简单随机抽样教案
《简单随机抽样》教案
![《简单随机抽样》教案](https://img.taocdn.com/s3/m/5d71cb2c195f312b3069a562.png)
简单随机抽样教案教学目标一、知识与技能1.通过生活中的实例,体会不同的抽样方法会得到不同的调查结果;2.了解简单随机抽样的意义;二、过程与方法1.通过实验与探究的方法,让学生进一步感受在随机抽样中,结果的随机性和只有样本容量足够便可推断总体;2.通过探究进一步了解、掌握简单随机抽样的特点;三、情感态度和价值观1.使学生认识到数学和日常生活息息相关,从而增进学习数学的乐趣,在活动中培养学生的合作竞争意识和解决问题的能力;2.通过分组讨论学习,体会合作学习的兴趣;教学重点简单随机抽样的意义;教学难点获取数据时,会判断调查方式是否适宜;教学方法引导发现法、启发猜测、讲练结合法课前准备教师准备课件、多媒体;学生准备三角板,练习本;课时安排1课时教学过程一、导入新课为了了解本校学生暑假期间参加体育活动的情况,学校准备抽取一局部学生进展调查,你认为按下面的调查方法取得的结果能反映全校学生的一般情况吗?如果不能反映,应当如何改良调查方法二、新课学习方法1:调查学校田径队的30名同学选取的样本是田径队的同学,他们暑假中体育活动多方法2:调查每个班的男同学只调查男同学,没调查女同学方法3:从每班抽取1名学生进展调查选取的样本容量太小,不能客观的反映全校学生方法4:选取每个班级中的一半学生进展调查选取的容量太大,需要花费较多的时间和人力对于上面所提出的问题,我们只要得到一局部样本数据就可以对于总体情况进展估计。
如果得到的样本能够客观地反映问题,那么对总体的估计就会准确一些,否那么估计就会差一些,为此,我们总是希望寻找一个抽取样本的好方法。
简单随机抽样的含义:为了获取能够客观反映问题的结果,通常按照总体中每个个体都有一样的被抽取时机的原那么抽取样本,这种抽取样本的方法叫做简单随机抽样。
注:随机抽样并不是随意或随便抽取,因为随意或随便抽取都会带有主观或客观的影响因素。
在学校门口随机询问,或者利用学号,抽取一定数量的学生进展调查。
简单随机抽样教案
![简单随机抽样教案](https://img.taocdn.com/s3/m/667e58dee109581b6bd97f19227916888486b93f.png)
简单随机抽样教案一、教学目标1.了解简单随机抽样的定义和特点;2.掌握简单随机抽样的抽样方法;3.理解简单随机抽样的应用场景。
二、教学内容1. 简单随机抽样的定义和特点简单随机抽样是指从总体中随机地抽取n个样本,使得每个样本被抽中的概率相等。
简单随机抽样的特点有:•抽样结果具有代表性;•抽样过程简单易行;•抽样误差可控制。
2. 简单随机抽样的抽样方法简单随机抽样的抽样方法有以下几种:(1)纸条抽签法将总体中每个个体的编号写在纸条上,放入一个容器中,然后从中随机抽取n个纸条,对应的个体即为样本。
(2)随机数表法利用随机数表,从总体中随机抽取n个个体作为样本。
(3)随机数发生器法利用计算机随机数发生器,从总体中随机抽取n个个体作为样本。
3. 简单随机抽样的应用场景简单随机抽样适用于总体中个体之间没有明显差异的情况,例如:•人口普查;•质量检验;•市场调查等。
三、教学过程1. 简单随机抽样的定义和特点教师通过讲解,让学生了解简单随机抽样的定义和特点,并与其他抽样方法进行比较,让学生明确简单随机抽样的优势。
2. 简单随机抽样的抽样方法教师通过实例演示,让学生掌握纸条抽签法、随机数表法和随机数发生器法的抽样方法,并让学生分析各种方法的优缺点。
3. 简单随机抽样的应用场景教师通过实例演示,让学生了解简单随机抽样的应用场景,并让学生思考在实际应用中如何选择合适的抽样方法。
四、教学评价教师可以通过以下方式对学生进行评价:•课堂练习:让学生在课堂上完成简单随机抽样的练习题,检查学生对知识点的掌握情况;•作业评估:布置简单随机抽样的作业,检查学生对知识点的理解和应用能力;•实践评价:让学生在实际应用中进行简单随机抽样,并对抽样结果进行分析和评价。
五、教学反思简单随机抽样是统计学中最基本的抽样方法,对于学生来说,掌握简单随机抽样的定义、特点和抽样方法非常重要。
在教学过程中,教师应该注重实例演示和练习,让学生通过实践掌握知识点,提高学生的应用能力。
《简单随机抽样》示范课教学设计【高中数学教案】
![《简单随机抽样》示范课教学设计【高中数学教案】](https://img.taocdn.com/s3/m/621cee3d53ea551810a6f524ccbff121dd36c567.png)
《简单随机抽样》教学设计1.以探究具体问题为导向,引入简单随机抽样的概念,引导学生从现实生活或其他学科中提出具有一定价值的统计问题;在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
2.正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
3.通过对现实生活中实际问题进行简单随机抽样,感知应用数学知识解决实际问题的方法。
1.正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤。
2.能够从现实生活或其他学科中提出具有一定价值的统计问题;3.在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
