运筹学作业28272

合集下载

最全运筹学习题及答案

最全运筹学习题及答案

最全运筹学习题及答案运筹学习题答案第⼀章(39页)1.1⽤图解法求解下列线性规划问题,并指出问题是具有唯⼀最优解、⽆穷多最优解、⽆界解还是⽆可⾏解。

(1)max 12z x x =+ 51x +102x ≤501x +2x ≥1 2x ≤4 1x ,2x ≥0(2)min z=1x +1.52x1x +32x ≥3 1x +2x ≥2 1x ,2x ≥0(3)max z=21x +22x1x -2x ≥-1-0.51x +2x ≤21x ,2x ≥0(4)max z=1x +2x1x -2x ≥031x -2x ≤-31x ,2x ≥0解:(1)(图略)有唯⼀可⾏解,max z=14 (2)(图略)有唯⼀可⾏解,min z=9/4 (3)(图略)⽆界解(4)(图略)⽆可⾏解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。

(1)min z=-31x +42x -23x +54x 41x -2x +23x -4x =-21x +2x +33x -4x ≤14-21x +32x -3x +24x ≥21x ,2x ,3x ≥0,4x ⽆约束(2)k i z =1mk x=-∑ik x ≥(1Max s. t .-41x x 1x ,2x(2)解:加⼊⼈⼯变量1x ,2x ,3x ,…n x ,得: Max s=(1/k p )1ni =∑mk =∑ik αik x -M 1x -M 2x -…..-M n xs.t.m(1)max z=21x +32x +43x +74x 21x +32x -3x -44x =8 1x -22x +63x -74x =-31x ,2x ,3x ,4x ≥0(2)max z=51x -22x +33x -64x1x +22x +33x +44x =721x +2x +3x +24x =31x 2x 3x 4x ≥0(1)解:系数矩阵A 是:23141267----?? 令A=(1P ,2P ,3P ,4P )1P 与2P 线形⽆关,以(1P ,2P )为基,1x ,2x 为基变量。

运筹学试卷及答案完整版

运筹学试卷及答案完整版

《运筹学》模拟试题及参考答案一、判断题(在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“√”,错误者写“×”。

)1. 图解法提供了求解线性规划问题的通用方法。

( )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j ≥0,则问题达到最优。

( )3. 在单纯形表中,基变量对应的系数矩阵往往为单位矩阵。

( )4. 满足线性规划问题所有约束条件的解称为基本可行解。

( )5. 在线性规划问题的求解过程中,基变量和非基变量的个数是固定的。

( )6. 对偶问题的目标函数总是与原问题目标函数相等。

( )7. 原问题与对偶问题是一一对应的。

( )8. 运输问题的可行解中基变量的个数一定遵循m+n-1的规则。

( )9. 指派问题的解中基变量的个数为m+n。

( )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。

( )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。

( )12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往不相等。

( )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。

( )14. 单目标决策时,用不同方法确定的最佳方案往往是一致的。

( )15. 动态规划中运用图解法的顺推方法和网络最短路径的标号法上是一致的。

( )三、填空题1. 图的组成要素;。

2. 求最小树的方法有、。

3. 线性规划解的情形有、、、。

4. 求解指派问题的方法是。

5. 按决策环境分类,将决策问题分为、、。

6. 树连通,但不存在。

四、下列表是线性规划单纯形表(求Z max ),请根据单纯形法原理和算法。

1. 计算该规划的检验数2. 计算对偶问题的目标函数值3. 确定上表中输入,输出变量五、已知一个线性规划原问题如下,请写出对应的对偶模型21max 6x x S +=⎪⎩⎪⎨⎧≥≥+≤+0,16327212121x x x x x x六、下图为动态规划的一个图示模型,边上的数字为两点间的距离,请用逆推法求出S 至F 点的最短路径及最短路长。

