个单位4.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B,D两点间的距离为( A )A.10 B.2 2 C.3 D.25【解析】∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD=BE2+DE2=10.故选A.,第4题图),第5题图) 5.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(-2,5)的对应点A′的坐标是( B )A.(2,5) B.(5,2) C.(2,-5) D.(5,-2)【解析】∵线段AB绕点O顺时针旋转90°得到线段A′B′,∴△ABO≌△A′B′O,∠AOA′=90°,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′-∠COA′=∠COC′-∠COA′,∴∠AOC=∠A′OC′.∴△ACO≌△A′C′O,∴AC=A′C′,CO=C′O.∵A(-2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).故选B.6.如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连结AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是( D ) A.0个B.1个C.2个D.3个【解析】∵将等边△ABC绕点C顺时针旋转120°得到△EDC,∴∠ACE=120°,∠DCE =∠BCA=60°,A C=CD=DE=CE,∴∠ACD=120°-60°=60°,∴△ACD是等边三角形,∴AC=AD,AC=AD=DE=CE,∴四边形ACED是菱形,∵将等边△ABC绕点C顺时针旋转120°得到△EDC,AC=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴BD⊥AC,∴①②③都正确,故选D.二、填空题7.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD的度数是__60°__.,第7题图),第8题图) 8.如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:__将△COD绕点C顺时针旋转90°,再向左平移2个单位长度得到△AOB(答案不唯一).__.9.如图,在△ABC中,∠A=70°,AC=BC,以点B为旋转中心把△ABC按顺时针旋转α度,得到△A′BC′,点A恰好落在AC上的点A′处,连结CC′,则∠ACC′=__110°__.【解析】∵∠A=70°,AC=BC,∴∠BCA=40°,根据旋转的性质,AB=BA′,BC=BC′,∴∠α=180°-2×70°=40°,∵∠CBC′=∠α=40°,∴∠BCC′=70°,∴∠ACC′=∠ACB+∠BCC′=110°.10.如图,在正方形ABCD中,AD=23,把边BC绕点B逆时针旋转30°得到线段BP,连结AP并延长交CD于点E,连结PC,则△PCE的面积为__9-53__.【解析】∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP =60°,AP=AB=23,∵AD=23,∴AE=4,DE=2,∴CE=23-2,PE=4-23,过P作PF ⊥CD 于F ,∴PF =32PE =23-3,∴△PCE 的面积为12CE ·PF =12×(23-2)×(23-3)=9-5 3.故答案为9-5 3.,第10题图) ,第11题图)11.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,则DE 2+BG 2=__2a 2+2b 2__.【解析】连结BD ,EG ,如图所示,∴DO 2+BO 2=BD 2=BC 2+CD 2=2a 2,EO 2+OG 2=EG 2=CG 2+CE 2=2b 2,则BG 2+DE 2=DO 2+BO 2+EO 2+OG 2=2a 2+2b 2.三、解答题12. 如图,在边长为1的正方形组成的网格中,△ABC 的顶点均在格点上,点A ,B ,C 的坐标分别是A (-2,3),B (-1,2),C (-3,1),△ABC 绕点O 顺时针旋转90°后得到△A 1B 1C 1.(1)在正方形网格中作出△A 1B 1C 1;(2)在旋转过程中,点A 经过的路径AA 1︵的长度为__132π__;(3)在y 轴上找一点D ,使DB +DB 1的值最小,并求出D 点的坐标.,题图),答图)解:(1)如图所示: (2)在旋转过程中,点A 经过的路径AA 1︵的长度为90×π×13180=132π (3)∵点B ,B 1在y 轴两旁,连结BB 1交y 轴于点D ,设D′为y 轴上异于D 的点,显然D′B +D′B 1>DB +DB 1,∴当点D 是BB 1与y 轴交点时,DB +DB 1最小.设直线BB 1的解析式为y =kx +b ,依据题意得⎩⎨⎧-k +b =2,2k +b =1,解得⎩⎨⎧k =-13,b =53,∴y =-13x +53,∴D (0,53) 13.如图,已知正方形ABCD 的边长为3,E ,F 分别是AB ,BC 边上的点,且∠EDF =45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM .(1)求证:△DEF ≌△DMF ;(2)若AE =1,求FM 的长.解:(1)∵△DAE 逆时针旋转90°得到△DCM ,∴∠FCM =∠FCD +∠DCM =180°,∴F ,C ,M 三点共线,∴DE =DM ,∠EDM =90°,∴∠EDF +∠MDF =90°,∵∠EDF=45°,∴∠MDF =∠EDF =45°,在△DEF 和△DMF 中,∵⎩⎨⎧DE =DM ,∠EDF =∠MDF ,DF =DF ,∴△DEF ≌△DMF (SAS ) (2)由(1)得EF =MF ,设EF =MF =x ,∵AE =CM =1,且BC =3,∴BM =BC +CM =3+1=4,∴BF =BM -MF =BM -EF =4-x ,∵EB =AB -AE =3-1=2,在Rt △EBF 中,由勾股定理得EB 2+BF 2=EF 2,即22+(4-x )2=x 2,解得x =52,∴FM =5214.如图①,将一个边长为2的正方形ABCD 和一个长为2,宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至CE ′F ′D ′,旋转角为α.(1)当点D ′恰好落在EF 边上时,求旋转角α的值;(2)如图②,G 为BC 中点,且0°<α<90°,求证:GD ′=E ′D ;(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,△DCD ′与△CBD ′能否全等?若能,直接写出旋转角α的值;若不能,请说明理由.解:(1)∵DC ∥EF ,∴∠DCD ′=∠CD′E =α,∵sin α=CE CD′=CE CD =12,∴α=30° (2)∵G 为BC 中点,∴GC =CE′=CE =1.∵∠D′CG =∠DCG +∠DCD′=90°+α,∠DCE ′=∠D′CE′+∠DCD′=90°+α,∴∠D ′CG =∠DCE′.又∵CD′=CD ,∴△GCD ′≌△E ′CD (SAS ),∴GD ′=E′D (3)能.α=135°或α=315°。

中考数学压轴题之旋转(中考题型整理,突破提升)含答案解析

中考数学压轴题之旋转(中考题型整理,突破提升)含答案解析

一、旋转 真题与模拟题分类汇编(难题易错题)1.在△ABC 中,AB=AC ,∠BAC=α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得到线段BD 。

(1)如图1,直接写出∠ABD 的大小(用含α的式子表示); (2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE 的形状并加以证明; (3)在(2)的条件下,连结DE ,若∠DEC=45°,求α的值。

【答案】(1)1302α︒-(2)见解析(3)30α=︒【解析】解:(1)1302α︒-。

(2)△ABE 为等边三角形。

证明如下:连接AD ,CD ,ED ,∵线段BC 绕点B 逆时针旋转60︒得到线段BD , ∴BC=BD ,∠DBC=60°。

又∵∠ABE=60°,∴1ABD 60DBE EBC 302α∠=︒-∠=∠=︒-且△BCD 为等边三角形。

在△ABD 与△ACD 中,∵AB=AC ,AD=AD ,BD=CD ,∴△ABD ≌△ACD (SSS )。

∴11BAD CAD BAC 22α∠=∠=∠=。

∵∠BCE=150°,∴11BEC 180(30)15022αα∠=︒-︒--︒=。

∴BEC BAD ∠=∠。

在△ABD 和△EBC 中,∵BEC BAD ∠=∠,EBC ABD ∠=∠,BC=BD , ∴△ABD ≌△EBC (AAS )。

∴AB=BE 。

∴△ABE 为等边三角形。

(3)∵∠BCD=60°,∠BCE=150°,∴DCE 1506090∠=︒-︒=︒。

又∵∠DEC=45°,∴△DCE 为等腰直角三角形。

∴DC=CE=BC 。

∵∠BCE=150°,∴(180150)EBC 152︒-︒∠==︒。

而1EBC 30152α∠=︒-=︒。

∴30α=︒。

(1)∵AB=AC ,∠BAC=α,∴180ABC 2α︒-∠=。

2022年中考数学真题分类汇编:图形的旋转(含答案)

2022年中考数学真题分类汇编:图形的旋转(含答案)

2022年数学中考试题汇编图形的旋转一、选择题1.(2022·湖南省益阳市)如图,已知△ABC中,∠CAB=20°,∠ABC=30°,将△ABC绕A点逆时针旋转50°得到△AB′C′,以下结论:①BC=B′C′,②AC//C′B′,③C′B′⊥BB′,④∠ABB′=∠ACC′,正确的有( )A. ①②③B. ①②④C. ①③④D. ②③④2.(2022·广西壮族自治区河池市)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将Rt△ABC绕点B顺时针旋转90°得到Rt△A′B′C′.在此旋转过程中Rt△ABC所扫过的面积为( )A. 25π+24B. 5π+24C. 25πD. 5π3.(2022·内蒙古自治区包头市)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C顺时针旋转得到△A′B′C,其中点A′与点A是对应点,点B′与点B是对应点.若点B′恰好落在AB边上,则点A到直线A′C的距离等于( )A. 3√3B. 2√3C. 3D. 24.(2022·广西壮族自治区南宁市)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,BB′⏜的长是( )A. 2√33π B. 4√33π C. 8√39π D. 10√39π5.(2022·内蒙古自治区赤峰市)如图,AB是⊙O的直径,将弦AC绕点A顺时针旋转30°得到AD,此时点C的对应点D落在AB上,延长CD,交⊙O于点E,若CE=4,则图中阴影部分的面积为( )A. 2πB. 2√2C. 2π−4D. 2π−2√26.(2022·天津市)如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是( )A. AB=ANB. AB//NCC. ∠AMN=∠ACND. MN⊥AC7.(2022·贵州省遵义市)在平面直角坐标系中,点A(a,1)与点B(−2,b)关于原点成中心对称,则a+b的值为( )A. −3B. −1C. 1D. 38.(2022·湖南省娄底市)如图,等边△ABC内切的图形来自我国古代的太极图,等边三角形内切圆中的黑色部分和白色部分关于等边△ABC的内心成中心对称,则圆中的黑色部分的面积与△ABC的面积之比是( )A. √3π18B. √318C. √3π9D. √399.(2022·湖南省)下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.10.(2022·湖南省娄底市)下列与2022年冬奥会相关的图案中,是中心对称图形的是( )A. B.C. D.11.(2022·湖南省)下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.12.(2022·湖南省)下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.13.(2022·湖南省)下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.14.(2022·湖南省)下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.15.(2022·湖南省)下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.16.(2022·上海市)有一个正n边形旋转90°后与自身重合,则n为( )A. 6B. 9C. 12D. 15二、填空题17.(2022·青海省西宁市)如图,在△ABC中,∠C=90°,∠B=30°,AB=6,将△ABC绕点A逆时针方向旋转15°得到△AB′C′,B′C′交AB于点E,则B′E=______.18.(2022·湖北省随州市)如图1,在矩形ABCD中,AB=8,AD=6,E,F分别为AB,AD的中点,连接EF.如图2,将△AEF绕点A逆时针旋转角θ(0°<θ<90°),使EF⊥AD,连接BE并延长交DF于点H.则∠BHD的度数为,DH的长为.19.(2022·吉林省)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角α(0°<α<360°)后能够与它本身重合,则角α可以为______度.(写出一个即可)20.(2022·辽宁省盘锦市)如图,在△ABC中,AB=AC,∠ABC=30°,点D为BC的中点,将△ABC绕点D逆时针旋转得到△A′B′C′,当点A的对应点A′落在边AB上时,点C′在BA的延长线上,连接BB′,若AA′=1,则△BB′D的面积是______.21.(2022·湖南省永州市)如图,图中网格由边长为1的小正方形组成,点A为网格线的交点.若线段OA绕原点O顺时针旋转90°后,端点A的坐标变为______.三、解答题22.(2022·广西壮族自治区河池市)如图、在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(4,1),B(2,3),C(1,2).(1)画出与△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,在第三象限内画一个△A2B2C2,使它与△ABC的相似比为2:1,并写出点B2的坐标.23.(2022·吉林省)图①,图②均是4×4的正方形网格,每个小正方形的顶点称为格点.其中点A,B,C均在格点上,请在给定的网格中按要求画四边形.(1)在图①中,找一格点D,使以点A,B,C,D为顶点的四边形是轴对称图形;(2)在图②中,找一格点E,使以点A,B,C,E为顶点的四边形是中心对称图形.24.(2022·江苏省常州市)如图,点A在射线OX上,OA=a.如果OA绕点O按逆时针方向旋转n°(0<n≤360)到OA’,那么点A’的位置可以用(a,n°)表示.(1)按上述表示方法,若a=3,n=37,则点A’的位置可以表示为______;(2)在(1)的条件下,已知点B的位置用(3,74°)表示,连接A’A、A’B.求证:A’A=A’B.25.(2022·湖北省武汉市)如图是由小正方形组成的9×6网格,每个小正方形的顶点叫做格点.△ABC的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D,E分别是边AB,AC与网格线的交点.先将点B绕点E旋转180°得到点F,画出点F,再在AC上画点G,使DG//BC;(2)在图(2)中,P是边AB上一点,∠BAC=α.先将AB绕点A逆时针旋转2α,得到线段AH,画出线段AH,再画点Q,使P,Q两点关于直线AC对称.26.(2022·四川省广安市)数学活动课上,张老师组织同学们设计多姿多彩的几何图形,如图都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影,请同学们在余下的空白小等边三角形中选取一个涂上阴影,使得4个阴影小等边三角形组成一个轴对称图形或中心对称图形,请画出4种不同的设计图形.(规定:凡通过旋转能重合的图形视为同一种图形),1.【答案】B【解析】解:①∵△ABC绕A点逆时针旋转50°得到△AB′C′,∴BC=B′C′.故①正确;②∵△ABC绕A点逆时针旋转50°,∴∠BAB′=50°.∵∠CAB=20°,∴∠B′AC=∠BAB′−∠CAB=30°.∵∠AB′C′=∠ABC=30°,∴∠AB′C′=∠B′AC.∴AC//C′B′.故②正确;③在△BAB′中,AB=AB′,∠BAB′=50°,∴∠AB′B=∠ABB′=12(180°−50°)=65°.∴∠BB′C′=∠AB′B+∠AB′C′=65°+30°=95°.∴CB′与BB′不垂直.故③不正确;④在△ACC′中,AC=AC′,∠CAC′=50°,∴∠ACC′=12(180°−50°)=65°.∴∠ABB′=∠ACC′.故④正确.∴①②④这三个结论正确.故选:B.2.【答案】A【解析】解:∵∠ACB=90°,AC=6,BC=8,∴AB=10,∴Rt△ABC所扫过的面积=90⋅π×102360+12×6×8=25π+24,故选:A.3.【答案】C【解析】解:连接AA′,如图,∵∠ACB =90°,∠BAC =30°,BC =2, ∴AC =√3BC =2√3,∠B =60°, ∵将△ABC 绕点C 顺时针旋转得到△A′B′C , ∴CA =CA′,CB =CB′,∠ACA′=∠BCB′, ∵CB =CB′,∠B =60°,∴△CBB′为等边三角形,∴∠BCB′=60°,∴∠ACA′=60°,∴△CAA′为等边三角形,过点A 作AD ⊥A′C 于点D ,∴CD =12AC =√3,∴AD =√3CD =√3×√3=3, ∴点A 到直线A′C 的距离为3, 故选:C . 4.【答案】B【解析】解:根据题意可得, AC′//B′D ,∵B′D ⊥AB ,∴∠C′AD =∠C′AB′+∠B′AB =90°, ∵∠C′AD =α,∴α+2α=90°,∴α=30°,∵AC =4,∴AD =AC ⋅cos30°=4×√32=2√3, ∴AB =2AD =4√3,∴BB′⏜的长度l =nπr 180=60×π×4√3180=4√33.【解析】解:连接OE,OC,BC,由旋转知AC=AD,∠CAD=30°,∴∠BOC=60°,∠ACE=(180°−30°)÷2=75°,∴∠BCE=90°−∠ACE=15°,∴∠BOE=2∠BCE=30°,∴∠EOC=90°,即△EOC为等腰直角三角形,∵CE=4,∴OE=OC=2√2,∴S阴影=S扇形OEC−S△OEC=90π×(2√2)2360−12×2√2×2√2=2π−4,故选:C.6.【答案】C【解析】解:A、∵AB=AC,∴AB>AM,由旋转的性质可知,AN=AM,∴AB>AN,故本选项结论错误,不符合题意;B、当△ABC为等边三角形时,AB//NC,除此之外,AB与NC不平行,故本选项结论错误,不符合题意;C、由旋转的性质可知,∠BAC=∠MAN,∠ABC=∠ACN,∵AM=AN,AB=AC,∴∠ABC=∠AMN,∴∠AMN=∠ACN,本选项结论正确,符合题意;D、只有当点M为BC的中点时,∠BAM=∠CAM=∠CAN,才有MN⊥AC,故本选项结论错误,不符合题意;【解析】解:∵点A(a,1)与点B(−2,b)关于原点成中心对称,∴a =2,b =−1,∴a +b =1,故选:C .8.【答案】A【解析】解:作AD ⊥BC 于点D ,作BE ⊥AC 于点E ,AD 和BE 交于点O ,如图所示,设AB =2a ,则BD =a ,∵∠ADB =90°,∴AD =√AB 2−BD 2=√3a , ∴OD =13AD =√33a , ∴圆中的黑色部分的面积与△ABC 的面积之比是:π×(√33a)2×122a⋅√3a2=√3π18, 故选:A . 9.【答案】C【解析】解:A.是轴对称图形,不是中心对称图形,故本选项错误;B .不是轴对称图形,是中心对称图形,故本选项错误;C .既是轴对称图形,又是中心对称图形,故本选项正确;D .是轴对称图形,不是中心对称图形,故本选项错误.故选C .10.【答案】D【解析】解:A.不是中心对称图形,故此选项不合题意;B .不是中心对称图形,故此选项不合题意;C .不是中心对称图形,故此选项不合题意;D .是中心对称图形,故此选项符合题意;故选:D .11.【答案】D【解析】解:A.是中心对称图形,不是轴对称图形,故此选项不合题意;B .不是中心对称图形,也不是轴对称图形,故此选项不合题意;C.不是中心对称图形,是轴对称图形,故此选项不合题意;D.既是中心对称图形,也是轴对称图形,故此选项符合题意;故选:D.12.【答案】D【解析】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意;B.是中心对称图形,不是轴对称图形,故此选项不合题意;C.不是中心对称图形,是轴对称图形,故此选项不合题意;D.既是中心对称图形,也是轴对称图形,故此选项符合题意;故选:D.13.【答案】C【解析】解:A.是轴对称图形,不是中心对称图形,故此选项不合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.既是轴对称图形又是中心对称图形,故此选项符合题意;D.是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C.14.【答案】C【解析】解:A.既不是中心对称图形,也不是轴对称图形,故此选项不合题意;B.既不是中心对称图形,也不是轴对称图形,故此选项不合题意;C.既是中心对称图形,也是轴对称图形,故此选项符合题意;D.不是中心对称图形,是轴对称图形,故此选项不合题意;故选:C.15.【答案】C【解析】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意;B.是中心对称图形,不是轴对称图形,故此选项不合题意;C.既是中心对称图形,也是轴对称图形,故此选项符合题意;D.不是中心对称图形,是轴对称图形,故此选项不合题意;故选:C.16.【答案】C【解析】解:A.正6边形旋转90°后不能与自身重合,不合题意;B.正9边形旋转90°后不能与自身重合,不合题意;C.正12边形旋转90°后能与自身重合,符合题意;D.正15边形旋转90°后不能与自身重合,不合题意;故选:C.17.【答案】3√3−3【解析】解:在△ABC中,∵∠C=90°,∠B=30°,AB=6,∴AC=3,BC=3√3,∠CAB=60°,∵将△ABC绕点A逆时针方向旋转15°得到△AB′C′,∴△ABC≌△AB′C′,∠C′AE=45°,∴AC=AC′=C′E=3,BC=B′C′=3√3,∴B′E=B′C′−C′E=3√3−3.先在含30°锐角的直角三角形中计算出两条直角边,再根据旋转性质得到对应边相等、对应角相等得到AC=AC′=C′E=3,BC=B′C′=3√3,即可解答.18.【解析】解:如图,设EF交AD于点J,AD交BH于点O,过点E作EK⊥AB于点K.∵∠EAF=∠BAD=90°,∴∠DAF=∠BAE,∵AFAD =AEAB=12,∴AFAE =ADAB,∴△DAF∽△BAE,∴∠ADF=∠ABE,∵∠DOH=∠AOB,∴∠DHO=∠BAO=90°,∴∠BHD=90°,∵AF=3,AE=4,∠EAF=90°,∴EF=√32+42=5,∵EF⊥AD,∴12⋅AE⋅AF=12⋅EF⋅AJ,∴AJ =125,∴EJ =√AE 2−AJ 2=√42−(125)2=165, ∵EJ//AB ,∴OJ OA =EJ AB ,∴OJOJ+125=1658, ∴OJ =85, ∴OA =AJ +OJ =125+85=4, ∴OB =√AB 2+AO 2=√42+82=4√5,OD =AD −AO =6−4=2,∵cos∠ODH =cos∠ABO ,∴DH OD =AB BO , ∴DH 2=4√5, ∴DH =4√55. 故答案为:90°,4√55. 19.【答案】72(答案不唯一).【解析】解:360°÷5=72°,则这个图案绕着它的中心旋转72°后能够与它本身重合,故答案为:72(答案不唯一). 20.【答案】3√34【解析】解:如下图所示,设A′B′与BD 交于点O ,连接A′D 和AD ,∵点D 为BC 的中点,AB =AC ,∠ABC =30°,∴AD ⊥BC ,A′D ⊥B′C′,A′D 是∠B′A′C′的角平分线,AD 是∠BAC ,∴∠B′A′C′=120°,∠BAC=120°,∴∠BAD=∠B′A′D=60°,∵A′D=AD,∴△A′AD是等边三角形,∴A′A=AD=A′D=1,∵∠BA′B′=180°−∠B′A′C′=60°,∴∠BA′B′=∠A′AD,∴A′B′//AD,∴A′O⊥BC,∴A′O=12A′D=12,∴OD=√1−14=√32,∵A′B′=2A′D=2,∵∠A′BD=∠A′DO=30°,∴BO=OD,∴OB′=2−12=32,BD=2OD=√3,∴S△BB′D=12×BD×B′O=12×√3×32=3√34.先证明△A′AD是等边三角形,再证明A′O⊥BC,再利用直角三角形30°角对应的边是斜边的一半分别求出A′B′和A′O,再利用勾股定理求出OD,从而求得△BB′D的面积.21.【答案】(2,−2)【解析】解:线段OA绕原点O顺时针旋转90°如图所示,则A′(2,−2),则旋转后A点坐标变为:(2,−2),故答案为:(2,−2).22.【答案】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,点B2的坐标为(−4,−6);【解析】(1)根据关于y轴对称的点的坐标得到A1、B1、C1的坐标,然后描点即可;(2)把A、B、C的坐标都乘以−2得到A2、B2、C2的坐标,然后描点即可.本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.也考查了轴对称变换.23.【答案】解:(1)作点B关于直线AC的对称点D,连接ABCD,四边形ABCD为筝形,符合题意.(2)将点A向右平移1个单位,再向上平移1个单位可得点D,连接ABCD,AD//BC且AD= BC,∴四边形ABCD为矩形,符合题意.24.【答案】(1)解:由题意,得A′(a,n°),∵a=3,n=37,∴A′(3,37°),故答案为:(3,37°);(2)证明:如图:∵A′(3,74°),B(3,74°),∴∠AOA′=37°,∠AOB=74°,OA=OB=3,∴∠A′OB=∠AOB−∠AOA′=74°−37°=37°,∵OA′=OA′,∴△AOA′≌△BOA′(SAS),∴A′A=A′B.25.【答案】解:(1)如图(1)中,点F,点G即为所求;(2)如图(2)中,线段AH,点Q即为所求.26.【答案】解:图形如图所示:【解析】利用轴对称图形,中心对称图形的性质,画出图形即可.本题考查利用作图设计图案,等边三角形的判定和性质,轴对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.。

中考数学《旋转》专题练习含答案解析

中考数学《旋转》专题练习含答案解析

旋转一、选择题(共6小题,每小题4分,满分24分)1.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.2.如图,所给的图案由△ABC绕点O顺时针旋转()前后的图形组成的.A.45°、90°、135°B.90°、135°、180°C.45°、90°、135°、180°、225° D.45°、180°、225°3.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣4.如图,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是()A.2:3:4 B.3:4:5C.4:5:6 D.以上结果都不对5.下列图形中,是中心对称图形的是()A.菱形B.等腰梯形C.等边三角形D.等腰直角三角形6.在平面直角坐标系中,点P(2,﹣3)关于原点对称的点的坐标是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(﹣3,2)二、填空题(共6小题,每小题5分,满分30分)7.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是.8.如图所示,△ABC中,∠BAC=90°,AB=AC=5,△ABC按逆时针方向旋转一个角度后,成为△ACD,则旋转中心是点、旋转角是.9.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA PB+PC(选填“>”、“=”、“<”)10.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=度.11.如图,O是等边△ABC内一点,将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,则旋转角为度,图中除△ABC外,还有等边三形是△.12.如图,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有.三、解答题13.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.14.如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果△APQ的周长为2,求∠PCQ的度数.15.有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30°.(1)请直接写出AF的长;(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求△AFK的面积(保留根号).旋转参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:既是中心对称图形又是轴对称图形的只有A.故选A.【点评】掌握好中心对称与轴对称的概念.轴对称的关键是寻找对称轴,两边图象沿对称轴折叠后可重合,中心对称是要寻找对称中心,图形旋转180度后与原图重合.2.如图,所给的图案由△ABC绕点O顺时针旋转()前后的图形组成的.A.45°、90°、135°B.90°、135°、180°C.45°、90°、135°、180°、225° D.45°、180°、225°【考点】旋转的性质.【专题】计算题.【分析】根据旋转的性质,把旋转后的图形看作为正八边形,依次得到旋转的角度.【解答】解:把△ABC绕点O顺时针旋转45°,得到△HEF;顺时针旋转180°,得到△ADC;顺时针旋转225°,得到△HGF;故选D.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.3.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣【考点】旋转的性质;正方形的性质.【分析】设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.【解答】解:如图,设B′C′与CD的交点为E,连接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋转角为30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.故选:C.【点评】本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.4.如图,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是()A.2:3:4 B.3:4:5C.4:5:6 D.以上结果都不对【考点】旋转的性质;三角形内角和定理;等边三角形的性质.【专题】计算题.【分析】将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,则AP′=AP,∠P′AP=60°,得到△AP′P是等边三角形,PP′=AP,所以△P′CP的三边长分别为PA,PB,PC;再由∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,得到∠APB=100°,∠BPC=120°,∠CPA=140°,这样可分别求出∠PP′C=∠AP′C﹣∠AP′P=∠APB ﹣∠AP′P=100°﹣60°=40°,∠P′PC=∠APC﹣∠APP′=140°﹣60°=80°,∠PCP′=180°﹣(40°+80°)=60°,即可得到答案.【解答】解:如图,将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,∵AP′=AP,∠P′AP=60°,∴△AP′P是等边三角形,∴PP′=AP,∵P′C=PB,∴△P′CP的三边长分别为PA,PB,PC,∵∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,∴∠APB=100°,∠BPC=120°,∠CPA=140°,∴∠PP′C=∠AP′C﹣∠AP′P=∠APB﹣∠AP′P=100°﹣60°=40°,∠P′PC=∠APC﹣∠APP′=140°﹣60°=80°,∠PCP′=180°﹣(40°+80°)=60°,∴∠PP′C:∠PCP′:∠P′PC=2:3:4.故选A.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等边三角形的性质.5.下列图形中,是中心对称图形的是()A.菱形B.等腰梯形C.等边三角形D.等腰直角三角形【考点】中心对称图形.【分析】旋转180°后与原图重合的图形是中心对称图形.【解答】解:菱形,等腰梯形,等边三角形,等腰直角三角形都是轴对称图形;菱形既是轴对称图形,又是中心对称图形.故选A.【点评】运用轴对称和中心对称图形概念,找出符合条件的图形.【链接】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.6.在平面直角坐标系中,点P(2,﹣3)关于原点对称的点的坐标是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(﹣3,2)【考点】关于原点对称的点的坐标.【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y)”解答.【解答】解:根据中心对称的性质,得点P(2,﹣3)关于原点对称的点的坐标是(﹣2,3).故选B.【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.二、填空题(共6小题,每小题5分,满分30分)7.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是(﹣1,).【考点】坐标与图形变化﹣旋转.【专题】压轴题.【分析】已知将点P0绕着原点O按逆时针方向旋转60°得点P1,则OP1=1,P1点的坐标是(.则P2的坐标是;再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3与P2关于y轴对称,因而点P3的坐标就很容易求出.【解答】解:∵点P0绕着原点O按逆时针方向旋转60°得点P1,∴P1点的坐标是(,∴P2的坐标是,又∵点P3与P2关于y轴对称,∴点P3的坐标是(﹣1,).【点评】解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.8.如图所示,△ABC中,∠BAC=90°,AB=AC=5,△ABC按逆时针方向旋转一个角度后,成为△ACD,则旋转中心是点A、旋转角是∠CAD,是90°.【考点】旋转的性质.【分析】确定图形的旋转时首先要确定旋转前后的对应点,即可确定旋转中心.【解答】解:旋转中心是点A、旋转角是∠CAD,是90°.【点评】本题主要考查了旋转的定义,正确确定旋转中的对应点,是确定旋转中心,旋转角的前提.9.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA<PB+PC(选填“>”、“=”、“<”)【考点】旋转的性质;三角形三边关系;等边三角形的判定.【分析】此题只需根据三角形的任意两边之和大于第三边和等边三角形的性质,进行分析即可.【解答】解:根据三角形的三边关系,得:BC<PB+PC.又AB=BC>PA,∴PA<PB+PC.【点评】本题结合旋转主要考查了三角形的三边关系:两边之和大于第三边,两边之差小于第三边.10.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=45度.【考点】旋转的性质;正方形的性质.【分析】根据BE+DF=EF,则延长FD到G,使DG=BE,则FG=EF,可以认为是把△ABE 绕点A逆时针旋转90度,得到△ADG,根据旋转的定义即可求解.【解答】解:如图:延长FD到G,使DG=BE,则FG=EF,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG又∴AF=AF,GF=EF∴△AGF≌△AEF∴∠EAF=∠GAF=×90°=45°.【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.11.如图,O是等边△ABC内一点,将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,则旋转角为60度,图中除△ABC外,还有等边三形是△AOD.【考点】旋转的性质;等边三角形的性质;等边三角形的判定.【分析】根据旋转的性质及全等三角形的性质作答.【解答】解:∵将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,∴△AOB≌△ADC,∴OA=AD,∠BAO=∠DAC,∴∠BAO+∠OAC=∠DAC+∠OAC=∠BAC=60°,即∠OAD=60°,所以旋转角为60°.∵OA=AD,∠OAD=60°,∴△AOD为等边三角形.【点评】此题主要考查了图形旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.12.如图,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有△EPQ.【考点】旋转的性质.【分析】旋转中心是P,旋转方向为逆时针,旋转角是90度,已确定,再通过观察发现全等三角形,判断是否符合本题的旋转规律.【解答】解:根据旋转的性质可知,旋转中心是P,旋转角是90度,图中通过旋转得到的三角形还有△EPQ.【点评】本题考查旋转两相等的性质,即对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.三、解答题13.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【专题】计算题;压轴题.【分析】(1)BM+DN=MN成立,证得B、E、M三点共线即可得到△AEM≌△ANM,从而证得ME=MN.(2)DN﹣BM=MN.证明方法与(1)类似.【解答】解:(1)BM+DN=MN成立.证明:如图,把△ADN绕点A顺时针旋转90°,得到△ABE,则可证得E、B、M三点共线(图形画正确).∴∠EAM=90°﹣∠NAM=90°﹣45°=45°,又∵∠NAM=45°,∴在△AEM与△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∵ME=BE+BM=DN+BM,∴DN+BM=MN;(2)DN﹣BM=MN.在线段DN上截取DQ=BM,在△ADQ与△ABM中,∵,∴△ADQ≌△ABM(SAS),∴∠DAQ=∠BAM,∴∠QAN=∠MAN.在△AMN和△AQN中,∴△AMN≌△AQN(SAS),∴MN=QN,∴DN﹣BM=MN.【点评】本题考查了旋转的性质,解决此类问题的关键是正确的利用旋转不变量.14.如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果△APQ的周长为2,求∠PCQ的度数.【考点】正方形的性质;全等三角形的判定与性质.【专题】计算题.【分析】简单的求正方形内一个角的大小,首先从△APQ的周长入手求出PQ=DQ+BP,然后将△CDQ逆时针旋转90°,使得CD、CB重合,然后利用全等来解.【解答】解:如图所示,△APQ的周长为2,即AP+AQ+PQ=2①,正方形ABCD的边长是1,即AQ+QD=1,AP+PB=1,∴AP+AQ+QD+PB=2②,①﹣②得,PQ﹣QD﹣PB=0,∴PQ=PB+QD.延长AB至M,使BM=DQ.连接CM,△CBM≌△CDQ(SAS),∴∠BCM=∠DCQ,CM=CQ,∵∠DCQ+∠QCB=90°,∴∠BCM+∠QCB=90°,即∠QCM=90°,PM=PB+BM=PB+DQ=PQ.在△CPQ与△CPM中,CP=CP,PQ=PM,CQ=CM,∴△CPQ≌△CPM(SSS),∴∠PCQ=∠PCM=∠QCM=45°.【点评】熟练掌握正方形的性质,会运用正方形的性质进行一些简单的运算.15.有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30°.(1)请直接写出AF的长;(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求△AFK的面积(保留根号).【考点】锐角三角函数的定义;旋转的性质.【专题】操作型.【分析】(1)根据旋转的性质可知△AFM≌△ADB,则AF=AD=BD•cos∠ADB=8×=4cm;(2)当△AFK为等腰三角形时,由于AM<AF,那么A不能是等腰△AFK的顶点,则分两种情况:①K为顶点,即AK=FK时;②F为顶点,即AF=FK.针对每一种情况,利用三角形的面积公式,可分别求出△AFK的面积.【解答】解:(1)AF=;(2)△AFK为等腰三角形时,分两种情况:①当AK=FK时,如图.过点K作KN⊥AF于N,则KN⊥AF,AN=NF=AF=2cm.在直角△NFK中,∠KNF=90°,∠F=30°,∴KN=NF•tan∠F=2cm.∴△AFK的面积=×AF×KN=;②当AF=FK时,如图.过点K作KP⊥AF于P.在直角△PFK中,∠KPF=90°,∠F=30°,∴KP=KF=2cm.∴△AFK的面积=×AF×KP=12cm2.【点评】本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.注意(2)中需分情况讨论△AFK为等腰三角形时的不同分类,不要漏解.。