4.通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
【教学重点】简单随机抽样的概念,抽签法及随机数法的操作步骤。
【教学难点】对样本随机性的理解。
抽签纸,图表等。
(一)知识回顾统计学:研究客观事物的数量特征和数量关系,它是关于数据的搜集、整理、归纳和分析方法的科学。
统计的基本思想:用样本估计总体,即通常不直接去研究总体,而是通过从总体中抽取一个样本,根据样本的情况去估计总体的相应情况。
数理统计所要解决的问题是如何根据样本来推断总体?总体、个体、样本、样本容量的概念:总体:所要考察对象的全体。
个体:总体中的每一个考察对象。
样本:从总体中抽取的一部分个体叫做这个总体的一个样本。
样本容量:样本中个体的数目。
(二)新课导入在1936年美国总统选举前,一份颇有名气的杂志的工作人员做了一次民意测验,调查兰顿和罗斯福中谁将当选下一届总统。
为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(在1936年电话和汽车只有少数富人拥有),通过分析收回的调查表,显示兰顿非常受欢迎。
于是此杂志预测兰顿将在选举中获胜。
实际选举结果正好相反,最后罗斯福在选举中获胜。
其数据如下:①预测结果出错的原因是什么?抽取的样本不具有代表性,调查结果只能代表富人的意见。
人教版七年级下册集体备课教案10.1简单随机抽样调查
![人教版七年级下册集体备课教案10.1简单随机抽样调查](https://img.taocdn.com/s3/m/ed2b57ab9f3143323968011ca300a6c30c22f1e6.png)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了简单随机抽样调查的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对简单随机抽样调查的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在实践活动和小组讨论环节,学生们表现出了很高的积极性,能够围绕主题展开讨论,并提出自己的观点。但我也发现,部分学生在分析问题时,还是难以把握问题的关键。因此,我计划在接下来的教学中,加强学生问题分析能力的培养,引导他们运用所学知识解决实际问题。
此外,在小组讨论中,我发现有些学生发言不够积极,可能是由于性格原因或是对讨论主题不感兴趣。为了提高这部分学生的参与度,我将在以后的课堂中尝试采用更多元化的教学手段,激发他们的学习兴趣,鼓励他们积极参与课堂讨论。
人教版七年级下册集体备课教案10.1简单随机抽样调查
一、教学内容
人教版七年级下册第十章第一节“简单随机抽样调查”:本节课主要内容包括:
1.随机抽样的概念与作用;
2.简单随机抽样的方法:抽签法和随机数表法;
3.随机抽样调查的步骤:确定调查总体、编制抽样框、实施抽样、数据收集与分析;
4.简单随机抽样调查在实际调查中的应用实例。
二、核心素养目标
1.数据分析:培养学生通过简单随机抽样调查,从实际数据中提取信息,解决实际问题的能力;
2.逻辑推理:引导学生运用逻辑思维分析随机抽样调查的合理性、有效性,提高其推理能力;
3.数学建模:培养学生运用数学知识构建简单随机抽样调查模型,解决实际调查问题的能力;
4.数学抽象:帮助学生理解随机抽样调查的基本概念,提高对抽象数学概念的理解和运用能力;
随机抽样教案范文
![随机抽样教案范文](https://img.taocdn.com/s3/m/52bff57a1fd9ad51f01dc281e53a580216fc50f4.png)
随机抽样教案范文讲授新课前,做一份完美的教案,能够更大程度的调动学生在上课时的积极性.接下来是小编为大家整理的随机抽样教案范文,希望大家喜欢!随机抽样教案范文一一、内容和内容解析1.内容本节课主要内容是让学生了解在客观世界中要认识客观现象的第一步就是通过观察或试验取得观测资料,然后通过分析这些资料来认识此现象.如何取得有代表性的观测资料并能够正确的加以分析,是正确的认识未知现象的基础,也是统计所研究的基本问题.2.内容解析本节课是高中阶段学习统计学的第一节课,统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据.学生在九年义务阶段已经学习了收集、整理、描述和分析数据等处理数据的基本方法.在高中学习统计的过程中还将逐步让学生体会确定性思维与统计思维的差异,注意到统计结果的随机性特征,统计推断是有可能错的,这是由统计本身的性质所决定的.统计有两种.一种是把所有个体的信息都收集起来,然后进行描述,这种统计方法称为描述性统计,例如我国进行的人口普查.但是在很多情况下我们无法采用描述性统计对所有的个体进行调查,通常是在总体中抽取一定的样本为代表,从样本的信息来推断总体的特征,这称为推断性统计.例如有的产品数量非常的大或者有的产品的质量检查是破坏性的.统计和概率的基础知识已经成为一个未来公民的必备常识.抽样调查是我们收集数据的一种重要途径,是一种重要的、科学的非全面调查方法.它根据调查的目的和任务要求,按照随机原则,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,用所得到的调查标志的数据来推断总体.其中蕴涵了重要的统计思想样本估计总体.而样本代表性的好坏直接影响统计结论的准确性,所以抽样过程中,考虑的最主要原则为:保证样本能够很好地代表总体.