运筹学作业题

运筹学作业题

1运筹学作业题一、将下列线性规划问题化为标准型(1)、123123123123123 235567916..192513,0,Max z x x x x x x x x x s t x x x x x x =+++-≥-⎧⎪-+-=⎪⎨-+≤⎪⎪≥⎩符号不限(2)、123123123123 242+3=20..3+4=25,0,26Max z x x x x x x s t x x x x x x =+++⎧⎪+⎨⎪≥≤≤⎩ 二、求出下面线性规划问题的所有基解、基可行解和最优解12123412341234522+34=7..22++2=3,,,0Min z x x x x x x s t x x x x x x x x =-++⎧⎪+⎨⎪≥⎩三、用图解法求解下列线性规划问题,并说明解的类型(1)、121212212 501003002400..250,0Max z x x x x x x s t x x x =++≤⎧⎪+≤⎪⎨≤⎪⎪≥⎩ (2)、12121221212 393224..6250,0Max z x x x x x x s t x x x x x =++≤⎧⎪-+≤⎪⎪≤⎨⎪-≤⎪⎪≥⎩ 四、分别用图解法和单纯形法求解线性规划问题,并指出每一个单纯形表所对应的可行域的顶点122121212 25156224..5,0Max z x x x x x s t x x x x =+≤⎧⎪+≤⎪⎨+≤⎪⎪≥⎩ 五、分别用大M 法及两阶段法求解下列线性规划问题(1)、1231231231312332+114+23..2 1,,0Max z x x x x x x x x x s t x x x x x =---≤⎧⎪-+≥⎪⎨-=-⎪⎪≥⎩ (2)、121212123222..3412,0Max z x x x x s t x x x x =++≤⎧⎪+≥⎨⎪≥⎩2六、写出线性规划问题的对偶问题(1)、123123123123123 3526304320..40,0,Min z x x x x x x x x x s t x x x x x x =-+--+-≥⎧⎪+-≤⎪⎨-+=-⎪⎪≤≥⎩无约束(2)、123452345123413412345 37588 34162332 222 5..210525,0,Max z x x x x x x x x x x x x x x x x s t x x x x x =--++-+-=-⎧⎪+--≥⎪⎪-+-≤-⎪⎨-≤≤⎪⎪≤≤⎪≥⎪⎩无约束(3)、111111111 1,, 1,2,,..0 1,, 1,2,,nj jj nij j i j n ij j i j j j Max z c x a x b i m m a x b i m m m s t x j n n x j n n n====⎧≤=≤⎪⎪⎪⎪==++⎨⎪⎪≥=≤⎪=++⎪⎩∑∑∑无约束七、用对偶单纯形法求解线性规划问题123123123123524324..63510,,0Min z x x x x x x s t x x x x x x =++++≥⎧⎪++≥⎨⎪≥⎩ 八、灵敏度分析给出下列线性规划:12312312312362124+324..26+330,,0Max z x x x x x x s t x x x x x x =+++≤⎧⎪+≤⎨⎪≥⎩ 的最优单纯形表:3其中,s 1、s 2分别为第1、2约束方程的松弛变量。

运筹学课后习题答案

运筹学课后习题答案

运筹学课后习题答案运筹学课后习题答案运筹学是一门研究如何在有限资源下做出最优决策的学科。

它涉及到数学、统计学和计算机科学等多个领域,旨在解决实际问题中的优化和决策难题。

在学习运筹学的过程中,课后习题是巩固知识和理解概念的重要方式。

下面将为大家提供一些运筹学课后习题的答案,希望能对大家的学习有所帮助。

1. 线性规划问题线性规划是运筹学中最基本的问题之一。

它的目标是在给定的约束条件下,找到使目标函数达到最大或最小值的决策变量的取值。

以下是一个线性规划问题的示例及其答案:问题:某公司生产两种产品A和B,每单位产品A的利润为3万元,产品B的利润为4万元。

产品A每单位需要2个工时,产品B每单位需要3个工时。

公司总共有40个工时可用。

如果公司希望最大化利润,应该生产多少单位的产品A和产品B?答案:设产品A的生产单位为x,产品B的生产单位为y。

根据题目中的约束条件可得到以下线性规划模型:目标函数:Maximize 3x + 4y约束条件:2x + 3y ≤ 40x ≥ 0, y ≥ 0通过求解这个线性规划模型,可以得到最优解为x = 10,y = 10。

也就是说,公司应该生产10个单位的产品A和10个单位的产品B,以最大化利润。

2. 项目管理问题项目管理是运筹学的一个重要应用领域。

它涉及到如何合理安排资源、控制进度和降低风险等问题。

以下是一个项目管理问题的示例及其答案:问题:某公司需要完成一个项目,该项目包含5个任务。

每个任务的完成时间和前置任务如下表所示。

为了尽快完成项目,应该如何安排任务的执行顺序?任务完成时间(天)前置任务A 4 无B 6 无C 5 AD 3 BE 7 C, D答案:为了确定任务的执行顺序,可以使用关键路径方法。

首先,计算每个任务的最早开始时间和最晚开始时间。

然后,找到所有任务的最长路径,即关键路径。

关键路径上的任务不能延迟,否则会延误整个项目的完成时间。

根据上表中的信息,可以得到以下关键路径:A → C → E,最长时间为4 + 5 + 7 = 16天因此,任务的执行顺序应为A → C → E。

运筹学考试习题及答案

运筹学考试习题及答案

《运筹学》练习题及其解答(1)1.2将线性规划问题化为标准形式st.⎪⎩⎪⎨⎧≥≤≤-+-=++-+-=0,0624322min 21321321321x x x x x x x x x x x z解:令,'11x x -='"3'33,z z x x x -=-=则所求规划的标准形式为:st.⎪⎩⎪⎨⎧≥≥≥≥≥≥=++-+=+-++⋅+⋅-+-+=0,0,0,0,0,062403322max 54"3'32'15"3'32'14"3'32'154"3'32'1'x x x x x x x x x x x x x x x x x x M x x x x z1.4用单纯形法求解线性规划问题:st.⎪⎩⎪⎨⎧≥≥≤+≤++=0,0825943510max 21212121x x x x x x x x z解:将其化为标准形式为:st.⎪⎩⎪⎨⎧≥≥≥≥=++=+++=0,0,0,08259532max 432142132121x x x x x x x x x x x x z用单纯形法求解的过程见下表故所求惟一最优解为:.2117max ,23,121===z x x基 b1x2x3x4x3x 9 3 4 1 0 4x 8[5] 2 0 1 j j z c - 10 50 03x521 0[514] 1-531x58 1 52 0 51 j j z c - 0 1 0-22x23 01145 143-1x 11 0 71- 72 j j z c -145- 1425-10.1设0X 是线性规划问题0,,max ≥==X b AX CX z 的最优解。