整理中考数学几何图形旋转试题经典问题及解答

整理中考数学几何图形旋转试题经典问题及解答

几何图形旋转常见问题一、填空题1.如图1,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,那么它们的公共局部的面积等于.2.如图2,将一块斜边长为12cm,∠B=60°的直角三角板ABC,绕点C沿逆时针方向旋转90°至△A′B′C′的位置,再沿CB向右平移,使点B′刚好落在斜边AB上,那么此三角板向右平移的距离是cm.3.正△ABC的边长为3cm,边长为1cm的正△RPQ的顶点R与点A重合,点P,Q分别在AC,AB上,将△RPQ沿着边AB,BC,CA顺时针连续翻转〔如图3所示〕,直至点P第一次回到原来的位置,那么点P运动路径的长为cm.4.如图4,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,∠BCD=45°,将腰CD 以点D为中心逆时针旋转90°至ED,连结AE,CE,那么△ADE的面积是.二、解答题5.如图5-1,P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD 于点F.(1) 求证:BP=DP;(2) 如图5-2,假设四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?假设是,请给予证明;假设不是,请用反例加以说明;(3) 试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连结,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论 .6.如图6-1是一个美丽的风车图案,你知道它是怎样画出来的吗?按以下步骤可画出这个风车图案:在图6-2中,先画线段OA,将线段OA平移至CB处,得到风车的第一个叶片F1,然后将第一个叶片OABC绕点O逆时针旋转180°得到第二个叶片F2,再将F1、F2同时绕点O逆时针旋转90°得到第三、第四个叶片F3、F4.根据以上过程,解答以下问题:(1)假设点A的坐标为(4,0),点C的坐标为(2,1),写出此时点B的坐标;(2)请你在图6-2中画出第二个叶片F2;(3)在(1)的条件下,连接OB,由第一个叶片逆时针旋转180°得到第二个叶片的过程中,线段OB扫过的图形面积是多少?7.如图7,在直角坐标系中,点P0的坐标为(1,0),将线段OP按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OPn〔n为正整数〕.〔1〕求点P6的坐标;〔2〕求△P5OP6的面积;〔3〕我们规定:把点Pn (xn,yn)〔n=0,1,2,3,…〕的横坐标xn、纵坐标yn都取绝对值后得到的新坐标(|xn |,|yn|)称之为点Pn的“绝对坐标〞.根据图中点Pn的分布规律,请你猜测点Pn的“绝对坐标〞,并写出来.8.把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H 〔如图8〕.试问线段HG与线段HB相等吗?请先观察猜测,然后再证明你的猜测.9.如图9-1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片〔如图9-2〕,量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角形纸片摆成如图9-3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合〔在图9-3至图9-6中统一用F表示〕图9-1 图9-2 图9-3 小明在对这两张三角形纸片进展如下操作时遇到了三个问题,请你帮助解决.〔1〕将图9-3中的△ABF沿BD向右平移到图9-4的位置,使点B与点F 重合,请你求出平移的距离;F交DE于〔2〕将图9-3中的△ABF绕点F顺时针方向旋转30°到图9-5的位置,A1点G,请你求出线段FG的长度;交DE于点H,请证明:〔3〕将图9-3中的△ABF沿直线AF翻折到图9-6的位置,AB1AH﹦DH.图9-4 图9-5 图9-6参考答案一、1. 2. 6-2 3二、5. 解:〔1〕解法一:在△ABP与△ADP中,利用全等可得BP=DP.解法二:利用正方形的轴对称性,可得BP=DP.〔2〕不是总成立 .当四边形PECF绕点C按逆时针方向旋转,点P旋转到BC边上时,DP>DC>BP,此时BP=DP 不成立.〔3〕连接BE、DF,那么BE与DF始终相等.在图1-1中,可证四边形PECF为正方形,在△BEC与△DFC中,可证△BEC≌△DFC .从而有 BE=DF .6. 解:〔1〕B〔6,1〕〔2〕图略〔3〕线段OB扫过的图形是一个半圆.过B作BD⊥x轴于D.由〔1〕知B点坐标为〔6,1〕,∴OB2=OD2+BD2=62+12=37.∴线段OB扫过的图形面积是.7. 解:〔1〕根据旋转规律,点P6落在y轴的负半轴,而点Pn到坐标原点的距离始终等于前一个点到原点距离的倍,故其坐标为P6(0,26),即P6(0,64).〔2〕由可得,△P0OP1∽△P1OP2∽…∽△Pn-1OPn,设P1(x1,y1),那么y1=2sin45°=,∴.又∵,∴.〔3〕由题意知,OP0旋转8次之后回到x轴正半轴,在这8次中,点Pn分别落在坐标象限的平分线上或x轴或y轴上,但各点绝对坐标的横、纵坐标均为非负数,因此,点Pn的坐标可分三类情况:令旋转次数为n.①当n=8k或n=8k+4时〔其中k为自然数〕,点Pn 落在x轴上,此时,点Pn的绝对坐标为(2n,0);②当n=8k+1或n=8k+3或n=8k+5或n=8k+7时〔其中k为自然数〕,点Pn落在各象限的平分线上,此时,点P n的绝对坐标为,即.③当n=8k+2或n=8k+6时〔其中k为自然数〕,点Pn落在y轴上,此时,点P n的绝对坐标为(0,2n).8. 解:HG=HB.证法1:连结AH〔如图10〕.∵四边形ABCD,AEFG都是正方形,∴∠B=∠G=90°.由题意,知AG=AB,又AH=AH,∴Rt△AGH≌Rt△ABH〔HL〕.∴HG=HB.证法2:连结GB〔如图11〕.∵四边形ABCD,AEFG都是正方形,∴∠ABC=∠AGF=90°.由题意知AB=AG.∴∠AGB=∠ABG.∴∠HGB=∠HBG.∴HG=HB.9. 解:〔1〕图形平移的距离就是线段BC的长.∵在Rt△ABC中,斜边长为10cm,∠BAC=30°,∴BC=5cm.∴平移的距离为5cm.〔2分〕〔2〕∵∠A1FA=30°,∴∠GFD=60°.又∠D=30°,∴∠FGD=90°.在Rt△EFD中,ED=10 cm,∴ .∵FG=cm.〔3〕在△AHE与△DHB1中,∠FAB1=∠EDF=30°.∵FD=FA,EF=FB=FB1,∴FD-FB1=FA-FE,即AE=DB1.又∵∠AHE=∠DHB1,∴△AHE≌△DHB1〔AAS〕.∴AH=DH.。

中考数学总复习《旋转》专项测试题-附参考答案

中考数学总复习《旋转》专项测试题-附参考答案

中考数学总复习《旋转》专项测试题-附参考答案(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.下列图形中,既是中心对称图形又是轴对称图形的是( )A.菱形B.等边三角形C.平行四边形D.直角三角形2.如图,将△ABC绕顶点A顺时针旋转60∘后,得到△ABʹCʹ,且Cʹ为BC的中点,则CʹD:DBʹ=( )A.1:2B.1:2√2C.1:√3D.1:33.如图所示,将一个含30∘角的直角三角板ABC绕点A逆时针旋转,点B的对应点是点Bʹ,若点Bʹ,A,C在同一条直线上,则三角板ABC旋转的度数是( )A.60∘B.90∘C.120∘D.150∘4.如图,在Rt△ABC中∠ACB=90∘,∠ABC=30∘,将△ABC绕点C顺时针旋转至△AʹBʹC,使得点Aʹ恰好落在AB上,则旋转角度为( )A.30∘B.60∘C.90∘D.150∘5.如图,将Rt△ABC绕直角顶点C顺时针旋转90∘,得到△AʹBʹC,连接AAʹ,若∠1=25∘,则∠BAAʹ的度数是( )A.55∘B.60∘C.65∘D.70∘6.如图,O是正△ABC内一点OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60∘得到线段BOʹ,下列结论:①△BOʹA可以由△BOC绕点B逆时针旋转60∘得到;②点O与Oʹ的距离为4;③∠AOB=150∘;=6+3√3;④S四边形AOBOʹ√3.⑤S△AOC+S△AOB=6+94其中正确的结论是( )A.①②③B.①②③④C.①②③⑤D.①②③④⑤7.如图,边长为8a的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60∘得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是( )a A.4a B.2a C.a D.138.如图,在Rt△ABC中AC=BC=2,将△ABC绕点A逆时针旋转60∘,连接BD,则图中阴影部分的面积是( )A.2√3−2B.2√3C.√3−1D.4√3二、填空题(共5题,共15分)9.如图所示,△ABC中∠BAC=33∘,将△ABC绕点A按顺时针方向旋转50∘,对应得到△ABʹCʹ,则∠BʹAC的度数为.10.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30∘后,得到正方形EFCG,EF交AD于点H.则DH=.11.如图,将边长为2的正方形ABCD绕点A按逆时针方向旋转,得到正方形ABʹCʹDʹ,连接BBʹ,BCʹ,在旋转角从0∘到180∘的整个旋转过程中,当BBʹ=BCʹ时,△BBʹCʹ的面积为.12.如图,在等腰△ABC中AB=AC,∠B=30∘.以点B为旋转中心,旋转30∘,点A,C分别落在点Aʹ,Cʹ处,直线AC,AʹCʹ交于点D,那么AD的值为.AC13.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180∘得到△AʹOBʹ,则点Bʹ的坐标是.三、解答题(共3题,共45分)14.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按照顺时针方向旋转m度后得到△DEC,点D刚好落在AB边上,求m的值.15.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC绕点B顺时针旋转90°得到△A′BC′,请画出△A′BC′,并求BA边旋转到BA′位置时所扫过图形的面积;(2)请在网格中画出一个格点△A″B″C″,使△A″B″C″∽△ABC,且相似比不为1.16.如图是10×8的网格,网格中每个小正方形的边长均为1,A、B、C三点在小正方形的顶点上,请在图①、②中各画一个凸四边形,使其满足以下要求:(1)请在图①中取一点D(点D必须在小正方形的顶点上),使以A、B、C、D为顶点的四边形是中心对称图形,但不是轴对称图形;(2)请在图形②中取一点D(点D必须在小正方形的顶点上),使以A、B、C、D为顶点的四边形是轴对称图形,但不是中心对称图形.参考答案1. 【答案】A2. 【答案】D3. 【答案】D4. 【答案】B5. 【答案】C6. 【答案】C7. 【答案】B8. 【答案】C9. 【答案】17°10. 【答案】√311. 【答案】2+√3或2−√312. 【答案】√3−1或2−√313. 【答案】(−2,−2√3)14.【答案】解:∵∠ACB=90°,∠B=30°∴AB=2AC;∠A=60°;由题意得:AC=DC∴△DAC 为等边三角形∴∠ACD=60°∴m=60°.15.【答案】解;(1)如图所示:△A ′BC ′即为所求 ∵AB=√32+22=√13∴BA 边旋转到BA ″位置时所扫过图形的面积为:90π×(√13)2360=13π4(2)如图所示:△A ″B ″C ″∽△ABC ,且相似比为2.16.【答案】解:(1)如图所示:四边形ABCD 即为所求;(2)如图所示:四边形ABCD 即为所求.。

九年级数学复习---图形的旋转专题练习题附答案

九年级数学复习---图形的旋转专题练习题附答案

九年级数学复习---图形的旋转专题练习题1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?3.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B•对应点的位置,以及旋转后的三角形.4.如图,四边形ABCD是边长为1的正方形,且DE=14,△ABF是△ADE的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连结EF,那么△AEF是怎样的三角形?5.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M•在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.答案:1. 解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.2. (1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)•画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.(3)旋转前、后的图形全等.3.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,•又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连结CD(2)以CB为一边作∠BCE,使得∠BCE=∠ACD(3)在射线CE上截取CB′=CB则B′即为所求的B的对应点.(4)连结DB′则△DB′C就是△ABC绕C点旋转后的图形.4. 分析:由△ABF是△ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF•的长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到.•△ABF与△ADE 是完全重合的,所以它是直角三角形.解:(1)旋转中心是A 点.(2)∵△ABF 是由△ADE 旋转而成的∴B 是D 的对应点 ∴∠DAB=90°就是旋转角(3)∵AD=1,DE=14∴∵对应点到旋转中心的距离相等且F 是E 的对应点 ∴ (4)∵∠EAF=90°(与旋转角相等)且AF=AE ∴△EAF 是等腰直角三角形.5. 分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明. 解:∵四边形ABCD 、四边形AKLM 是正方形∴AB=AD ,AK=AM ,且∠BAD=∠KAM 为旋转角且为90°∴△ADM 是以A 为旋转中心,∠BAD 为旋转角由△ABK 旋转而成的∴BK=DM。

初三旋转考试题及答案

初三旋转考试题及答案

初三旋转考试题及答案初三数学旋转考试题及答案一、选择题(每题3分,共15分)1. 在平面直角坐标系中,点P(3,4)绕原点O逆时针旋转90°后,新坐标为:A. (4,3)B. (-3,4)C. (3,-4)D. (4,-3)2. 一个正方形绕其中心点旋转45°后,其边长不变,面积不变,以下说法正确的是:A. 形状不变B. 形状改变C. 面积改变D. 形状和面积都改变3. 一个圆心在原点的圆,半径为r,绕原点旋转任意角度后,其半径:A. 变大B. 不变C. 变小D. 无法确定4. 若点A(1,2)绕点B(2,3)旋转30°,旋转后的点A'坐标为:A. (1.5, 3.5)B. (1.5, 2.5)C. (2.5, 3.5)D. 无法确定5. 一个等腰直角三角形绕其直角顶点旋转90°后,其形状:A. 不变B. 变为等边三角形C. 变为等腰三角形D. 变为直角三角形二、填空题(每题2分,共10分)6. 一个矩形绕其中心点旋转180°后,其形状________。

7. 点P(2,-1)绕原点O逆时针旋转45°后,新坐标的横坐标为________。

8. 若一个圆绕其圆心旋转任意角度,其周长________。

9. 一个平行四边形绕其对角线交点旋转90°后,其形状变为________。

10. 一个等边三角形绕其一边的中点旋转60°,旋转后的图形与原图形________。

三、解答题(共25分)11. (5分)若点M(-1,1)绕点N(1,1)旋转60°,求点M'的坐标。

12. (10分)一个边长为4的正方形ABCD,以点A为旋转中心,逆时针旋转30°,求旋转后正方形A'B'C'D'的顶点坐标。

13. (10分)一个圆心在原点,半径为5的圆,绕原点旋转60°,求旋转后圆上任意一点P(x,y)的新坐标。

中考数学真题《图形的旋转》专项测试卷(附答案)

中考数学真题《图形的旋转》专项测试卷(附答案)