而随机抽样的出发点是使每个个体都有相同的机会被抽中,这是基于对样本数据代表性的考虑.本节课重点:能从现实生活或其他学科中提出具有一定价值的统计问题,理解随机抽样的必要性与重要性.二、目标和目标解析1.目标(1)通过对具体的案例分析,逐步学会从现实生活中提出具有一定价值的统计问题,(2)结合具体的实际问题情境,理解随机抽样的必要性和重要性;(3)以问题链的形式深刻理解样本的代表性.2.目标解析本章章头图列举了我国水资源缺乏问题、土地沙漠化问题等情境,提出了学习统计的意义.同时通过具体的实例,使学生能够尝试从实际问题中发现统计问题,提出统计问题.让学生养成从现实生活或其他学科中发现问题、提出问题的习惯,培养学生发现问题与提出问题的能力与意识.对某个问题的调查最简单的方法就是普查,但是这种方法的局限性很大,出于费用和时间的考虑,有时一个精心设计的抽样方案,其实施效果甚至可以胜过普查,在这个过程中让学生逐步体会到随机抽样的必要性和重要性.抽样调查,就是通过从总体中抽取一部分个体进行调查,借以获得对整体的了解.为了使由样本到总体的推断有效,样本必须是总体的代表,否则就可能出现方便样本.由此在对实例的分析过程中探讨获取能够代表总体的样本的方法,得到随机样本的概念,逐步理解样本的代表性与统计推断结论可靠性之间的关系.三、教学问题诊断分析学生在九年义务教育阶段已有对统计活动的认识,并学习了统计图表、收集数据的方法,但对于如何抽样更能使样本代表总体的意识还不强;在以前的学习中,学生的学习内容以确定性数学学习为主;学生对全面调查,即普查有所了解,它在经验上更接近确定性数学,而随机抽样学习则要求学生通过对具体问题的解决,能体会到统计中的重要思想样本估计总体以及统计结果的不确定性.学生已有知识经验与本节要达成的教学目标之间还有很大的差距.主要的困难有:对样本估计总体的思想、对统计结果的不确定性产生怀疑,对统计的科学性有所质疑;对抽样应该具有随机性,每个样本的抽取又都落实在某个人的具体操作上不理解,因此教学中要通过具体实例的研究给学生释疑.在教学过程中,可以鼓励学生从自己的生活中提出与典型案例类似的统计问题,如每天完成家庭作业所需的时间,每天的体育锻炼时间,学生的近视率,一批电灯泡的寿命是否符合要求等等.在学生提出这些问题后,要引导学生考虑问题中的总体是什么,要观测的变量是什么,如何获取样本,通过这样一个教学过程,更能激起学生的学习兴趣,能学有所用,拉近知识与实践的距离,培养学生从现实生活或其他学科中提出具有一定价值的统计问题的能力.在这个过程中提升学生对统计抽样概念的理解,初步培养学生运用统计思想表述、思考和理解现实世界中的问题能力,这样教学效果可能会更佳.根据这一分析,确定本课时的教学难点是:如何使学生真正理解样本的抽取是随机的,随机抽取的样本将能够代表总体.四、教学支持条件分析准备一些随机抽样成功或失败的事例,利用实物投影或放映的多媒体设备辅助教学.五、教学过程设计(一)感悟数据、引入课题问题1:请同学们看章头图中的有关沙漠化和缺水量的数据,你有什么感受?师生活动:让学生充分思考和探讨,并逐步引导学生产生质疑:这些数据是怎么来的?设计意图:通过一些数据让学生充分感受我们生活在一个数字化时代,要学会与数据打交道,养成对数据产生的背景进行思考的习惯.问题2:我发现我们班级有很多的同学都是戴眼镜的,谁能告诉我我们班的近视率?普查:为了一定的目的而对考察对象进行的全面调查称为普查.总体:所要考察对象的全体称为总体(population)个体:组成总体的每一个考察对象称为个体(individual)普查是我们进行调查得到全部信息的一种方式,比如我国10年一次的人口普查等.设计意图:通过与学生比较贴近的案例入手,让学生体会到统计是从日常生活中产生的.(二)操作实践、展开课题问题3:如果我想了解榆次二中所有高一学生的近视率,你打算怎么做呢?抽样调查:从总体中抽取部分个体进行调查,这种调查称为抽样调查(sampling investigation).样本:从总体中抽取的一部分个体叫做总体的一个样本(sample).师生活动:以四人小组为单位进行讨论,每个小组派一个代表汇报方案.设计意图:从这个问题中引出抽样调查和样本的概念,使学生对于如何产生样本进行一定的思考,同时也使学生认识到样本选择的好坏对于用样本估计总体的精确度是有所不同的.列举:一个著名的案例在1936年美国总统选举前,一份颇有名气的杂志(Literary Digest)的工作人员做了一次民意测验.调查兰顿(ndon)(当时任堪萨斯州州长)和罗斯福(F.D.Roosevelt)(当时的总统)中谁将当选下一届总统.为了了解公众意向,调查者通过电话簿和车量登记簿上的名单给一大批人发了调查表(注意在1936年电话和汽车只有少数富人拥有).通过分析收回的调查表,显示兰顿非常受欢迎,于是杂志预测兰顿将在选举中获胜.实际选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:候选人预测结果%选举结果%Roosevelt4362Landon5738随机抽样教案范文二一、教材背景与内容分析本节内容是新课标实验教材(人教版A版)必修③第二章统计的第一课时。
《简单随机抽样》教案 (公开课获奖)教案 2022青岛版
![《简单随机抽样》教案 (公开课获奖)教案 2022青岛版](https://img.taocdn.com/s3/m/44d32007856a561253d36fe7.png)