若目标函数中用*C 代替C 后,问题的最优解变为*X 。

求证:0))((0≥--**X X C C 。

证明:0X 、*X 在目标函数的系数变化之前之后都是问题的可行解,故有*≥CX CX 0,即 0)(,0)(00≥--≥-**X X C X X C (1)同理 ,0X C X C ***≥ 即 0)(0≥-**X X C (2)(1)+(2) 0)()(00≥---***X X C X X C 即 .0))((0≥--**X X C C13.1某饲养场饲养动物出售,设每头动物每天至少需要700克蛋白质、30克矿物质、100毫克维生素。

运筹学试题及答案

运筹学试题及答案

运筹学试题及答案一、名词解释1、需求:对存储来说,需求就是输出。

最基本的需求模式是确定性的,在这种情况下,某一种货物的未来需求都是已知的。

2、决策活动:决策活动是人们生活中最常见的一种综合活动,是为了达到特定的目标,运用科学的理论和方法,分析主客观条件,提出各种不同的方案,并从中选取最优方案的过程。

3、行动方案:在实际生活和生产活动中,对同一问题,可能出现几种自然情况及几种反感供决策者选择,这几构成了一个决策问题,出现的几种可供选择的方案,称作行动方案(简称方案),记作Ai 。

4、损益值:把各种方案在不同的自然因素影响下所产生的效果的数量,称作损益值(也有人称为益损值,它因效果的含义不同而不同,效果可以是费用的数量,也可以是利润的数量),用符号ija 表示。

5、确定型决策:确定型决策就是指在知道某个自然因素必然发生的前提下所作的决策。

6、风险型决策:风险型决策问题是指决策者根据以往的经验及历史统计资料,可以判明各种自然因素出现的可能性大小(即概率)。

通过自然因素出现的概率来做决策,这样做是需冒一定的风险的,故称风险型决策。

7、期望值法:期望值法就是决策者根据各个方案的期望值大小,来选择最优方案。

如果损益值代表的是损失,则选择期望值最小的方案作为最优方案;如果损益值代表的是收益,则选择期望值最大的作为最优方案。

8、不确定型决策:不确定型决策问题是指决策者对各种自然因素发生的概率是未知的,存在两个或两个以上的自然因素,并且各个自然因素出现的概率是不知道的。

二、选择题1、在实际工作中,企业为了保证生产的连续性和均衡性,需要存储一定数量的物资,对于存储方案,下列说法正确的是( C )A 应尽可能多的存储物资,以零风险保证生产的连续性B 应尽可能少的存储物资,以降低库存造成的浪费C 应从多方面考虑,制定最优的存储方案D 以上说法都错误2、对于第一类存储模型——进货能力无限,不允许缺货,下列哪项不属于起假设前提条件( A ) A 假设每种物品的短缺费忽略不计 B 假设需求是连续,均匀的C 假设当存储降至0时,可以立即得到补充D 假设全部定货量一次供应3、对于第二类存储模型——进货能力有限,不允许缺货,下列哪项不属于起假设前提条件( D )A、需求是连续,均匀的B、进货是连续,均匀的C、当存储降至零时,可以立即得到补充D、每个周期的定货量需要一次性进入存储,一次性满足4、对于同一个目标,决策者“选优”原则不同,导致所选的最优方案的不同,而影响“选优”原则确定的是决策者对各种自然因素出现的可能性的了解程度。

运筹学试题及答案

运筹学试题及答案

运筹学试题及答案大家不妨来看看小编推送的运筹学试题及答案,希望给大家带来帮助!《运筹学》复习试题及答案(一)一、填空题1、线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。

2、图解法适用于含有两个变量的线性规划问题。

3、线性规划问题的可行解是指满足所有约束条件的解。

4、在线性规划问题的基本解中,所有的非基变量等于零。

5、在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6、若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。

7、线性规划问题有可行解,则必有基可行解。

8、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。

9、满足非负条件的基本解称为基本可行解。

10、在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。

11、将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。

12、线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。

13、线性规划问题可分为目标函数求极大值和极小_值两类。

14、线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。

15、线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16、在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。

17、求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。

18、19、如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj,同时令Xj=Xj- Xj。

20、表达线性规划的简式中目标函数为ijij21、、(2、1 P5))线性规划一般表达式中,aij表示该元素位置在二、单选题1、如果一个线性规划问题有n个变量,m个约束方程(m<n),系数矩阵的数为m,则基可行解的个数最为_C_。

《运筹学》习题与答案

《运筹学》习题与答案

《运筹学》习题与答案(解答仅供参考)一、名词解释1. 线性规划:线性规划是运筹学的一个重要分支,它主要研究在一系列线性约束条件下,如何使某个线性目标函数达到最大值或最小值的问题。