中考数学真题《图形的旋转》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(30题)一 、单选题1.(2023·江苏无锡·统考中考真题)如图,ABC 中 55BAC ∠=︒ 将ABC 逆时针旋转(055),αα︒<<︒得到ADE DE 交AC 于F .当40α=︒时 点D 恰好落在BC 上 此时AFE ∠等于( )A .80︒B .85︒C .90︒D .95︒2.(2023·天津·统考中考真题)如图,把ABC 以点A 为中心逆时针旋转得到ADE 点B C 的对应点分别是点D E 且点E 在BC 的延长线上 连接BD 则,下列结论一定正确的是( )A .CAE BED ∠=∠B .AB AE =C .ACE ADE ∠=∠D .CE BD =3.(2023·四川宜宾·统考中考真题)如图,ABC 和ADE 是以点A 为直角顶点的等腰直角三角形 把ADE 以A 为中心顺时针旋转 点M 为射线BD CE 的交点.若3AB 1AD =.以下结论: ①BD CE = ①BD CE ⊥ ①当点E 在BA 的延长线上时 33MC -=①在旋转过程中 当线段MB 最短时 MBC 的面积为12. 其中正确结论有( )A .1个B .2个C .3个D .4个4.(2023·山东聊城·统考中考真题)如图,已知等腰直角ABC 90ACB ∠=︒ 2AB = 点C 是矩形ECGF 与ABC 的公共顶点 且1CE = 3CG = 点D 是CB 延长线上一点 且2CD =.连接BG DF 在矩形ECGF 绕点C 按顺时针方向旋转一周的过程中 当线段BG 达到最长和最短时 线段DF 对应的长度分别为m 和n 则,mn的值为( )A .2B .3C 10D 13二 填空题5.(2023·江苏连云港·统考中考真题)以正五边形ABCDE 的顶点C 为旋转中心 按顺时针方向旋转 使得新五边形A B CD E ''''的顶点D 落在直线BC 上则,正五边ABCDE 旋转的度数至少为______°.6.(2023·湖南张家界·统考中考真题)如图,AO 为BAC ∠的平分线 且50BAC ∠=︒ 将四边形ABOC 绕点A 逆时针方向旋转后 得到四边形AB O C ''' 且100OAC '∠=︒则,四边形ABOC 旋转的角度是______.7.(2023·湖南常德·统考中考真题)如图1 在Rt ABC △中 90ABC ∠=︒ 8AB = 6BC = D 是AB 上一点 且2AD = 过点D 作DE BC ∥交AC 于E 将ADE 绕A 点顺时针旋转到图2的位置.则图2中BDCE的值为__________.8.(2023·江苏无锡·统考中考真题)已知曲线12C C 、分别是函数2(0),(0,0)ky x y k x x x=-<=>>的图像 边长为6的正ABC 的顶点A 在y 轴正半轴上 顶点B C 在x 轴上(B 在C 的左侧) 现将ABC 绕原点O 顺时针旋转 当点B 在曲线1C 上时 点A 恰好在曲线2C 上则,k 的值为__________.9.(2023·辽宁·统考中考真题)如图,线段8AB = 点C 是线段AB 上的动点 将线段BC 绕点B 顺时针旋转120°得到线段BD 连接CD 在AB 的上方作Rt DCE ∆ 使90,30DCE E ∠=∠= 点F 为DE 的中点 连接AF 当AF 最小时 BCD ∆的面积为___________.10.(2023·江西·统考中考真题)如图,在ABCD 中 602B BC AB ∠=︒=, 将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP 连接PC PD .当PCD 为直角三角形时 旋转角α的度数为_______.11.(2023·上海·统考中考真题)如图,在ABC 中 35C ∠=︒ 将ABC 绕着点A 旋转(0180)αα︒<<︒ 旋转后的点B 落在BC 上 点B 的对应点为D 连接AD AD ,是BAC ∠的角平分线则,α=________.12.(2023·湖南郴州·统考中考真题)如图,在Rt ABC △中 90BAC ∠=︒ 3cm AB = =60B ∠︒.将ABC 绕点A 逆时针旋转 得到AB C ''△ 若点B 的对应点B '恰好落在线段BC 上则,点C 的运动路径长.....是___________cm (结果用含π的式子表示).13.(2023·内蒙古·统考中考真题)如图,在Rt ABC △中 90,3,1ACB AC BC ∠=︒== 将ABC 绕点A 逆时针方向旋转90︒ 得到AB C ''△.连接BB ' 交AC 于点D 则,ADDC的值为________.14.(2023·黑龙江绥化·统考中考真题)已知等腰ABC 120A ∠=︒ 2AB =.现将ABC 以点B 为旋转中心旋转45︒ 得到A BC ''△ 延长C A ''交直线BC 于点D .则A D '的长度为_______. 15.(2023·浙江嘉兴·统考中考真题)一副三角板ABC 和DEF 中90304512C D B E BC EF ∠=∠=︒∠=︒∠=︒==,,,.将它们叠合在一起 边BC 与EF 重合 CD 与AB 相交于点G (如图1) 此时线段CG 的长是___________ 现将DEF 绕点()C F 按顺时针方向旋转(如图2)边EF 与AB 相交于点H 连结DH 在旋转0︒到60︒的过程中 线段DH 扫过的面积是___________.三 解答题16.(2023·北京·统考中考真题)在ABC 中 ()045B C αα∠=∠=︒<<︒ AM BC ⊥于点M D 是线段MC 上的动点(不与点M C 重合) 将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1 当点E 在线段AC 上时 求证:D 是MC 的中点(2)如图2 若在线段BM 上存在点F (不与点B M 重合)满足DF DC = 连接AE EF 直接写出AEF ∠的大小 并证明.17.(2023·四川自贡·统考中考真题)如图1 一大一小两个等腰直角三角形叠放在一起 M N 分别是斜边DE AB 的中点 2,4DE AB ==.(1)将CDE 绕顶点C 旋转一周 请直接写出点M N 距离的最大值和最小值(2)将CDE 绕顶点C 逆时针旋转120︒(如图2) 求MN 的长.18.(2023·四川达州·统考中考真题)如图,网格中每个小正方形的边长均为1 ABC 的顶点均在小正方形的格点上.(1)将ABC 向下平移3个单位长度得到111A B C △ 画出111A B C △ (2)将ABC 绕点C 顺时针旋转90度得到222A B C △ 画出222A B C △ (3)在(2)的运动过程中请计算出ABC 扫过的面积.19.(2023·辽宁·统考中考真题)在Rt ABC ∆中 90°ACB ∠= CA CB = 点O 为AB 的中点 点D 在直线AB 上(不与点,A B 重合) 连接CD 线段CD 绕点C 逆时针旋转90° 得到线段CE 过点B 作直线l BC ⊥ 过点E 作EF l ⊥ 垂足为点F 直线EF 交直线OC 于点G .(1)如图,当点D 与点O 重合时 请直接写出线段AD 与线段EF 的数量关系 (2)如图,当点D 在线段AB 上时 求证:2CG BD BC +=(3)连接DE CDE 的面积记为1S ABC 的面积记为2S 当:1:3EF BC =时 请直接写出12S S 的值.20.(2023·四川乐山·统考中考真题)在学习完《图形的旋转》后 刘老师带领学生开展了一次数学探究活动【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图,将一个三角形纸板ABC 绕点A 逆时针旋转θ到达AB C ''△的位置 那么可以得到:AB AB '=AC AC '= BC B C ''= BAC B AC ''∠=∠ ABC AB C ''∠=∠ ACB AC B ''∠=∠( )刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中 即“变”中蕴含着“不变” 这是我们解决图形旋转的关键 故数学就是一门哲学. 【问题解决】(1)上述问题情境中“( )”处应填理由:____________________(2)如图,小王将一个半径为4cm 圆心角为60︒的扇形纸板ABC 绕点O 逆时针旋转90︒到达扇形纸板A B C '''的位置.①请在图中作出点O①如果=6cm BB '则,在旋转过程中 点B 经过的路径长为__________ 【问题拓展】小李突发奇想 将与(2)中完全相同的两个扇形纸板重叠 一个固定在墙上 使得一边位于水平位置 另一个在弧的中点处固定 然后放开纸板 使其摆动到竖直位置时静止 此时 两个纸板重叠部分的面积是多少呢?如图所示 请你帮助小李解决这个问题.21.(2023·浙江绍兴·统考中考真题)在平行四边形ABCD 中(顶点,,,A B C D 按逆时针方向排列) 12,10,AB AD B ==∠为锐角 且4sin 5B =.(1)如图1 求AB 边上的高CH 的长.(2)P 是边AB 上的一动点 点,C D 同时绕点P 按逆时针方向旋转90︒得点,C D ''. ①如图2 当点C '落在射线CA 上时 求BP 的长. ①当AC D ''△是直角三角形时 求BP 的长.22.(2023·四川南充·统考中考真题)如图,正方形ABCD 中 点M 在边BC 上 点E 是AM 的中点 连接EDEC .(1)求证:ED EC =(2)将BE 绕点E 逆时针旋转 使点B 的对应点B '落在AC 上 连接MB '.当点M 在边BC 上运动时(点M 不与B C 重合) 判断CMB '的形状 并说明理由.(3)在(2)的条件下 已知1AB = 当45DEB ∠'=︒时 求BM 的长.23.(2023·江苏扬州·统考中考真题)【问题情境】在综合实践活动课上 李老师让同桌两位同学用相同的两块含30︒的三角板开展数学探究活动 两块三角板分别记作ADB 和,90,30A D C ADB A D C B C ∠=∠=︒∠''''=∠=︒△ 设2AB =. 【操作探究】如图1 先将ADB 和A D C ''的边AD A D ''重合 再将A D C ''绕着点A 按顺时针...方向旋转 旋转角为()0360αα︒≤≤︒ 旋转过程中ADB 保持不动 连接BC .(1)当60α=︒时 BC =________ 当22BC = α=________︒ (2)当90α=︒时 画出图形 并求两块三角板重叠部分图形的面积(3)如图2 取BC 的中点F 将A D C ''绕着点A 旋转一周 点F 的运动路径长为________. 24.(2023·湖南·统考中考真题)(1)[问题探究]如图1 在正方形ABCD 中 对角线AC BD 、相交于点O .在线段AO 上任取一点P (端点除外) 连接PD PB 、.①求证:PD PB =①将线段DP 绕点P 逆时针旋转 使点D 落在BA 的延长线上的点Q 处.当点P 在线段AO 上的位置发生变化时 DPQ ∠的大小是否发生变化?请说明理由 ①探究AQ 与OP 的数量关系 并说明理由. (2)[迁移探究]如图2 将正方形ABCD 换成菱形ABCD 且60ABC ∠=︒ 其他条件不变.试探究AQ 与CP 的数量关系 并说明理由.25.(2023·湖北随州·统考中考真题)1643年 法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A B C 求平面上到这三个点的距离之和最小的点的位置 意大利数学家和物理学家托里拆利给出了分析和证明 该点也被称为“费马点”或“托里拆利点” 该问题也被称为“将军巡营”问题. (1)下面是该问题的一种常见的解决方法 请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空 ①处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空 ①处填写角度数 ①处填写该三角形的某个顶点)当ABC 的三个内角均小于120︒时如图1 将APC △绕 点C 顺时针旋转60︒得到A P C '' 连接PP '由60PC P C PCP ''=∠=︒, 可知PCP '△为 ① 三角形 故PP PC '= 又P A PA ''= 故PA PB PC PA PB PP A B '''++=++≥由 ① 可知 当B P P ' A 在同一条直线上时 PA PB PC ++取最小值 如图2 最小值为A B ' 此时的P 点为该三角形的“费马点” 且有APC BPC APB ∠=∠=∠= ①已知当ABC 有一个内角大于或等于120︒时 “费马点”为该三角形的某个顶点.如图3 若120BAC ∠≥︒则,该三角形的“费马点”为 ① 点.(2)如图4 在ABC 中 三个内角均小于120︒ 且3430AC BC ACB ==∠=︒,, 已知点P 为ABC 的“费马点” 求PA PB PC ++的值(3)如图5 设村庄A B C 的连线构成一个三角形 且已知4km 23km 60AC BC ACB ==∠=︒,,.现欲建一中转站P 沿直线向A B C 三个村庄铺设电缆 已知由中转站P 到村庄A B C 的铺设成本分别为a 元/km a 元/km 2a 元/km 选取合适的P 的位置 可以使总的铺设成本最低为___________元.(结果用含a 的式子表示)26.(2023·四川·统考中考真题)如图1 已知线段AB AC 线段AC 绕点A 在直线AB 上方旋转 连接BC 以BC 为边在BC 上方作Rt BDC 且30DBC ∠=︒.(1)若=90BDC ∠︒ 以AB 为边在AB 上方作Rt BAE △ 且90AEB ∠=︒ 30EBA ∠=︒ 连接DE 用等式表示线段AC 与DE 的数量关系是(2)如图2 在(1)的条件下 若DE AB ⊥ 4AB = 2AC = 求BC 的长(3)如图3 若90BCD ∠=︒ 4AB = 2AC = 当AD 的值最大时 求此时tan CBA ∠的值.27.(2023·湖北黄冈·统考中考真题)【问题呈现】CAB △和CDE 都是直角三角形 90,,ACB DCE CB mCA CE mCD ∠=∠=︒== 连接AD BE 探究ADBE 的位置关系.(1)如图1 当1m =时 直接写出AD BE 的位置关系:____________(2)如图2 当1m ≠时 (1)中的结论是否成立?若成立 给出证明 若不成立 说明理由. 【拓展应用】(3)当3,7,4m AB DE ===时 将CDE 绕点C 旋转 使,,A D E 三点恰好在同一直线上 求BE 的长.28.(2023·内蒙古赤峰·统考中考真题)数学兴趣小组探究了以下几何图形.如图① 把一个含有45︒角的三角尺放在正方形ABCD 中 使45︒角的顶点始终与正方形的顶点C 重合 绕点C 旋转三角尺时 45︒角的两边CM CN 始终与正方形的边AD AB 所在直线分别相交于点M N 连接MN 可得CMN .【探究一】如图① 把CDM 绕点C 逆时针旋转90︒得到CBH 同时得到点H 在直线AB 上.求证:CNM CNH ∠=∠【探究二】在图①中 连接BD 分别交CM CN 于点E F .求证:CEF CNM △∽△【探究三】把三角尺旋转到如图①所示位置 直线BD 与三角尺45︒角两边CM CN 分别交于点E F .连接AC 交BD 于点O 求EFNM的值.29.(2023·湖南·统考中考真题)问题情境:小红同学在学习了正方形的知识后 进一步进行以下探究活动:在正方形ABCD 的边BC 上任意取一点G 以BG 为边长向外作正方形BEFG 将正方形BEFG 绕点B 顺时针旋转.特例感知:(1)当BG 在BC 上时 连接DF AC ,相交于点P 小红发现点P 恰为DF 的中点 如图①.针对小红发现的结论 请给出证明(2)小红继续连接EG 并延长与DF 相交 发现交点恰好也是DF 中点P 如图① 根据小红发现的结论 请判断APE 的形状 并说明理由 规律探究:(3)如图① 将正方形BEFG 绕点B 顺时针旋转α 连接DF 点P 是DF 中点 连接AP EP AEAPE 的形状是否发生改变?请说明理由.30.(2023·贵州·统考中考真题)如图① 小红在学习了三角形相关知识后 对等腰直角三角形进行了探究 在等腰直角三角形ABC 中 ,90CA CB C =∠=︒ 过点B 作射线BD AB ⊥ 垂足为B 点P 在CB 上.(1)【动手操作】如图① 若点P 在线段CB 上 画出射线PA 并将射线PA 绕点P 逆时针旋转90︒与BD 交于点E 根据题意在图中画出图形 图中PBE ∠的度数为_______度 (2)【问题探究】根据(1)所画图形 探究线段PA 与PE 的数量关系 并说明理由 (3)【拓展延伸】如图① 若点P 在射线CB 上移动 将射线PA 绕点P 逆时针旋转90︒与BD 交于点E 探究线段,,BA BP BE 之间的数量关系 并说明理由.参考答案一 单选题1.(2023·江苏无锡·统考中考真题)如图,ABC 中 55BAC ∠=︒ 将ABC 逆时针旋转(055),αα︒<<︒得到ADE DE 交AC 于F .当40α=︒时 点D 恰好落在BC 上 此时AFE ∠等于( )A .80︒B .85︒C .90︒D .95︒【答案】B【分析】根据旋转可得B ADB ADE ∠=∠=∠ 再结合旋转角40α=︒即可求解. 【详解】解:由旋转性质可得:55BAC DAE ∠=∠=︒ AB AD = ①40α=︒①15DAF ∠=︒ 70B ADB ADE ∠=∠=∠=︒ ①85AFE DAF ADE ∠=∠+∠=︒故选:B .【点睛】本题考查了几何—旋转问题 掌握旋转的性质是关键.2.(2023·天津·统考中考真题)如图,把ABC 以点A 为中心逆时针旋转得到ADE 点B C 的对应点分别是点D E 且点E 在BC 的延长线上 连接BD 则,下列结论一定正确的是( )A .CAE BED ∠=∠B .AB AE =C .ACE ADE ∠=∠D .CE BD = 【答案】A【分析】根据旋转的性质即可解答. 【详解】根据题意 由旋转的性质可得AB AD = AC AE = BC DE = 故B 选项和D 选项不符合题意=ABC ADE ∠∠=ACE ABCBAC∴=ACE ADEBAC 故C 选项不符合题意=ACB AED =ACB CAECEA=AED CEA BED∴=CAE BED 故A 选项符合题意故选:A .【点睛】本题考查了旋转的性质 熟练掌握旋转的性质和三角形外角运用是解题的关键.3.(2023·四川宜宾·统考中考真题)如图,ABC 和ADE 是以点A 为直角顶点的等腰直角三角形 把ADE 以A 为中心顺时针旋转 点M 为射线BD CE 的交点.若3AB 1AD =.以下结论: ①BD CE = ①BD CE ⊥ ①当点E 在BA 的延长线上时 33MC -=①在旋转过程中 当线段MB 最短时 MBC 的面积为12.其中正确结论有( )A .1个B .2个C .3个D .4个【答案】D【分析】证明BAD CAE ≌即可判断① 根据三角形的外角的性质得出① 证明DCM ECA ∠∠∽得出313-= 即可判断① 以A 为圆心 AD 为半径画圆 当CE 在A 的下方与A 相切时 MB 的值最小 可得四边形AEMD 是正方形 在Rt MBC 中22MC BC MB -21 然后根据三角形的面积公式即可判断①.【详解】解:①ABC 和ADE 是以点A 为直角顶点的等腰直角三角形 ①,,90BA CA DA EA BAC DAE ==∠=∠=︒ ①BAD CAE ∠=∠ ①BAD CAE ≌①ABD ACE ∠=∠ BD CE = 故①正确 设ABD ACE α∠=∠= ①45DBC α∠=︒-,①454590EMB DBC BCM DBC BCA ACE αα∠=∠+∠=∠+∠+∠=︒-+︒+=︒ ①BD CE ⊥ 故①正确当点E 在BA 的延长线上时 如图所示①DCM ECA ∠=∠ 90DMC EAC ∠=∠=︒ ①DCM ECA ∠∠∽①MC CDAC EC= ①3AB = 1AD =.①31CD AC AD =-= 222CE AE AC =+= 313-=①33MC -=故①正确 ①如图所示 以A 为圆心 AD 为半径画圆①90BMC ∠=︒ ①当CE 在A 的下方与A 相切时 MB 的值最小 90ADM DAE AEM ∠=∠=∠=︒①四边形AEMD 是矩形 又AE AD =①四边形AEMD 是正方形 ①1MD AE ==①222BD EC AC AE =- ①21MB BD MD =-= 在Rt MBC 中 22MC BC MB -①PB 取得最小值时 222MC AB AC MB +-()2332121+--①)()1112121222BMCSMB MC =⨯==故①正确 故选:D .【点睛】本题考查了旋转的性质 相似三角形的性质 勾股定理 切线的性质 垂线段最短 全等三角形的性质与判定 正方形的性质 熟练掌握以上知识是解题的关键.4.(2023·山东聊城·统考中考真题)如图,已知等腰直角ABC 90ACB ∠=︒ 2AB = 点C 是矩形ECGF与ABC 的公共顶点 且1CE = 3CG = 点D 是CB 延长线上一点 且2CD =.连接BG DF 在矩形ECGF 绕点C 按顺时针方向旋转一周的过程中 当线段BG 达到最长和最短时 线段DF 对应的长度分别为m 和n 则,mn的值为( )A .2B .3C 10D 13【答案】D【分析】根据锐角三角函数可求得1AC BC == 当线段BG 达到最长时 此时点G 在点C 的下方 且BC G 三点共线 求得4BG = 5DG = 根据勾股定理求得26DF = 即26m = 当线段BG 达到最短时 此时点G 在点C 的上方 且B C G 三点共线则,2BG = 1DG = 根据勾股定理求得2DF 即2n = 即可求得13mn【详解】①ABC 为等腰直角三角形 2AB = ①2sin 4521AC BC AB ==⋅︒== 当线段BG 达到最长时 此时点G 在点C 的下方 且B C G 三点共线 如图:则4BG BC CG =+= 5DG DB BG =+=在Rt DGF △中 22225126DF DG GF =++ 即26m =当线段BG 达到最短时 此时点G 在点C 的上方 且B C G 三点共线 如图:则2BG CG BC =-= 1DG BG DB =-=在Rt DGF △中 2222112DF DG GF =++ 即2n = 故26132m n == 故选:D .【点睛】本题考查了锐角三角函数 勾股定理等 根据旋转推出线段BG 最长和最短时的位置是解题的关键.二 填空题5.(2023·江苏连云港·统考中考真题)以正五边形ABCDE 的顶点C 为旋转中心 按顺时针方向旋转 使得新五边形A B CD E ''''的顶点D 落在直线BC 上则,正五边ABCDE 旋转的度数至少为______°.【答案】72【分析】依据正五边形的外角性质 即可得到DCF ∠的度数 进而得出旋转的角度. 【详解】解:①五边形ABCDE 是正五边形①530726DCF ∠÷=︒=︒①新五边形A B CD E ''''的顶点D 落在直线BC 上则,旋转的最小角度是72︒故答案为:72.【点睛】本题主要考查了正多边形 旋转性质 关键是掌握正多边形的外角和公式的运用.6.(2023·湖南张家界·统考中考真题)如图,AO 为BAC ∠的平分线 且50BAC ∠=︒ 将四边形ABOC 绕点A 逆时针方向旋转后 得到四边形AB O C ''' 且100OAC '∠=︒则,四边形ABOC 旋转的角度是______.【答案】75︒【分析】根据角平分线的性质可得25BAO OAC ==︒∠∠ 根据旋转的性质可得50BAC B AC ''∠=∠=︒ 25B AO O AC ''''==︒∠∠ 求得75OAO '∠=︒ 即可求得旋转的角度.【详解】①AO 为BAC ∠的平分线 50BAC ∠=︒①25BAO OAC ==︒∠∠①将四边形ABOC 绕点A 逆时针方向旋转后 得到四边形AB O C '''①50BAC B AC ''∠=∠=︒ 25B AO O AC ''''==︒∠∠①1002575OAO OAC O AC ''''∠=∠-∠=︒-︒=︒故答案为:75︒.【点睛】本题考查了角平分线的性质 旋转的性质 熟练掌握以上性质是解题的关键.7.(2023·湖南常德·统考中考真题)如图1 在Rt ABC △中 90ABC ∠=︒ 8AB = 6BC = D 是AB 上一点 且2AD = 过点D 作DE BC ∥交AC 于E 将ADE 绕A 点顺时针旋转到图2的位置.则图2中BDCE的值为__________.【答案】45【分析】首先根据勾股定理得到2210AC AB BC += 然后证明出ADE ABC △△∽ 得到AD AEAB AC= 进而得到ADABAE AC = 然后证明出ABD ACE ∽ 利用相似三角形的性质求解即可.【详解】①在Rt ABC △中 90ABC ∠=︒ 8AB = 6BC = ①2210AC AB BC +①DE BC ∥①90ADE ABC ∠=∠=︒ AED ACB ∠=∠①ADE ABC △△∽ ①ADAEAB AC = ①ADABAE AC =①BAC DAE ∠=∠①BAC CAD DAE CAD ∠+∠=∠+∠①BAD CAE ∠=∠①ABD ACE ∽ ①84105BD AB CD AC ===. 故答案为:45.【点睛】此题考查了相似三角形的性质和判定 解题的关键是熟练掌握相似三角形的性质和判定定理.8.(2023·江苏无锡·统考中考真题)已知曲线12C C 、分别是函数2(0),(0,0)k y x y k x x x=-<=>>的图像 边长为6的正ABC 的顶点A 在y 轴正半轴上 顶点B C 在x 轴上(B 在C 的左侧)现将ABC 绕原点O 顺时针旋转 当点B 在曲线1C 上时 点A 恰好在曲线2C 上则,k 的值为__________.【答案】6【分析】画出变换后的图像即可(画AOB 即可) 当点A 在y 轴上 点B C 在x 轴上时 根据ABC 为等边三角形且AO BC ⊥ 可得3OB OA = 过点A B 分别作x 轴垂线构造相似则,BFO OEA ∽ 根据相似三角形的性质得出3AOE S =△ 进而根据反比例函数k 的几何意义 即可求解.【详解】当点A 在y 轴上 点B C 在x 轴上时 连接AOABC 为等边三角形且AO BC ⊥则,30BAO ∠=︒∴tan tan30BAO ∠=︒=3OB OA = 如图所示 过点,A B 分别作x 轴的垂线 交x 轴分别于点,E FAO BO ⊥ 90BFO AEO AOB ∠=∠=∠=︒∴90BOF AOE EAO ∠=︒-∠=∠∴BFO OEA ∽ ∴213BFO AOE S OB SOA ⎛⎫== ⎪⎝⎭ ∴212BFO S -==∴3AOE S =△∴6k =.【点睛】本题考查了反比例函数的性质 k 的几何意义 相似三角形的性质与判定 正确作出辅助线构造相似三角形是解题关键.9.(2023·辽宁·统考中考真题)如图,线段8AB = 点C 是线段AB 上的动点 将线段BC 绕点B 顺时针旋转120°得到线段BD 连接CD 在AB 的上方作Rt DCE ∆ 使90,30DCE E ∠=∠= 点F 为DE 的中点 连接AF 当AF 最小时 BCD ∆的面积为___________.3【分析】连接CF BF , BF ,CD 交于点P 由直角三角形的性质及等腰三角形的性质可得BF 垂直平分CF 60ABF ∠=︒为定角 可得点F 在射线BF 上运动 当AF BF ⊥时 AF 最小 由含30度角直角三角形的性质即可求解.【详解】解:连接CF BF , BF ,CD 交于点P 如图,①90DCE ∠= 点F 为DE 的中点①FC FD =①30E ∠=①60FDC ∠=︒,①FCD 是等边三角形①60DFC FCD ∠=∠=︒①线段BC 绕点B 顺时针旋转120°得到线段BD①BC BD =①FC FD =①BF 垂直平分CF 60ABF ∠=︒①点F 在射线BF 上运动①当AF BF ⊥时 AF 最小此时9030FAB ABF ∠=︒-∠=︒ ①142BF AB == ①1302BFC DFC ∠=∠=︒ ①90FCB BFC ABF ∠=∠+∠=︒①122BC BF == ①112PB BC == ①由勾股定理得223PC BC PB - ①223CD PC == ①11231322BCD S CD PB =⋅=⨯△3【点睛】本题考查了等腰三角形性质 含30度直角三角形的性质 斜边中线性质 勾股定理 线段垂直平分线的判定 勾股定理 旋转的性质 确定点F 的运动路径是关键与难点.10.(2023·江西·统考中考真题)如图,在ABCD 中 602B BC AB ∠=︒=, 将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP 连接PC PD .当PCD 为直角三角形时 旋转角α的度数为_______.【答案】90︒或270︒或180︒【分析】连接AC 根据已知条件可得90BAC ∠=︒ 进而分类讨论即可求解.【详解】解:连接AC 取BC 的中点E 连接AE 如图所示①在ABCD 中 602B BC AB ∠=︒=, ①12BE CE BC AB ===①ABE 是等边三角形①60BAE AEB ∠=∠=︒ AE BE =①AE EC = ①1302EAC ECA AEB ∠=∠=∠=︒ ①90BAC ∠=︒①AC CD ⊥如图所示 当点P 在AC 上时 此时90BAP BAC ∠=∠=︒则,旋转角α的度数为90︒当点P 在CA 的延长线上时 如图所示则,36090270α=︒-︒=︒当P 在BA 的延长线上时则,旋转角α的度数为180︒ 如图所示①PA PB CD == PB CD ∥①四边形PACD 是平行四边形①AC AB ⊥①四边形PACD 是矩形①90PDC ∠=︒即PDC △是直角三角形综上所述 旋转角α的度数为90︒或270︒或180︒故答案为:90︒或270︒或180︒.【点睛】本题考查了平行四边形的性质与判定 等边三角形的性质与判定 矩形的性质与判定 旋转的性质 熟练掌握旋转的性质是解题的关键.11.(2023·上海·统考中考真题)如图,在ABC 中 35C ∠=︒ 将ABC 绕着点A 旋转(0180)αα︒<<︒ 旋转后的点B 落在BC 上 点B 的对应点为D 连接AD AD ,是BAC ∠的角平分线则,α=________.【答案】1103⎛⎫︒ ⎪⎝⎭【分析】如图,AB AD = BAD ∠=α 根据角平分线的定义可得CAD BAD α∠=∠= 根据三角形的外角性质可得35ADB α∠=︒+ 即得35B ADB α∠=∠=︒+ 然后根据三角形的内角和定理求解即可.【详解】解:如图,根据题意可得:AB AD = BAD ∠=α①AD 是BAC ∠的角平分线①CAD BAD α∠=∠=①35ADB C CAD α∠=∠+∠=︒+ AB AD =①35B ADB α∠=∠=︒+则在ABC 中 ①180C CAB B ∠+∠+∠=︒①35235180αα︒++︒+=︒ 解得:1103α⎛⎫=︒ ⎪⎝⎭故答案为:1103⎛⎫︒ ⎪⎝⎭【点睛】本题考查了旋转的性质 等腰三角形的性质 三角形的外角性质以及三角形的内角和等知识 熟练掌握相关图形的性质是解题的关键.12.(2023·湖南郴州·统考中考真题)如图,在Rt ABC △中 90BAC ∠=︒ 3cm AB = =60B ∠︒.将ABC 绕点A 逆时针旋转 得到AB C ''△ 若点B 的对应点B '恰好落在线段BC 上则,点C 的运动路径长.....是___________cm (结果用含π的式子表示).3π【分析】由于AC 旋转到AC ' 故C 的运动路径长是CC '的圆弧长度 根据弧长公式求解即可.【详解】以A 为圆心作圆弧CC ' 如图所示.在直角ABC 中 =60B ∠︒则,30C ∠=︒则()2236cm BC AB ==⨯=. ①)22226333cm AC BC AB =--.由旋转性质可知 AB AB '= 又=60B ∠︒①ABB '是等边三角形.①60BAB '∠=︒.由旋转性质知 60CAC '∠=︒.故弧CC '的长度为:()602333cm 3603AC πππ⨯⨯⨯=⨯ 3π【点睛】本题考查了含30︒角直角三角形的性质 勾股定理 旋转的性质 弧长公式等知识点 解题的关键是明确C 点的运动轨迹.13.(2023·内蒙古·统考中考真题)如图,在Rt ABC △中 90,3,1ACB AC BC ∠=︒== 将ABC 绕点A 逆时针方向旋转90︒ 得到AB C ''△.连接BB ' 交AC 于点D 则,AD DC 的值为________.【答案】5【分析】过点D 作DF AB ⊥于点F 利用勾股定理求得10AB根据旋转的性质可证ABB ' DFB △是等腰直角三角形 可得DF BF = 再由1122ADB SBC AD DF AB =⨯⨯=⨯⨯ 得=10AD DF 证明AFD ACB 可得DF AF BC AC = 即3AF DF = 再由=10AF DF 求得10=DF 从而求得52AD = 12CD = 即可求解. 【详解】解:过点D 作DF AB ⊥于点F①90ACB ∠=︒ 3AC = 1BC = ①223110AB +①将ABC 绕点A 逆时针方向旋转90︒得到AB C ''△ ①==10AB AB ' 90BAB '∠=︒①ABB '是等腰直角三角形①45ABB '∠=︒又①DF AB ⊥①45FDB ∠=︒①DFB △是等腰直角三角形①DF BF = ①1122ADB S BC AD DF AB =⨯⨯=⨯⨯ 即=10AD DF ① 90C AFD ∠=∠=︒ CAB FAD ∠=∠①AFD ACB ①DF AF BC AC= 即3AF DF = 又①=10AF DF ①10=DF ①105=10=2AD 51=3=22CD - ①52==512AD CD 故答案为:5.【点睛】本题考查旋转的性质 等腰三角形的判定与性质 相似三角形的判定与性质 三角形的面积 熟练掌握相关知识是解题的关键.14.(2023·黑龙江绥化·统考中考真题)已知等腰ABC 120A ∠=︒ 2AB =.现将ABC 以点B 为旋转中心旋转45︒ 得到A BC ''△ 延长C A ''交直线BC 于点D .则A D '的长度为_______. 【答案】423423+-或【分析】根据题意 先求得23BC = 当ABC 以点B 为旋转中心逆时针旋转45︒ 过点B 作BE A B '⊥交A D '于点E 当ABC 以点B 为旋转中心顺时针旋转45︒ 过点D 作DF BC '⊥交BC '于点F 分别画出图形 根据勾股定理以及旋转的性质即可求解.【详解】解:如图所示 过点A 作AM BC ⊥于点M①等腰ABC 120BAC ∠=︒ 2AB =. ①30ABC ACB ∠=∠=︒ ①112AM AB == 223BM CM AB AM =- ①23BC =如图所示 当ABC 以点B 为旋转中心逆时针旋转45︒ 过点B 作BE A B '⊥交A D '于点E①120BAC ∠=︒①60DA B '∠=︒ 30A EB '∠=︒在Rt A BE '中 24A E A B ''== 2223BE A E A B ''-= ①等腰ABC 120BAC ∠=︒ 2AB =. ①30ABC ACB ∠=∠=︒①ABC 以点B 为旋转中心逆时针旋转45︒ ①45ABA '∠=︒①180********DBE ∠=︒-︒-︒-︒=︒ 1804530105A BD '∠=︒-︒-︒=︒ 在A BD '中 1801806010515D DA B A BD ∠=︒-∠-∠=︒-︒-︒=''︒, ①D EBD ∠=∠ ①23EB ED ==①423A D A E DE ''=+=+如图所示 当ABC 以点B 为旋转中心顺时针旋转45︒ 过点D 作DF BC '⊥交BC '于点F在BFD △中 45BDF CBC ∠'=∠=︒ ①DF BF =在Rt DC F '中 30C '∠=︒ ①3'DF ①33BC BF BF ==①33DF BF ==①2623DC DF '==-①6232423A D C D A C ''''=-=-=- 综上所述 A D '的长度为423-423+ 故答案为:43-43+【点睛】本题考查了旋转的性质 勾股定理 含30度角的直角三角形的性质 熟练掌握旋转的性质 分类讨论是解题的关键.15.(2023·浙江嘉兴·统考中考真题)一副三角板ABC 和DEF 中90304512C D B E BC EF ∠=∠=︒∠=︒∠=︒==,,,.将它们叠合在一起 边BC 与EF 重合 CD 与AB 相交于点G (如图1) 此时线段CG 的长是___________ 现将DEF 绕点()C F 按顺时针方向旋转(如图2) 边EF 与AB 相交于点H 连结DH 在旋转0︒到60︒的过程中 线段DH 扫过的面积是___________.【答案】6662 1218318π-【分析】如图1 过点G 作GH BC ⊥于H 根据含30︒直角三角形的性质和等腰直角三角形的性质得出3BH GH = GH CH = 然后由12BC =可求出GH 的长 进而可得线段CG 的长 如图2 将DEF 绕点C 顺时针旋转60︒得到11D E F 1FE 与AB 交于1G 连接1D D 1AD 22D E F 是DEF 旋转0︒到60︒的过程中任意位置 作1DN CD ⊥于N 过点B 作1BM D D ⊥交1D D 的延长线于M 首先证明1CDD 是等边三角形 点1D 在直线AB 上 然后可得线段DH 扫过的面积是弓形12D D D 的面积加上1D DB 的面积 求出DN 和BM 然后根据线段DH 扫过的面积111121D DBCD DD DBD D D CD D S SS SS=+=-+弓形扇形列式计算即可.【详解】解:如图1 过点G 作GH BC ⊥于H①3045ABC DEF DFE ∠=︒∠=∠=︒, 90GHB GHC ∠=∠=︒ ①3BH GH = GH CH = ①312BC BH CH GH GH =+=+= ①36GH =①()226366662CG GH ===如图2 将DEF 绕点C 顺时针旋转60︒得到11D E F 1FE 与AB 交于1G 连接1D D 由旋转的性质得:1160E CB DCD ∠=∠=︒ 1CD CD = ①1CDD 是等边三角形①30ABC ∠=︒ ①190CG B ∠=︒ ①112CG BC =①1CE BC =①1112CG CE = 即AB 垂直平分1CE①11CD E 是等腰直角三角形 ①点1D 在直线AB 上连接1AD 22D E F 是DEF 旋转0︒到60︒的过程中任意位置 则线段DH 扫过的面积是弓形12D D D 的面积加上1D DB 的面积 ①12BC EF == ①22DC DB === ①1162DC D D == 作1DN CD ⊥于N 则,132ND NC == ①()()222211623236DN D D ND =-=-过点B 作1BM D D ⊥交1D D 的延长线于M 则,90M ∠=︒ ①160D DC ∠=︒ 90CDB ∠=︒①118030BDM D DC CDB ∠=︒-∠-∠=︒ ①1322BM BD == ①线段DH 扫过的面积112D DBD D D S S =+弓形111CD DD DBCD D S S S=-+扇形(260621123623236022π⋅=-⨯⨯ 1218318π=-故答案为:6662 1218318π-.【点睛】本题主要考查了旋转的性质 含30︒直角三角形的性质 二次根式的运算 解直角三角形 等边三角形的判定和性质 勾股定理 扇形的面积计算等知识 作出图形 证明点1D 在直线AB 上是本题的突破点 灵活运用各知识点是解题的关键.三 解答题16.(2023·北京·统考中考真题)在ABC 中 ()045B C αα∠=∠=︒<<︒ AM BC ⊥于点M D 是线段MC 上的动点(不与点M C 重合) 将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1 当点E 在线段AC 上时 求证:D 是MC 的中点(2)如图2 若在线段BM 上存在点F (不与点B M 重合)满足DF DC = 连接AE EF 直接写出AEF ∠的大小 并证明. 【答案】(1)见解析 (2)90AEF ∠=︒ 证明见解析【分析】(1)由旋转的性质得DM DE = 2MDE α∠= 利用三角形外角的性质求出C DEC α∠=∠= 可得DE DC = 等量代换得到DM DC =即可(2)延长FE 到H 使FE EH = 连接CH AH 可得DE 是FCH 的中位线 然后求出B ACH ∠∠= 设DM DE m == CD n = 求出2BF m CH == 证明()SAS ABF ACH ≅ 得到AF AH = 再根据等腰三角形三线合一证明AE FH ⊥即可.。

中考复习之图形的旋转经典题(含答案)

中考复习之图形的旋转经典题(含答案)

图形的旋转经典题一.选择题(共10小题)1.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的()A.内部B.外部C.边上D.以上都有可能2.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D 两点间的距离为()A.B.2C.3 D.23.如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.74.规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是()A.正三角形B.正方形C.正六边形D.正十边形5.下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动6.如图,在直角坐标系中放置一个边长为的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为()6题7题9题A.π+πB.2π+2 C.3π+3πD.6π+67.(2016?松北区模拟)如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是()A.50°B.60°C.40°D.30°8.一个菱形绕它的两条对角线的交点旋转,使它和原来的菱形重合,那么旋转的角度至少是()A.360°B.270°C.180°D.90°9.如图△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3 B.C.D.410.等边三角形ABC绕着它的中心,至少旋转()度才能与它本身重合.A.60°B.120°C.180°D.360°二.填空题(共6小题)11.将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是______.11题12题13题12.如图,点C为线段AB上一点,将线段CB绕点C旋转,得到线段CD,若DA⊥AB,AD=1,,则BC的长为______.13.如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=25°,则∠C的度数是______.14.如图,在△ABC 中,∠C=90°,∠B=55°,点D 在BC 边上,DB=2CD ,若将△ABC 绕点D 逆时针旋转α度(0<α<180)后,点B 恰好落在初始位置时△ABC 的边上,则α等于______.15.如图,用扳手拧螺母时,旋转中心为______,旋转角为______. 16.在平面直角坐标系中,点P (1,1),N (2,0),△MNP 和△M 1N 1P 1的顶点都在格点上,△MNP 与△M 1N 1P 1是关于某一点中心对称,则对称中心的坐标为______. 三.解答题(共8小题)17.如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别在AB ,AC 上,CE=BC ,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CF ,连接EF .(1)补充完成图形;(2)若EF ∥CD ,求证:∠BDC=90°. 18.在平面直角坐标系中,△ABC 的位置如图所示(每个小方格都是边长为1个单位长度的正方形). (1)将△ABC 沿x 轴方向向左平移6个单位,画出平移后得到的△A 1B 1C 1;(2)将△ABC 绕着点A 顺时针旋转90°,画出旋转后得到的△AB 2C 2,并直接写出点B 2、C 2的坐标. 19.如图,在平面直角坐标系xOy 中,每个小正方形的边长均为1,线段AB 和DE 的端点A 、B 、D 、E 均在小正方形的顶点上.(1)画出以AB 为一边且面积为2的Rt △ABC ,顶点C 必须在小正方形的顶点上;(2)画出一个以DE 为一边,含有45°内角且面积为的△DEF ,顶点F 必须在小正方形的顶点上;(3)若点C 绕点Q 顺时针旋转90°后与点F 重合,请直接写出点Q 的坐标. 20.(1)如图(1),直线a ∥b ,A ,B 两点分别在直线a ,b 上,点P 在a ,b 外部,则∠1,∠2,∠3之间有何数量关系?证明你的结论; (2)如图(2),直线a ∥b ,点P 在直线a ,b 直角,∠2=50°,∠3=30°,求∠1;(3)在图(2)中,将直线a 绕点A 按逆时针方向旋转一定角度交直线b 于点M ,如图(3),若∠1=100°,∠4=40°,求∠2+∠3的度数.21.(1)在一次数学探究活动中,陈老师给出了一道题.如图1,已知△ABC 中,∠ACB=90°,AC=BC ,P 是△ABC 内的一点,且PA=3,PB=1,PC=2,求∠BPC 的度数.小强在解决此题时,是将△APC 绕C 旋转到△CBE 的位置(即过C 作CE ⊥CP ,且使CE=CP ,连接EP 、EB ).你知道小强是怎么解决的吗? (2)请根据(1)的思想解决以下问题:如图2所示,设P 是等边△ABC 内一点,PA=3,PB=4,PC=5,求∠APB 的度数. 22.如图1,在等腰直角△ABC 中,AB=AC ,∠BAC=90°,将一块三角板中含45°角的顶点放在A 上,从AB 边开始绕点A 逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC 于点D ,直角边所在的直线交直线BC 于点E .操作一:在线段BC 上取一点M ,连接AM ,旋转中发现:若AD 平分∠BAM ,则AE 也平分∠MAC .请说明理由;操作二:当0°<α≤45°时,在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2.某同学将△ABD沿AD所在的直线对折得到△ADF(如图2),很快找到了解决问题的方法,请你说明其中的道理.23.如图(1)所示,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图(2)中补出符合要求的图形,并判断(1)题中的结论是否依然成立,说明理由.24.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.参考答案与试题解析一.选择题(共10小题)1.(2016?玉林)把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的()A.内部B.外部C.边上D.以上都有可能【分析】先根据勾股定理求出两直角三角形的各边长,再由旋转的性质得:∠EBE′=45°,∠E′=∠DEB=90°,求出E′D′与直线AB的交点到B的距离也是5,与AB的值相等,所以点A在△D′E′B的边上.【解答】解:∵AC=BD=10,又∵∠ABC=∠DEB=90°,∠A=45°,∠D=30°,∴BE=5,AB=BC=5,由三角板DEB绕点B逆时针旋转45°得到△D′E′B,设△D′E′B与直线AB交于G,可知:∠EBE′=45°,∠E′=∠DEB=90°,∴△GE′B是等腰直角三角形,且BE′=BE=5,∴BG==5,∴BG=AB,∴点A在△D′E′B的边上,故选C.【点评】本题考查了旋转的性质和勾股定理,利用30°和45°的直角三角形的性质求出各边的长;注意:在直角三角形中,30度角所对的直角边等于斜边的一半,45°角所对的两直角边相等,熟练掌握此内容是解决问题的关键.2.(2016?宜宾)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C 落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A.B.2C.3 D.2【分析】通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用勾股定理求出B、D两点间的距离.【解答】解:∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD==.故选:A.【点评】题目考查勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系.题目整体较为简单,适合随堂训练.3.(2016?朝阳)如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.7【分析】只要证明△BAC∽△BDA,推出=,求出BD即可解决问题.【解答】解:∵AF∥BC,∴∠FAD=∠ADB,∵∠BAC=∠FAD,∴∠BAC=∠ADB,∵∠B=∠B,∴△BAC∽△BDA,∴=,∴=,∴BD=9,∴CD=BD﹣BC=9﹣4=5,故选B.【点评】本题考查平行线的性质、旋转变换、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形,属于中考常考题型.4.(2016?莆田)规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是()A.正三角形B.正方形C.正六边形D.正十边形【分析】分别求出各旋转对称图形的最小旋转角,继而可作出判断.【解答】解:A、正三角形的最小旋转角是120°,故此选项错误;B、正方形的旋转角度是90°,故此选项错误;C、正六边形的最小旋转角是60°,故此选项正确;D、正十角形的最小旋转角是36°,故此选项错误;故选:C.【点评】本题考查了旋转对称图形的知识,解答本题的关键是掌握旋转角度的定义,求出旋转角.5.(2016?呼伦贝尔校级一模)下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动【分析】根据旋转的定义来判断:旋转就是将图形绕某点转动一定的角度,旋转后所得图形与原图形的形状、大小不变,对应点与旋转中心的连线的夹角相等.【解答】解:传送带传送货物的过程中没有发生旋转.故选:A.【点评】本题考查了旋转,正确理解旋转的定义是解题的关键.6.(2016?无锡校级模拟)如图,在直角坐标系中放置一个边长为的正方形ABCD,将正方形ABCD 沿x轴的正方向无滑动的在x轴上滚动,当点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为()A.π+πB.2π+2 C.3π+3πD.6π+6【分析】画出点A第一次回到x轴上时的图形,根据图形得到点A的路径分三部分,以B点为圆心,BA为半径,圆心角为90°的弧;再以C1为圆心,C1C为半径,圆心角为90°的弧;然后以D2点为圆心,D2A2为半径,圆心角为90°的弧,所以点A运动的路线与x轴围成的图形的面积就由三个扇形和两个直角三角形组长,于是可根据扇形面积和三角形面积公式计算,然后把计算结果乘以3即可得到答案.【解答】解:点A第一次回到x轴上时,点A的路径为:开始以B点为圆心,BA为半径,圆心角为90°的弧;再以C1为圆心,C1C为半径,圆心角为90°的弧;然后以D2点为圆心,D2A2为半径,圆心角为90°的弧,所以点A第一次回到x轴上时,点A运动的路线与x轴围成的图形的面积和=×2++2×××=2π+2,所以点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为3(2π+2)=6π+6.故选D.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.7.(2016?松北区模拟)如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是()A.50°B.60°C.40°D.30°【分析】根据旋转的性质得知∠A=∠C,∠AOC为旋转角等于80°,则可以利用三角形内角和度数为180°列出式子进行求解.【解答】解:∵将△OAB绕点O逆时针旋转80°∴∠A=∠C∠AOC=80°∴∠DOC=80°﹣α∠D=100°∵∠A=2∠D=100°∴∠D=50°∵∠C+∠D+∠DOC=180°∴100°+50°+80°﹣α=180°解得α=50°故选A【点评】本题主要考查了旋转的性质及三角形的内角和定理,熟知图形旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角是解决本题的关键.8.(2016?和平区一模)一个菱形绕它的两条对角线的交点旋转,使它和原来的菱形重合,那么旋转的角度至少是()A.360°B.270°C.180°D.90°【分析】根据菱形是中心对称图形解答.【解答】解:∵菱形是中心对称图形,∴把菱形绕它的中心旋转,使它与原来的菱形重合,旋转角为180°的整数倍,∴旋转角至少是180°.故选C.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.9.(2016春?雅安期末)如图△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3 B.C.D.4【分析】根据旋转前后的图形全等,即可得出△APP'等腰直角三角形,再根据等腰直角三角形的性质,进行计算即可.【解答】解:∵△ACP′是由△ABP绕点A逆时针旋转后得到的,∴△ACP′≌△ABP,∴AP=AP′,∠BAP=∠CAP′.∵∠BAC=90°,∴∠PAP′=90°,故可得出△APP'是等腰直角三角形,又∵AP=3,∴PP′=3.故选B.【点评】此题考查了旋转的性质,解答本题的关键是掌握旋转前后对应边相等、对应角相等,另外要掌握等腰三角形的性质,难度一般.10.(2015?浠水县校级模拟)等边三角形ABC绕着它的中心,至少旋转()度才能与它本身重合.A.60°B.120°C.180°D.360°【分析】根据等边三角形的性质及旋转对称图形得到性质确定出最小的旋转角即可.【解答】解:等边三角形ABC绕着它的中心,至少旋转120°才能与它本身重合.故选B【点评】此题考查了旋转对称图形,熟练掌握旋转的性质是解本题的关键.二.填空题(共6小题)11.(2016?邵阳)将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是120°.【分析】根据旋转的性质和等边三角形的性质解答即可.【解答】解:∵三角形ABC是等边三角形,∴∠ACB=60°,∵等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,∴∠BCA'=180°,∠B'CA'=60°,∴∠ACB'=60°,∴∠α=60°+60°=120°,故答案为:120°.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.12.(2016?高青县模拟)如图,点C为线段AB上一点,将线段CB绕点C旋转,得到线段CD,若DA⊥AB,AD=1,,则BC的长为.【分析】如图,首先运用旋转变换的性质证明CD=CB(设为λ);运用勾股定理求出AB的长度;再次运用勾股定理列出关于λ的方程,求出λ即可解决问题.【解答】解:如图,由题意得CD=CB(设为λ);由勾股定理得:AB2=BD2﹣AD2,而BD=,AD=1,∴AB=4,AC=4﹣λ;由勾股定理得:λ2=12+(4﹣λ)2,解得:.故答案为.【点评】该题主要考查了旋转变换的性质、勾股定理等几何知识点及其应用问题;应牢固掌握旋转变换的性质、勾股定理等几何知识点,这是灵活运用、解题的基础和关键.13.(2016?海曙区一模)如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=25°,则∠C的度数是70°.【分析】根据旋转的性质可得AB=AB′,然后判断出△ABB′是等腰直角三角形,根据等腰直角三角形的性质可得∠ABB′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠B′C′A,然后根据旋转的性质可得∠C=∠B′C′A.【解答】解:∵Rt△ABC绕直角顶点A顺时针旋转90°得到△AB′C′,∴AB=AB′,∴△ABB′是等腰直角三角形,∴∠ABB′=45°,∴∠AC′B′=∠1+∠ABB′=25°+45°=70°,由旋转的性质得∠C=∠AC′B′=70°.故答案为:70°.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.14.(2016?太原二模)如图,在△ABC中,∠C=90°,∠B=55°,点D在BC边上,DB=2CD,若将△ABC绕点D逆时针旋转α度(0<α<180)后,点B恰好落在初始位置时△ABC的边上,则α等于70或120 .【分析】根据题意画出符合的两种情况,①当B点落在AB上时,求出∠B=∠DB°,即可求出∠B′DB;②当B点落在AC上时,根据题意求出∠B′DC,即可求出∠B′DB的度数,即可得出答案.【解答】解:分为两种情况:①当B点落在AB上时,如图1,∵根据旋转的性质得出DB=DB′,∵∠B=55°,∴∠DB′B=∠B=55°,∴∠B′DB=180°﹣55°﹣55°=70°,即此时α=70;②当B点落在AC上时,如图2,如图,∵△ABC绕着点D顺时针旋转α度后得到△A′B′C′,∴B′D=BD,∵BD=2CD,∴B′D=2CD,∵∠ACB=90°,∴∠CB′D=30°,∴∠B′DC=60°,∴∠B′DB=180°﹣60°=120°,即此时α=120;故答案为:70或120.【点评】本题考查了旋转的性质,等腰三角形的性质,直角三角形的性质的应用,能求出∠B′DB 的度数是解题的关键,作出图形更形象直观.15.(2016?怀柔区二模)如图,用扳手拧螺母时,旋转中心为螺丝(母)的中心,旋转角为0°~360°的任意角(答案不唯一).【分析】根据旋转中心的定义以及旋转角的定义解答即可.【解答】解:由旋转中心的定义:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心可知,用扳手拧螺母时,旋转中心为螺丝(母)的中心,而旋转角可估计实际情况决定,所以不确定,故答案为:螺丝(母)的中,0°~360°的任意角(答案不唯一)【点评】本题考查了和旋转有关的概念:旋转中心和旋转角,属于基础性题目,对此知识点的考查重点在于对旋转的性质的掌握.16.(2016?瑞昌市一模)在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为(2,1).【分析】根据中心对称的性质,知道点P(1,1),N(2,0),并细心观察坐标轴就可以得到答案.【解答】解:∵点P(1,1),N(2,0),∴由图形可知M(3,0),M1(1,2),N1(2,2),P1(3,1),∵关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,∴对称中心的坐标为(2,1),故答案为:(2,1).【点评】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.以及中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.三.解答题(共8小题)17.(2016?荆门)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.【分析】(1)根据题意补全图形,如图所示;(2)由旋转的性质得到∠DCF为直角,由EF与CD平行,得到∠EFC为直角,利用SAS得到三角形BDC与三角形EFC全等,利用全等三角形对应角相等即可得证.【解答】解:(1)补全图形,如图所示;(2)由旋转的性质得:∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠DCE+∠BCD=90°,∴∠ECF=∠BCD,∵EF∥DC,∴∠EFC+∠DCF=180°,∴∠EFC=90°,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS),∴∠BDC=∠EFC=90°.【点评】此题考查了旋转的性质,以及全等三角形的判定与性质,熟练掌握旋转的性质是解本题的关键.18.(2016?丹东)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.【分析】(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A 1B1C1;(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.19.(2016?呼兰区模拟)如图,在平面直角坐标系xOy中,每个小正方形的边长均为1,线段AB 和DE的端点A、B、D、E均在小正方形的顶点上.(1)画出以AB为一边且面积为2的Rt△ABC,顶点C必须在小正方形的顶点上;(2)画出一个以DE为一边,含有45°内角且面积为的△DEF,顶点F必须在小正方形的顶点上;(3)若点C绕点Q顺时针旋转90°后与点F重合,请直接写出点Q的坐标.【分析】(1)和(2)分别画出图形;(3)作FC的中垂线,得Q(5,0).【解答】(1)S△ABC=×2×2=2;(2)S△DEF=2×3﹣1×2﹣×1×3=;∵ED=EF,∠DFE=90°,∴∠FDE=45°;(3)由勾股定理得:FC==,CQ==,FQ==,∴FC2=CQ2+FQ2,CQ=FQ,∴∠FQC=90°,∴点C绕点Q顺时针旋转90°后与点F重合;则点Q(5,0).【点评】本题考查了作图﹣旋转变换,对于画定值面积的三角形,利用面积的和、差先试求某点所组成的图形的面积是否符合题意,再确定这一点;同时根据勾股定理计算所成的三角形是否为直角三角形或等腰直角三角形.20.(2016春?重庆期末)(1)如图(1),直线a∥b,A,B两点分别在直线a,b上,点P在a,b 外部,则∠1,∠2,∠3之间有何数量关系?证明你的结论;(2)如图(2),直线a∥b,点P在直线a,b直角,∠2=50°,∠3=30°,求∠1;(3)在图(2)中,将直线a绕点A按逆时针方向旋转一定角度交直线b于点M,如图(3),若∠1=100°,∠4=40°,求∠2+∠3的度数.【分析】(1)设直线AP交直线b于O,根据平行线的性质得出∠2=∠AOB,根据三角形外角性质求出∠AOB=∠1+∠3,即可得出答案;(2)延长AP交直线b于O,根据平行线的性质得出∠ABO=∠2=50°,根据三角形的外角性质得出∠1=∠AOB+∠3,代入求出即可;(3)延长AP交直线b于O,根据三角形外角性质得出∠AOB=∠2+∠4,∠1=∠3+∠AOB,求出∠1=∠2+∠4+∠3,代入求出即可.【解答】(1)∠2=∠1+∠3,证明:设直线AP交直线b于O,如图1,∵直线a∥直线b,∴∠2=∠AOB,∵∠AOB=∠1+∠3,∴∠2=∠1+∠3;(2)解:延长AP交直线b于O,如图2,∵直线a∥直线b,∠2=50°,∴∠ABO=∠2=50°,∵∠3=30°,∴∠1=∠AOB+∠3=50°+30°=80°;(3)解:延长AP交直线b于O,如图3,∵∠AOB=∠2+∠4,∠1=∠3+∠AOB,∴∠1=∠2+∠4+∠3,∵∠1=100°,∠4=40°,∴∠2+∠3=∠1﹣∠4=60°.【点评】本题考查了平行线的性质,三角形外角性质的应用,能灵活运用性质进行推理是解此题的关键.21.(2014秋?五常市校级期中)(1)在一次数学探究活动中,陈老师给出了一道题.如图1,已知△ABC中,∠ACB=90°,AC=BC,P是△ABC内的一点,且PA=3,PB=1,PC=2,求∠BPC 的度数.小强在解决此题时,是将△APC绕C旋转到△CBE的位置(即过C作CE⊥CP,且使CE=CP,连接EP、EB).你知道小强是怎么解决的吗?(2)请根据(1)的思想解决以下问题:如图2所示,设P是等边△ABC内一点,PA=3,PB=4,PC=5,求∠APB的度数.【分析】(1)如图1,首先证明BE2=PE2+PB2,得到∠BPE=90°;证明∠CPE=45°即可解决问题.(2)如图2,作旋转变换;首先证明∠AQP=60°;其次证明PQ2+CQ2=PC2,得到∠PQC=90°,求出∠AQC=150°,即可解决问题.【解答】解:(1)如图1,由题意得:∠PCE=90°PC=EC=2;BE=PA=3;由勾股定理得:PE2=22+22=8;∵PB2=1,BE2=9,∴BE2=PE2+PB2,∴∠BPE=90°,∵∠CPE=45°,∴∠BPC=135°.(2)如图2,将△ABP绕点A逆时针旋转60°到△ACQ的位置,连接PQ;则AP=AQ,∠PAQ=60°,QC=PB=4;∴△APQ为等边三角形,∠AQP=60°,PQ=PA=3;∵PQ2+CQ2=32+42=25,PC2=52=25,∴PQ2+CQ2=PC2,∴∠PQC=90°,∠AQC=60°+90°=150°,∴∠APB=∠AQC=150°.【点评】该题主要考查了旋转变换的性质、等边三角形的判定及其性质、勾股定理逆定理等几何知识点及其应用问题;对综合的分析问题解决问题的能力提出了较高的要求.22.(2014秋?苏州期中)如图1,在等腰直角△ABC中,AB=AC,∠BAC=90°,将一块三角板中含45°角的顶点放在A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.操作一:在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请说明理由;操作二:当0°<α≤45°时,在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2.某同学将△ABD沿AD所在的直线对折得到△ADF(如图2),很快找到了解决问题的方法,请你说明其中的道理.【分析】(1)如图1,根据图形、已知条件推知∠BAD+∠MAE=∠DAM+∠EAC=45°,所以∠MAE=∠EAC,即AE平分∠MAC;(2)应用折叠对称的性质和SAS得到△AEF≌△AEC,得出FE=CE,∠AFE=∠C=45°.再证明∠DFE=90°.然后在Rt△DFE中应用勾股定理即可证明.【解答】(1)证明:如图1,∵∠BAC=90°,∴∠BAD+∠DAM+∠MAE+∠EAC=90°.∵∠DAE=45°,∴∠BAD+∠EAC=45°.∵∠BAD=∠DAM,∴∠BAD+∠EAC=∠DAM+∠EAC=45°,∴∠BAD+∠MAE=∠DAM+∠EAC,∴∠MAE=∠EAC,即AE平分∠MAC;(2)证明:如图2,连接EF.由折叠可知,∠BAD=∠FAD,AB=AF,BD=DF,∠B=∠AFD=45°.∵∠BAD=∠FAD,∴由(1)可知,∠CAE=∠FAE.在△AEF和△AEC中,,∴△AEF≌△AEC(SAS),∴FE=CE,∠AFE=∠C=45°.∴∠DFE=∠AFD+∠AFE=90°.在Rt△DFE中,DF2+FE2=DE2,∴BD2+CE2=DE2.【点评】本题考查了旋转的性质,角平分线的定义,等腰直角三角形的性质,轴对称的性质,全等三角形的判定和性质等知识点.注意,旋转前后,图形的大小和形状都不改变.23.(2014秋?利川市校级期中)如图(1)所示,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图(2)中补出符合要求的图形,并判断(1)题中的结论是否依然成立,说明理由.【分析】(1)根据等边三角形的性质利用SAS判定△ACN≌△MCB,从而得到AN=MB;(2)连接AN,BM,根据等边三角形的性质及旋转的性质利用SAS判定△ACN≌△MCB,从而得到AN=MB.【解答】(1)证明:∵△ACM、△CBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∴∠ACN=∠MCB=120°,在△ACN和△MCB中,,∴△ACN≌△MCB,∴AN=MB.(2)解:连接AN,BM,∵△ACM、△CBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∵∠ACB=90°,∴∠ACN=∠MCB,在△ACN和△MCB中,,∴△ACN≌△MCB,∴AN=MB.【点评】此题主要考查学生对等边三角形的性质、旋转的性质及全等三角形的判定方法的综合运用.24.(2014秋?江西期末)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE ⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.【分析】(1)由∠ACB=90°,得∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,则∠ADC=∠CEB=90°,根据等角的余角相等得到∠ACD=∠CBE,易得Rt△ADC≌Rt△CEB,所以AD=CE,DC=BE,即可得到DE=DC+CE=BE+AD.(2)根据等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,得到AD=CE,DC=BE,所以DE=CE ﹣CD=AD﹣BE.(3)DE、AD、BE具有的等量关系为:DE=BE﹣AD.证明的方法与(2)相同.【解答】(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)证明:在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CE﹣CD=AD﹣BE;(3)DE=BE﹣AD.易证得△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CD﹣CE=BE﹣AD.【点评】本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了直角三角形全等的判定与性质.。