4.2 简单随机抽样学习目标:1、了解简单随机抽样的概念2、知道简单随机抽样的方法3、知道简单随机抽样经常使用的地方。
4、学习重点:理解和把握简单随机抽样的概念5、学习难点:理解简单随机抽样的方法,并能尝试性的进行简单的操作。
学习过程一创设情境,引入新课交流与发现为了了解本校学生暑期参加体育活动的情况,学校准备抽取一部分学生进行问卷调查,现有四个发放调查问卷的方案,你认为按下面的调查方法取得的结果能放映全校学生的一般情况吗?如果不能,应当如何改进调查方法?方案一:发给学校田径队的30名同学方案二:调查每个班的男同学方案三:从每个班随机抽取1名同学方案四:从每个班抽取一半学生进行调查二合作交流,探索新知1.简单随机抽样的含义为了获取能够客观反映问题的结果,通常按照总体内的每个个体被抽到的机会都相等的原则抽取样本, 则这种抽样方法叫做简单随机抽样.注:随机抽样并不是随意或随便抽取,因为随意或随便抽取都会带有主观或客观的影响因素.2.讨论P/88实验与探究,思考:根据你的理解,简单随机抽样有哪些主要特点?(1)总体的个体数有限;(2)样本的抽取是逐个进行的,每次只抽取一个个体;(3)抽取的样本不放回,样本中无重复个体;(4)每个个体被抽到的机会都相等,抽样具有公平性.三.例题讲解例1:李大伯为了估计一袋大豆种子中大豆的粒数,先从袋中取出50粒,做上记号,然后放回袋中,将豆粒搅匀,再从袋中取出100粒,,从这100粒中,找出带记号的大豆,如果带记号的大豆有两粒,便可以估计出袋中所有大豆的粒数,你知道他是怎样估计的吗?四实际应用1、某校的黑板报上刊登了一篇题为《大部分学生不吃早餐》的报道,文章说。
“通过对课间学校商品部买小食品的20名同学的调查发现16人是因为没有吃早餐而去买零食,由此判断,我校80%的同学在家不吃早餐”2、在某次篮球赛中,解说员介绍了参加美国职业篮球队的3名中国籍队员的身高,有位观众把这3个人的平均身高与美国人的平均身高进行比较,得出一个结论:“中国人的平均身高比美国人高”。
《简单随机抽样》教案
![《简单随机抽样》教案](https://img.taocdn.com/s3/m/75eb3359551810a6f424869d.png)
《简单随机抽样》教案教学目标一、知识与技能1•通过生活中的实例,体会不同的抽样方法会得到不同的调查结果;2•了解简单随机抽样的意义;二、过程与方法1•通过实验与探究的方法,让学生进一步感受在随机抽样中,结果的随机性和只有样本容量足够便可推断总体;2•通过探究进一步了解、掌握简单随机抽样的特点;三、情感态度和价值观1•使学生认识到数学和日常生活息息相关,从而增进学习数学的乐趣,在活动中培养学生的合作竞争意识和解决问题的能力;2•通过分组讨论学习,体会合作学习的兴趣;教学重点简单随机抽样的意义;教学难点获取数据时,会判断调查方式是否合适;教学方法引导发现法、启发猜想、讲练结合法课前准备教师准备课件、多媒体;学生准备三角板,练习本;课时安排1课时教学过程一、导入新课为了了解本校学生暑假期间参加体育活动的情况,学校准备抽取一部分学生进行调查,你认为按下面的调查方法取得的结果能反映全校学生的一般情况吗?如果不能反映,应当如何改进调查方法?二、新课学习方法1:调查学校田径队的30名同学选取的样本是田径队的同学,他们暑假中体育活动多方法2:调查每个班的男同学只调查男同学,没调查女同学方法3:从每班抽取1名学生进行调查选取的样本容量太小,不能客观的反映全校学生方法4:选取每个班级中的一半学生进行调查选取的容量太大,需要花费较多的时间和人力对于上面所提出的问题,我们只要得到一部分样本数据就可以对于总体情况进行估计。
如果得到的样本能够客观地反映问题,那么对总体的估计就会准确一些,否则估计就会差一些,为此,我们总是希望寻找一个抽取样本的好方法。
简单随机抽样的含义:为了获取能够客观反映问题的结果,通常按照总体中每个个体都有相同的被抽取机会的原则抽取样本,这种抽取样本的方法叫做简单随机抽样。
注:随机抽样并不是随意或随便抽取,因为随意或随便抽取都会带有主观或客观的影响因素。
在学校门口随机询问,或者利用学号,抽取一定数量的学生进行调查。
2.1.1简单随机抽样(教案)
![2.1.1简单随机抽样(教案)](https://img.taocdn.com/s3/m/e6e7905ad5bbfd0a795673bf.png)
2.1.1简单随机抽样(教案)【教学目标】: 1.正确理解随机抽样的概念,会描述抽签法、随机数表法的一般步骤.2.能够根据样本的具体情况选择适当的方法进行抽样.【教学重难点】:教学重点:正确理解简单随机抽样的概念,会描述抽签法及随机数法的步骤,能灵活应用相关知识从总体中抽取样本.教学难点:简单随机抽样的概念,抽签法及随机数法的步骤.【教学过程】:情境导入:1. 总体、个体、样本、样本容量的定义总体 :在统计中所有考察对象的全体叫总体。
个体:每一个考察的对象叫 个体。
样本:从总体中抽取的一部分个体叫总体的一个样本。
样本容量:样本中个体的数目叫样本的容量。
如:从50000多名考生中随机抽取500名考生的成绩,用他们的平均成绩估计所有考生的平均成绩。
总体:50000多名考生的成绩的全体。
个体:每名考生的成绩。
样本:抽取的500名考生的成绩是总体的一个样本。
样本容量:5002.课本55P 阅读你认为在该故事中预测结果出错的原因是什么?(答:用于推断的样本来自少数富人,只能代表富人的观点,不能代表全体选民观点。