2. 动态规划:动态规划是一种解决多阶段决策问题的优化方法,通过把原问题分解为相互联系的子问题来求解,对每一个子问题只解一次,并将其结果保存起来以备后续使用,避免了重复计算。

3. 整数规划:整数规划是在线性规划的基础上,要求决策变量取值为整数的一种优化模型,用于解决实际问题中决策变量只能取整数值的情形。

4. 马尔可夫决策过程:马尔可夫决策过程是一种随机环境下的决策模型,其中系统的状态转移具有无后效性(即下一状态的概率分布仅与当前状态有关),通过对每个状态采取不同的策略(行动)以最大化期望收益。

5. 最小费用流问题:最小费用流问题是指在网络流模型中,每条边都有一个容量限制和单位流量的成本,寻找满足所有节点流量平衡的同时使得总成本最小的流方案。

二、填空题1. 运筹学的主要研究对象是系统最优化问题,其核心在于寻求在各种(约束条件)下实现(目标函数)最优的方法。

2. 在运输问题中,供需平衡指的是每个(供应地)的供应量之和等于每个(需求地)的需求量之和。

3. 博弈论中的纳什均衡是指在一个博弈过程中,对于各个参与者来说,当其他所有人都不改变策略时,没有人有动机改变自己的策略,此时的策略组合构成了一个(纳什均衡)。

4. 在网络计划技术中,关键路径是指从开始节点到结束节点的所有路径中,具有最长(总工期)的路径。

5. 对于一个非负矩阵A,如果存在一个非负矩阵B,使得AB=BA=A,则称A为(幂等矩阵)。

三、单项选择题1. 下列哪项不是线性规划的标准形式所具备的特点?(D)A. 目标函数是线性的B. 约束条件是线性的C. 决策变量非负D. 变量系数可以为复数2. 当线性规划问题的一个基解满足所有非基变量的检验数都非正时,那么该基解(C)。

A. 不是可行解B. 是唯一最优解C. 是局部最优解D. 不一定是可行解3. 下列哪种情况适合用动态规划法求解?(B)A. 问题无重叠子问题B. 问题具有最优子结构C. 问题不能分解为多个独立子问题D. 子问题之间不存在关联性4. 在运输问题中,如果某条路线的运输量已经达到了其最大运输能力,我们称这条路线处于(A)状态。

运筹学大作业(选修班)

运筹学大作业(选修班)

运筹学大作业(选修)
1、 用单纯形法求解线性规划问题 Max z=2x- x+ x s.t.
2、 某厂接到生产A、B两种产品的合同,产品A需200件,产品B需 300件。这两种产品的生产都经过毛坯制造与机械加工两个工艺 阶段。在毛坯制造阶段,产品A每件需2小时,产品B每件需4小 时。机械加工阶段又分粗加工和精加工两道工序,每件产品A需 粗加工4小时,精加工10小时;每件产品B需粗加工7小时,精加 工12小时。若毛坯生产阶段能力为1700工时,粗加工设备拥有能 力为1000小时,精加工设备拥有能力为3000小时。又加工费用在 毛坯、粗加工、精加工时分别为每小时3元、3元、2元。此外在 粗加工阶段允许设备可进行500小时的加班生产,但加班生产时 间内每小时增加额外成本4.5元。试根据以上资料,为该厂制订 一个成本最低的生产计划。(建立数学模型,不求解)
3、 某企业生产Ⅰ、Ⅱ、Ⅲ三种产品,分别经过A、B、C三种设备 加工。已知生产单位各种产品所需的设备台时、设备的现有加工 能力及每件产品的预期利润如下表所示:
Ⅰ ⅡⅢ
设备能力 (台时)
A
1 11
100
B
10 4 5
600
C
2 26
300
单位产品利润 (元)
10 6 4
用单纯形法求解得到最终单纯形表如下表所示。
值得安排生产?如产品Ⅲ每件利润增加到50/6元,求最优计划
的变化;
2. 如有一种新产品,加工一件需设备A、B、C的台时各为1、4、
3小时,预期每件的利润为8元,是否值得安排生产;
3. 如合同规定该企业至少生产10件产品Ⅲ,试确定最优计划的变
化。
4、 某地区有三个化肥厂,除供应外地区需要外,估计每年可供应本

运筹学各章的作业题答案解析

运筹学各章的作业题答案解析

《管理运筹学》各章的作业----复习思考题及作业题第一章绪论复习思考题1、从运筹学产生的背景认识本学科研究的内容和意义。

2、了解运筹学的内容和特点,结合自己的理解思考学习的方法和途径。

3、体会运筹学的学习特征和应用领域。

第二章线性规划建模及单纯形法复习思考题1、线性规划问题的一般形式有何特征?2、建立一个实际问题的数学模型一般要几步?3、两个变量的线性规划问题的图解法的一般步骤是什么?4、求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误?5、什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。