中考复习之图形的旋转经典题(含答案)汇总

中考复习之图形的旋转经典题(含答案)汇总

图形的旋转经典题一.选择题(共10小题)1.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的()A.内部 B.外部C.边上 D.以上都有可能2.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A. B.2C.3 D.23.如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.74.规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是()A.正三角形 B.正方形C.正六边形 D.正十边形5.下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动6.如图,在直角坐标系中放置一个边长为的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为()6题7题9题A.π+πB.2π+2 C.3π+3πD.6π+67.(2016•松北区模拟)如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是()A.50°B.60°C.40°D.30°8.一个菱形绕它的两条对角线的交点旋转,使它和原来的菱形重合,那么旋转的角度至少是()A.360°B.270°C.180°D.90°9.如图△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3 B. C. D.410.等边三角形ABC绕着它的中心,至少旋转()度才能与它本身重合.A.60°B.120°C.180°D.360°二.填空题(共6小题)11.将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是______.11题12题13题12.如图,点C为线段AB上一点,将线段CB绕点C旋转,得到线段CD,若DA⊥AB,AD=1,,则BC的长为______.13.如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=25°,则∠C的度数是______.14.如图,在△ABC中,∠C=90°,∠B=55°,点D在BC边上,DB=2CD,若将△ABC绕点D逆时针旋转α度(0<α<180)后,点B恰好落在初始位置时△ABC的边上,则α等于______.15.如图,用扳手拧螺母时,旋转中心为______,旋转角为______.16.在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为______.三.解答题(共8小题)17.如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.18.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.19.如图,在平面直角坐标系xOy中,每个小正方形的边长均为1,线段AB和DE的端点A、B、D、E均在小正方形的顶点上.(1)画出以AB为一边且面积为2的Rt△ABC,顶点C必须在小正方形的顶点上;(2)画出一个以DE为一边,含有45°内角且面积为的△DEF,顶点F必须在小正方形的顶点上;(3)若点C绕点Q顺时针旋转90°后与点F重合,请直接写出点Q的坐标.20.(1)如图(1),直线a∥b,A,B两点分别在直线a,b上,点P在a,b外部,则∠1,∠2,∠3之间有何数量关系?证明你的结论;(2)如图(2),直线a∥b,点P在直线a,b直角,∠2=50°,∠3=30°,求∠1;(3)在图(2)中,将直线a绕点A按逆时针方向旋转一定角度交直线b于点M,如图(3),若∠1=100°,∠4=40°,求∠2+∠3的度数.21.(1)在一次数学探究活动中,陈老师给出了一道题.如图1,已知△ABC中,∠ACB=90°,AC=BC,P是△ABC内的一点,且PA=3,PB=1,PC=2,求∠BPC的度数.小强在解决此题时,是将△APC绕C旋转到△CBE的位置(即过C作CE⊥CP,且使CE=CP,连接EP、EB).你知道小强是怎么解决的吗?(2)请根据(1)的思想解决以下问题:如图2所示,设P是等边△ABC内一点,PA=3,PB=4,PC=5,求∠APB的度数.22.如图1,在等腰直角△ABC中,AB=AC,∠BAC=90°,将一块三角板中含45°角的顶点放在A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.操作一:在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请说明理由;操作二:当0°<α≤45°时,在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2.某同学将△ABD沿AD所在的直线对折得到△ADF(如图2),很快找到了解决问题的方法,请你说明其中的道理.23.如图(1)所示,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图(2)中补出符合要求的图形,并判断(1)题中的结论是否依然成立,说明理由.24.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.参考答案与试题解析一.选择题(共10小题)1.(2016•玉林)把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的()A.内部 B.外部C.边上 D.以上都有可能【分析】先根据勾股定理求出两直角三角形的各边长,再由旋转的性质得:∠EBE′=45°,∠E′=∠DEB=90°,求出E′D′与直线AB的交点到B的距离也是5,与AB的值相等,所以点A在△D′E′B的边上.【解答】解:∵AC=BD=10,又∵∠ABC=∠DEB=90°,∠A=45°,∠D=30°,∴BE=5,AB=BC=5,由三角板DEB绕点B逆时针旋转45°得到△D′E′B,设△D′E′B与直线AB交于G,可知:∠EBE′=45°,∠E′=∠DEB=90°,∴△GE′B是等腰直角三角形,且BE′=BE=5,∴BG==5,∴BG=AB,∴点A在△D′E′B的边上,故选C.【点评】本题考查了旋转的性质和勾股定理,利用30°和45°的直角三角形的性质求出各边的长;注意:在直角三角形中,30度角所对的直角边等于斜边的一半,45°角所对的两直角边相等,熟练掌握此内容是解决问题的关键.2.(2016•宜宾)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A. B.2C.3 D.2【分析】通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用勾股定理求出B、D两点间的距离.【解答】解:∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD==.故选:A.【点评】题目考查勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系.题目整体较为简单,适合随堂训练.3.(2016•朝阳)如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.7【分析】只要证明△BAC∽△BDA,推出=,求出BD即可解决问题.【解答】解:∵AF∥BC,∴∠FAD=∠ADB,∵∠BAC=∠FAD,∴∠BAC=∠ADB,∵∠B=∠B,∴△BAC∽△BDA,∴=,∴=,∴BD=9,∴CD=BD﹣BC=9﹣4=5,故选B.【点评】本题考查平行线的性质、旋转变换、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形,属于中考常考题型.4.(2016•莆田)规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是()A.正三角形 B.正方形C.正六边形 D.正十边形【分析】分别求出各旋转对称图形的最小旋转角,继而可作出判断.【解答】解:A、正三角形的最小旋转角是120°,故此选项错误;B、正方形的旋转角度是90°,故此选项错误;C、正六边形的最小旋转角是60°,故此选项正确;D、正十角形的最小旋转角是36°,故此选项错误;故选:C.【点评】本题考查了旋转对称图形的知识,解答本题的关键是掌握旋转角度的定义,求出旋转角.5.(2016•呼伦贝尔校级一模)下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动【分析】根据旋转的定义来判断:旋转就是将图形绕某点转动一定的角度,旋转后所得图形与原图形的形状、大小不变,对应点与旋转中心的连线的夹角相等.【解答】解:传送带传送货物的过程中没有发生旋转.故选:A.【点评】本题考查了旋转,正确理解旋转的定义是解题的关键.6.(2016•无锡校级模拟)如图,在直角坐标系中放置一个边长为的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为()A.π+πB.2π+2 C.3π+3πD.6π+6【分析】画出点A第一次回到x轴上时的图形,根据图形得到点A的路径分三部分,以B 点为圆心,BA为半径,圆心角为90°的弧;再以C1为圆心,C1C为半径,圆心角为90°的弧;然后以D2点为圆心,D2A2为半径,圆心角为90°的弧,所以点A运动的路线与x轴围成的图形的面积就由三个扇形和两个直角三角形组长,于是可根据扇形面积和三角形面积公式计算,然后把计算结果乘以3即可得到答案.【解答】解:点A第一次回到x轴上时,点A的路径为:开始以B点为圆心,BA为半径,圆心角为90°的弧;再以C1为圆心,C1C为半径,圆心角为90°的弧;然后以D2点为圆心,D2A2为半径,圆心角为90°的弧,所以点A第一次回到x轴上时,点A运动的路线与x轴围成的图形的面积和=×2++2×××=2π+2,所以点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为3(2π+2)=6π+6.故选D.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.7.(2016•松北区模拟)如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是()A.50°B.60°C.40°D.30°【分析】根据旋转的性质得知∠A=∠C,∠AOC为旋转角等于80°,则可以利用三角形内角和度数为180°列出式子进行求解.【解答】解:∵将△OAB绕点O逆时针旋转80°∴∠A=∠C∠AOC=80°∴∠DOC=80°﹣α∠D=100°∵∠A=2∠D=100°∴∠D=50°∵∠C+∠D+∠DOC=180°∴100°+50°+80°﹣α=180°解得α=50°故选A【点评】本题主要考查了旋转的性质及三角形的内角和定理,熟知图形旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角是解决本题的关键.8.(2016•和平区一模)一个菱形绕它的两条对角线的交点旋转,使它和原来的菱形重合,那么旋转的角度至少是()A.360°B.270°C.180°D.90°【分析】根据菱形是中心对称图形解答.【解答】解:∵菱形是中心对称图形,∴把菱形绕它的中心旋转,使它与原来的菱形重合,旋转角为180°的整数倍,∴旋转角至少是180°.故选C.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.9.(2016春•雅安期末)如图△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3 B. C. D.4【分析】根据旋转前后的图形全等,即可得出△APP'等腰直角三角形,再根据等腰直角三角形的性质,进行计算即可.【解答】解:∵△ACP′是由△ABP绕点A逆时针旋转后得到的,∴△ACP′≌△ABP,∴AP=AP′,∠BAP=∠CAP′.∵∠BAC=90°,∴∠PAP′=90°,故可得出△APP'是等腰直角三角形,又∵AP=3,∴PP′=3.故选B.【点评】此题考查了旋转的性质,解答本题的关键是掌握旋转前后对应边相等、对应角相等,另外要掌握等腰三角形的性质,难度一般.10.(2015•浠水县校级模拟)等边三角形ABC绕着它的中心,至少旋转()度才能与它本身重合.A.60°B.120°C.180°D.360°【分析】根据等边三角形的性质及旋转对称图形得到性质确定出最小的旋转角即可.【解答】解:等边三角形ABC绕着它的中心,至少旋转120°才能与它本身重合.故选B【点评】此题考查了旋转对称图形,熟练掌握旋转的性质是解本题的关键.二.填空题(共6小题)11.(2016•邵阳)将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是120°.【分析】根据旋转的性质和等边三角形的性质解答即可.【解答】解:∵三角形ABC是等边三角形,∴∠ACB=60°,∵等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,∴∠BCA'=180°,∠B'CA'=60°,∴∠ACB'=60°,∴∠α=60°+60°=120°,故答案为:120°.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.12.(2016•高青县模拟)如图,点C为线段AB上一点,将线段CB绕点C旋转,得到线段CD,若DA⊥AB,AD=1,,则BC的长为.【分析】如图,首先运用旋转变换的性质证明CD=CB(设为λ);运用勾股定理求出AB的长度;再次运用勾股定理列出关于λ的方程,求出λ即可解决问题.【解答】解:如图,由题意得CD=CB(设为λ);由勾股定理得:AB2=BD2﹣AD2,而BD=,AD=1,∴AB=4,AC=4﹣λ;由勾股定理得:λ2=12+(4﹣λ)2,解得:.故答案为.【点评】该题主要考查了旋转变换的性质、勾股定理等几何知识点及其应用问题;应牢固掌握旋转变换的性质、勾股定理等几何知识点,这是灵活运用、解题的基础和关键.13.(2016•海曙区一模)如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=25°,则∠C的度数是70°.【分析】根据旋转的性质可得AB=AB′,然后判断出△ABB′是等腰直角三角形,根据等腰直角三角形的性质可得∠ABB′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠B′C′A,然后根据旋转的性质可得∠C=∠B′C′A.【解答】解:∵Rt△ABC绕直角顶点A顺时针旋转90°得到△AB′C′,∴AB=AB′,∴△ABB′是等腰直角三角形,∴∠ABB′=45°,∴∠AC′B′=∠1+∠ABB′=25°+45°=70°,由旋转的性质得∠C=∠AC′B′=70°.故答案为:70°.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.14.(2016•太原二模)如图,在△ABC中,∠C=90°,∠B=55°,点D在BC边上,DB=2CD,若将△ABC绕点D逆时针旋转α度(0<α<180)后,点B恰好落在初始位置时△ABC的边上,则α等于70或120 .【分析】根据题意画出符合的两种情况,①当B点落在AB上时,求出∠B=∠DB°,即可求出∠B′DB;②当B点落在AC上时,根据题意求出∠B′DC,即可求出∠B′DB的度数,即可得出答案.【解答】解:分为两种情况:①当B点落在AB上时,如图1,∵根据旋转的性质得出DB=DB′,∵∠B=55°,∴∠DB′B=∠B=55°,∴∠B′DB=180°﹣55°﹣55°=70°,即此时α=70;②当B点落在AC上时,如图2,如图,∵△ABC绕着点D顺时针旋转α度后得到△A′B′C′,∴B′D=BD,∵BD=2CD,∴B′D=2CD,∵∠ACB=90°,∴∠CB′D=30°,∴∠B′DC=60°,∴∠B′DB=180°﹣60°=120°,即此时α=120;故答案为:70或120.【点评】本题考查了旋转的性质,等腰三角形的性质,直角三角形的性质的应用,能求出∠B′DB的度数是解题的关键,作出图形更形象直观.15.(2016•怀柔区二模)如图,用扳手拧螺母时,旋转中心为螺丝(母)的中心,旋转角为0°~360°的任意角(答案不唯一).【分析】根据旋转中心的定义以及旋转角的定义解答即可.【解答】解:由旋转中心的定义:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心可知,用扳手拧螺母时,旋转中心为螺丝(母)的中心,而旋转角可估计实际情况决定,所以不确定,故答案为:螺丝(母)的中,0°~360°的任意角(答案不唯一)【点评】本题考查了和旋转有关的概念:旋转中心和旋转角,属于基础性题目,对此知识点的考查重点在于对旋转的性质的掌握.16.(2016•瑞昌市一模)在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为(2,1).【分析】根据中心对称的性质,知道点P(1,1),N(2,0),并细心观察坐标轴就可以得到答案.【解答】解:∵点P(1,1),N(2,0),∴由图形可知M(3,0),M1(1,2),N1(2,2),P1(3,1),∵关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,∴对称中心的坐标为(2,1),故答案为:(2,1).【点评】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.以及中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.三.解答题(共8小题)17.(2016•荆门)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.【分析】(1)根据题意补全图形,如图所示;(2)由旋转的性质得到∠DCF为直角,由EF与CD平行,得到∠EFC为直角,利用SAS得到三角形BDC与三角形EFC全等,利用全等三角形对应角相等即可得证.【解答】解:(1)补全图形,如图所示;(2)由旋转的性质得:∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠DCE+∠BCD=90°,∴∠ECF=∠BCD,∵EF∥DC,∴∠EFC+∠DCF=180°,∴∠EFC=90°,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS),∴∠BDC=∠EFC=90°.【点评】此题考查了旋转的性质,以及全等三角形的判定与性质,熟练掌握旋转的性质是解本题的关键.18.(2016•丹东)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.【分析】(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.19.(2016•呼兰区模拟)如图,在平面直角坐标系xOy中,每个小正方形的边长均为1,线段AB和DE的端点A、B、D、E均在小正方形的顶点上.(1)画出以AB为一边且面积为2的Rt△ABC,顶点C必须在小正方形的顶点上;(2)画出一个以DE为一边,含有45°内角且面积为的△DEF,顶点F必须在小正方形的顶点上;(3)若点C绕点Q顺时针旋转90°后与点F重合,请直接写出点Q的坐标.【分析】(1)和(2)分别画出图形;(3)作FC的中垂线,得Q(5,0).【解答】(1)S△ABC=×2×2=2;(2)S△DEF=2×3﹣1×2﹣×1×3=;∵ED=EF,∠DFE=90°,∴∠FDE=45°;(3)由勾股定理得:FC==,CQ==,FQ==,∴FC2=CQ2+FQ2,CQ=FQ,∴∠FQC=90°,∴点C绕点Q顺时针旋转90°后与点F重合;则点Q(5,0).【点评】本题考查了作图﹣旋转变换,对于画定值面积的三角形,利用面积的和、差先试求某点所组成的图形的面积是否符合题意,再确定这一点;同时根据勾股定理计算所成的三角形是否为直角三角形或等腰直角三角形.20.(2016春•重庆期末)(1)如图(1),直线a∥b,A,B两点分别在直线a,b上,点P 在a,b外部,则∠1,∠2,∠3之间有何数量关系?证明你的结论;(2)如图(2),直线a∥b,点P在直线a,b直角,∠2=50°,∠3=30°,求∠1;(3)在图(2)中,将直线a绕点A按逆时针方向旋转一定角度交直线b于点M,如图(3),若∠1=100°,∠4=40°,求∠2+∠3的度数.【分析】(1)设直线AP交直线b于O,根据平行线的性质得出∠2=∠AOB,根据三角形外角性质求出∠AOB=∠1+∠3,即可得出答案;(2)延长AP交直线b于O,根据平行线的性质得出∠ABO=∠2=50°,根据三角形的外角性质得出∠1=∠AOB+∠3,代入求出即可;(3)延长AP交直线b于O,根据三角形外角性质得出∠AOB=∠2+∠4,∠1=∠3+∠AOB,求出∠1=∠2+∠4+∠3,代入求出即可.【解答】(1)∠2=∠1+∠3,证明:设直线AP交直线b于O,如图1,∵直线a∥直线b,∴∠2=∠AOB,∵∠AOB=∠1+∠3,∴∠2=∠1+∠3;(2)解:延长AP交直线b于O,如图2,∵直线a∥直线b,∠2=50°,∴∠ABO=∠2=50°,∵∠3=30°,∴∠1=∠AOB+∠3=50°+30°=80°;(3)解:延长AP交直线b于O,如图3,∵∠AOB=∠2+∠4,∠1=∠3+∠AOB,∴∠1=∠2+∠4+∠3,∵∠1=100°,∠4=40°,∴∠2+∠3=∠1﹣∠4=60°.【点评】本题考查了平行线的性质,三角形外角性质的应用,能灵活运用性质进行推理是解此题的关键.21.(2014秋•五常市校级期中)(1)在一次数学探究活动中,陈老师给出了一道题.如图1,已知△ABC中,∠ACB=90°,AC=BC,P是△ABC内的一点,且PA=3,PB=1,PC=2,求∠BPC的度数.小强在解决此题时,是将△APC绕C旋转到△CBE的位置(即过C作CE⊥CP,且使CE=CP,连接EP、EB).你知道小强是怎么解决的吗?(2)请根据(1)的思想解决以下问题:如图2所示,设P是等边△ABC内一点,PA=3,PB=4,PC=5,求∠APB的度数.【分析】(1)如图1,首先证明BE2=PE2+PB2,得到∠BPE=90°;证明∠CPE=45°即可解决问题.(2)如图2,作旋转变换;首先证明∠AQP=60°;其次证明PQ2+CQ2=PC2,得到∠PQC=90°,求出∠AQC=150°,即可解决问题.【解答】解:(1)如图1,由题意得:∠PCE=90°PC=EC=2;BE=PA=3;由勾股定理得:PE2=22+22=8;∵PB2=1,BE2=9,∴BE2=PE2+PB2,∴∠BPE=90°,∵∠CPE=45°,∴∠BPC=135°.(2)如图2,将△ABP绕点A逆时针旋转60°到△ACQ的位置,连接PQ;则AP=AQ,∠PAQ=60°,QC=PB=4;∴△APQ为等边三角形,∠AQP=60°,PQ=PA=3;∵PQ2+CQ2=32+42=25,PC2=52=25,∴PQ2+CQ2=PC2,∴∠PQC=90°,∠AQC=60°+90°=150°,∴∠APB=∠AQC=150°.【点评】该题主要考查了旋转变换的性质、等边三角形的判定及其性质、勾股定理逆定理等几何知识点及其应用问题;对综合的分析问题解决问题的能力提出了较高的要求.22.(2014秋•苏州期中)如图1,在等腰直角△ABC中,AB=AC,∠BAC=90°,将一块三角板中含45°角的顶点放在A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.操作一:在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请说明理由;操作二:当0°<α≤45°时,在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2.某同学将△ABD沿AD所在的直线对折得到△ADF(如图2),很快找到了解决问题的方法,请你说明其中的道理.【分析】(1)如图1,根据图形、已知条件推知∠BAD+∠MAE=∠DAM+∠EAC=45°,所以∠MAE=∠EAC,即AE平分∠MAC;(2)应用折叠对称的性质和SAS得到△AEF≌△AEC,得出FE=CE,∠AFE=∠C=45°.再证明∠DFE=90°.然后在Rt△DFE中应用勾股定理即可证明.【解答】(1)证明:如图1,∵∠BAC=90°,∴∠BAD+∠DAM+∠MAE+∠EAC=90°.∵∠DAE=45°,∴∠BAD+∠EAC=45°.∵∠BAD=∠DAM,∴∠BAD+∠EAC=∠DAM+∠EAC=45°,∴∠BAD+∠MAE=∠DAM+∠EAC,∴∠MAE=∠EAC,即AE平分∠MAC;(2)证明:如图2,连接EF.由折叠可知,∠BAD=∠FAD,AB=AF,BD=DF,∠B=∠AFD=45°.∵∠BAD=∠FAD,∴由(1)可知,∠CAE=∠FAE.在△AEF和△AEC中,,∴△AEF≌△AEC(SAS),∴FE=CE,∠AFE=∠C=45°.∴∠DFE=∠AFD+∠AFE=90°.在Rt△DFE中,DF2+FE2=DE2,∴BD2+CE2=DE2.【点评】本题考查了旋转的性质,角平分线的定义,等腰直角三角形的性质,轴对称的性质,全等三角形的判定和性质等知识点.注意,旋转前后,图形的大小和形状都不改变.23.(2014秋•利川市校级期中)如图(1)所示,点C为线段AB上一点,△ACM、△CBN 是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图(2)中补出符合要求的图形,并判断(1)题中的结论是否依然成立,说明理由.【分析】(1)根据等边三角形的性质利用SAS判定△ACN≌△MCB,从而得到AN=MB;(2)连接AN,BM,根据等边三角形的性质及旋转的性质利用SAS判定△ACN≌△MCB,从而得到AN=MB.【解答】(1)证明:∵△ACM、△CBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∴∠ACN=∠MCB=120°,在△ACN和△MCB中,,∴△ACN≌△MCB,∴AN=MB.(2)解:连接AN,BM,∵△ACM、△CBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∵∠ACB=90°,∴∠ACN=∠MCB,在△ACN和△MCB中,,∴△ACN≌△MCB,∴AN=MB.【点评】此题主要考查学生对等边三角形的性质、旋转的性质及全等三角形的判定方法的综合运用.24.(2014秋•江西期末)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD ⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.【分析】(1)由∠ACB=90°,得∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,则∠ADC=∠CEB=90°,根据等角的余角相等得到∠ACD=∠CBE,易得Rt△ADC≌Rt△CEB,所以AD=CE,DC=BE,即可得到DE=DC+CE=BE+AD.(2)根据等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,得到AD=CE,DC=BE,所以DE=CE﹣CD=AD﹣BE.(3)DE、AD、BE具有的等量关系为:DE=BE﹣AD.证明的方法与(2)相同.【解答】(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)证明:在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CE﹣CD=AD﹣BE;(3)DE=BE﹣AD.易证得△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CD﹣CE=BE﹣AD.【点评】本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了直角三角形全等的判定与性质.教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。