)3.假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本。
(为什么?)那么,应当怎样获取样本呢?新知探究:一、简单随机抽样的概念:一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
【说明】简单随机抽样必须具备下列特点:(1)简单随机抽样要求被抽取的样本的总体个数N 是有限的。
(2)简单随机样本数n 小于等于样本总体的个数N 。
(3)简单随机样本是从总体中逐个抽取的。
(4)简单随机抽样是一种不放回的抽样。
(5)简单随机抽样的每个个体入样的可能性均为n/N 。
二、抽签法和随机数法:1、抽签法一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
简单随机抽样--优质获奖精品教案 (19)
![简单随机抽样--优质获奖精品教案 (19)](https://img.taocdn.com/s3/m/7162335ce418964bcf84b9d528ea81c758f52ec0.png)
2.1 随机抽样【教学目标】1.理解随机抽样的必要性和重要性.2.会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样方法.【教法指导】本节重点是能从现实生活或其他学中提出具有一定价值的统计问题及学会简单随机抽样方法,了解分层和系统抽样方法;难点是对样本随机性的理解;本节知识的主要学习方法是动手与观察,思考与交流,归纳与总结.加强新旧知识之间的联系,培养自己分析问题、解决问题的能力,从而获得学习数学的方法.【教学过程】课本导读一、总体、个体、样本在统计里,把所考察对象的某一数值指标的全体构成的集合看成总体,其中构成总体的每一个考察的对象为个体.从总体中随机抽取若干个个体构成的集合叫做总体的一个样本,样本中包含的个体数目叫做样本容量.二、随机抽样抽样时保持每一个个体都可能被抽到,每一个个体被抽到的机会是均等的,满足这样条件的抽样是随机抽样.三、简单随机抽样1.定义设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.最常用的简单随机抽样的方法抽签法和随机数法.四、系统抽样1.定义当总体中的个体数目较多时,可将总体分成均衡的几个部分,然后按照事先定出的规则,从每一部分抽取1个个体得到所需要的样本,这种抽样方法叫做系统抽样.五、分层抽样1.定义在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法就叫做分层抽样.2.分层抽样的操作步骤第一步,确定样本容量与总体个数的比;第二步,计算出各层需抽取的个体数;第三步,采用简单随机抽样或系统抽样在各层中抽取个体;第四步,将各层中抽取的个体合在一起,就是所要抽取的样本.六、三种抽样方法的区别与联系适用范围总体中个体数较少总体中个体数较多总体由差异明显的几部分组成疑难辨析1.简单随机抽样(1)在简单随机抽样中,某一个个体被抽到的可能性与第几次抽取有关,第一次抽到的可能性最大.( )[ 学 ](2)从20个零件中用简单随机抽样一次性抽取3个进行质量检测.( )(3)从100件玩具随机拿出一件,放回后再拿出一件,连续拿5次,是简单随机抽样.( )2.系统抽样(1)当总体中个体数较多时,应采取系统抽样法.( )(2)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.( )3.分层抽样(1)分层抽样中,每个个体被抽到的可能性与层数及分层有关.( )(2)某地区教育部门要调查中小学生的近视情况及形成原因,要抽取1 的学生进行调查,可用分层抽样进行.( )[ 学 ]4.三种抽样方法的比较(1)某班有45人,现抽取5人参加一项社会活动,则可以用简单随机抽样法抽取.( )(2)某校即将召开学生代表大会,现要从高一、高二、高三共抽取60名代表,则可用分层抽样方法抽取.( )(3)三种抽样方法,不论是哪一种,总体中每一个个体被抽到的机会均等.( )(3)根据三种抽样方法的规则可知,每个个体被抽到的机会均等.题型一简单随机抽样例1第十二届全运会将于2013年8月31日至9月12日在辽宁省沈阳市举行,沈阳某大学为了支持大运会,从报名的30名大三学生中选8人组成志愿小组,请用抽签法和随机数表法设计抽样方案.探究一通过本例题让学生了解利用简单随机抽样抽取样本时条件及步骤.1.条件(1)总体的个数较少,利用随机数表法或抽签法可容易获得样本;2.步骤(1)随机数表法的操作步骤 编号、选起始数、读数、获取样本;(2)抽签法的操作步骤 编号、制签、搅匀、抽取.学思考题一1、下列问题中,最适合用简单随机抽样方法抽样的是 ( )A .某电影院有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈B .从10台冰箱中抽出3台进行质量检查C .某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为了解在编人员对学校机构改革的意见,要从中抽取一个容量为20的样本D .某乡农田有 山地800公顷,丘陵1 200公顷,平地2 400公顷,洼地400公顷,现抽取农田48公顷估计全乡农田平均每公顷产量 答案 B解析 A 的总体容量较大,用简单随机抽样法比较麻烦;B 的总体容量较少,用简单随机抽样法比较方便;C 由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法;D 总体容量大,且各类田地的差别很大,也不宜采用简单随机抽样法.2.