6、试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。

7、试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。

8在什么样的情况下采用人工变量法,人工变量法包括哪两种解法?9、大M法中,M的作用是什么?对最小化问题,在目标函数中人工变量的系数取优质参考资料(2)x i3(1)什么?最大化问题呢?10、什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样 的情况下,继续第二阶段?作业题:1 、把以下线性规划问题化为标准形式:(i) max z= x i -2x 2 +x 3s.t.x i +x 2 +x 3 w i2 2x i +x 2 -x 3> 6 -x i+3x 2=9x i , x 2,x 3> 0(2)min z= -2x i -x 2 +3x 3 -5x 4s.tx i +2x 2 +4x 3 -x 462x i +3x 2-x 3 +x 4 = i2x i+x 3+x 4w 4x i ,x 2,x 4maxz= x i+3x 2 +4x 3(3)s.t.3x i +2x 2w i3x 2 +3x 3w i72x i+x 2 +x 3 =i3x i ,x 3> 02 、用图解法求解以下线性规划问题max z= x 1+3x 2s.t.x i +X 2< 10-2x i +2x 2 w 12 X i w 7 x i ,X 2 > 0min z= x 1 -3x 2 s.t.2x 1 -x 2 w 4 x i +X 2> 3x2 w 5 w4x1, X2 > 03、在以下问题中,列出所有的基,指出其中的可行基,基础可行解以及最优解max z= 2x1 +x2 -x 3s.t. x1 + x2 +2x3 < 6x1 +4x2 -x 3 < 4x1, x2, x3 > 04、用单纯形表求解以下线性规划问题(1) max s.t. z= x1x12x 1-x 1x 1, -2x 2 +x3+X2 +X3 w 12 +X2 -x 3 w 6+3X2X2,w 9X3 > 0(2) min z= -2x 1 -X 2 +3X3 5X 4s.t x1 +2X 2 +4X3 -X 4 w 62x1 +3X 2 -X 3 +X4 w 12x1 +X3 +X4 w 4x1, X2, X3, X4 05、用大M法和两阶段法求解以下线性规划问题(1) MaX z= X1 +3X2 +4X3s.t. 3X 1 +2X2 w13X2 +3X3 w172X 1 +X2 +X3 =13X 1, X2, X3> 0(2) maX z= 2X 1 -X 2 +X3s.t. X1 +X2 -2X 3 w84X 1 -X 2 +X3 w22X 1 +3X2 -X 3 > 4X 1, X2, X3 > 06 、某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、100 毫克维生素。

运筹学重点习题及答案

运筹学重点习题及答案

综合习题二1、自己选用适当的方法,对下图求最小(生成)树。

(12分)解:(1)最小树为图中双线所示(2)最小树长142、用破圈法求下面网络的最短树解:最小树如下图所示由于q=5,p=6,则q=p-1,故已得最短树。

最小树长为122、用标号法求下列网络V1→V7的最短路径及路长。

(12分)VV 3V 5V 6V 6V 1V 7V 4V 2解:最短路径:v 1→v 3→v 5→v 6→v 7 L=104、解:第一轮:(1)在G 中找到一个回路{v 1,v 2,v 3,v 1};(2)此回路上的边[v 1,v 3]的权数6为最大,去掉[v 1,v 3]。

第二轮:(1)在划掉[v 1,v 3]的图中找到一个回路{v 2,v 3,v 5,v 2};(2)去掉其中权数最大的边[v 2,v 5]。

第三轮:(1)在划掉[v 1,v 3],[v 2,v 5]的图中找到一个回路{v 2,v 3,v 5,v 4,v 2}(2)去掉其中权数最大的边[v 3,v 5]。

第四轮:(1)在划掉[v 1,v 3],[v 2,v 5],[v 3,v 5]的图中找到一个回路{ v 4,v 5,v 6,v 4}(2)去掉其中权数最大的边[v 5,v 6](或可以去掉边[v 4,v 6],这两条边的权数都为最大)。

(2分)在余下的图中已找不到任何一个回路了,此时所得图就是最小树,这个最小树的所有v 1v5434v 6v 3v5V 27V 4V 1(v 1(v 1, 4)(v 1, 6)1, 13)5(v 1, 5)边的总权数为5+4+2+3+4=18,结果如下图所示,即按照下图设计网络路线,可使总的线路长度达到最短。

5、求下图的网络最大流,并写出最小割集。

(12分)t V 3 7 V 6解:找增广链:41=f t s V V V V →→→41 t s V V V V →→→5232=f (6分)t s V V V V →→→6373=f(V s ,4)t V 3 (7,7) V 6(V s ,8) (3分)最小割集为:V *={(V 3,V 6),(V 2,V 5),(V 1,V 4)} (1分)C *(V ,V )=14 (1分)且V *(f )=14 5、如下图,(1)求v 1到v 10的最大流及最大流量;(2)求最小割集和最小割量。