初三旋转试题及答案

初三旋转试题及答案

初三旋转试题及答案一、选择题(每题3分,共30分)1. 若一个图形绕某点旋转180°后与自身重合,则该图形是()。

A. 线段B. 等腰三角形C. 正方形D. 圆2. 一个正方形绕其中心旋转90°后,其形状和大小()。

A. 都不变B. 形状不变,大小改变C. 形状改变,大小不变D. 都改变3. 旋转对称图形的旋转中心是()。

A. 任意一点B. 图形的顶点C. 图形的中心点D. 图形的边4. 旋转对称图形的旋转角可以是()。

A. 任意角度B. 180°C. 90°D. 360°5. 一个图形绕某点旋转后,与原图形()。

A. 完全重合B. 形状相同C. 大小相同D. 位置相同6. 一个图形绕某点旋转180°后,其位置()。

A. 与原图形重合B. 与原图形相反C. 与原图形相邻D. 与原图形远离7. 一个图形绕某点旋转90°后,其()。

A. 形状不变B. 大小不变C. 位置不变D. 所有都不变8. 一个图形绕某点旋转360°后,其()。

A. 形状不变B. 大小不变C. 位置不变D. 所有都不变9. 一个图形绕某点旋转,若旋转前后图形完全重合,则该旋转是()。

A. 任意旋转B. 旋转对称C. 镜像对称D. 轴对称10. 一个图形绕某点旋转后,若旋转前后图形形状和大小都不变,则该旋转是()。

A. 任意旋转B. 旋转对称C. 镜像对称D. 轴对称二、填空题(每题4分,共20分)1. 一个图形绕某点旋转180°后,其位置与原图形()。

2. 一个图形绕某点旋转90°后,其形状()。

3. 一个图形绕某点旋转360°后,其位置()。

4. 一个图形绕某点旋转,若旋转前后图形大小不变,则该旋转是()。

5. 一个图形绕某点旋转,若旋转前后图形形状不变,则该旋转是()。

三、解答题(每题10分,共50分)1. 描述一个正方形绕其中心点旋转90°后的图形变化情况。

中考数学复习考点专题练习---图形的旋转综合(含答案)

中考数学复习考点专题练习---图形的旋转综合(含答案)

中考数学复习考点专题练习---图形的旋转综合一.选择题1.如图,△OAB绕点O逆时针旋转85°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数为()A.55°B.75°C.85°D.90°2.下列图形:①平行四边形;②矩形;③菱形;④等边三角形中,是中心对称图形的有()A.①②③B.②③④C.①②④D.①②③④3.如图,在△ABC中,∠C=20°,将△ABC绕点A顺时针旋转60°得到△ADE,AE与BC交于点F,则∠AFB的度数是()A.60°B.70°C.80°D.90°4.如图,在Rt△ABC中,AB=AC,D,E是斜边BC上两点,且∠DAE=45°,将△ABE绕点A顺时针旋转90°后,得到△ACF,连接DF,则下列结论中有()个是正确的.①∠DAF=45°②△ABE≌△ACD③AD平分∠EDF④BE2+DC2=DE2A.4 B.3 C.2 D.15.如图,在等腰直角△ABC中,∠ACB=90°,D为△ABC内一点,将线段CD绕点C逆时针旋转90°后得到CE,连接BE,若∠DAB=10°,则∠ABE是()A.75°B.78°C.80°D.92°6.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△ABC,M是BC 的中点,P是A’B’的中点,连接PM.若BC=4,∠BAC=30°,则线段PM的最大值是()A.8 B.6 C.4 D.57.在平面直角坐标系xOy中,点O(0,0),A(2,0),B(0,),C(﹣2,0).将△OAB 绕点O顺时针旋转α(0°<α<360°)得到△OA′B′((其中点A旋转到点A′的位置),设直线AA′与直线BB′相交于点P,则线段CP长的最小值是()A.B.C.2 D.8.如图,四边形ABCD为正方形,AB=1,把△ABC绕点A逆时针旋转60°得到△AEF,连接DF,则DF的长为()A.B.C.D.9.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=116°,则∠α的大小是()A.64°B.36°C.26°D.22°10.如图①,正方形A的一个顶点与正方形B的对称中心重合,重叠部分面积是正方形A面积的,如图②,移动正方形A的位置,使正方形B的一个顶点与正方形A的对称中心重合,则重叠部分面积是正方形B面积的()A.B.C.D.二.填空题11.如图,△ABC为等边三角形,D是△ABC内一点,将△ABD绕点A按逆时针方向旋转到△ACP位置,则∠P AD=°.12.如图,在△ABC中,∠C=90°,AC=3cm,AB=5cm,将△ABC绕点B顺时针旋转60°得到△FBE,则点E与点C之间的距离是cm.13.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C顺时针旋转得到△A'B'C,D是A'B'的中点,连接BD,若BC=2,∠ABC=60°,则线段BD的最大值为.14.如图,将矩形ABCD绕点B顺时针旋转90°至EBGF的位置,连接AC,EG,取AC,EG的中点M,N连接MN,若AB=8,BC=6,则MN=.15.如图,将△ABC的边AB绕着点A顺时针旋转α(0°<α<90°)得到AB′,边AC绕着点A逆时针旋转β(0°<β<90°)得到AC′,联结B′C′,当α+β=60°时,我们称△AB′C′是△ABC 的“双旋三角形”,如果等边△ABC的边长为a,那么它所得的“双旋三角形”中B′C′=(用含a的代数式表示).16.如图,正方形ABCD的边长为,点E是正方形ABCD内一点,将△BCE绕着点C 顺时针旋转90°,点E的对应点F和点B,E三点在一条直线上,BF与对角线AC相交于点G,若DF=6,则GF的长为.17.如图,AB=AC,∠CAB=90°,∠ADC=45°,AD=1,CD=3,则BD=.18.在平面直角坐标系中,点P(x,y)经过某种变换后得到点P'(﹣y+1,x+2),我们把点P'(﹣y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1、P2、P3、P4、…P n、…,若点P1的坐标为(2,0),则点P2019的坐标为.19.如图,将△ABC的边AB绕着点A顺时针旋转α(0°<α<90°)得到AB′,边AC绕着点A逆时针旋转β(0°<β<90°)得到AC,连接B′C′,当α+β=60°时,我们称△AB′C’是△ABC 的“双展三角形”,已知一直角边长为2的等腰直角三角形,那么它的“双展三角形”的面积为.20.如图,将△ABC绕点C顺时针旋转90°得到△EDC,若点A、D、E在同一条直线上,∠ACD=70°,则∠EDC的度数是.三.解答题21.将一副三角尺的直角重合放置(∠B=30°,∠C=45°),如图1所示,(1)图1中∠BEC的度数为;(2)三角尺AOB的位置保持不动,将三角尺COD绕其直角顶点O顺时针方向旋转:①当旋转至图2所示位置时,恰好OD∥AB,求此时∠AOC的大小;②若将三角尺COD继续绕O旋转,直至回到图1位置,在这一过程中,是否会存在△COD其中一边能与AB平行?如果存在,请你画出图形,并直接写出相应的∠AOC的大小;如果不存在,请说明理由.22.在四边形ABCD中,AB∥CD,∠ABC=60°,AB=BC=4,CD=3.(1)如图1,求△BCD的面积;(2)如图2,M是CD边上一点,将线段BM绕点B逆时针旋转60°,可得线段BN,过点N作NQ⊥BC,垂足为Q,设NQ=n,BQ=m,求n关于m的函数解析式.(自变量m的取值范围只需直接写出)23.如图,将一个直角三角形纸片AOB,放置在平面直角坐标系中,点A(3,3),点B(3,0),点O(0,0),将△AOB沿OA翻折得到△AOD(点D为点B的对应点).(Ⅰ)求OA的长及点D的坐标:(Ⅱ)点P是线段OD上的点,点Q是线段AD上的点.①已知OP=1,AQ=,R是x轴上的动点,当PR+QR取最小值时,求出点R的坐标及点D到直线RQ的距离;②连接BP,BQ,且∠PBQ=45°,现将△OAB沿AB翻折得到△EAB(点E为点O的对应点),再将∠PBQ绕点B顺时针旋转,旋转过程中,射线BP,BQ交直线AE分别为点M,N,最后将△BMN沿BN翻折得到△BGN(点G为点M的对应点),连接EG,若,求点M的坐标(直接写出结果即可).24.如图,把直角三角形ABC按逆时针方向旋转到△EBD的位置,使得A、B、D三点在一直线上.(1)旋转中心是哪一点?旋转角是多少度?(2)AC与DE的位置关系怎样?请说明理由.25.将一副直角三角尺按图1摆放,其中∠C=90°,∠EDF=90°,∠B=60°,∠F=45°,等腰直角三角尺的直角边DF恰好垂直平分AB,与AC相交于点G,BC=4cm.(1)求DG的长;(2)如图2.将△DEF绕点D按顺时针方向旋转,直角边DF经过点C,另一直角边DE 与AC相交于点H,分别过点H,D作AB,BC的垂线,垂足分别为点M,N.猜想HM 与CN之间的数量关系,并证明;(3)如图3,在旋转的过程中,若△DEF两边DE,DF与△ABC两边AC,BC分别交于K、T两点,则KT的最小值为.26.如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.(1)判断A E、BE、BC之间的数量关系(直接写出结果,不必证明);(2)如图2,过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角a(0°<a <<144°)得到△AE'F',连结CE',BF′,求证:CE'=BF':(3)在(2)的旋转过程中,当a=时,CE'∥AB?(请直接写出结果).27.如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.(1)求∠CF A度数;(2)求证:AD∥BC.28.如图1,在Rt△ABC中,∠ABC=90°,AB=BC,将△ABC绕点A逆时针旋转,得到△ADE,旋转角为α(0°<α<90°),连接BD交CE于点F.(1)如图2,当α=45°时,求证:CF=EF;(2)在旋转过程中,①问(1)中的结论是否仍然成立?证明你的结论;②连接CD,当△CDF为等腰直角三角形时,求tan的值.29.综合与实践数学活动:在综合与实践活动课上,老师让同学们以“三角形纸片的折叠、旋转”为主题开展数学活动,探究线段长度的有关问题.动手操作:如图1,在直角三角形纸片ABC中,∠BAC=90°,AB=6,AC=8.将三角形纸片ABC进行以下操作:第一步:折叠三角形纸片ABC使点C与点A重合,然后展开铺平,得到折痕DE;第二步:将△ABC沿折痕DE展开,然后将△DEC绕点D逆时针方向旋转得到△DFG,点E,C的对应点分别是点F,G,射线GF与边AC交于点M(点M不与点A重合),与边AB交于点N,线段DG与边AC交于点P.数学思考:(1)求DC的长;(2)在△DEC绕点D旋转的过程中,试判断MF与ME的数量关系,并证明你的结论;问题解决:(3)在△DEC绕点D旋转的过程中,探究下列问题:①如图2,当GF∥BC时,求AM的长;②如图3,当GF经过点B时,AM的长为;③当△DEC绕点D旋转至DE平分∠FDG的位置时,试在图4中作出此时的△DFG和射线GF,并直接写出AM的长.(要求:尺规作图,不写作法,保留作图痕迹,标记出所有相应的字母)30.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P 为射线BD、CE的交点.(1)判断线段BD与CE的关系,并证明你的结论;(2)若AB=8,AD=4,把△ADE绕点A旋转,①当∠EAC=90°时,求PB的长;②求旋转过程中线段PB长的最大值.参考答案一.选择题1.解:根据旋转的性质可知:∠C=∠A=110°,在△COD中,∠COD=180°﹣110°﹣40°=30°.旋转角∠AOC=85°,所以∠α=85°﹣30°=55°.故选:A.2.解:平行四边形,矩形,菱形是中心对称图形.故选:A.3.解:∵△ABC绕点A顺时针旋转60°得△ADE,∴∠CAE=60°,∵∠C=20°,∴∠AFC=100°,∴∠AFB=80°.故选:C.4.解:由旋转可知:△BAE≌△CAF,∴∠BAE=∠CAF,∴∠EAF=∠BAC=90°,∵∠EAD=45°,∴∠EAD=∠F AD=45°,∴AD平分∠EAF,∵AD=AD,AE=AF,∴△DAE≌△DAF(SAS),故①③正确,∴DE=DF,∵∠ACF∠B=∠ACB=45°,∴∠DCF=90°,∴DF2=CD2+CF2,∵DF=DE,BE=CF,∴BE2+CD2=DE2,故④正确,无法判断△ABE≌△ACD,故②错误.故选:B.5.解:∵△ABC是等腰直角三角形,∴∠ABC=∠BAC=45°.∴∠DAC=45°﹣10°=35°.在△BEC和△ADC中∴△BCE≌△ACD(SAS).∴∠EBC=∠DAC=35°.∴∠ABE=∠EBC+∠DAC=80°.故选:C.6.解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=4,∴AB=8,根据旋转不变性可知,A′B′=AB=8,∴A′P=PB′,∴PC=A′B′=4,∵CM=BM=2,又∵PM≤PC+CM,即PM≤6,∴PM的最大值为3(此时P、C、M共线).故选:B.7.解:∵△OAB是直角三角形,点P在以AB为直径的圆上运动,∵A(2,0),B(0,),∴AB=4,AB的中点为(1,),∵C(﹣2,0),∴CP的最小值为2﹣2;故选:B.8.解:如图,连接BE,CE,过E作EG⊥BC于G,由旋转可得,AB=AE=1=AD,AC=AF,∠BAC=∠EAF=45°=∠DAC,∴∠CAE=∠F AD,∴△ADF≌△AEC(SAS),∴DF=CE,由旋转可得,AB=AE=1,∠BAE=60°,∴△ABE是等边三角形,∴BE=1,∠ABE=60°,∴∠EBG=30°,∴EG=BE=,BG=,∴CG=1﹣,∴Rt△CEG中,CE======,∴DF=,故选:A.9.解:如图设BC交C′D′于K.在四边形ABKD ′中,∵∠B =∠D ′=90°,∠BKD ′=∠1=116°,∴∠BAD ′=180°﹣116°=64°,∵∠BAD =90°,∴∠DAD ′=90°﹣64°=26°,故选:C .10.解:设正方形B 对角线的交点为O ,如图1,设正方过点O 作边的垂线,则OE =OM ,∠EOM =90°,∵∠EOF +∠EON =90°,∠MON +∠EON =90°,∴∠EOF =∠MON ,在△OEF 和△OMN 中,∴△OEF ≌△OMN (ASA ),∴阴影部分的面积=S 四边形NOEP +S △OEF =S 四边形NOEP +S △OMN =S 四边形MOEP =S 正方形CTKW ,即图1中阴影部分的面积=正方形B 的面积的四分之一,同理图2中阴影部分烦人面积=正方形A 的面积的四分之一,∵图①,正方形A 的一个顶点与正方形B 的对称中心重合,重叠部分面积是正方形A 面积的,∴正方形B 的面积=正方形A 的面积的2倍,∴图2中重叠部分面积是正方形B面积的,故选:D.二.填空题(共10小题)11.解:∵△ABC为等边三角形,∴∠BAC=60°,∵将△ABD绕点A按逆时针方向旋转到△ACP,∴∠DAP=∠BAC=60°,故答案为:60.12.解:连接EC,即线段EC的长是点E与点C之间的距离,在Rt△ACB中,由勾股定理得:BC===4(cm),∵将△ABC绕点B顺时针旋转60°得到△FBE,∴BC=BE,∠CBE=60°,∴△BEC是等边三角形,∴EC=BE=BC=4cm,故答案为:4.13.解:连接CD,在Rt△ABC中,∵∠ACB=90°,BC=2,∠ABC=60°,∴∠A=30°,∴AB=A′B′=2BC=4,∵DB′=DA′,∴CD=A′B′=2,∴BD≤CD+CB=4,∴BD的最大值为4,14.解:连接BM、BN,在Rt△ABC中,利用勾股定理可得AC=10,∵M为AC中点,∴BM=AC=5.∵矩形ABCD绕点B顺时针旋转90°至EBGF的位置,∴BM=BN,且∠MBN=90°,∴MN=BM=5.故答案为5.15.解:∵△ABC为等边三角形,∴AB=AC=a,∠BAC=60°,∵△AB′C′是△ABC的“双旋三角形”,∴α+β=60°,AB′=AB=a,AC′=AC=a,∴∠B′AC=120°,∴∠B′=∠C′=30°,作AH⊥B′C′于H,如图,则B′H=C′H,在Rt△AB′H中,AH=AB′=a,∴B′H=AH=a,∴B′C′=2A′H=a.16.解:作CH⊥BF于H,GK⊥BC于K.∵四边形ABCD是正方形,∴CB=CD,∠BCD=90°,∵∠ECF=90°,∴∠BCD=∠ECF,∴∠BCE=∠DCF,∵CE=CF,∴△BCE≌△DCF(SAS),∴BE=DF=6,∵CE=CF,∠ECF=90°,CH⊥EF,∴EH=HF,∴CH=HE=HF,设CH=HE=HF=a,在Rt△BCH中,∵BC2=BH2+CH2,∴50=(6+a)2+a2,解得a=1或﹣7(舍弃),∴CH=HE=HF=1,BF=8,∵tan∠CBH===,设GK=k,BK=7k,则GK=CK=k,∴8k=5,∴k=,∴BG==5k=,∴FG=BF﹣BG=8﹣=,故答案为.17.解:如图,过点A作AE⊥AD交CD于E,连接BE.∵∠DAE=90°,∠ADE=45°,∴∠ADE=∠AED=45°,∴AE=AD=1,DE=,∵∠DAE=∠BAC=90°,∴∠BAE=∠CAD,∵AB=AC,∴△BAE≌△CAD(SAS),∴CD=BE=3,∠AEB=∠ADC=45°,∴∠BED=90°,∴BD===.故答案为.18.解:根据题意得点P1的坐标为(2,0),则点P2的坐标为(1,4),点P3的坐标为(﹣3,3),点P4的坐标为(﹣2,﹣1),点P5的坐标为(2,0),…,而2019=4×504+3,所以点P2019的坐标与点P3的坐标相同,为(﹣3,3).故答案为(﹣3,3).19.解:如图1中,当△AB′C′是△ABC的“双展三角形”时,作C′D⊥B′A交B′A的延长线于D,在C′D上取一点F,使得F A=FC,连接AF.∵B∠B′AC′=60°+45°=105°,∴∠DAC′=75°,∵∠D=90°,∴∠DC′A=15°,∵F A=FC′,∴∠F AC=∠FC′A=15°,∴∠AFD=∠F AC+∠FC′A=30°,设AD=x,则AF=FC′=2x.DF=x,∵AB=BC=2,∠B=90°,∴AC=AC′=2,在Rt△ADC′中,则有x2+(x+2x)2=(2)2,解得x=﹣1(负根已经舍弃),∴DC′=2x+x=+1,∴S△AB′C′=•AB′•C′D=+1.如图2中,当△A′BC′是△ABC的“双展三角形”时,作C′D⊥B′A交A′B的延长线于D.由题意:∠A′BC′=60°+90°=150°,∴∠C′BD=30°,∴C′D=BC′=1,∴S△A′BC′=•BA′•C′D=1,综上所述,满足条件的+1或1.故答案为+1或1.20.解:由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=70°,∴∠DCE=20°,∴∠EDC=180°﹣∠E﹣∠DCE=180°﹣45°﹣20°=115°,故答案为115°.三.解答题(共10小题)21.解:(1)∠CAE=180°﹣∠BAO=180°﹣60°=120°,∴∠BEC=∠C+∠CAE=45°+120°=165°,故答案为:165°.(2)①∵OD∥AB,∴∠BOD=∠B=30°,又∠BOD+∠BOC=90°,∠AOC+∠BOC=90°,∴∠AOC=∠BOD=30°.′②存在,如图1,当AB∥OC时,则∠COB=∠B=30°,∴∠AOC=90°+30°=120°;如图2,当AB∥CD时,延长DO交AB于D′,∴∠AD′O=∠D=45°,∴∠AOD′=75°,∴∠AOC=∠AOD′+90°=165°;如图3,当AB∥OD时,∠DOB=∠B=30°,∴∠AOC=∠DOB=30°;如图4,当AB∥OD时,∠AOD=∠A=60°,∴∠AOC=90°+60°=150°;如图5,当AB∥OC时,∴∠AOC=∠A=60°;如图6,当AB∥CD时,∠1=∠A=60°,∴∠AOC=60°﹣45°=15°;综上所述,∠AOC的度数为:15°,30°,60°,120°,150°,165°.22.解:(1)过点D作DE⊥BC,则∠DEB=90°.∵AB∥CD,∴∠ABC=∠DCE=60°.∴在Rt△CDE中,∠CDE=30°.∴CE=CD=.∴DE==.∴△BCD的面积为BC•DE=×4×=(2)方法一:连接AN,∵线段BM绕点B逆时针旋转60°得到线段BN,∴NB=MB,∠NBM=60°.∵∠MBC+∠MBA=∠MBA+∠NBA.∴∠MBC=∠NBA,∵AB=BC,∴△MBC≌△NBA(SAS).∴∠NAB=∠BCM=120°.连接AC,∵∠ABC=60°,AB=BC,∴△ABC为等边三角形.∴∠BAC=∠ACB=60°.∴∠NAB+∠BAC=180°.∴N,A,C三点在一条直线上.∵NQ=n,BQ=m,∴CQ=4﹣m.∵NQ⊥BC,∴∠NQC=90°.∴在Rt△NQC中,NQ=CQ•tan∠NCQ.∴n=(4﹣m).即n=﹣m+4.所以n关于m的函数解析式为:n=﹣m+4(≤m≤2).方法二:∵线段BM绕点B逆时针旋转60°得到线段BN,∴NB=BM,∠NBM=60°.∵∠MBC+∠MBA=∠MBA+∠NBA.∴∠MBC=∠NBA,∵AB=BC,∴△MBC≌△NBA.∴∠NAB=∠BCM=120°.设AB与NQ交于H点,∵NQ⊥BC,∴∠HQB=90°.∵∠ABC=60°,∴∠BHQ=∠NHA=30°.∴∠HNA=180°﹣30°﹣120°=30°.∴NA=AH.∴在Rt△BHQ中,HQ=BQ•tan∠HBQ=m.又∵BH=2m,∴AH=4﹣2m.过点A作AG⊥NH,∴NG=GH.在Rt△AGH中,GH=AH•cos∠AHN=(4﹣2m)=2﹣m,∴NH=2GH=4﹣2m.∵NQ=N H+HQ,∴n=﹣m+4.所以n关于m的函数解析式为:n=﹣m+4(≤m≤2).23.解:(Ⅰ)如图1中,∵A(3,3),B(3,0),∴AB=OB=3,∠ABO=90°,∴∠BOA=45°,∵将△AOB沿OA翻折得到△AOD,∴∠AOD=∠AOB=45°,∴∠BOD=90°,∴点D在y轴的正半轴上,∴D(0,3).(Ⅱ)①如图1中,作点P关于点O的对称点K,连接KQ交OB于R′,此时PR′+QR′的值最小.作DH⊥QK于H.由题意:K(0,﹣1),Q(,3).∴直线KQ的解析式为y=x﹣1,令y=0,得到x=,∵DH⊥KQ,∴直线KQ的解析式为y=﹣x+3,由,解得,∴H(,),∴DH==∴R′(,0),点D到直线KQ的距离为.②如图2中,易证△ABM≌△EBG(SAS),∴∠BAM=∠BEC=45°,∵∠AEB=45°,∴∠GEN=90°,∵,∴可以假设EN=12k,EG=5k,则NG=MN=13k,∵AM=EG=5k,∴5k+13k+12k=3,∴k=,作MH⊥AB于H,∵∠MAH=45°,AM=,∴AH=MH=,可得M(,).24.解:(1)直角三角形ABC按逆时针方向旋转到△EBD的位置,∴旋转中心是点B,旋转角是90°;(2)AC⊥DE,理由:延长DE交AC于F,∵把直角三角形ABC按逆时针方向旋转到△EBD的位置,∴∠C=∠D,∠DBE=∠ABC=90°,∴∠C+∠A=∠D+∠A=90°,∴∠DF A=90°,∴AC⊥DE.25.解:(1)如图1中,在Rt△ABC中,∵∠C=90°,BC=4,∠CAB=30°∴AB=2BC=8,∵DF垂直平分线段AB,∴AD=DB=4,在Rt△ADG中,DG=AD•tan30°=4×=4.(2)结论:CN=HM.理由:如图2中,∵∠ACB=90°,AD=DB,∴CD=DA=DB,∵∠B=60°,∴△BDC是等边三角形,∴∠DCB=∠CDB=60°,∵∠ACB=∠CDH=90°,∴∠MDH=∠HCD=30°,∴CD=DH,∵∠DHM=∠DCN=60°,∠DMH=∠DNC=90°,∴△DMH∽△DNC,∴==,∴CN=HM.(3)如图3中,连接CD.∵∠KCT=∠KDT=90°,∴∠KCT+∠KDT=180°,∴K,D,T,C四点共圆,∴KT是该圆的直径,当CD是该圆的直径时,KT的长最短,此时KT=CD=AB=4.26.解:(1)∵∠A=36°,AB=AC,∴∠ABC=∠C=(180°﹣36°)=72°,∵BE平分∠ABC,∴∠ABE=∠CBE=×72°=36°,∴∠BEC=∠A+∠ABE=36°+36°=72°,∴∠ABE=∠A,∠BEC=∠C,∴AE=BE,BE=BC,∴AE=BE=BC,故答案为:AE=BE=BC;(2)证明:∵AB=AC,EF∥BC,∴AE=AF,由旋转的性质得,∠E′AC=∠F′AB,AE′=AF′,在△CAE′和△BAF′中,,∴△CAE′≌△BAF′(SAS),∴CE′=BF′;(3)解:由(1)可知AE=BC,由旋转知,AE'=AE,∴AE'=BC,如图,在△AEF绕点A逆时针旋转过程中,点E经过的路径(圆弧)与过点C且与AB 平行的直线l相交于点M、N,①当点E'与点M重合时,∵CM∥AB,∴四边形ABCM是等腰梯形,∴∠BAM=∠ABC=72°,又∵∠BAC=36°,∴α=∠CAM=36°;②当点E′与点N重合时,∵CE′∥AB,∴∠AMN=∠BAM=72°,∵AM=AN,∴∠ANM=∠AMN=72°,∴∠MAN=180°﹣72°×2=36°,∴α=∠CAN=∠CAM+∠MAN=36°+36°=72°,综上所述,当旋转角为36°或72°时,CE′∥AB.故答案为:36°或72°.27.解:(1)∵△ABC是等边三角形∴∠ACB=60°,BC=AC∵等边△ABC绕点C顺时针旋转90°得到△EFC ∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CF A=(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等边三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC28.(1)证明:如图2中,∵∠EAC=∠DAB,AE=AC,AD=AB,∴∠AEC=∠ACE=∠ADB=∠ABD,∵∠ADB=∠CDF,∴∠FDC=∠FCD,∴FD=FC,∵∠EDC=90°,∴∠DEF+∠ECD=90°,∠FDE+∠FDC=90°,∴∠FED=∠FDE,∴FE=FD,∴EF=FC.(2)①解:如图1中,结论仍然成立.理由:连接AF.∵∠FCA=∠ABF,∴A,B,C,F四点共圆,∴∠AFC+∠ABC=180°,∵∠ABC=90°,∴∠AFC=90°,∴AF⊥EC,∵AE=AC,∴EF=CF.②如图3﹣1中,当CF=CD,∠FCD=90°时,连接AF,作CH⊥BF于H.设CF=CD =a.则DE==a,DF=a,∵CF=CD,CH⊥DF,∴HF=HD,∴CH=DF=a,∴BC=DE=a,∴BH==a,∵AE=AC,EF=CF,∴AF平分∠EAC,∵A,B,C,F四点共圆,∴∠CAF=∠CBH=α,∴tanα===.如图3﹣2中,当DF=DC,∠CDF=90°时,作DH⊥CF于H,连接AF.设CD=DF=m.则CF=EF=a,DH=CF=a,∴DE=BC==a,∴BD==2a,∴tanα==.29.解:(1)如图1中,∵DE⊥AC,∴∠DEC=∠A=90°,∴DE∥AB,∵AE=EC,∴BD=DC,在Rt△ABC中,∵AB=6,AC=8,∴BC===10,∴CD=BC=5.(2)结论:MF=ME.理由:如图1中,连接DM,∵∠DFM=∠DEM=90°,DM=DM,DF=DE,∴Rt△DMF≌Rt△DME(HL),∴MF=ME.(3)①如图2中,作AH⊥BC于H,交FG于K.易知AH==,四边形DFKH是矩形,∴DF=KH=3,∴AK=AH﹣KH=,∵KM∥CH,∴=,∴=,∴AM=3.②如图3中,∵DG=DB=DC,∴∠G=∠DBG,∵∠G=∠C,∴∠MBC=∠C,∴BM=MC,设BM=MC=x,在Rt△ABM中,∵BM2=AB2+AM2,∴62+(8﹣x)2=x2,∴x=,∴AM=AC﹣CM=8﹣=.故答案为.③尺规作图如图4﹣1所示.作DR平分∠CDF,在DR上截取DG=DC,分别以D,G 为圆心,DE,CE为半径画弧,两弧交于点F,△DFG即为所求.如图4﹣1中,连接DM,设DG交AC于T,作TH⊥CD于H,作DK平分∠CDG交TH 于K,作KJ⊥DG于J.易证△DEM≌△DHK(AAS),推出EM=HK,只要求出HK即可.∵TE⊥DE,TH⊥DC,DG平分∠CDE,∴TE=TH,设TE=TH=x,在Rt△TCH中,x2+22=(4﹣x)2,∴x=,∴DT==,∵DK平分∠CDT,KJ⊥DT,KH⊥CD,∴KJ=KH,设KJ=KH=y,在Rt△KTJ中,y2+(﹣3)2=(﹣y)2,∴y=3﹣6,∴EM=3﹣6,∴AM=AE﹣EM=4﹣(3﹣6)=10﹣3.30.解:(1)结论:BD=CE,BD⊥CE.理由如图1中,∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠DAB=∠CAE,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE.∠ACE=∠ABD设CP与AB交于点O,∵∠AOC=∠BOP∴∠BPC=∠OAC=90°∴BD⊥CE;(2)解:a:如图2中,当点E在AB上时,BE=AB﹣AE=4.∵∠EAC=90°,∴CE===4,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=,∴=,∴PB=,b:如图3中,当点E在BA延长线上时,BE=AB+AE=12.∵∠EAC=90°,∴CE==4,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=,∴=,∴PB =,∴PB 的长为或.(3)a 、如图4中,以A 为圆心AD 为半径画圆,当CE 在⊙A 下方与⊙A 相切时,PB 的值最小.理由:此时∠BCE 最小,因此PB 最小,(△PBC 是直角三角形,斜边BC 为定值,∠BCE 最小,因此PB 最小)∵AE ⊥EC ,∴EC ==4,由(1)可知,△ABD ≌△ACE ,∴∠ADB =∠AEC =90°,BD =CE =4,∴∠ADP =∠DAE =∠AEP =90°,∴四边形AEPD 是矩形,∴PD =AE =4,∴PB =BD ﹣PD =4﹣4.b 、如图5中,以A 为圆心,AD 为半径画圆,当CE 在⊙A 上方与⊙A 相切时,PB 的值最大.理由:此时∠BCE最大,因此PB最大,(△PBC是直角三角形,斜边BC为定值,∠BCE 最大,因此PB最大)∵AE⊥EC,∴EC===4,同(1)可证△ADB≌△AEC∴∠ADB=∠AEC=90°,BE=CE=4,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴P D=AE=4,∴PB=BD+PD=4+4.∴PB最大值是4+4;。

数学中考压轴题旋转问题(经典) 答案版

数学中考压轴题旋转问题(经典) 答案版

旋转拔高练习一、选择题1. (广东)如图,把一个斜边长为2且含有300角的直角三角板ABC 绕直角顶点C 顺时针旋转900到△A 1B 1C ,则在旋转过程中这个三角板扫过的图形的面积是【 】A .πB .34π D .1112π 1、【分析】因为旋转过程中这个三角板扫过的图形的面积分为三部分扇形ACA 1、 BCD 和△ACD 计算即可:在△ABC 中,∠ACB=90°,∠BAC=30°,AB=2,∴BC=12AB=1,∠B=90°-∠BAC=60°。

∴AC =∴ABC 1S BC AC 22∆=⨯⨯=B 扫过的路线与AB 的交点为D ,连接CD ,∵BC=DC,∴△BCD 是等边三角形。

∴BD=CD=1。

∴点D 是AB 的中点。

∴ACD ABC 11S S 22∆∆==S 。

∴1ACD ACA BCD ABC S S S ∆∆=++扇形扇形的面扫过积26013113604612ππππ⨯⨯++=+= 故选D 。

2. (湖北)如图,O 是正△ABC 内一点,OA=3,OB=4,OC=5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O′的距离为4;③∠AOB=150°;④AOBO S 四形边⑤AOC AOB SS+=.其中正确的结论是【 】 A .①②③⑤ B.①②③④ C.①②③④⑤ D.①②③ 2【分析】∵正△ABC,∴AB=CB,∠ABC=600。

∵线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO′,∴BO=BO′,∠O′AO=600。

∴∠O′BA=600-∠ABO=∠OBA。

∴△BO′A≌△BOC。

∴△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到。

故结论①正确。

连接OO′,∵BO=BO′,∠O′AO=600,∴△OBO′是等边三角形。

初三旋转测试题及答案

初三旋转测试题及答案

初三旋转测试题及答案一、选择题(每题3分,共30分)1. 旋转对称图形是指绕某一点旋转一定角度后能够与自身重合的图形。

下列选项中,哪一个不是旋转对称图形?A. 正方形B. 正三角形C. 五边形D. 圆2. 一个图形绕某点旋转180°后与原图形重合,这个点称为图形的:A. 旋转中心B. 对称轴C. 旋转角D. 旋转对称中心3. 一个图形绕一点旋转90°后与自身重合,这个图形是:A. 正方形B. 正三角形C. 正五边形D. 正六边形4. 一个图形绕某点旋转180°后与自身重合,这个点是图形的:A. 对称轴B. 旋转中心C. 旋转对称中心D. 旋转角5. 一个图形绕某点旋转120°后与自身重合,这个图形是:B. 正三角形C. 正五边形D. 正六边形6. 一个图形绕某点旋转360°后与自身重合,这个点是图形的:A. 对称轴B. 旋转中心C. 旋转对称中心D. 旋转角7. 一个图形绕某点旋转60°后与自身重合,这个图形是:A. 正方形B. 正三角形C. 正六边形D. 正八边形8. 一个图形绕某点旋转45°后与自身重合,这个图形是:A. 正方形B. 正三角形C. 正五边形D. 正八边形9. 一个图形绕某点旋转30°后与自身重合,这个图形是:A. 正方形B. 正三角形C. 正六边形D. 正十二边形10. 一个图形绕某点旋转72°后与自身重合,这个图形是:A. 正方形C. 正六边形D. 正十边形二、填空题(每题4分,共20分)1. 一个图形绕某点旋转______度后与自身重合,这个点是图形的旋转中心。