利用抽签法,从n 个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为( )A.13B.514C.14D.10273.用随机数表进行抽样有以下几个步骤①将总体中的个体编号;②获取样本号码;③选定开始的数字,这些步骤的先后顺序应为( )A.①②③ B.①③②C.③②① D.③①②4.学校举办元旦晚会,需要从每班选10名男生,8名女生参加合唱节目,某班有男生32名,女生28名,试用抽签法确定该班参加合唱的同5.现有120台机器,请用随机数表法抽取10台机器,写出抽样过程.【分析】已知N=120,n=10,用随机数表法抽样时编号000,001,002,…,119,抽取10个编号(都是三位数),对应的机器组成样本.【解析】第一步,先将120台机器编号,可以编为000,001,002, (119)第二步,在随机数表中任选一个数作为开始,任选一个方向作为读数方向,例如选出第9行第7列的数3,向右读;第三步,从选定的数3开始向右读,每次读取三位,凡不在000~119中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080, 003,105,107,083,092;第四步,以上这10个号码074,100,094,052,080,003,105,107,083,092所对应的10台机器就是要抽取的对象.题型二 系统抽样例2、 1、某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得间隔数 =80050=16,即每16人抽取一人.在1~16中随机抽取一个数,如果抽到的是7,则从33~48这16个数中应取的数是________.【解析】 (1)因为采用系统抽样方法,每16人抽取一人,1~16中随机抽取一个数抽到的是7,所以在第 组抽到的是7+16( -1),所以从33~48这16个数中应取的数是7+16×2=39.【答案】392、某装订厂平均每小时大约装订图书360册,要求检验员每小时抽取40册图书,检验其质量状况,请你设计一个抽样方案.3.某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,请用系统抽样的方法进行抽取,并写出过程.【分析】 按1∶5的比例确定样本容量,再按系统抽样的步骤进行,关键是确定第1段的编号.【解析】 按照1∶5的比例抽取样本,则样本容量为15×295=59.抽样步骤是(1)编号按现有的号码;(2)确定分段间隔=5,把295名同学分成59组,每组5人,第1组是编号为1~5的5名学生,第2组是编号为6~10的5名学生,依次下去,第59组是编号为291~295的5名学生;(3)采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为l(1≤l≤5);(4)那么抽取的学生编号为l+5(=0,1,2,...,58),得到59个个体作为样本,如当l=3时的样本编号为3,8,13, (288)293.[ 学 ]探究二通过本例题让学生理解系统抽样的特点及步骤.(1)通过例2的(1)(2)让学生理解系统抽样的特点是等距离抽样,若第一组抽取号码a,然后以d为间距依次等距离抽取后面的编号,抽出的所有号码为a+d ( =0,1,2,…,n-1),其中n是组数.(2)通过例2的(3)让学生理解系统抽样的步骤第一步,将总体的N个个体编号.第二步,确定分段间隔,对编号进行分段.第三步,在第1段用简单随机抽样确定起始个体编号l.第四步,按照一定的规则抽取样本.思考题二(1)一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10组,组号依次为1,2,3,…,10,现用系统抽样抽取一个容量为10的样本,并规定如果在第一组随机抽取的号码为m,那么在第(=2,3,…,10)组中抽取的号码的个位数字与m +的个位数字相同.若m=6,则该样本的全部号码是__________________.(2)将某班的60名学生编号 01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是________.题型三、分层抽样例3、(1)(2013·湖南卷)某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A.抽签法 B.随机数法C.系统抽样法 D.分层抽样法(2)[2012·江苏卷] 某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.(3)[2012·天津卷] 某地区有小学150所,中学75所,大学25所,现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.(4)某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为( )A.15,5,25 B.15,15,15C.10,5,30 D.15,10,20(5)某城市有210家百货商店,其中大型商店20家、中型商店40家、小型商店150家,为了掌握各商店的营业情况,计划抽取一个容量为21的样本,按照分层抽样方法抽取时,各种百货商店分别要抽取多少家?