运筹学例题及答案

运筹学例题及答案

xB x2 x1 x5 x4
cj-
2 x1 0 1 0 0 0
5 x2 1 0 0 0 0
T
0 x3 0 1 1 -2 -2
0 x4 0 0 0 1 0
0 x5 0 0 1 0 0
0 x6 1 -2 -3 3 -1
即新解为
x (1 / 3 4 / 3 0 0 1 0 3 2
对偶理论
1. 已知线性规划问题:
m axz 2 x1 4 x2 x 3 x4 x1 3 x 2 x4 8 2 x1 x 2 6 s.t . x 2 x3 x4 6 x x x 9 2 3 1 x1 , x 2 , x3 , x4 0
无界解
3,某厂在今后四个月内需租用仓库堆放物资。已知各月份需
租用仓库面积见表,仓库租借费用随合同期不同而不同,期 限越长折扣越大,具体数字见表。租借合同每个月月初都可 办理,合同规定具体的租借面积和月数,因此该厂可根据需 要,在任何一个月月初办理合同,每次办理可签一份或多份, 总目标是总的租借费用最低,请建立数学模型并用软件给出 结果。
2。已知线性规划问题
m axz 3 x1 2 x2 x1 2 x2 6 2 x1 x 2 8 s .t . x1 x2 1 x 2 2 x1 , x2 0
及最终单纯形表
表1
cB 2 3 0 0
xB x2 x1 x5 x6
cj-
cj b 4/3 10/3 3 2/3
运 筹 帷 幄 之 中

作业及答案
胜 千 里 之 外
线性规划
1。用单纯形法解LP问题
m axz 6 x1 2 x 2 3 x 3 2 x1 x 2 2 x 3 2 s .t . x1 4 x 3 4 x ,x ,x 0 1 2 3

运筹学习题【精选文档】

运筹学习题【精选文档】

第二章思考题、主要概念及内容图解法、图解法的灵敏度分析1. 考虑下面的线性规划问题:max z=2x1+3x2;约束条件: x1+2x2≤6,5x1+3x2≤15,x1,x2≥0.(1)画出其可行域.(2) 当z=6时,画出等值线2x1+3x2=6.(3) 用图解法求出其最优解以及最优目标函数值.2. 用图解法求解下列线性规划问题,并指出哪个问题具有惟一最优解、无穷多最优解、无界解或无可行解.(1) min f=6x1+4x2;约束条件:2x1+x2≥1,3x1+4x2≥3,x1,x2≥0.(2)max z=4x1+8x2;约束条件:2x1+2x2≤10,-x1+x2≥8,x1,x2≥0.(3) max z=3x1—2x2;约束条件:x1+x2≤1,2x1+2x2≥4,x1,x2≥0.(4)max z=3x1+9x2;约束条件:x1+3x2≤22,—x1+x2≤4,x2≤6,2x1-5x2≤0,x1,x2≥03. 将下述线性规划问题化成标准形式:(1)max f=3x1+2x2;约束条件:9x1+2x2≤30,3x1+2x2≤13,2x1+2x2≤9,x1,x2≥0.(2)min f=4x1+6x2;约束条件:3x1—x2≥6,x1+2x2≤10,7x1—6x2=4,x1,x2≥0.(3)min f=—x1—2x2;约束条件:3x1+5x2≤70,-2x1-5x2=50,—3x1+2x2≥30,x1≤0,-∞≤x2≤∞.(提示:可以令x′1=-x1,这样可得x′1≥0.同样可以令x′2—x″2=x2,其中x′2,x″2≥0.可见当x′2≥x″2时,x2≥0;当x′2≤x″2时,x2≤0,即-∞≤x2≤∞.这样原线性规划问题可以化为含有决策变量x′1,x′2,x″2的线性规划问题,这里决策变量x′1,x′2,x″2≥0.)4。

考虑下面的线性规划问题:min f=11x1+8x2;约束条件:10x1+2x2≥20,3x1+3x2≥18,4x1+9x2≥36,x1,x2≥0.(1)用图解法求解.(2)写出此线性规划问题的标准形式.(3) 求出此线性规划问题的三个剩余变量的值.5. 考虑下面的线性规划问题:max f=2x1+3x2;约束条件:x1+x2≤10,2x1+x2≥4,x1+3x2≤24,2x1+x2≤16,x1,x2≥0.(1)用图解法求解.(2) 假定c2值不变,求出使其最优解不变的c1值的变化范围.(3) 假定c1值不变,求出使其最优解不变的c2值的变化范围.(4) 当c1值从2变为4,c2值不变时,求出新的最优解.(5) 当c1值不变,c2值从3变为1时,求出新的最优解.(6) 当c1值从2变为25,c2值从3变为25时,其最优解是否变化?为什么?6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 导论1.简述运筹学的定义。

运筹学利用计划方法和有关多学科的要求,把复杂功能关系表示成数学模型,其目的是通过定量分析为决策和揭露新问题提供数量根据。

2. 决策方法可以分为哪几类。

定性决策,定量决策,混合性决策。

3. 应用运筹学进行决策过程的步骤有哪些。

(1)观察待决策问题所处的环境;(2)分析和定义待决策的问题;(3)拟定模型;(4)选择输入资料;(5)提出解并验证它的合理性;(6)实施最优解。

实践能力考核选例根据本章学习的内容,结合实际例子,说明在应用运筹学进行决策过程中的六个步骤有哪些?(1)观察待决策问题所处的环境;(2)分析和定义待决策的问题;(3)拟定模型;(4)选择输入资料;(5)提出解并验证它的合理性;(6)实施最优解。