2. 一个图形绕某点旋转______度后与自身重合,这个图形是正六边形。

3. 一个图形绕某点旋转______度后与自身重合,这个图形是正五边形。

4. 一个图形绕某点旋转______度后与自身重合,这个图形是正三角形。

5. 一个图形绕某点旋转______度后与自身重合,这个图形是正方形。

图形的旋转九年级试卷【含答案】

图形的旋转九年级试卷【含答案】

图形的旋转九年级试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 图形绕某点旋转90°,相当于图形绕同一点旋转_________。

A. 45°B. 180°C. 270°D. 360°2. 一个正方形绕其中心旋转,每次旋转_________度,图形与原图形重合。

A. 30°B. 45°C. 60°D. 90°3. 下列哪个图形绕中心点旋转180°后,能与原图形重合?A. 等边三角形B. 等腰三角形C. 长方形D. 正五边形4. 一个点绕另一个点旋转,旋转角为_________时,两点位置不变。

A. 0°B. 90°C. 180°D. 270°5. 下列哪个图形绕中心旋转90°后,不能与原图形重合?A. 正方形B. 正五边形C. 正六边形D. 正八边形二、判断题(每题1分,共5分)1. 旋转前后图形的大小和形状都不会改变。

()2. 旋转角是指旋转中心与旋转后的图形的对应点之间的夹角。

()3. 任何图形绕中心旋转180°后,都能与原图形重合。

()4. 一个图形绕中心旋转360°后,一定回到原来的位置。

()5. 旋转前后图形的面积一定相等。

()三、填空题(每题1分,共5分)1. 图形绕某点旋转_________度,相当于图形绕同一点旋转270°。

2. 一个正方形绕其中心旋转,每次旋转_________度,图形与原图形重合。

3. 下列哪个图形绕中心点旋转180°后,能与原图形重合?_________4. 一个点绕另一个点旋转,旋转角为_________时,两点位置不变。

5. 下列哪个图形绕中心旋转90°后,不能与原图形重合?_________四、简答题(每题2分,共10分)1. 简述旋转的基本性质。

中考数学总复习之图形的旋转综合训练(30题)

中考数学总复习之图形的旋转综合训练(30题)

中考数学总复习之图形的旋转综合训练(30题)1.如图,点A在射线OX上,OA=a.如果OA绕点O按逆时针方向旋转n°(0<n≤360)到OA′,那么点A′的位置可以用(a,n°)表示.(1)按上述表示方法,若a=3,n=37,则点A′的位置可以表示为;(2)在(1)的条件下,已知点B的位置用(3,74°)表示,连接A′A、A′B.求证:A′A=A′B.2.如图1,D为等边△ABC内一点,将线段AD绕点A逆时针旋转60°得到AE,连接CE,BD的延长线与AC交于点G,与CE交于点F.(1)求证:BD=CE;(2)如图2,连接F A,小颖对该图形进行探究,得出结论:∠BFC=∠AFB=∠AFE.小颖的结论是否正确?若正确,请给出证明;若不正确,请说明理由.3.如图,点M是∠ABC的边BA上的动点,BC=6,连接MC,并将线段MC绕点M逆时针旋转90°得到线段MN.(1)作MH⊥BC,垂足H在线段BC上,当∠CMH=∠B时,判断点N是否在直线AB上,并说明理由;(2)若∠ABC=30°,NC∥AB,求以MC、MN为邻边的正方形的面积S.4.如图,点E是矩形ABCD的边BC上一点,将△ABE绕点A逆时针旋转至△AB1E1的位置,此时E、B1、E1三点恰好共线.点M、N分别是AE和AE1的中点,连接MN、NB1.(1)求证:四边形MEB1N是平行四边形;(2)延长EE1交AD于点F,若EB1=E1F,,判断△AE1F与△CB1E 是否全等,并说明理由.5.如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D为△ABC内一点,将线段AD绕点A逆时针旋转90°得到AE,连接CE,BD的延长线与CE交于点F.(1)求证:BD=CE,BD⊥CE;(2)如图2,连接AF,DC,已知∠BDC=135°,判断AF与DC的位置关系,并说明理由.6.下面是小明关于“对称与旋转的关系”的探究过程,请你补充完整.(1)三角形在平面直角坐标系中的位置如图1所示,简称G,G关于y轴的对称图形为G1,关于x轴的对称图形为G2.则将图形G1绕点顺时针旋转度,可以得到图形G2.(2)在图2中分别画出G关于y轴和直线y=x+1的对称图形G1,G2.将图形G1绕点(用坐标表示)顺时针旋转度,可以得到图形G2.(3)综上,如图3,直线l1:y=﹣2x+2和l2:y=x所夹锐角为α,如果图形G关于直线l1的对称图形为G1,关于直线l2的对称图形为G2,那么将图形G1绕点(用坐标表示)顺时针旋转度(用α表示),可以得到图形G2.7.如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).(1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1;(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.8.如图,是边长为1的小正方形组成的8×8方格,线段AB的端点在格点上.建立平面直角坐标系,使点A、B的坐标分别为(2,1)和(﹣1,3).(1)画出该平面直角坐标系xOy;(2)画出线段AB关于原点O成中心对称的线段A1B1;(3)画出以点A、B、O为其中三个顶点的平行四边形.(画出一个即可)9.如图,在2×6的方格纸中,已知格点P,请按要求画格点图形(顶点均在格点上).(1)在图1中画一个锐角三角形,使P为其中一边的中点,再画出该三角形向右平移2个单位后的图形.(2)在图2中画一个以P为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P旋转180°后的图形.10.如图所示的方格纸(1格长为一个单位长度)中,△AOB的顶点坐标分别为A(3,0),O(0,0),B(3,4).(1)将△AOB沿x轴向左平移5个单位,画出平移后的△A1O1B1(不写作法,但要标出顶点字母);(2)将△AOB绕点O顺时针旋转90°,画出旋转后的△A2O2B2(不写作法,但要标出顶点字母);(3)在(2)的条件下,求点B绕点O旋转到点B2所经过的路径长(结果保留π).11.如图是由小正方形组成的9×6网格,每个小正方形的顶点叫做格点.△ABC的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D,E分别是边AB,AC与网格线的交点.先将点B绕点E旋转180°得到点F,画出点F,再在AC上画点G,使DG∥BC;(2)在图(2)中,P是边AB上一点,∠BAC=α.先将AB绕点A逆时针旋转2α,得到线段AH,画出线段AH,再画点Q,使P,Q两点关于直线AC对称.12.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△DEF关于点O成中心对称,△ABC与△DEF的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O的位置.(2)将△ABC先向右平移4个单位长度,再向下平移2个单位长度,得到△A1B1C1,请画出△A1B1C1;(3)在网格中画出格点M,使A1M平分∠B1A1C1.13.如图,方格纸上每个小正方形的边长均为1个单位长度,△ABC的顶点A、B、C都在格点上(两条网格线的交点叫格点).请仅用无刻度的直尺按下列要求画图,并保留画图痕迹(不要求写画法).(1)将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B1,点C的对应点为C1,画出△AB1C1;(2)连接CC1,△ACC1的面积为;(3)在线段CC1上画一点D,使得△ACD的面积是△ACC1面积的.14.如图,在平面直角坐标系中,线段AB的两个端点的坐标分别是A(﹣1,4),B(﹣3,1).(1)画出线段AB向右平移4个单位后的线段A1B1;(2)画出线段AB绕原点O旋转180°后的线段A2B2.15.数学活动课上,张老师组织同学们设计多姿多彩的几何图形,如图都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影,请同学们在余下的空白小等边三角形中选取一个涂上阴影,使得4个阴影小等边三角形组成一个轴对称图形或中心对称图形,请画出4种不同的设计图形.(规定:凡通过旋转能重合的图形视为同一种图形)16.如图,在△ABC中,,D,E,F分别为AC,AB,BC的中点,连接DE,DF.(1)如图1,求证:;(2)如图2,将∠EDF绕点D顺时针旋转一定角度,得到∠PDQ,当射线DP交AB于点G,射线DQ交BC于点N时,连接FE并延长交射线DP于点M,判断FN与EM的数量关系,并说明理由;(3)如图3,在(2)的条件下,当DP⊥AB时,求DN的长.17.在△ABC中,∠BAC=90°,AB=AC,线段AB绕点A逆时针旋转至AD(AD不与AC 重合),旋转角记为α,∠DAC的平分线AE与射线BD相交于点E,连接EC.(1)如图①,当α=20°时,∠AEB的度数是;(2)如图②,当0°<α<90°时,求证:BD+2CE=AE;(3)当0°<α<180°,AE=2CE时,请直接写出的值.18.在△ABC中,点D,E分别是AB,AC边上的点,DE∥BC.基础理解:(1)如图1,若AD=4,BD=3,求的值;证明与拓展:(2)如图2,将△ADE绕点A逆时针旋转度,得到△AD1E1,连接BD1,CE1.①求证:=;②如图3,若∠BAC=90°,AB<AC,AD=6,△ADE在旋转过程中,点D1恰好落在DE上时,连接EE1,=,则△E1D1E的面积为.19.【特例感知】(1)如图1,△AOB和△COD是等腰直角三角形,∠AOB=∠COD=90°,点C在OA 上,点D在BO的延长线上,连接AD,BC,线段AD与BC的数量关系是;【类比迁移】(2)如图2,将图1中的△COD绕着点O顺时针旋转α(0°<α<90°),那么第(1)问的结论是否仍然成立?如果成立,证明你的结论;如果不成立,说明理由.【方法运用】(3)如图3,若AB=8,点C是线段AB外一动点,AC=3,连接BC.①若将CB绕点C逆时针旋转90°得到CD,连接AD,则AD的最大值是;②若以BC为斜边作Rt△BCD(B,C,D三点按顺时针排列),∠CDB=90°,连接AD,当∠CBD=∠DAB=30°时,直接写出AD的值.20.在Rt△ABC中,AC=BC,将线段CA绕点C旋转α(0°<α<90°),得到线段CD,连接AD、BD.(1)如图1,将线段CA绕点C逆时针旋转α,则∠ADB的度数为;(2)将线段CA绕点C顺时针旋转α时①在图2中依题意补全图形,并求∠ADB的度数;②若∠BCD的平分线CE交BD于点F,交DA的延长线于点E,连结BE.用等式表示线段AD、CE、BE之间的数量关系,并证明.21.【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中∠ACB=∠DEB=90°,∠B=30°,BE=AC=3.【问题探究】小昕同学将三角板DEB绕点B按顺时针方向旋转.(1)如图2,当点E落在边AB上时,延长DE交BC于点F,求BF的长.(2)若点C、E、D在同一条直线上,求点D到直线BC的距离.(3)连接DC,取DC的中点G,三角板DEB由初始位置(图1),旋转到点C、B、D 首次在同一条直线上(如图3),求点G所经过的路径长.(4)如图4,G为DC的中点,则在旋转过程中,点G到直线AB的距离的最大值是.22.在△ABC中,∠BAC=90°,AB=AC=2,D为BC的中点,E,F分别为AC,AD 上任意一点,连接EF,将线段EF绕点E顺时针旋转90°得到线段EG,连接FG,AG.(1)如图1,点E与点C重合,且GF的延长线过点B,若点P为FG的中点,连接PD,求PD的长;(2)如图2,EF的延长线交AB于点M,点N在AC上,∠AGN=∠AEG且GN=MF,求证:AM+AF=AE;(3)如图3,F为线段AD上一动点,E为AC的中点,连接BE,H为直线BC上一动点,连接EH,将△BEH沿EH翻折至△ABC所在平面内,得到△B′EH,连接B′G,直接写出线段B′G的长度的最小值.23.如图,在Rt△ABC中,AC=BC,∠ACB=90°,点O在线段AB上(点O不与点A,B重合),且OB=kOA,点M是AC延长线上的一点,作射线OM,将射线OM绕点O 逆时针旋转90°,交射线CB于点N.(1)如图1,当k=1时,判断线段OM与ON的数量关系,并说明理由;(2)如图2,当k>1时,判断线段OM与ON的数量关系(用含k的式子表示),并证明;(3)点P在射线BC上,若∠BON=15°,PN=kAM(k≠1),且<,请直接写出的值(用含k的式子表示).24.如图,在△ABC中,AB=AC,∠BAC=120°,点D在直线AC上,连接BD,将DB 绕点D逆时针旋转120°,得到线段DE,连接BE,CE.(1)求证:BC=AB;(2)当点D在线段AC上(点D不与点A,C重合)时,求的值;(3)过点A作AN∥DE交BD于点N,若AD=2CD,请直接写出的值.25.如图1,△ABC是等边三角形,点D在△ABC的内部,连接AD,将线段AD绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE.(1)判断线段BD与CE的数量关系并给出证明;(2)延长ED交直线BC于点F.①如图2,当点F与点B重合时,直接用等式表示线段AE,BE和CE的数量关系为;②如图3,当点F为线段BC中点,且ED=EC时,猜想∠BAD的度数并说明理由.26.如图,在矩形ABCD中,AD=nAB(n>1),点E是AD边上一动点(点E不与A,D 重合),连接BE,以BE为边在直线BE的右侧作矩形EBFG,使得矩形EBFG∽矩形ABCD,EG交直线CD于点H.【尝试初探】(1)在点E的运动过程中,△ABE与△DEH始终保持相似关系,请说明理由.【深入探究】(2)若n=2,随着E点位置的变化,H点的位置随之发生变化,当H是线段CD中点时,求tan∠ABE的值.【拓展延伸】(3)连接BH,FH,当△BFH是以FH为腰的等腰三角形时,求tan∠ABE的值(用含n 的代数式表示).27.如图,在锐角△ABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE 交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想;(3)若AB=AC,且BD=AE,将△ABC沿直线AB翻折至△ABC所在平面内得到△ABP,点H是AP的中点,点K是线段PF上一点,将△PHK沿直线HK翻折至△PHK所在平面内得到△QHK,连接PQ.在点D,E运动过程中,当线段PF取得最小值,且QK⊥PF时,请直接写出的值.28.在△ABC中,AB=AC,D是边BC上一动点,连接AD,将AD绕点A逆时针旋转至AE的位置,使得∠DAE+∠BAC=180°.(1)如图1,当∠BAC=90°时,连接BE,交AC于点F.若BE平分∠ABC,BD=2,求AF的长;(2)如图2,连接BE,取BE的中点G,连接AG.猜想AG与CD存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接DG,CE.若∠BAC=120°,当BD>CD,∠AEC =150°时,请直接写出的值.29.在△ABC中,AB=AC,△CDE中,CE=CD(CE≥CA),BC=CD,∠D=α,∠ACB+∠ECD=180°,点B,C,E不共线,点P为直线DE上一点,且PB=PD.(1)如图1,点D在线段BC延长线上,则∠ECD=,∠ABP=(用含α的代数式表示);(2)如图2,点A,E在直线BC同侧,求证:BP平分∠ABC;(3)若∠ABC=60°,BC=+1,将图3中的△CDE绕点C按顺时针方向旋转,当BP⊥DE时,直线PC交BD于点G,点M是PD中点,请直接写出GM的长.30.如图,在△ABC中,AB=AC,∠BAC=α(0°<α<180°),过点A作射线AM交射线BC于点D,将AM绕点A逆时针旋转α得到AN,过点C作CF∥AM交直线AN于点F,在AM上取点E,使∠AEB=∠ACB.(1)当AM与线段BC相交时,①如图1,当α=60°时,线段AE,CE和CF之间的数量关系为.②如图2,当α=90°时,写出线段AE,CE和CF之间的数量关系,并说明理由.(2)当tanα=,AB=5时,若△CDE是直角三角形,直接写出AF的长.。

中考复习之图形的旋转经典题(含答案)-汇总

中考复习之图形的旋转经典题(含答案)-汇总

图形的旋转经典题一.选择题(共10小题)1.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的()A.内部 B.外部 C.边上 D.以上都有可能2.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A. B.2C.3 D.23.如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.74.规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是()A.正三角形 B.正方形C.正六边形 D.正十边形5.下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动6.如图,在直角坐标系中放置一个边长为的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为()6题7题9题A.π+πB.2π+2 C.3π+3π D.6π+67.(2016•松北区模拟)如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是()A.50°B.60°C.40°D.30°8.一个菱形绕它的两条对角线的交点旋转,使它和原来的菱形重合,那么旋转的角度至少是()A.360°B.270°C.180°D.90°9.如图△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3 B. C. D.410.等边三角形ABC绕着它的中心,至少旋转()度才能与它本身重合.A.60°B.120°C.180°D.360°二.填空题(共6小题)11.将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是______.11题12题13题12.如图,点C为线段AB上一点,将线段CB绕点C旋转,得到线段CD,若DA⊥AB,AD=1,,则BC的长为______.13.如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=25°,则∠C的度数是______.14.如图,在△ABC中,∠C=90°,∠B=55°,点D在BC边上,DB=2CD,若将△ABC绕点D逆时针旋转α度(0<α<180)后,点B恰好落在初始位置时△ABC的边上,则α等于______.15.如图,用扳手拧螺母时,旋转中心为______,旋转角为______.16.在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为______.三.解答题(共8小题)17.如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.18.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.19.如图,在平面直角坐标系xOy中,每个小正方形的边长均为1,线段AB和DE的端点A、B、D、E均在小正方形的顶点上.(1)画出以AB为一边且面积为2的Rt△ABC,顶点C必须在小正方形的顶点上;(2)画出一个以DE为一边,含有45°内角且面积为的△DEF,顶点F必须在小正方形的顶点上;(3)若点C绕点Q顺时针旋转90°后与点F重合,请直接写出点Q的坐标.20.(1)如图(1),直线a∥b,A,B两点分别在直线a,b上,点P在a,b外部,则∠1,∠2,∠3之间有何数量关系?证明你的结论;(2)如图(2),直线a∥b,点P在直线a,b直角,∠2=50°,∠3=30°,求∠1;(3)在图(2)中,将直线a绕点A按逆时针方向旋转一定角度交直线b于点M,如图(3),若∠1=100°,∠4=40°,求∠2+∠3的度数.21.(1)在一次数学探究活动中,陈老师给出了一道题.如图1,已知△ABC中,∠ACB=90°,AC=BC,P是△ABC内的一点,且PA=3,PB=1,PC=2,求∠BPC的度数.小强在解决此题时,是将△APC绕C旋转到△CBE的位置(即过C作CE⊥CP,且使CE=CP,连接EP、EB).你知道小强是怎么解决的吗?(2)请根据(1)的思想解决以下问题:如图2所示,设P是等边△ABC内一点,PA=3,PB=4,PC=5,求∠APB的度数.22.如图1,在等腰直角△ABC中,AB=AC,∠BAC=90°,将一块三角板中含45°角的顶点放在A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.操作一:在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请说明理由;操作二:当0°<α≤45°时,在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2.某同学将△ABD沿AD所在的直线对折得到△ADF(如图2),很快找到了解决问题的方法,请你说明其中的道理.23.如图(1)所示,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图(2)中补出符合要求的图形,并判断(1)题中的结论是否依然成立,说明理由.24.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.参考答案与试题解析一.选择题(共10小题)1.(2016•玉林)把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B 的()A.内部 B.外部 C.边上 D.以上都有可能【分析】先根据勾股定理求出两直角三角形的各边长,再由旋转的性质得:∠EBE′=45°,∠E′=∠DEB=90°,求出E′D′与直线AB的交点到B的距离也是5,与AB的值相等,所以点A在△D′E′B的边上.【解答】解:∵AC=BD=10,又∵∠ABC=∠DEB=90°,∠A=45°,∠D=30°,∴BE=5,AB=BC=5,由三角板DEB绕点B逆时针旋转45°得到△D′E′B,设△D′E′B与直线AB交于G,可知:∠EBE′=45°,∠E′=∠DEB=90°,∴△GE′B是等腰直角三角形,且BE′=BE=5,∴BG==5,∴BG=AB,∴点A在△D′E′B的边上,故选C.【点评】本题考查了旋转的性质和勾股定理,利用30°和45°的直角三角形的性质求出各边的长;注意:在直角三角形中,30度角所对的直角边等于斜边的一半,45°角所对的两直角边相等,熟练掌握此内容是解决问题的关键.2.(2016•宜宾)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A. B.2C.3 D.2【分析】通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用勾股定理求出B、D两点间的距离.【解答】解:∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD==.故选:A.【点评】题目考查勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系.题目整体较为简单,适合随堂训练.3.(2016•朝阳)如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.7【分析】只要证明△BAC∽△BDA,推出=,求出BD即可解决问题.【解答】解:∵AF∥BC,∴∠FAD=∠ADB,∵∠BAC=∠FAD,∴∠BAC=∠ADB,∵∠B=∠B,∴△BAC∽△BDA,∴=,∴=,∴BD=9,∴CD=BD﹣BC=9﹣4=5,故选B.【点评】本题考查平行线的性质、旋转变换、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形,属于中考常考题型.4.(2016•莆田)规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是()A.正三角形 B.正方形C.正六边形 D.正十边形【分析】分别求出各旋转对称图形的最小旋转角,继而可作出判断.【解答】解:A、正三角形的最小旋转角是120°,故此选项错误;B、正方形的旋转角度是90°,故此选项错误;C、正六边形的最小旋转角是60°,故此选项正确;D、正十角形的最小旋转角是36°,故此选项错误;故选:C.【点评】本题考查了旋转对称图形的知识,解答本题的关键是掌握旋转角度的定义,求出旋转角.5.(2016•呼伦贝尔校级一模)下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动【分析】根据旋转的定义来判断:旋转就是将图形绕某点转动一定的角度,旋转后所得图形与原图形的形状、大小不变,对应点与旋转中心的连线的夹角相等.【解答】解:传送带传送货物的过程中没有发生旋转.故选:A.【点评】本题考查了旋转,正确理解旋转的定义是解题的关键.6.(2016•无锡校级模拟)如图,在直角坐标系中放置一个边长为的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为()A.π+πB.2π+2 C.3π+3π D.6π+6【分析】画出点A第一次回到x轴上时的图形,根据图形得到点A的路径分三部分,以B 点为圆心,BA为半径,圆心角为90°的弧;再以C1为圆心,C1C为半径,圆心角为90°的弧;然后以D2点为圆心,D2A2为半径,圆心角为90°的弧,所以点A运动的路线与x轴围成的图形的面积就由三个扇形和两个直角三角形组长,于是可根据扇形面积和三角形面积公式计算,然后把计算结果乘以3即可得到答案.【解答】解:点A第一次回到x轴上时,点A的路径为:开始以B点为圆心,BA为半径,圆心角为90°的弧;再以C1为圆心,C1C为半径,圆心角为90°的弧;然后以D2点为圆心,D2A2为半径,圆心角为90°的弧,所以点A第一次回到x轴上时,点A运动的路线与x轴围成的图形的面积和=×2++2×××=2π+2,所以点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为3(2π+2)=6π+6.故选D.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.7.(2016•松北区模拟)如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是()A.50°B.60°C.40°D.30°【分析】根据旋转的性质得知∠A=∠C,∠AOC为旋转角等于80°,则可以利用三角形内角和度数为180°列出式子进行求解.【解答】解:∵将△OAB绕点O逆时针旋转80°∴∠A=∠C∠AOC=80°∴∠DOC=80°﹣α∠D=100°∵∠A=2∠D=100°∴∠D=50°∵∠C+∠D+∠DOC=180°∴100°+50°+80°﹣α=180°解得α=50°故选A【点评】本题主要考查了旋转的性质及三角形的内角和定理,熟知图形旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角是解决本题的关键.8.(2016•和平区一模)一个菱形绕它的两条对角线的交点旋转,使它和原来的菱形重合,那么旋转的角度至少是()A.360°B.270°C.180°D.90°【分析】根据菱形是中心对称图形解答.【解答】解:∵菱形是中心对称图形,∴把菱形绕它的中心旋转,使它与原来的菱形重合,旋转角为180°的整数倍,∴旋转角至少是180°.故选C.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.9.(2016春•雅安期末)如图△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3 B. C. D.4【分析】根据旋转前后的图形全等,即可得出△APP'等腰直角三角形,再根据等腰直角三角形的性质,进行计算即可.【解答】解:∵△ACP′是由△ABP绕点A逆时针旋转后得到的,∴△ACP′≌△ABP,∴AP=AP′,∠BAP=∠CAP′.∵∠BAC=90°,∴∠PAP′=90°,故可得出△APP'是等腰直角三角形,又∵AP=3,∴PP′=3.故选B.【点评】此题考查了旋转的性质,解答本题的关键是掌握旋转前后对应边相等、对应角相等,另外要掌握等腰三角形的性质,难度一般.10.(2015•浠水县校级模拟)等边三角形ABC绕着它的中心,至少旋转()度才能与它本身重合.A.60°B.120°C.180°D.360°【分析】根据等边三角形的性质及旋转对称图形得到性质确定出最小的旋转角即可.【解答】解:等边三角形ABC绕着它的中心,至少旋转120°才能与它本身重合.故选B【点评】此题考查了旋转对称图形,熟练掌握旋转的性质是解本题的关键.二.填空题(共6小题)11.(2016•邵阳)将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是120°.【分析】根据旋转的性质和等边三角形的性质解答即可.【解答】解:∵三角形ABC是等边三角形,∴∠ACB=60°,∵等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,∴∠BCA'=180°,∠B'CA'=60°,∴∠ACB'=60°,∴∠α=60°+60°=120°,故答案为:120°.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.12.(2016•高青县模拟)如图,点C为线段AB上一点,将线段CB绕点C旋转,得到线段CD,若DA⊥AB,AD=1,,则BC的长为.【分析】如图,首先运用旋转变换的性质证明CD=CB(设为λ);运用勾股定理求出AB的长度;再次运用勾股定理列出关于λ的方程,求出λ即可解决问题.【解答】解:如图,由题意得CD=CB(设为λ);由勾股定理得:AB2=BD2﹣AD2,而BD=,AD=1,∴AB=4,AC=4﹣λ;由勾股定理得:λ2=12+(4﹣λ)2,解得:.故答案为.【点评】该题主要考查了旋转变换的性质、勾股定理等几何知识点及其应用问题;应牢固掌握旋转变换的性质、勾股定理等几何知识点,这是灵活运用、解题的基础和关键.13.(2016•海曙区一模)如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=25°,则∠C的度数是70°.【分析】根据旋转的性质可得AB=AB′,然后判断出△ABB′是等腰直角三角形,根据等腰直角三角形的性质可得∠ABB′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠B′C′A,然后根据旋转的性质可得∠C=∠B′C′A.【解答】解:∵Rt△ABC绕直角顶点A顺时针旋转90°得到△AB′C′,∴AB=AB′,∴△ABB′是等腰直角三角形,∴∠ABB′=45°,∴∠AC′B′=∠1+∠ABB′=25°+45°=70°,由旋转的性质得∠C=∠AC′B′=70°.故答案为:70°.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.14.(2016•太原二模)如图,在△ABC中,∠C=90°,∠B=55°,点D在BC边上,DB=2CD,若将△ABC绕点D逆时针旋转α度(0<α<180)后,点B恰好落在初始位置时△ABC的边上,则α等于70或120.【分析】根据题意画出符合的两种情况,①当B点落在AB上时,求出∠B=∠DB°,即可求出∠B′DB;②当B点落在AC上时,根据题意求出∠B′DC,即可求出∠B′DB的度数,即可得出答案.【解答】解:分为两种情况:①当B点落在AB上时,如图1,∵根据旋转的性质得出DB=DB′,∵∠B=55°,∴∠DB′B=∠B=55°,∴∠B′DB=180°﹣55°﹣55°=70°,即此时α=70;②当B点落在AC上时,如图2,如图,∵△ABC绕着点D顺时针旋转α度后得到△A′B′C′,∴B′D=BD,∵BD=2CD,∴B′D=2CD,∵∠ACB=90°,∴∠CB′D=30°,∴∠B′DC=60°,∴∠B′DB=180°﹣60°=120°,即此时α=120;故答案为:70或120.【点评】本题考查了旋转的性质,等腰三角形的性质,直角三角形的性质的应用,能求出∠B′DB的度数是解题的关键,作出图形更形象直观.15.(2016•怀柔区二模)如图,用扳手拧螺母时,旋转中心为螺丝(母)的中心,旋转角为0°~360°的任意角(答案不唯一).【分析】根据旋转中心的定义以及旋转角的定义解答即可.【解答】解:由旋转中心的定义:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心可知,用扳手拧螺母时,旋转中心为螺丝(母)的中心,而旋转角可估计实际情况决定,所以不确定,故答案为:螺丝(母)的中,0°~360°的任意角(答案不唯一)【点评】本题考查了和旋转有关的概念:旋转中心和旋转角,属于基础性题目,对此知识点的考查重点在于对旋转的性质的掌握.16.(2016•瑞昌市一模)在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为(2,1).【分析】根据中心对称的性质,知道点P(1,1),N(2,0),并细心观察坐标轴就可以得到答案.【解答】解:∵点P(1,1),N(2,0),∴由图形可知M(3,0),M1(1,2),N1(2,2),P1(3,1),∵关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,∴对称中心的坐标为(2,1),故答案为:(2,1).【点评】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.以及中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.三.解答题(共8小题)17.(2016•荆门)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.【分析】(1)根据题意补全图形,如图所示;(2)由旋转的性质得到∠DCF为直角,由EF与CD平行,得到∠EFC为直角,利用SAS 得到三角形BDC与三角形EFC全等,利用全等三角形对应角相等即可得证.【解答】解:(1)补全图形,如图所示;(2)由旋转的性质得:∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠DCE+∠BCD=90°,∴∠ECF=∠BCD,∵EF∥DC,∴∠EFC+∠DCF=180°,∴∠EFC=90°,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS),∴∠BDC=∠EFC=90°.【点评】此题考查了旋转的性质,以及全等三角形的判定与性质,熟练掌握旋转的性质是解本题的关键.18.(2016•丹东)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.【分析】(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.19.(2016•呼兰区模拟)如图,在平面直角坐标系xOy中,每个小正方形的边长均为1,线段AB和DE的端点A、B、D、E均在小正方形的顶点上.(1)画出以AB为一边且面积为2的Rt△ABC,顶点C必须在小正方形的顶点上;(2)画出一个以DE为一边,含有45°内角且面积为的△DEF,顶点F必须在小正方形的顶点上;(3)若点C绕点Q顺时针旋转90°后与点F重合,请直接写出点Q的坐标.【分析】(1)和(2)分别画出图形;(3)作FC的中垂线,得Q(5,0).【解答】(1)S△ABC=×2×2=2;(2)S△DEF=2×3﹣1×2﹣×1×3=;∵ED=EF,∠DFE=90°,∴∠FDE=45°;(3)由勾股定理得:FC==,CQ==,FQ==,∴FC2=CQ2+FQ2,CQ=FQ,∴∠FQC=90°,∴点C绕点Q顺时针旋转90°后与点F重合;则点Q(5,0).【点评】本题考查了作图﹣旋转变换,对于画定值面积的三角形,利用面积的和、差先试求某点所组成的图形的面积是否符合题意,再确定这一点;同时根据勾股定理计算所成的三角形是否为直角三角形或等腰直角三角形.20.(2016春•重庆期末)(1)如图(1),直线a∥b,A,B两点分别在直线a,b上,点P 在a,b外部,则∠1,∠2,∠3之间有何数量关系?证明你的结论;(2)如图(2),直线a∥b,点P在直线a,b直角,∠2=50°,∠3=30°,求∠1;(3)在图(2)中,将直线a绕点A按逆时针方向旋转一定角度交直线b于点M,如图(3),若∠1=100°,∠4=40°,求∠2+∠3的度数.【分析】(1)设直线AP交直线b于O,根据平行线的性质得出∠2=∠AOB,根据三角形外角性质求出∠AOB=∠1+∠3,即可得出答案;(2)延长AP交直线b于O,根据平行线的性质得出∠ABO=∠2=50°,根据三角形的外角性质得出∠1=∠AOB+∠3,代入求出即可;(3)延长AP交直线b于O,根据三角形外角性质得出∠AOB=∠2+∠4,∠1=∠3+∠AOB,求出∠1=∠2+∠4+∠3,代入求出即可.【解答】(1)∠2=∠1+∠3,证明:设直线AP交直线b于O,如图1,∵直线a∥直线b,∴∠2=∠AOB,∵∠AOB=∠1+∠3,∴∠2=∠1+∠3;(2)解:延长AP交直线b于O,如图2,∵直线a∥直线b,∠2=50°,∴∠ABO=∠2=50°,∵∠3=30°,∴∠1=∠AOB+∠3=50°+30°=80°;(3)解:延长AP交直线b于O,如图3,∵∠AOB=∠2+∠4,∠1=∠3+∠AOB,∴∠1=∠2+∠4+∠3,∵∠1=100°,∠4=40°,∴∠2+∠3=∠1﹣∠4=60°.【点评】本题考查了平行线的性质,三角形外角性质的应用,能灵活运用性质进行推理是解此题的关键.21.(2014秋•五常市校级期中)(1)在一次数学探究活动中,陈老师给出了一道题.如图1,已知△ABC中,∠ACB=90°,AC=BC,P是△ABC内的一点,且PA=3,PB=1,PC=2,求∠BPC的度数.小强在解决此题时,是将△APC绕C旋转到△CBE的位置(即过C作CE⊥CP,且使CE=CP,连接EP、EB).你知道小强是怎么解决的吗?(2)请根据(1)的思想解决以下问题:如图2所示,设P是等边△ABC内一点,PA=3,PB=4,PC=5,求∠APB的度数.【分析】(1)如图1,首先证明BE2=PE2+PB2,得到∠BPE=90°;证明∠CPE=45°即可解决问题.(2)如图2,作旋转变换;首先证明∠AQP=60°;其次证明PQ2+CQ2=PC2,得到∠PQC=90°,求出∠AQC=150°,即可解决问题.【解答】解:(1)如图1,由题意得:∠PCE=90°PC=EC=2;BE=PA=3;由勾股定理得:PE2=22+22=8;∵PB2=1,BE2=9,∴BE2=PE2+PB2,∴∠BPE=90°,∵∠CPE=45°,∴∠BPC=135°.(2)如图2,将△ABP绕点A逆时针旋转60°到△ACQ的位置,连接PQ;则AP=AQ,∠PAQ=60°,QC=PB=4;∴△APQ为等边三角形,∠AQP=60°,PQ=PA=3;∵PQ2+CQ2=32+42=25,PC2=52=25,∴PQ2+CQ2=PC2,∴∠PQC=90°,∠AQC=60°+90°=150°,∴∠APB=∠AQC=150°.【点评】该题主要考查了旋转变换的性质、等边三角形的判定及其性质、勾股定理逆定理等几何知识点及其应用问题;对综合的分析问题解决问题的能力提出了较高的要求.22.(2014秋•苏州期中)如图1,在等腰直角△ABC中,AB=AC,∠BAC=90°,将一块三角板中含45°角的顶点放在A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.操作一:在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请说明理由;操作二:当0°<α≤45°时,在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2.某同学将△ABD沿AD所在的直线对折得到△ADF(如图2),很快找到了解决问题的方法,请你说明其中的道理.【分析】(1)如图1,根据图形、已知条件推知∠BAD+∠MAE=∠DAM+∠EAC=45°,所以∠MAE=∠EAC,即AE平分∠MAC;(2)应用折叠对称的性质和SAS得到△AEF≌△AEC,得出FE=CE,∠AFE=∠C=45°.再证明∠DFE=90°.然后在Rt△DFE中应用勾股定理即可证明.【解答】(1)证明:如图1,∵∠BAC=90°,∴∠BAD+∠DAM+∠MAE+∠EAC=90°.∵∠DAE=45°,∴∠BAD+∠EAC=45°.∵∠BAD=∠DAM,∴∠BAD+∠EAC=∠DAM+∠EAC=45°,∴∠BAD+∠MAE=∠DAM+∠EAC,∴∠MAE=∠EAC,即AE平分∠MAC;(2)证明:如图2,连接EF.由折叠可知,∠BAD=∠FAD,AB=AF,BD=DF,∠B=∠AFD=45°.∵∠BAD=∠FAD,∴由(1)可知,∠CAE=∠FAE.在△AEF和△AEC中,,∴△AEF≌△AEC(SAS),∴FE=CE,∠AFE=∠C=45°.∴∠DFE=∠AFD+∠AFE=90°.在Rt△DFE中,DF2+FE2=DE2,∴BD2+CE2=DE2.【点评】本题考查了旋转的性质,角平分线的定义,等腰直角三角形的性质,轴对称的性质,全等三角形的判定和性质等知识点.注意,旋转前后,图形的大小和形状都不改变.23.(2014秋•利川市校级期中)如图(1)所示,点C为线段AB上一点,△ACM、△CBN 是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图(2)中补出符合要求的图形,并判断(1)题中的结论是否依然成立,说明理由.【分析】(1)根据等边三角形的性质利用SAS判定△ACN≌△MCB,从而得到AN=MB;(2)连接AN,BM,根据等边三角形的性质及旋转的性质利用SAS判定△ACN≌△MCB,从而得到AN=MB.【解答】(1)证明:∵△ACM、△CBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∴∠ACN=∠MCB=120°,在△ACN和△MCB中,,∴△ACN≌△MCB,∴AN=MB.(2)解:连接AN,BM,∵△ACM、△CBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∵∠ACB=90°,∴∠ACN=∠MCB,在△ACN和△MCB中,,∴△ACN≌△MCB,∴AN=MB.【点评】此题主要考查学生对等边三角形的性质、旋转的性质及全等三角形的判定方法的综合运用.24.(2014秋•江西期末)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD ⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.【分析】(1)由∠ACB=90°,得∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,则∠ADC=∠CEB=90°,根据等角的余角相等得到∠ACD=∠CBE,易得Rt△ADC≌Rt△CEB,所以AD=CE,DC=BE,即可得到DE=DC+CE=BE+AD.学习必备欢迎下载(2)根据等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,得到AD=CE,DC=BE,所以DE=CE﹣CD=AD﹣BE.(3)DE、AD、BE具有的等量关系为:DE=BE﹣AD.证明的方法与(2)相同.【解答】(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)证明:在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CE﹣CD=AD﹣BE;(3)DE=BE﹣AD.易证得△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CD﹣CE=BE﹣AD.【点评】本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了直角三角形全等的判定与性质.。