并写出抽样过程.探究三通过本例题让学生理解分成抽样的特点及步骤,各部分之间有明显的差异是分层抽样的依据,至于各层内用什么方法抽样是灵活的.分层抽样中,个体被抽中的机会均等,体现了抽样的公平性.(1)通过例3(1)让学生了解什么情况采用分层抽样;(2)通过例3(2)(3)(4)让学生理解分层抽样的抽样比如何计算;(3)通过例3(5)让学生理解分层抽样的步骤.思考题三、(1)[2012·南阳一模] 某地为了调查职业满意度,决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中抽取若干人组成调查小组,相关数据见下表 相关人员数[ ] 抽取人数 公务员35 b 教师a 3 自由职业者28 4则调查小组的总人数为( )A .84B .12C .81D .14(2)[2012·江西重点中学一模] 在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本 ①采用随机抽样法,将零件编号为00,01,02,…,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则( )A .不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是15B .①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此C .①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同(3)[2012·吉林一模] 从总数为N的一群学生中抽取一个容量为100的样本,若每个学生被抽取的概率为14,则N的值为( )A.25 B.75 C.400 D.5004.某公司有三个部门,第一个部门800个员工,第二个部门604个员工,第三个部门500个员工,现在用按部门分层抽样的方法抽取一个容量为380名员工的样本,求应该剔除几个人,每个部门应该抽取多少名员工?随堂测评1.现要完成下列3项抽样调查①从10盒酸奶中抽取3盒进行食品卫生检查.②技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取听众意见,需要请32位听众进行座谈.③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意义,拟抽取一个容量为20的样本.较为合理的抽样方法是( )A.①简单随机抽样,②系统抽样,③分层抽样B.①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样,③简单随机抽样[2012·漳州三校二联] 某学校为了调查高二年级的80名文学生和高三年级的120名文学生完成课后作业所需时间,采取了两种抽样调查的方式第一种由学生会的同学随机抽取高二年级8名和高三年级12名同学进行调查;第二种由教务处对该年级的文学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查,则这两种抽样的方法依次为( )A.分层抽样,简单随机抽样B.抽签法,随机数表法C.分层抽样,系统抽样D.简单随机抽样,系统抽样3.[2013·南通中学联考] 某地有居民2万户,从中随机抽取200户,调查是否已安装安全救助报警系统,调查结果如下表所示[ ] 外户原住户已安装60 35未安装45 604.某商场想通过检查发票及销售记录的 2 快速估计每月的销售总额.采取如下方法从某本发票的存根中随机抽一张,如15号,然后按序往后将65号,115号,165号,…,发票上的销售额组成一个调查样本.这种抽取样本的方法是( )A.抽签法 B.随机数表法C.系统抽样法 D.其他方式的抽样5.为了考察某校的教学水平,将抽查这个学校高三年级部分学生的本学年考试成绩进行考察.为了全面地反映实际情况,采取以下三种方式进行(已知该校高三年级共有14个教学班,并且每个班内的学生都已经按随机方式编好了学号,假定该校每班人数都相同).①从全年级14个班中任意抽取一个班,再从该班中任意抽取14人,考察他们的学习成绩;②每个班都抽取1人,共计14人,考察14个学生的成绩;③把学校高三年级的学生按成绩分成优秀、良好、普通三个级别,从中抽取100名学生进行考察(已知若按成绩分,该校高三学生中优秀学生有105名,良好学生有420名,普通学生有175名).根据上面的叙述,试回答下列问题(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是什么?(2)上面三种抽取方式各自采用何种抽取样本的方法?(3)试分别写出上面三种抽取方式各自抽取样本的步骤.。
示范教案( 简单随机抽样)
![示范教案( 简单随机抽样)](https://img.taocdn.com/s3/m/d760796db94ae45c3b3567ec102de2bd9605de2b.png)