第二章 预测1.比较特尔斐法和专家小组法这两种定性预测法的特点。

特尔斐法的特点是:第一,专家发表意见是匿名的;第二,进行多次信息反馈;第三,由调研人员整理并归纳专家们的总结意见,将比较统一的意见和比较特殊的意见一起交给有关部门,以供他们决策。

专家小组法的优点是可以做到相互协商、相互补充;但当小组会议组织得不好时,也可能会使权威人士左右会场或多数人的意见湮没了少数人的创新见解。

2.简述指数平滑预测法的原理。

1()t t t t F F x F α+=+-,其中1t F +、t F 是1t +期、t 期的预测值,t x 是t 期的实际值,α是平滑系数。

3.简述一元线性回归模型预测的过程。

先根据x 、y 的历史数据,求出a 和b 的值,建立起回归模型,再运用模型计算出不同的x 所相对的不同的y 值。

实践能力考核选例应用简单滑动平均预测法,加权滑动平均预测法,指数平滑预测法,来预测中国2012年的居民消费指数(CPI )水平。

(资料可由历年中国统计年鉴获得)(1)滑动平均预测法:(1270.8+1191.8+1239.9+1265)/4=1241.875(2)加权滑动平均预测法:(1270.8*1+1191.8*2+1239.9*3+1265*4)/(1+2+3+4)=1243.41第三章决测1.试述不确定条件下各种决策的标准,并比较各种决策标准的特点。

最大最大决策标准,主要特点是实现方案选择中的乐观原则;最大最小决策标准,主要特点是对现实方案选择中采取的悲观原则;最小最大遗憾值决策标准,以遗憾值为基础,大中取小;现实主义决策标准,对于未来可能遇到的自然状态,采取比较现实的处理方法。

2.简述决策的概念和程序。

决策就是针对具有明确目标的决策问题,经过调查研究,根据实际与可能,拟订多个可行方案,然后运用统一的标准,选定最佳(或满意)方案的全过程。

决策的程序:(1)确定目标;(2)拟定多个可行方案;(3)预测可能发生的自然状态,计算不同方案在不同的自然状态下的收益值(或损失值),编制决策收益表(或损失表);(4)以决策收益表为根据,运用不同的决策标准进行决策分析,选择最优(或满意)方案。

3.简述风险条件下决策的标准。

风险情况下的决策所依据的标准主要是期望值标准。

期望值在概率论中是指随机变量的数学期望,就是不同方案在不同的自然状态下能得到的加权平均值。

在经营管理中由于经营水平不同,存在着盈亏问题,因此,期望值就有期望收益值和期望损失值两个目标,目标不同,决策标准也就不同。

实践能力考核选例根据亲身体验,举出自己经历过的一个实际决策案例,并分析此决策属于那种类型,结合本章决策方法进行科学地决策。

答:某城市繁华地段有一个食品厂,因经营不善长期亏损,该市政府领导拟将其改造成一个副食品批发市场,这样既可以解决企业破产后下岗职工的安置问题,又方便了附近居民。

为此进行了一系列前期准备,包括项目审批、征地拆迁、建筑规划设计等。

不曾想,外地一开发商已在离此地不远的地方率先投资兴建了一个综合市场,而综合市场中就有一个相当规模的副食品批发场区,足以满足附近居民和零售商的需求。

面对这种情况,市政府领导陷入了两难境地:如果继续进行副食品批发市场建设,必然亏损;如果就此停建,则前期投入将全部泡汤。

在这种情况下,该市政府盲目做出决定,将该食品厂厂房所在地建成一居民小区,由开发商进行开发,但对原食品厂职工没能作出有效的赔偿,使该厂职工陷入困境,该厂职工长期上访不能解决赔偿问题,对该市的稳定造成了隐患。

案例分析:该市领导解决问题时是出于好心,既要解决企业生产不景气的问题,又要为城市居民解决购物问题,对企业职工也有一个比较好的安排,但作出决策比较仓促,没能充分考虑清楚问题涉及的各种因素,在决策失误时又进一步决策失误,造成了非常被动的工作局面,也给企业职工造成了不可挽回的损失。

用领导科学来分析,该决策反映出以下几个问题:(1)此案例反映了领导决策中信息原则的重要性。

造成这种两难境地的主要原因是没有很好地坚持领导决策的信息优先原则。

信息是决策的基础,充分、及时、全面、有效的信息是科学决策的前提。

该区政府领导在决定副食晶批发市场项目之前,显然缺乏全面细致的市场调查,不了解在建的综合市场特别是其内部的副食品批发场区。

因此盲目决策,匆忙上马,陷入困境。

(2)此案例反映了追踪决策的重要性。

当原有决策方案实施后,主客观情况发生了重大变化,原有的决策目标无法实现时,要对原决策目标或方案进行根本性修订,这就是追踪决策。

该市领导在客观情况发生了重大变化时,没能认真分析,而是仓促作出新的决策,在追踪决策上存在失误。

(3)走出两难境地的方案,可以有不同的思路。

比如,一种是迎接挑战,继续兴建。

但要调查研究,对原决策方案进行修订和完善,使得所建批发市场在规模、设施、服务和管理等方面超过竞争对手,以期在市场竞争中获胜;另一种是及早决断,对原决策方案进行根本性修订,重新考察、确立和论证新的项目,实行转向经营。