2023年中考数学【图形的旋转】真题汇编(共30题,解析版)

2023年中考数学【图形的旋转】真题汇编(共30题,解析版)

图形的旋转(30题)一、单选题江苏无锡·统考中考真题)如图,△ABC中,∠BAC=55°,将△ABC逆时针旋转α(0°<α< 55°),得到△ADE,DE交AC于F.当α=40°时,点D恰好落在BC上,此时∠AFE等于()A.80°B.85°C.90°D.95°【答案】B【分析】根据旋转可得∠B=∠ADB=∠ADE,再结合旋转角α=40°即可求解.【详解】解:由旋转性质可得:∠BAC=∠DAE=55°,AB=AD,∵α=40°,∴∠DAF=15°,∠B=∠ADB=∠ADE=70°,∴∠AFE=∠DAF+∠ADE=85°,故选:B.【点睛】本题考查了几何-旋转问题,掌握旋转的性质是关键.天津·统考中考真题)如图,把△ABC以点A为中心逆时针旋转得到△ADE,点B,C的对应点分别是点D,E,且点E在BC的延长线上,连接BD,则下列结论一定正确的是()A.∠CAE=∠BEDB.AB=AEC.∠ACE=∠ADED.CE=BD【答案】A【分析】根据旋转的性质即可解答.【详解】根据题意,由旋转的性质,可得AB=AD,AC=AE,BC=DE,故B选项和D选项不符合题意,∠ABC=∠ADE∵∠ACE=∠ABC+∠BAC∴∠ACE=∠ADE+∠BAC,故C选项不符合题意,∠ACB=∠AED∵∠ACB=∠CAE+∠CEA∵∠AED=∠CEA+∠BED∴∠CAE=∠BED,故A选项符合题意,故选:A .【点睛】本题考查了旋转的性质,熟练掌握旋转的性质和三角形外角运用是解题的关键.3(2023·四川宜宾·统考中考真题)如图,△ABC 和△ADE 是以点A 为直角顶点的等腰直角三角形,把△ADE 以A 为中心顺时针旋转,点M 为射线BD 、CE 的交点.若AB =3,AD =1.以下结论:①BD =CE ;②BD ⊥CE ;③当点E 在BA 的延长线上时,MC =3-32;④在旋转过程中,当线段MB 最短时,△MBC 的面积为12.其中正确结论有()A.1个B.2个C.3个D.4个【答案】D 【分析】证明△BAD ≌△CAE 即可判断①,根据三角形的外角的性质得出②,证明∠DCM ∽∠ECA 得出MC 3=3-12,即可判断③;以A 为圆心,AD 为半径画圆,当CE 在⊙A 的下方与⊙A 相切时,MB 的值最小,可得四边形AEMD 是正方形,在Rt △MBC 中MC =BC 2-MB 2=2+1,然后根据三角形的面积公式即可判断④.【详解】解:∵△ABC 和△ADE 是以点A 为直角顶点的等腰直角三角形,∴BA =CA ,DA =EA ,∠BAC =∠DAE =90°,∴∠BAD =∠CAE ,∴△BAD ≌△CAE ,∴∠ABD =∠ACE ,BD =CE ,故①正确;设∠ABD =∠ACE =α,∴∠DBC =45°-α,∴∠EMB =∠DBC +∠BCM =∠DBC +∠BCA +∠ACE =45°-α+45°+α=90°,∴BD ⊥CE ,故②正确;当点E 在BA 的延长线上时,如图所示∵∠DCM =∠ECA ,∠DMC =∠EAC =90°,∴∠DCM ∽∠ECA∴MC AC =CD EC ∵AB =3,AD =1.∴CD =AC -AD =3-1,CE =AE 2+AC 2=2∴MC 3=3-12∴MC =3-32,故③正确;④如图所示,以A 为圆心,AD 为半径画圆,∵∠BMC =90°,∴当CE 在⊙A 的下方与⊙A 相切时,MB 的值最小,∠ADM =∠DAE =∠AEM =90°∴四边形AEMD 是矩形,又AE =AD ,∴四边形AEMD 是正方形,∴MD =AE =1,∵BD =EC =AC 2-AE 2=2,∴MB =BD -MD =2-1,在Rt △MBC 中,MC =BC 2-MB 2∴PB 取得最小值时,MC =AB 2+AC 2-MB 2=3+3-2-1 2=2+1∴S △BMC =12MB ×MC =122-1 2+1 =12故④正确,故选:D .【点睛】本题考查了旋转的性质,相似三角形的性质,勾股定理,切线的性质,垂线段最短,全等三角形的性质与判定,正方形的性质,熟练掌握以上知识是解题的关键.4(2023·山东聊城·统考中考真题)如图,已知等腰直角△ABC ,∠ACB =90°,AB =2,点C 是矩形ECGF 与△ABC 的公共顶点,且CE =1,CG =3;点D 是CB 延长线上一点,且CD =2.连接BG ,DF ,在矩形ECGF 绕点C 按顺时针方向旋转一周的过程中,当线段BG 达到最长和最短时,线段DF 对应的长度分别为m 和n ,则m n的值为()A.2B.3C.10D.13【答案】D【分析】根据锐角三角函数可求得AC=BC=1,当线段BG达到最长时,此时点G在点C的下方,且B,C,G三点共线,求得BG=4,DG=5,根据勾股定理求得DF=26,即m=26,当线段BG达到最短时,此时点G在点C的上方,且B,C,G三点共线,则BG=2,DG=1,根据勾股定理求得DF=2,即n =2,即可求得mn=13.【详解】∵△ABC为等腰直角三角形,AB=2,∴AC=BC=AB⋅sin45°=2×22=1,当线段BG达到最长时,此时点G在点C的下方,且B,C,G三点共线,如图:则BG=BC+CG=4,DG=DB+BG=5,在Rt△DGF中,DF=DG2+GF2=52+12=26,即m=26,当线段BG达到最短时,此时点G在点C的上方,且B,C,G三点共线,如图:则BG=CG-BC=2,DG=BG-DB=1,在Rt△DGF中,DF=DG2+GF2=12+12=2,即n=2,故mn=262=13,故选:D.【点睛】本题考查了锐角三角函数,勾股定理等,根据旋转推出线段BG最长和最短时的位置是解题的关键.二、填空题5(2023·江苏连云港·统考中考真题)以正五边形ABCDE的顶点C为旋转中心,按顺时针方向旋转,使得新五边形A B CD E 的顶点D 落在直线BC上,则正五边ABCDE旋转的度数至少为°.【答案】72【分析】依据正五边形的外角性质,即可得到∠DCF的度数,进而得出旋转的角度.【详解】解:∵五边形ABCDE是正五边形,∴∠DCF=360°÷5=72°,∴新五边形A B CD E 的顶点D 落在直线BC上,则旋转的最小角度是72°,故答案为:72.【点睛】本题主要考查了正多边形、旋转性质,关键是掌握正多边形的外角和公式的运用.6(2023·湖南张家界·统考中考真题)如图,AO为∠BAC的平分线,且∠BAC=50°,将四边形ABOC 绕点A逆时针方向旋转后,得到四边形AB O C ,且∠OAC =100°,则四边形ABOC旋转的角度是.【答案】75°【分析】根据角平分线的性质可得∠BAO=∠OAC=25°,根据旋转的性质可得∠BAC=∠B AC =50°,∠B AO =∠O AC =25°,求得∠OAO =75°,即可求得旋转的角度.【详解】∵AO为∠BAC的平分线,∠BAC=50°,∴∠BAO=∠OAC=25°,∵将四边形ABOC绕点A逆时针方向旋转后,得到四边形AB O C ,∴∠BAC=∠B AC =50°,∠B AO =∠O AC =25°,∴∠OAO =∠OAC -∠O AC =100°-25°=75°,故答案为:75°.【点睛】本题考查了角平分线的性质,旋转的性质,熟练掌握以上性质是解题的关键.7(2023·湖南常德·统考中考真题)如图1,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,D是AB上一点,且AD=2,过点D作DE∥BC交AC于E,将△ADE绕A点顺时针旋转到图2的位置.则图2中BDCE的值为.【答案】45【分析】首先根据勾股定理得到AC =AB 2+BC 2=10,然后证明出△ADE ∽△ABC ,得到AD AB =AE AC ,进而得到AD AE =AB AC ,然后证明出△ABD ∽△ACE ,利用相似三角形的性质求解即可.【详解】∵在Rt △ABC 中,∠ABC =90°,AB =8,BC =6,∴AC =AB 2+BC 2=10∵DE ∥BC ∴∠ADE =∠ABC =90°,∠AED =∠ACB∴△ADE ∽△ABC∴AD AB =AE AC ∴AD AE =AB AC∵∠BAC =∠DAE∴∠BAC +∠CAD =∠DAE +∠CAD∴∠BAD =∠CAE∴△ABD ∽△ACE∴BD CD =AB AC =810=45.故答案为:45.【点睛】此题考查了相似三角形的性质和判定,解题的关键是熟练掌握相似三角形的性质和判定定理.8(2023·江苏无锡·统考中考真题)已知曲线C 1、C 2分别是函数y =-2x (x <0),y =k x(k >0,x >0)的图像,边长为6的正△ABC 的顶点A 在y 轴正半轴上,顶点B 、C 在x 轴上(B 在C 的左侧),现将△ABC 绕原点O 顺时针旋转,当点B 在曲线C 1上时,点A 恰好在曲线C 2上,则k 的值为.【答案】6【分析】画出变换后的图像即可(画△AOB 即可),当点A 在y 轴上,点B 、C 在x 轴上时,根据△ABC 为等边三角形且AO ⊥BC ,可得OB OA =13,过点A 、B 分别作x 轴垂线构造相似,则△BFO ∽OEA ,根据相似三角形的性质得出S △AOE =3,进而根据反比例函数k 的几何意义,即可求解.【详解】当点A 在y 轴上,点B 、C 在x 轴上时,连接AO ,∵△ABC 为等边三角形且AO ⊥BC ,则∠BAO =30°,∴tan ∠BAO =tan30°=OB OA=33,如图所示,过点A ,B 分别作x 轴的垂线,交x 轴分别于点E ,F ,∵AO ⊥BO ,∠BFO =∠AEO =∠AOB =90°,∴∠BOF=90°-∠AOE=∠EAO,∴△BFO∽OEA,∴S△BFOS△AOE=OBOA2=13,∴S△BFO=-22=1,∴S△AOE=3,∴k=6.【点睛】本题考查了反比例函数的性质,k的几何意义,相似三角形的性质与判定,正确作出辅助线构造相似三角形是解题关键.9(2023·辽宁·统考中考真题)如图,线段AB=8,点C是线段AB上的动点,将线段BC绕点B顺时针旋转120°得到线段BD,连接CD,在AB的上方作RtΔDCE,使∠DCE=90°,∠E=30°,点F为DE的中点,连接AF,当AF最小时,ΔBCD的面积为.【答案】3【分析】连接CF,BF,BF,CD交于点P,由直角三角形的性质及等腰三角形的性质可得BF垂直平分CF,∠ABF=60°为定角,可得点F在射线BF上运动,当AF⊥BF时,AF最小,由含30度角直角三角形的性质即可求解.【详解】解:连接CF,BF,BF,CD交于点P,如图,∵∠DCE=90°,点F为DE的中点,∴FC=FD,∵∠E=30°,∴∠FDC=60°,∴△FCD是等边三角形,∴∠DFC=∠FCD=60°;∵线段BC绕点B顺时针旋转120°得到线段BD,∴BC=BD,∵FC=FD,∴BF垂直平分CF,∠ABF=60°,∴点F在射线BF上运动,∴当AF⊥BF时,AF最小,此时∠FAB=90°-∠ABF=30°,∴BF=12AB=4;∵∠BFC=12∠DFC=30°,∴∠FCB=∠BFC+∠ABF=90°,∴BC=12BF=2,∵PB=12BC=1,∴由勾股定理得PC=BC2-PB2=3,∴CD=2PC=23,∴S△BCD=12CD⋅PB=12×23×1=3;故答案为:3.【点睛】本题考查了等腰三角形性质,含30度直角三角形的性质,斜边中线性质,勾股定理,线段垂直平分线的判定,勾股定理,旋转的性质,确定点F的运动路径是关键与难点.10(2023·江西·统考中考真题)如图,在▱ABCD中,∠B=60°,BC=2AB,将AB绕点A逆时针旋转角α(0°<α<360°)得到AP,连接PC,PD.当△PCD为直角三角形时,旋转角α的度数为.【答案】90°或270°或180°【分析】连接AC,根据已知条件可得∠BAC=90°,进而分类讨论即可求解.【详解】解:连接AC,取BC的中点E,连接AE,如图所示,∵在▱ABCD中,∠B=60°,BC=2AB,∴BE=CE=12BC=AB,∴△ABE是等边三角形,∴∠BAE=∠AEB=60°,AE=BE,∴AE=EC∠AEB=30°,∴∠EAC=∠ECA=12∴∠BAC=90°∴AC⊥CD,如图所示,当点P在AC上时,此时∠BAP=∠BAC=90°,则旋转角α的度数为90°,当点P在CA的延长线上时,如图所示,则α=360°-90°=270°当P在BA的延长线上时,则旋转角α的度数为180°,如图所示,∵PA=PB=CD,PB∥CD,∴四边形PACD是平行四边形,∵AC⊥AB∴四边形PACD是矩形,∴∠PDC=90°即△PDC是直角三角形,综上所述,旋转角α的度数为90°或270°或180°故答案为:90°或270°或180°.【点睛】本题考查了平行四边形的性质与判定,等边三角形的性质与判定,矩形的性质与判定,旋转的性质,熟练掌握旋转的性质是解题的关键.11(2023·上海·统考中考真题)如图,在△ABC中,∠C=35°,将△ABC绕着点A旋转α(0°<α< 180°),旋转后的点B落在BC上,点B的对应点为D,连接AD,AD是∠BAC的角平分线,则α=.【答案】110 3°【分析】如图,AB=AD,∠BAD=α,根据角平分线的定义可得∠CAD=∠BAD=α,根据三角形的外角性质可得∠ADB=35°+α,即得∠B=∠ADB=35°+α,然后根据三角形的内角和定理求解即可.【详解】解:如图,根据题意可得:AB=AD,∠BAD=α,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD=α,∵∠ADB=∠C+∠CAD=35°+α,AB=AD,∴∠B=∠ADB=35°+α,则在△ABC中,∵∠C+∠CAB+∠B=180°,∴35°+2α+35°+α=180°,解得:α=1103°;故答案为:110 3°【点睛】本题考查了旋转的性质、等腰三角形的性质、三角形的外角性质以及三角形的内角和等知识,熟练掌握相关图形的性质是解题的关键.12(2023·湖南郴州·统考中考真题)如图,在Rt△ABC中,∠BAC=90°,AB=3cm,∠B=60°.将△ABC绕点A逆时针旋转,得到△AB C ,若点B的对应点B 恰好落在线段BC上,则点C的运动路径长是cm(结果用含π的式子表示).【答案】3π【分析】由于AC 旋转到AC ,故C 的运动路径长是CC 的圆弧长度,根据弧长公式求解即可.【详解】以A 为圆心作圆弧CC ,如图所示.在直角△ABC 中,∠B =60°,则∠C =30°,则BC =2AB =2×3=6cm .∴AC =BC 2-AB 2=62-32=33cm .由旋转性质可知,AB =AB ,又∠B =60°,∴△ABB 是等边三角形.∴∠BAB =60°.由旋转性质知,∠CAC =60°.故弧CC 的长度为:60360×2×π×AC =π3×33=3πcm ;故答案为:3π【点睛】本题考查了含30°角直角三角形的性质、勾股定理、旋转的性质、弧长公式等知识点,解题的关键是明确C 点的运动轨迹.13(2023·内蒙古·统考中考真题)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =1,将△ABC 绕点A 逆时针方向旋转90°,得到△AB C .连接BB ,交AC 于点D ,则ADDC的值为.【答案】5【分析】过点D 作DF ⊥AB 于点F ,利用勾股定理求得AB =10,根据旋转的性质可证△ABB 、△DFB 是等腰直角三角形,可得DF =BF ,再由S △ADB =12×BC ×AD =12×DF ×AB ,得AD =10DF ,证明△AFD ∼△ACB ,可得DF BC =AF AC,即AF =3DF ,再由AF =10-DF ,求得DF =104,从而求得AD=52,CD =12,即可求解.【详解】解:过点D 作DF ⊥AB 于点F ,∵∠ACB =90°,AC =3,BC =1,∴AB =32+12=10,∵将△ABC 绕点A 逆时针方向旋转90°得到△AB C ,∴AB=AB =10,∠BAB =90°,∴△ABB 是等腰直角三角形,∴∠ABB =45°,又∵DF⊥AB,∴∠FDB=45°,∴△DFB是等腰直角三角形,∴DF=BF,∵S△ADB=12×BC×AD=12×DF×AB,即AD=10DF,∵∠C=∠AFD=90°,∠CAB=∠FAD,∴△AFD∼△ACB,∴DF BC =AFAC,即AF=3DF,又∵AF=10-DF,∴DF=104,∴AD=10×104=52,CD=3-52=12,∴AD CD =5212=5,故答案为:5.【点睛】本题考查旋转的性质、等腰三角形的判定与性质、相似三角形的判定与性质、三角形的面积,熟练掌握相关知识是解题的关键.14(2023·黑龙江绥化·统考中考真题)已知等腰△ABC,∠A=120°,AB=2.现将△ABC以点B为旋转中心旋转45°,得到△A BC ,延长C A 交直线BC于点D.则A D的长度为.【答案】4+23或4-23【分析】根据题意,先求得BC=23,当△ABC以点B为旋转中心逆时针旋转45°,过点B作BE⊥A B交A D于点E,当△ABC以点B为旋转中心顺时针旋转45°,过点D作DF⊥BC 交BC 于点F,分别画出图形,根据勾股定理以及旋转的性质即可求解.【详解】解:如图所示,过点A作AM⊥BC于点M,∵等腰△ABC,∠BAC=120°,AB=2.∴∠ABC=∠ACB=30°,∴AM=1AB=1,BM=CM=AB2-AM2=3,2∴BC=23,如图所示,当△ABC以点B为旋转中心逆时针旋转45°,过点B作BE⊥A B交A D于点E,∵∠BAC=120°,∴∠DA B=60°,∠A EB=30°,在Rt△A BE中,A E=2A B=4,BE=A E2-A B2=23,∵等腰△ABC,∠BAC=120°,AB=2.∴∠ABC=∠ACB=30°,∵△ABC以点B为旋转中心逆时针旋转45°,∴∠ABA =45°,∴∠DBE=180°-90°-45°-30°=15°,∠A BD=180°-45°-30°=105°在△A BD中,∠D=180°-∠DA B-∠A BD=180°-60°-105°=15°,∴∠D=∠EBD,∴EB=ED=23,∴A D=A E+DE=4+23,如图所示,当△ABC以点B为旋转中心顺时针旋转45°,过点D作DF⊥BC 交BC 于点F,在△BFD中,∠BDF=∠CBC =45°,∴DF=BF在Rt△DC F中,∠C =30°FC'∴DF=33∴BC=BF+3BF=23∴DF=BF=3-3∴DC =2DF=6-23∴A D=C D-A C =6-23-2=4-23,综上所述,A D的长度为4-23或4+23,故答案为:4-23或4+23.【点睛】本题考查了旋转的性质,勾股定理,含30度角的直角三角形的性质,熟练掌握旋转的性质,分类讨论是解题的关键.15(2023·浙江嘉兴·统考中考真题)一副三角板ABC 和DEF 中,∠C =∠D =90°,∠B =30°,∠E =45°,BC =EF =12.将它们叠合在一起,边BC 与EF 重合,CD 与AB 相交于点G (如图1),此时线段CG 的长是,现将△DEF 绕点C (F )按顺时针方向旋转(如图2),边EF 与AB 相交于点H ,连结DH ,在旋转0°到60°的过程中,线段DH 扫过的面积是.【答案】66-62;12π-183+18【分析】如图1,过点G 作GH ⊥BC 于H ,根据含30°直角三角形的性质和等腰直角三角形的性质得出BH =3GH ,GH =CH ,然后由BC =12可求出GH 的长,进而可得线段CG 的长;如图2,将△DEF 绕点C 顺时针旋转60°得到△D 1E 1F ,FE 1与AB 交于G 1,连接D 1D ,AD 1,△D 2E 2F 是△DEF 旋转0°到60°的过程中任意位置,作DN ⊥CD 1于N ,过点B 作BM ⊥D 1D 交D 1D 的延长线于M ,首先证明△CDD 1是等边三角形,点D 1在直线AB 上,然后可得线段DH 扫过的面积是弓形D 1D 2D 的面积加上△D 1DB 的面积,求出DN 和BM ,然后根据线段DH 扫过的面积=S 弓形D 1D 2D +S △D 1DB =S 扇形CD 1D -S △CD 1D +S △D 1DB 列式计算即可.【详解】解:如图1,过点G 作GH ⊥BC 于H ,∵∠ABC =30°,∠DEF =∠DFE =45°,∠GHB =∠GHC =90°,∴BH =3GH ,GH =CH ,∵BC =BH +CH =3GH +GH =12,∴GH =63-6,∴CG =2GH =2×63-6 =66-62;如图2,将△DEF 绕点C 顺时针旋转60°得到△D 1E 1F ,FE 1与AB 交于G 1,连接D 1D ,由旋转的性质得:∠E 1CB =∠DCD 1=60°,CD =CD 1,∴△CDD 1是等边三角形,∵∠ABC =30°,∴∠CG 1B =90°,∴CG 1=12BC ,∵CE1=BC,∴CG1=12CE1,即AB垂直平分CE1,∵△CD1E1是等腰直角三角形,∴点D1在直线AB上,连接AD1,△D2E2F是△DEF旋转0°到60°的过程中任意位置,则线段DH扫过的面积是弓形D1D2D的面积加上△D1DB的面积,∵BC=EF=12,∴DC=DB=22BC=62,∴D1C=D1D=62,作DN⊥CD1于N,则ND1=NC=32,∴DN=D1D2-ND12=622-322=36,过点B作BM⊥D1D交D1D的延长线于M,则∠M=90°,∵∠D1DC=60°,∠CDB=90°,∴∠BDM=180°-∠D1DC-∠CDB=30°,∴BM=12BD=32,∴线段DH扫过的面积=S弓形D1D2D +S△D1DB,=S扇形CD1D -S△CD1D+S△D1DB,=60π⋅622360-12×62×36+12×62×32,=12π-183+18,故答案为:66-62,12π-183+18.【点睛】本题主要考查了旋转的性质,含30°直角三角形的性质,二次根式的运算,解直角三角形,等边三角形的判定和性质,勾股定理,扇形的面积计算等知识,作出图形,证明点D1在直线AB上是本题的突破点,灵活运用各知识点是解题的关键.三、解答题16(2023·北京·统考中考真题)在△ABC中、∠B=∠C=α0°<α<45°,AM⊥BC于点M,D是线段MC上的动点(不与点M,C重合),将线段DM绕点D顺时针旋转2α得到线段DE.(1)如图1,当点E在线段AC上时,求证:D是MC的中点;(2)如图2,若在线段BM上存在点F(不与点B,M重合)满足DF=DC,连接AE,EF,直接写出∠AEF的大小,并证明.【答案】(1)见解析(2)∠AEF=90°,证明见解析【分析】(1)由旋转的性质得DM=DE,∠MDE=2α,利用三角形外角的性质求出∠DEC=α=∠C,可得DE=DC,等量代换得到DM=DC即可;(2)延长FE到H使FE=EH,连接CH,AH,可得DE是△FCH的中位线,然后求出∠B=∠ACH,设DM=DE=m,CD=n,求出BF=2m=CH,证明△ABF≅△ACH SAS,得到AF=AH,再根据等腰三角形三线合一证明AE⊥FH即可.【详解】(1)证明:由旋转的性质得:DM=DE,∠MDE=2α,∵∠C=α,∴∠DEC=∠MDE-∠C=α,∴∠C=∠DEC,∴DE=DC,∴DM=DC,即D是MC的中点;(2)∠AEF=90°;证明:如图2,延长FE到H使FE=EH,连接CH,AH,∵DF=DC,∴DE是△FCH的中位线,∴DE∥CH,CH=2DE,由旋转的性质得:DM=DE,∠MDE=2α,∴∠FCH=2α,∵∠B=∠C=α,∴∠ACH=α,△ABC是等腰三角形,∴∠B=∠ACH,AB=AC,设DM=DE=m,CD=n,则CH=2m,CM=m+n,∴DF=CD=n,∴FM=DF-DM=n-m,∵AM⊥BC,∴BM=CM=m+n,∴BF=BM-FM=m+n-n-m=2m,∴CH=BF,在△ABF和△ACH中,AB=AC∠B=∠ACH BF=CH,∴△ABF≅△ACH SAS,∴AF =AH ,∵FE =EH ,∴AE ⊥FH ,即∠AEF =90°.【点睛】本题考查了等腰三角形的判定和性质,旋转的性质,三角形外角的性质,三角形中位线定理以及全等三角形的判定和性质等知识,作出合适的辅助线,构造出全等三角形是解题的关键.17(2023·四川自贡·统考中考真题)如图1,一大一小两个等腰直角三角形叠放在一起,M ,N 分别是斜边DE ,AB 的中点,DE =2,AB =4.(1)将△CDE 绕顶点C 旋转一周,请直接写出点M ,N 距离的最大值和最小值;(2)将△CDE 绕顶点C 逆时针旋转120°(如图2),求MN 的长.【答案】(1)最大值为3,最小值为1(2)7【分析】(1)根据直角三角形斜边上的中线,得出CM ,CN 的值,进而根据题意求得最大值与最小值即可求解;(2)过点N 作NP ⊥MC ,交MC 的延长线于点P ,根据旋转的性质求得∠MCN =120°,进而得出∠NCP =60°,进而可得CP =1,勾股定理解Rt △NCP ,Rt △MCP ,即可求解.【详解】(1)解:依题意,CM =12DE =1,CN =12AB =2,当M 在NC 的延长线上时,M ,N 的距离最大,最大值为CM +CN =1+2=3,当M 在线段CN 上时,M ,N 的距离最小,最小值为CN -CN =2-1=1;(2)解:如图所示,过点N 作NP ⊥MC ,交MC 的延长线于点P ,∵△CDE 绕顶点C 逆时针旋转120°,∴∠BCE =120°,∵∠BCN =∠ECM =45°,∴∠MCN =∠BCM -∠ECM =∠BCE =120°,∴∠NCP =60°,∴∠CNP =30°,∴CP =12CN =1,在Rt △CNP 中,NP =NC 2-CP 2=3,在Rt △MNP 中,MP =MC +CP =1+1=2,∴MN =NP 2+MP 2=3+4=7.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,旋转的性质,含30度角的直角三角形的性质,熟练掌握旋转的性质,勾股定理是解题的关键.18(2023·四川达州·统考中考真题)如图,网格中每个小正方形的边长均为1,△ABC 的顶点均在小正方形的格点上.(1)将△ABC 向下平移3个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1;(2)将△ABC 绕点C 顺时针旋转90度得到△A 2B 2C 2,画出△A 2B 2C 2;(3)在(2)的运动过程中请计算出△ABC 扫过的面积.【答案】(1)见解析(2)见解析(3)5+5π2【分析】(1)先作出点A 、B 、C 平移后的对应点A 1,B 1、C 1,然后顺次连接即可;(2)先作出点A 、B 绕点C 顺时针旋转90度的对应点A 2,B 2,然后顺次连接即可;(3)证明△ABC 为等腰直角三角形,求出S △ABC =12AB ×BC =52,S 扇形CAA 2=90π×10 2360=5π2,根据旋转过程中△ABC 扫过的面积等于△ABC 的面积加扇形CAA 1的面积即可得出答案.【详解】(1)解:作出点A 、B 、C 平移后的对应点A 1,B 1、C 1,顺次连接,则△A 1B 1C 1即为所求,如图所示:(2)解:作出点A 、B 绕点C 顺时针旋转90度的对应点A 2,B 2,顺次连接,则△A 2B 2C 2即为所求,如图所示:(3)解:∵AB =12+22=5,AC =32+12=10,BC =12+22=5,∴AB =BC ,∵5 2+5 2=10=10 2,∴AB 2+BC 2=AC 2,∴△ABC 为等腰直角三角形,∴S △ABC =12AB ×BC =52,根据旋转可知,∠ACA 2=90°,∴S 扇形CAA 2=90π×10 2360=5π2,∴在旋转过程中△ABC 扫过的面积为S =S △ABC +S 扇形CAA 2=5+5π2.【点睛】本题主要考查了平移、旋转作图,勾股定理逆定理,扇形面积计算,解题的关键是作出平移或旋转后的对应点.19(2023·辽宁·统考中考真题)在Rt ΔABC 中,∠ACB =90°,CA =CB ,点O 为AB 的中点,点D 在直线AB 上(不与点A ,B 重合),连接CD ,线段CD 绕点C 逆时针旋转90°,得到线段CE ,过点B 作直线l ⊥BC ,过点E 作EF ⊥l ,垂足为点F ,直线EF 交直线OC 于点G .(1)如图,当点D与点O重合时,请直接写出线段AD与线段EF的数量关系;(2)如图,当点D在线段AB上时,求证:CG+BD=2BC;(3)连接DE,△CDE的面积记为S1,△ABC的面积记为S2,当EF:BC=1:3时,请直接写出S1S2的值.【答案】(1)EF=22AD(2)见解析(3)59或17 9【分析】(1)可先证△BCD≌△BCE,得到BD=BE,根据锐角三角函数,可得到BE和EF的数量关系,进而得到线段AD与线段EF的数量关系.(2)可先证△ACD≌△GEC,得到DA=CG,进而得到CG+BD=DA+BD=AB,问题即可得证.(3)分两种情况:①点D在线段AB上,过点C作CN垂直于FG,交FG于点N,过点E作EM垂直于BC,交BC于点M,设EF=a,利用勾股定理,可用含a的代数式表示EC,根据三角形面积公式,即可得到答案.②点D在线段BA的延长线上,过点E作EJ垂直于BC,交BC延长线于点J,令EF交AC于点I,连接BE,设EF=b,可证△CDA≌△CEB,进一步证得△EBJ是等腰直角三角形,EJ=BJ,利用勾股定理,可用含b的代数式表示EC,根据三角形面积公式,即可得到答案【详解】(1)解:EF=22 AD.理由如下:如图,连接BE.根据图形旋转的性质可知CD=CE.由题意可知,△ABC为等腰直角三角形,∵CD为等腰直角三角形△ABC斜边AB上的中线,∴∠BCD=45°,AD=BD.又∠DCE=90°,∴∠BCE=45°.在△BCD和△BCE中,CD =CE∠BCD =∠BCEBC =BC∴△BCD ≌△BCE .∴BD =BE ,∠CBE =∠CBD =45°.∴∠EBF =45°.∴EF =BE ·sin ∠EBF =22BE .∴EF =22AD .(2)解:∵CO 为等腰直角三角形△ABC 斜边AB 上的中线,∴AO =BO .∵∠ACD +∠DCB =∠BCE +∠DCB =90°,∴∠ACD =∠BCE .∵BC ⊥l ,EF ⊥l ,∴BC ∥EF .∴∠G =∠OCB =45°,∠GEC =∠BCE .∴∠G =∠A ,∠ACD =∠GEC .在△ACD 和△GEC 中,∠ACD =∠GEC∠A =∠GCD =CE∴△ACD ≌△GEC .∴DA =CG .∴CG +BD =DA +BD =AB =2BC .(3)解:当点D 在线段AB 延长线上时,不满足条件EF :BC =1:3,故分两种情况:①点D 在线段AB 上,如图,过点C 作CN 垂直于FG ,交FG 于点N ;过点E 作EM 垂直于BC ,交BC 于点M .设EF =a ,则BC =AC =3a .根据题意可知,四边形BFEM 和CMEN 为矩形,△GCN 为等腰直角三角形.∴EF =BM =a ,CM =NE =2a .由(2)证明可知△ACD ≌△GEC ,∴AC =GE =3a .∴NG =NC =a .∴NC =EM =a .根据勾股定理可知CE =EM 2+CM 2=2a 2+a 2=5a ,△CDE 的面积S 1与△ABC 的面积S 2之比S 1S 2=12CE 212BC 2=125a 2123a2=59②点D 在线段BA 的延长线上,过点E 作EJ 垂直于BC ,交BC 延长线于点J ,令EF 交AC 于点I ,连接BE ,由题意知,四边形FBJE ,FBCI 是矩形,∵∠DCE =∠ACB =90°∴∠DCE -∠ACE =∠ACB -∠ACE即∠DCA =∠ECB又∵CD =CE ,CA =CB∴△CDA ≌△CEB∴∠DAC =∠EBC而∠DAC =180°-∠CAB =180°-45°=135°∴∠EBC =135°∠EBJ =180°-∠EBC =45°∴△EBJ 是等腰直角三角形,EJ =BJ设EF =b ,则BC =IF =3b ,EJ =BJ =CI =b∴EI =EF +IF =4b Rt △CIE 中,CE =CI 2+EI 2=b 2+(4b )2=17b△CDE 的面积S 1与△ABC 的面积S 2之比S 1S 2=12CE 212BC 2=1217b 2123b2=179【点睛】本题主要考查全等三角形的判定及性质、勾股定理以及图形旋转的性质,灵活利用全等三角形的判定及性质是解题的关键.20(2023·四川乐山·统考中考真题)在学习完《图形的旋转》后,刘老师带领学生开展了一次数学探究活动【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图,将一个三角形纸板△ABC绕点A逆时针旋转θ到达△AB C 的位置,那么可以得到:AB=AB ,AC =AC ,BC=B C ;∠BAC=∠B AC ,∠ABC=∠AB C ,∠ACB=∠AC B ()刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即“变”中蕴含着“不变”,这是我们解决图形旋转的关键;故数学就是一门哲学.【问题解决】(1)上述问题情境中“( )”处应填理由:;(2)如图,小王将一个半径为4cm,圆心角为60°的扇形纸板ABC绕点O逆时针旋转90°到达扇形纸板A BC 的位置.①请在图中作出点O;②如果BB =6cm,则在旋转过程中,点B经过的路径长为;【问题拓展】小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置,另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止,此时,两个纸板重叠部分的面积是多少呢?如图所示,请你帮助小李解决这个问题.【答案】问题解决(1)旋转前后的图形对应线段相等,对应角相等(2)①见解析;②322πcm 问题拓展:83π-833cm 2【分析】问题解决(1)根据旋转性质得出旋转前后的图形对应线段相等,对应角相等;(2)①分别作BB 和AA 的垂直平分线,两垂直平分线的交点即为所求点O ;②根据弧长公式求解即可;问题拓展,连接PA ,交AC 于M ,连接PA ,PD ,AA ,由旋转得∠PA B =30°,PA =PA =4,在Rt △PAM 和Rt △A DM 中求出A M 和DM 的长,可以求出S 阴影部分B DP =S 扇形B A P -S △ADP ,再证明△ADP ≌△A DP ,即可求出最后结果.