该市领导在没有确立和论证新的项目的情况下,对该地进行房地产开发,带有很大的随意性。

(4)没能把人的问题放在首要地位。

领导者作出决策,首先要解决的问题归根到底是人的问题,而处理好人的问题是领导决策得以实现的关键。

如果仅从经济效益上考虑问题,而忽略了人的问题的解决,全然不顾人的思想工作,那么引起的社会问题和社会矛盾等可能会让政府付出更大的代价。

第四章 库存管理1.如何理解平均库存的概念分为平均库存量和平均库存额。

平均库存量等于批量大小的一半,平均库存额等于每个单元或每个台套的单位价格乘以平均库存量。

2.推导经济订货量(EOQ )的数学公式,及每次订货额最佳金额、最佳年订货次数等相关公式。

由订货费用=保管费用可得012i AR P N R C N μμ⋅=⋅⋅,即经济订货量N μ=每次订货最佳金额P N R μμ=⋅,即P μ=。

由A P Z μμ=⋅得最佳年订货次数Z μ=3.设有某军队部门,下一年度需要批通信设备3000套,经会计核算,每套设备进厂价为10万元/套,采购这种设备的订货费用为每次2000元,这种设备的年保管费用率为平均存货额的20%,求改通信设备的最佳订货量。

24.5(N μ=≈套)。

实践能力考核选例搜集企业的年订货量、保管费用率及订货费用等数据,为企业制定合理的订货方案;并调查供应商的折扣情况,进一步优化公司的订货方案。

某玩具厂进货布料单价十元,每年共计产品100000元,每次订货费用为250元,每个进厂价格为500元/套,单位库存维护费按库存物资价值的12.5%计算,试求公司经济订货量和全年最优订货次数?答:全年采购量为100000/500=200(套) 最佳订货批量为Nu=2∗100000∗(250/5002)∗12.5%=40(套)全年订货量100000/500*40=5(次)5*250=1250(元) 全年保管费500*40/2*12.5%=1250元所以全年的订货与库存金额为1250+1250=2500元第五章 线性规划1.线性规划的概念及模型结构是什么。

答:线性规划的概念:线性规划是一种合理利用资源,合理调配资源的应用数学方法。

模型结构:(1)变量,变量是指实际系统或决策问题中有待确定的未知因素,也指系统中的可控因素(2)目标函数,这是决策者对决策问题目标的数学描述,是目标函数分为极大值或极小值,要依据经济规律的客观要求,并结合决策问题的实际情况来确定模型的目标函数。

(3)约束条件,是指实现目标的限制因素。

(4)线性规划的变量应为正值。

2.简述单纯形法基本原理,并比较求最大值与最小值问题时单纯形法步骤上的异同点。

单纯形法是一种解线性规划多变量模型的常用解法,是通过一种数学的迭代过程,逐步求得最优解的方法。

最大值问题单纯形法步骤:(1)以原点为基础可行解,建立初始方案,列出单纯形表。

①引入辅助变量(松弛变量),把模型转换成标准形式;②列出初始单纯形表。

(2)进行多次迭代,直到j j C Z -都不大于零。

①基变量、非基变量的转变,用最高的正值选择列;②进行迭代。

最小值问题单纯形法步骤:(1)以原点为基础可行解,建立初始方案,列出单纯形表。

①引入辅助变量(剩余变量),把模型转换成标准形式;②列出初始单纯形表。

(2)进行多次迭代,直到j j C Z -都不小于零。

①基变量、非基变量的转变,用最高的负值选择列;②进行迭代。

3.设有甲、乙、丙三种煤,每种煤的含硫量、能产生的热量以及每吨煤的价格如下: 现要将三种煤混合后炼焦,每公斤混合煤产生的热量少于21千卡,含硫量不得超过0.00025,如何炼制才能使每吨煤的成本最低。

设三种煤的混合比例为1X 、2X 、3X ,则最低成本123min 201618.5S X X X =++,约束条件为1231X X X ++=,1230.00010.00050.00030.00025X X X ++≤,12320242221X X X ++<,其中1X 、2X 、30X ≥。

由1231X X X ++=得3121X X X =--,代入123min 201618.5S X X X =++,1230.00010.00050.00030.00025X X X ++≤,12320242221X X X ++<得12min 18.5 1.5 2.5S X X =+-,120.25X X -≥,120.5X X ->,用图解法得10.74X =, 20.24X =,30.02X =,min 19S ≈(元/吨)。

实践能力考核选例在日常生活中,大量经济、管理问题涉及到利用线性规划理论进行优化,例如库存与生产安排问题、产品计划问题、配料问题、投资问题等。

本章实践题目要求学生通过了解企业中涉及的线性规划问题,利用问题背景得到线性规划模型,结合本章理论进行分析求解,求出问题的最优方案。

答:某公司生产甲、乙两种产品(吨),这两种产品均需要使用两种关键原材料进行加工,资源限量与可获利润数据如题1表。

相关文档
最新文档