【详解】解:【问题解决】(1)旋转前后的图形对应线段相等,对应角相等(2)①下图中,点O 为所求②连接OB ,OB ,∵扇形纸板ABC 绕点O 逆时针旋转90°到达扇形纸板A B C 的位置,∴∠BOB =90°,OB =OB ,∵BB =6cm ,设OB =OB =xcm ,∴x 2+x 2=62,∴OB =OB =32cm ,在旋转过程中,点B 经过的路径长为以点O 为圆心,圆心角为90°,OB 为半径的所对应的弧长,∴点B 经过的路径长=90×π×32180=322πcm ;【问题拓展】解:连接PA ,交AC 于M ,连接PA ,PD ,AA 如图所示∴∠PAC =12∠BAC =30°.由旋转得∠PA B =30°,PA =PA =4. 在Rt △PAM 中,A M =PM =PA ⋅sin ∠PAM =4×sin30°=2.在Rt △A DM 中,∵∠DA M =12∠B A C =30°,∴A D =A M cos ∠DA M =2cos30°=433,DM =12A D =12×433=233. ∴S △A DP =12DM ⋅A P =12×233×4=433.S 扇形B A P =30×π×42360=43π.∴S 阴影部分B DP =S 扇形B A P -S △ADP =43π-433, 在△ADP 和△A DP 中,∵AD =AM -DM =23-233=433=A D ,又∵∠PAD =∠PA D =30°,PA =PA ,∴△ADP ≌△A DP .又∵S 扇形PAC =S 扇形B AP ,∴S 阴影部分BDP =S 阴影部分CDP ,∴S 阴影部分=2S 阴影部分BDP =2×43π-433 =83π-833 cm 2.【点睛】本题考查了旋转的性质,弧长公式,解直角三角形,三角形全等的性质与判定,解题的关键是抓住图形旋转前后的对应边相等,对应角相等,正确作出辅助线构造出直角三角形.21(2023·浙江绍兴·统考中考真题)在平行四边形ABCD 中(顶点A ,B ,C ,D 按逆时针方向排列),AB =12,AD =10,∠B 为锐角,且sin B =45.(1)如图1,求AB 边上的高CH 的长.(2)P 是边AB 上的一动点,点C ,D 同时绕点P 按逆时针方向旋转90°得点C ,D .①如图2,当点C 落在射线CA 上时,求BP 的长.②当△AC D 是直角三角形时,求BP 的长.【答案】(1)8(2)①BP =347;②BP =6或8±2【分析】(1)利用正弦的定义即可求得答案;(2)①先证明△PQC ≌△CHP ,再证明△AQC ∽△AHC ,最后利用相似三角形对应边成比例列出方程即可;②分三种情况讨论完成,第一种:C 为直角顶点;第二种:A 为直角顶点;第三种,D 为直角顶点,但此种情况不成立,故最终有两个答案.【详解】(1)在▱ABCD 中,BC =AD =10,在Rt △BCH 中,CH =BC sin B =10×45=8.(2)①如图1,作CH ⊥BA 于点H ,由(1)得,BH =BC 2-CH 2=6,则AH =12-6=6,作C Q ⊥BA 交BA 延长线于点Q ,则∠CHP =∠PQC =90°,∴∠C PQ +∠PC Q =90°.∵∠C PQ +∠CPH =90°∴∠PC Q =∠CPH .由旋转知PC =PC ,∴△PQC ≌△CHP .设BP =x ,则PQ =CH =8,C Q =PH =6-x ,QA =PQ -PA =x -4.∵C Q ⊥AB ,CH ⊥AB ,∴C Q ∥CH ,∴△AQC ∽△AHC ,∴C Q CH =QA HA ,即6-x 8=x -46,∴x =347,∴BP =347.②由旋转得△PCD ≌△PC D ,CD =C D ,CD ⊥C D ,又因为AB ∥CD ,所以C D ⊥AB .情况一:当以C 为直角顶点时,如图2.∵C D ⊥AB ,∴C 落在线段BA 延长线上.∵PC ⊥PC ,∴PC ⊥AB ,由(1)知,PC =8,∴BP =6.情况二:当以A 为直角顶点时,如图3.设C D 与射线BA 的交点为T ,作CH ⊥AB 于点H .∵PC ⊥PC ,∴∠CPH +∠TPC =90°,∵C D ⊥AT ,∴∠PC T +∠TPC =90°,∴∠CPH =∠PC T .又∵∠CHP =∠PTC =90°,PC =C P ,∴△CPH ≌△PC T ,∴C T =PH ,PT =CH =8.设C T =PH =t ,则AP =6-t ,∴AT =PT -PA =2+t∵∠C AD =90°,C D ⊥AB ,∴△ATD ∽△C TA ,∴AT TD =CT TA ,∴AT 2=C T ⋅TD ,∴(2+t )2=ι12-t ,化简得t 2-4t +2=0,解得t =2±2,∴BP =BH +HP =8±2.情况三:当以D 为直角顶点时,点P 落在BA 的延长线上,不符合题意.综上所述,BP =6或8±2.【点睛】本题考查了平行四边形的性质,正弦的定义,全等的判定及性质,相似的判定及性质,理解记忆相关定义,判定,性质是解题的关键.22(2023·四川南充·统考中考真题)如图,正方形ABCD 中,点M 在边BC 上,点E 是AM 的中点,连接ED ,EC .(1)求证:ED =EC ;(2)将BE 绕点E 逆时针旋转,使点B 的对应点B 落在AC 上,连接MB ′.当点M 在边BC 上运动时(点M 不与B ,C 重合),判断△CMB ′的形状,并说明理由.(3)在(2)的条件下,已知AB =1,当∠DEB ′=45°时,求BM 的长.【答案】(1)见解析(2)等腰直角三角形,理由见解析(3)BM =2-3【分析】(1)根据正方形的基本性质以及“斜中半定理”等推出△EAD ≌△EBC ,即可证得结论;(2)由旋转的性质得EB =EB =AE =EM ,从而利用等腰三角形的性质推出∠MB C =90°,再结合正方形对角线的性质推出B M =B C ,即可证得结论;(3)结合已知信息推出△CME ∽△AMC ,从而利用相似三角形的性质以及勾股定理进行计算求解即可.【详解】(1)证:∵四边形ABCD 为正方形,∴∠BAD =∠ABC =90°,AD =BC ,∵点E 是AM 的中点,∴EA =EB ,∴∠EAB =∠EBA ,∴∠BAD -∠EAB =∠ABC -∠EBA ,即:∠EAD =∠EBC ,在△EAD 与△EBC 中,EA =EB∠EAD =∠EBCAD =BC∴△EAD ≌△EBC SAS ,∴ED =EC ;。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的旋转经典题一.选择题(共10小题)1.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的()A.内部 B.外部 C.边上 D.以上都有可能2.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A. B.2 C.3 D.23.如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.74.规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是()A.正三角形 B.正方形C.正六边形 D.正十边形5.下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动6.如图,在直角坐标系中放置一个边长为的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为()6题 7题 9题A.π+πB.2π+2 C.3π+3π D.6π+67.(2016•松北区模拟)如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是()A.50°B.60°C.40°D.30°8.一个菱形绕它的两条对角线的交点旋转,使它和原来的菱形重合,那么旋转的角度至少是()A.360° B.270° C.180° D.90°9.如图△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3 B.C.D.410.等边三角形ABC绕着它的中心,至少旋转()度才能与它本身重合.A.60°B.120° C.180° D.360°二.填空题(共6小题)11.将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是______.11题 12题13题12.如图,点C为线段AB上一点,将线段CB绕点C旋转,得到线段CD,若DA⊥AB,AD=1,,则BC的长为______.13.如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=25°,则∠C的度数是______.14.如图,在△ABC中,∠C=90°,∠B=55°,点D在BC边上,DB=2CD,若将△ABC绕点D逆时针旋转α度(0<α<180)后,点B恰好落在初始位置时△ABC的边上,则α等于______.15.如图,用扳手拧螺母时,旋转中心为______,旋转角为______.16.在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为______.三.解答题(共8小题)17.如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.18.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.19.如图,在平面直角坐标系xOy中,每个小正方形的边长均为1,线段AB和DE的端点A、B、D、E均在小正方形的顶点上.(1)画出以AB为一边且面积为2的Rt△ABC,顶点C必须在小正方形的顶点上;(2)画出一个以DE为一边,含有45°内角且面积为的△DEF,顶点F必须在小正方形的顶点上;(3)若点C绕点Q顺时针旋转90°后与点F重合,请直接写出点Q的坐标.20.(1)如图(1),直线a∥b,A,B两点分别在直线a,b上,点P在a,b外部,则∠1,∠2,∠3之间有何数量关系?证明你的结论;(2)如图(2),直线a∥b,点P在直线a,b直角,∠2=50°,∠3=30°,求∠1;(3)在图(2)中,将直线a绕点A按逆时针方向旋转一定角度交直线b于点M,如图(3),若∠1=100°,∠4=40°,求∠2+∠3的度数.21.(1)在一次数学探究活动中,陈老师给出了一道题.如图1,已知△ABC中,∠ACB=90°,AC=BC,P是△ABC内的一点,且PA=3,PB=1,PC=2,求∠BPC的度数.小强在解决此题时,是将△APC绕C旋转到△CBE的位置(即过C作CE⊥CP,且使CE=CP,连接EP、EB).你知道小强是怎么解决的吗?(2)请根据(1)的思想解决以下问题:如图2所示,设P是等边△ABC内一点,PA=3,PB=4,PC=5,求∠APB的度数.22.如图1,在等腰直角△ABC中,AB=AC,∠BAC=90°,将一块三角板中含45°角的顶点放在A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.操作一:在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请说明理由;操作二:当0°<α≤45°时,在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2.某同学将△ABD沿AD所在的直线对折得到△ADF(如图2),很快找到了解决问题的方法,请你说明其中的道理.23.如图(1)所示,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图(2)中补出符合要求的图形,并判断(1)题中的结论是否依然成立,说明理由.24.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.参考答案与试题解析一.选择题(共10小题)1.(2016•玉林)把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的()A.内部 B.外部 C.边上 D.以上都有可能【分析】先根据勾股定理求出两直角三角形的各边长,再由旋转的性质得:∠EBE′=45°,∠E′=∠DEB=90°,求出E′D′与直线AB的交点到B的距离也是5,与AB的值相等,所以点A 在△D′E′B的边上.【解答】解:∵AC=BD=10,又∵∠ABC=∠DEB=90°,∠A=45°,∠D=30°,∴BE=5,AB=BC=5,由三角板DEB绕点B逆时针旋转45°得到△D′E′B,设△D′E′B与直线AB交于G,可知:∠EBE′=45°,∠E′=∠DEB=90°,∴△GE′B是等腰直角三角形,且BE′=BE=5,∴BG==5,∴BG=AB,∴点A在△D′E′B的边上,故选C.【点评】本题考查了旋转的性质和勾股定理,利用30°和45°的直角三角形的性质求出各边的长;注意:在直角三角形中,30度角所对的直角边等于斜边的一半,45°角所对的两直角边相等,熟练掌握此内容是解决问题的关键.2.(2016•宜宾)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A. B.2 C.3 D.2【分析】通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用勾股定理求出B、D两点间的距离.【解答】解:∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD==.故选:A.【点评】题目考查勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系.题目整体较为简单,适合随堂训练.3.(2016•朝阳)如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.7【分析】只要证明△BAC∽△BDA,推出=,求出BD即可解决问题.【解答】解:∵AF∥BC,∴∠FAD=∠ADB,∵∠BAC=∠FAD,∴∠BAC=∠ADB,∵∠B=∠B,∴△BAC∽△BDA,∴=,∴=,∴BD=9,∴CD=BD﹣BC=9﹣4=5,故选B.【点评】本题考查平行线的性质、旋转变换、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形,属于中考常考题型.4.(2016•莆田)规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是()A.正三角形 B.正方形C.正六边形 D.正十边形【分析】分别求出各旋转对称图形的最小旋转角,继而可作出判断.【解答】解:A、正三角形的最小旋转角是120°,故此选项错误;B、正方形的旋转角度是90°,故此选项错误;C、正六边形的最小旋转角是60°,故此选项正确;D、正十角形的最小旋转角是36°,故此选项错误;故选:C.【点评】本题考查了旋转对称图形的知识,解答本题的关键是掌握旋转角度的定义,求出旋转角.5.(2016•呼伦贝尔校级一模)下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动【分析】根据旋转的定义来判断:旋转就是将图形绕某点转动一定的角度,旋转后所得图形与原图形的形状、大小不变,对应点与旋转中心的连线的夹角相等.【解答】解:传送带传送货物的过程中没有发生旋转.故选:A.【点评】本题考查了旋转,正确理解旋转的定义是解题的关键.6.(2016•无锡校级模拟)如图,在直角坐标系中放置一个边长为的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为()A.π+πB.2π+2 C.3π+3π D.6π+6【分析】画出点A第一次回到x轴上时的图形,根据图形得到点A的路径分三部分,以B点为圆心,BA为半径,圆心角为90°的弧;再以C1为圆心,C1C为半径,圆心角为90°的弧;然后以D2点为圆心,D2A2为半径,圆心角为90°的弧,所以点A运动的路线与x轴围成的图形的面积就由三个扇形和两个直角三角形组长,于是可根据扇形面积和三角形面积公式计算,然后把计算结果乘以3即可得到答案.【解答】解:点A第一次回到x轴上时,点A的路径为:开始以B点为圆心,BA为半径,圆心角为90°的弧;再以C1为圆心,C1C为半径,圆心角为90°的弧;然后以D2点为圆心,D2A2为半径,圆心角为90°的弧,所以点A第一次回到x轴上时,点A运动的路线与x轴围成的图形的面积和=×2++2×××=2π+2,所以点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为3(2π+2)=6π+6.故选D.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.7.(2016•松北区模拟)如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是()A.50°B.60°C.40°D.30°【分析】根据旋转的性质得知∠A=∠C,∠AOC为旋转角等于80°,则可以利用三角形内角和度数为180°列出式子进行求解.【解答】解:∵将△OAB绕点O逆时针旋转80°∴∠A=∠C∠AOC=80°∴∠DOC=80°﹣α∠D=100°∵∠A=2∠D=100°∴∠D=50°∵∠C+∠D+∠DOC=180°∴100°+50°+80°﹣α=180°解得α=50°故选A【点评】本题主要考查了旋转的性质及三角形的内角和定理,熟知图形旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角是解决本题的关键.8.(2016•和平区一模)一个菱形绕它的两条对角线的交点旋转,使它和原来的菱形重合,那么旋转的角度至少是()A.360° B.270° C.180° D.90°【分析】根据菱形是中心对称图形解答.【解答】解:∵菱形是中心对称图形,∴把菱形绕它的中心旋转,使它与原来的菱形重合,旋转角为180°的整数倍,∴旋转角至少是180°.故选C.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.9.(2016春•雅安期末)如图△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3 B.C.D.4【分析】根据旋转前后的图形全等,即可得出△APP'等腰直角三角形,再根据等腰直角三角形的性质,进行计算即可.【解答】解:∵△ACP′是由△ABP绕点A逆时针旋转后得到的,∴△ACP′≌△ABP,∴AP=AP′,∠BAP=∠CAP′.∵∠BAC=90°,∴∠PAP′=90°,故可得出△APP'是等腰直角三角形,又∵AP=3,∴PP′=3.故选B.【点评】此题考查了旋转的性质,解答本题的关键是掌握旋转前后对应边相等、对应角相等,另外要掌握等腰三角形的性质,难度一般.10.(2015•浠水县校级模拟)等边三角形ABC绕着它的中心,至少旋转()度才能与它本身重合.A.60°B.120° C.180° D.360°【分析】根据等边三角形的性质及旋转对称图形得到性质确定出最小的旋转角即可.【解答】解:等边三角形ABC绕着它的中心,至少旋转120°才能与它本身重合.故选B【点评】此题考查了旋转对称图形,熟练掌握旋转的性质是解本题的关键.二.填空题(共6小题)11.(2016•邵阳)将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是120°.【分析】根据旋转的性质和等边三角形的性质解答即可.【解答】解:∵三角形ABC是等边三角形,∴∠ACB=60°,∵等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,∴∠BCA'=180°,∠B'CA'=60°,∴∠ACB'=60°,∴∠α=60°+60°=120°,故答案为:120°.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.12.(2016•高青县模拟)如图,点C为线段AB上一点,将线段CB绕点C旋转,得到线段CD,若DA⊥AB,AD=1,,则BC的长为.【分析】如图,首先运用旋转变换的性质证明CD=CB(设为λ);运用勾股定理求出AB的长度;再次运用勾股定理列出关于λ的方程,求出λ即可解决问题.【解答】解:如图,由题意得CD=CB(设为λ);由勾股定理得:AB2=BD2﹣AD2,而BD=,AD=1,∴AB=4,AC=4﹣λ;由勾股定理得:λ2=12+(4﹣λ)2,解得:.故答案为.【点评】该题主要考查了旋转变换的性质、勾股定理等几何知识点及其应用问题;应牢固掌握旋转变换的性质、勾股定理等几何知识点,这是灵活运用、解题的基础和关键.13.(2016•海曙区一模)如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=25°,则∠C的度数是70°.【分析】根据旋转的性质可得AB=AB′,然后判断出△ABB′是等腰直角三角形,根据等腰直角三角形的性质可得∠ABB′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠B′C′A,然后根据旋转的性质可得∠C=∠B′C′A.【解答】解:∵Rt△ABC绕直角顶点A顺时针旋转90°得到△AB′C′,∴AB=AB′,∴△ABB′是等腰直角三角形,∴∠ABB′=45°,∴∠AC′B′=∠1+∠ABB′=25°+45°=70°,由旋转的性质得∠C=∠AC′B′=70°.故答案为:70°.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.14.(2016•太原二模)如图,在△ABC中,∠C=90°,∠B=55°,点D在BC边上,DB=2CD,若将△ABC绕点D逆时针旋转α度(0<α<180)后,点B恰好落在初始位置时△ABC的边上,则α等于70或120 .【分析】根据题意画出符合的两种情况,①当B点落在AB上时,求出∠B=∠DB°,即可求出∠B′DB;②当B点落在AC上时,根据题意求出∠B′DC,即可求出∠B′DB的度数,即可得出答案.【解答】解:分为两种情况:①当B点落在AB上时,如图1,∵根据旋转的性质得出DB=DB′,∵∠B=55°,∴∠DB′B=∠B=55°,∴∠B′DB=180°﹣55°﹣55°=70°,即此时α=70;②当B点落在AC上时,如图2,如图,∵△ABC绕着点D顺时针旋转α度后得到△A′B′C′,∴B′D=BD,∵BD=2CD,∴B′D=2CD,∵∠ACB=90°,∴∠CB′D=30°,∴∠B′DC=60°,∴∠B′DB=180°﹣60°=120°,即此时α=120;故答案为:70或120.【点评】本题考查了旋转的性质,等腰三角形的性质,直角三角形的性质的应用,能求出∠B′DB的度数是解题的关键,作出图形更形象直观.15.(2016•怀柔区二模)如图,用扳手拧螺母时,旋转中心为螺丝(母)的中心,旋转角为0°~360°的任意角(答案不唯一).【分析】根据旋转中心的定义以及旋转角的定义解答即可.【解答】解:由旋转中心的定义:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心可知,用扳手拧螺母时,旋转中心为螺丝(母)的中心,而旋转角可估计实际情况决定,所以不确定,故答案为:螺丝(母)的中,0°~360°的任意角(答案不唯一)【点评】本题考查了和旋转有关的概念:旋转中心和旋转角,属于基础性题目,对此知识点的考查重点在于对旋转的性质的掌握.16.(2016•瑞昌市一模)在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为(2,1).【分析】根据中心对称的性质,知道点P(1,1),N(2,0),并细心观察坐标轴就可以得到答案.【解答】解:∵点P(1,1),N(2,0),∴由图形可知M(3,0),M1(1,2),N1(2,2),P1(3,1),∵关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,∴对称中心的坐标为(2,1),故答案为:(2,1).【点评】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.以及中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.三.解答题(共8小题)17.(2016•荆门)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.【分析】(1)根据题意补全图形,如图所示;(2)由旋转的性质得到∠DCF为直角,由EF与CD平行,得到∠EFC为直角,利用SAS得到三角形BDC与三角形EFC全等,利用全等三角形对应角相等即可得证.【解答】解:(1)补全图形,如图所示;(2)由旋转的性质得:∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠DCE+∠BCD=90°,∴∠ECF=∠BCD,∵EF∥DC,∴∠EFC+∠DCF=180°,∴∠EFC=90°,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS),∴∠BDC=∠EFC=90°.【点评】此题考查了旋转的性质,以及全等三角形的判定与性质,熟练掌握旋转的性质是解本题的关键.18.(2016•丹东)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.【分析】(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.19.(2016•呼兰区模拟)如图,在平面直角坐标系xOy中,每个小正方形的边长均为1,线段AB和DE的端点A、B、D、E均在小正方形的顶点上.(1)画出以AB为一边且面积为2的Rt△ABC,顶点C必须在小正方形的顶点上;(2)画出一个以DE为一边,含有45°内角且面积为的△DEF,顶点F必须在小正方形的顶点上;(3)若点C绕点Q顺时针旋转90°后与点F重合,请直接写出点Q的坐标.【分析】(1)和(2)分别画出图形;(3)作FC的中垂线,得Q(5,0).【解答】(1)S△ABC=×2×2=2;(2)S△DEF=2×3﹣1×2﹣×1×3=;∵ED=EF,∠DFE=90°,∴∠FDE=45°;(3)由勾股定理得:FC==,CQ==,FQ==,∴FC2=CQ2+FQ2,CQ=FQ,∴∠FQC=90°,∴点C绕点Q顺时针旋转90°后与点F重合;则点Q(5,0).【点评】本题考查了作图﹣旋转变换,对于画定值面积的三角形,利用面积的和、差先试求某点所组成的图形的面积是否符合题意,再确定这一点;同时根据勾股定理计算所成的三角形是否为直角三角形或等腰直角三角形.20.(2016春•重庆期末)(1)如图(1),直线a∥b,A,B两点分别在直线a,b上,点P在a,b外部,则∠1,∠2,∠3之间有何数量关系?证明你的结论;(2)如图(2),直线a∥b,点P在直线a,b直角,∠2=50°,∠3=30°,求∠1;(3)在图(2)中,将直线a绕点A按逆时针方向旋转一定角度交直线b于点M,如图(3),若∠1=100°,∠4=40°,求∠2+∠3的度数.【分析】(1)设直线AP交直线b于O,根据平行线的性质得出∠2=∠AOB,根据三角形外角性质求出∠AOB=∠1+∠3,即可得出答案;(2)延长AP交直线b于O,根据平行线的性质得出∠ABO=∠2=50°,根据三角形的外角性质得出∠1=∠AOB+∠3,代入求出即可;(3)延长AP交直线b于O,根据三角形外角性质得出∠AOB=∠2+∠4,∠1=∠3+∠AOB,求出∠1=∠2+∠4+∠3,代入求出即可.【解答】(1)∠2=∠1+∠3,证明:设直线AP交直线b于O,如图1,∵直线a∥直线b,∴∠2=∠AOB,∵∠AOB=∠1+∠3,∴∠2=∠1+∠3;(2)解:延长AP交直线b于O,如图2,∵直线a∥直线b,∠2=50°,∴∠ABO=∠2=50°,∵∠3=30°,∴∠1=∠AOB+∠3=50°+30°=80°;(3)解:延长AP交直线b于O,如图3,∵∠AOB=∠2+∠4,∠1=∠3+∠AOB,∴∠1=∠2+∠4+∠3,∵∠1=100°,∠4=40°,∴∠2+∠3=∠1﹣∠4=60°.【点评】本题考查了平行线的性质,三角形外角性质的应用,能灵活运用性质进行推理是解此题的关键.21.(2014秋•五常市校级期中)(1)在一次数学探究活动中,陈老师给出了一道题.如图1,已知△ABC中,∠ACB=90°,AC=BC,P是△ABC内的一点,且PA=3,PB=1,PC=2,求∠BPC的度数.小强在解决此题时,是将△APC绕C旋转到△CBE的位置(即过C作CE⊥CP,且使CE=CP,连接EP、EB).你知道小强是怎么解决的吗?(2)请根据(1)的思想解决以下问题:如图2所示,设P是等边△ABC内一点,PA=3,PB=4,PC=5,求∠APB的度数.【分析】(1)如图1,首先证明BE2=PE2+PB2,得到∠BPE=90°;证明∠CPE=45°即可解决问题.(2)如图2,作旋转变换;首先证明∠AQP=60°;其次证明PQ2+CQ2=PC2,得到∠PQC=90°,求出∠AQC=150°,即可解决问题.【解答】解:(1)如图1,由题意得:∠PCE=90°PC=EC=2;BE=PA=3;由勾股定理得:PE2=22+22=8;∵PB2=1,BE2=9,∴BE2=PE2+PB2,∴∠BPE=90°,∵∠CPE=45°,∴∠BPC=135°.(2)如图2,将△ABP绕点A逆时针旋转60°到△ACQ的位置,连接PQ;则AP=AQ,∠PAQ=60°,QC=PB=4;∴△APQ为等边三角形,∠AQP=60°,PQ=PA=3;∵PQ2+CQ2=32+42=25,PC2=52=25,∴PQ2+CQ2=PC2,∴∠PQC=90°,∠AQC=60°+90°=150°,∴∠APB=∠AQC=150°.【点评】该题主要考查了旋转变换的性质、等边三角形的判定及其性质、勾股定理逆定理等几何知识点及其应用问题;对综合的分析问题解决问题的能力提出了较高的要求.22.(2014秋•苏州期中)如图1,在等腰直角△ABC中,AB=AC,∠BAC=90°,将一块三角板中含45°角的顶点放在A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.操作一:在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请说明理由;操作二:当0°<α≤45°时,在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2.某同学将△ABD沿AD所在的直线对折得到△ADF(如图2),很快找到了解决问题的方法,请你说明其中的道理.【分析】(1)如图1,根据图形、已知条件推知∠BAD+∠MAE=∠DAM+∠EAC=45°,所以∠MAE=∠EAC,即AE平分∠MAC;(2)应用折叠对称的性质和SAS得到△AEF≌△AEC,得出FE=CE,∠AFE=∠C=45°.再证明∠DFE=90°.然后在Rt△DFE中应用勾股定理即可证明.【解答】(1)证明:如图1,∵∠BAC=90°,∴∠BAD+∠DAM+∠MAE+∠EAC=90°.∵∠DAE=45°,∴∠BAD+∠EAC=45°.∵∠BAD=∠DAM,∴∠BAD+∠EAC=∠DAM+∠EAC=45°,∴∠BAD+∠MAE=∠DAM+∠EAC,∴∠MAE=∠EAC,即AE平分∠MAC;(2)证明:如图2,连接EF.由折叠可知,∠BAD=∠FAD,AB=AF,BD=DF,∠B=∠AFD=45°.∵∠BAD=∠FAD,∴由(1)可知,∠CAE=∠FAE.在△AEF和△AEC中,,∴△AEF≌△AEC(SAS),∴FE=CE,∠AFE=∠C=45°.∴∠DFE=∠AFD+∠AFE=90°.在Rt△DFE中,DF2+FE2=DE2,∴BD2+CE2=DE2.【点评】本题考查了旋转的性质,角平分线的定义,等腰直角三角形的性质,轴对称的性质,全等三角形的判定和性质等知识点.注意,旋转前后,图形的大小和形状都不改变.23.(2014秋•利川市校级期中)如图(1)所示,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图(2)中补出符合要求的图形,并判断(1)题中的结论是否依然成立,说明理由.【分析】(1)根据等边三角形的性质利用SAS判定△ACN≌△MCB,从而得到AN=MB;(2)连接AN,BM,根据等边三角形的性质及旋转的性质利用SAS判定△ACN≌△MCB,从而得到AN=MB.【解答】(1)证明:∵△ACM、△CBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∴∠ACN=∠MCB=120°,在△ACN和△MCB中,,∴△ACN≌△MCB,∴AN=MB.(2)解:连接AN,BM,∵△ACM、△CBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∵∠ACB=90°,∴∠ACN=∠MCB,在△ACN和△MCB中,,∴△ACN≌△MCB,∴AN=MB.【点评】此题主要考查学生对等边三角形的性质、旋转的性质及全等三角形的判定方法的综合运用.24.(2014秋•江西期末)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.【分析】(1)由∠ACB=90°,得∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,则∠ADC=∠CEB=90°,根据等角的余角相等得到∠ACD=∠CBE,易得Rt△ADC≌Rt△CEB,所以AD=CE,DC=BE,即可得到DE=DC+CE=BE+AD.(2)根据等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,得到AD=CE,DC=BE,所以DE=CE﹣CD=AD﹣BE.精品文档。

相关文档
最新文档