诚西郊市崇武区沿街学校第二章统计本章教材分析现代社会是信息化的社会,数字信息随处可见,因此专门研究如何搜集、整理、分析数据的科学——统计学就备受重视.统计学是研究如何搜集、整理、分析数据的科学,它可以为人们制定决策提供根据.在客观世界中,需要认识的现象无穷无尽.要认识某现象的第一步就是通过观察或者者试验获得观测资料,然后通过分析这些资料来认识此现象.如何获得有代表性的观测资料并可以正确地加以分析,是正确地认识未知现象的根底,也是统计所研究的根本问题.本章主要介绍最根本的获取样本数据的方法,以及几种从样本数据中提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容.从义务教育阶段来看,统计知识的教学从小学到初中分为三个阶段,在每个阶段都要学习搜集、整理、描绘和分析数据等处理数据的根本方法,教学目的随着学段的升高逐渐进步.在义务教育阶段的统计与概率知识的根底上,课程标准要求通过实际问题及情境,进一步介绍随机抽样、样本估计总体、线性回归的根本方法,理解用样本估计总体及其特征的思想,体会统计思维与确定性思维的差异;通过实习作业,较为系统地经历数据搜集与处理的全过程,进一步体会统计思维与确定性思维的差异.本章教学时间是是约需7课时,详细分配如下〔仅供参考〕:随机抽样2.1.1简单随机抽样整体设计教学分析教材是以探究一批小包装饼干的卫生是否达标为问题导向,逐步引入简单随机抽样概念.并通过实例介绍了两种简单随机抽样方法:抽签法和随机数法.值得注意的是为了使学生获得简单随机抽样的经历,教学中要注意增加学生理论的时机.例如,用抽签法决定班里参加某项活动的代表人选,用随机数法从全年级同学中抽取样本计算平均身高等等.三维目的1.能从现实生活或者者其他学科中推出具有一定价值的统计问题,进步学生分析问题的才能.2.理解随机抽样的必要性和重要性,进步学生学习数学的兴趣.3.学会用抽签法和随机数法抽取样本,培养学生的应用才能.重点难点教学重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.教学难点:抽签法和随机数法的施行步骤.课时安排1课时教学过程导入新课抽样的方法很多,某个抽样方法都有各自的优越性与局限性,针对不同的问题应中选择适当的抽样方法.教师点出课题:简单随机抽样.推进新课新知探究提出问题(1)在1936年美国总统选举前,一份颇有名气的杂志(LiteraryDigest)的工作人员做了一次民意测验.调查兰顿(ndon)(当时任堪萨斯州州长)和罗斯福(F.D.Roosevelt)(当时的总统)中谁将中选下一届总统.为了理解公众意向,调查者通过簿和车辆登记簿上的名单给一大批人发了调查表(注意在1936年和汽车只有少数富人拥有).通过分析收回的调查表,显示兰顿非常受欢迎,于是此杂志预测兰顿将在选举中获胜.实际选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:你认为预测结果出错的原因是什么?由此可以总结出什么教训?〔2〕假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进展卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本.那么,应当怎样获取样本呢?〔3〕请总结简单随机抽样的定义.讨论结果:(1)预测结果出错的原因是:在民意测验的过程中,即抽取样本时,抽取的样本不具有代表性.1936年拥有和汽车的美国人只是一小部分,那时大部分人还很穷.其调查的结果只是富人的意见,不能代表穷人的意见.由此可以看出,抽取样本时,要使抽取出的样本具有代表性,否那么调查的结果与实际相差较大.(2)要对这批小包装饼干进展卫生达标检查,只能从中抽取一定数量的饼干作为检验的样本,用样本的卫生情况来估计这批饼干的卫生情况.假设对这批饼干全部检验,那么费时费力,等检查完了,这批饼干可能就超过保质期了,再就是会破坏这批饼干的质量,导致无法出售.获取样本的方法是:将这批小包装饼干,放入一个不透明的袋子中,搅拌均匀,然后不放回地摸取〔这样可以保证每一袋饼干被抽到的可能性相等〕,这样就可以得到一个样本.通过检验样本来估计这批饼干的卫生情况.这种抽样方法称为简单随机抽样.(3)一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),假设每次抽取时总体内的各个个体被抽到的时机都相等,就把这种抽样方法叫做简单随机抽样.最常用的简单随机抽样方法有两种:抽签法和随机数法.提出问题(1)抽签法是大家最熟悉的,也许同学们在做某种游戏,或者者者选派一部分人参加某项活动时就用过抽签法.例如,高一(2)班有45名学生,现要从中抽出8名学生去参加一个座谈会,每名学生的时机均等.我们可以把45名学生的学号写在小纸片上,揉成小球,放到一个不透明袋子中,充分搅拌后,再从中逐个抽出8个号签,从而抽出8名参加座谈会的学生.请归纳抽签法的定义.总结抽签法的步骤.(2)你认为抽签法有什么优点和缺点?当总体中的个体数很多时,用抽签法方便吗?(3)随机数法是利用随机数表或者者随机骰子或者者计算机产生的随机数进展抽样.我们仅学习随机数表法即利用随机数表产生的随机数进展简单随机抽样的方法.怎样利用随机数表产生样本呢下面通过例子来说明.假设我们要考察某公司消费的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进展检验.利用随机数表抽取样本时,可以按照下面的步骤进展.第一步,先将800袋牛奶编号,可以编为000,001, (799)第二步,在随机数表中任选一个数.例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行.)16227794394954435482173793237887352096438426349164 84421753315724550688770474476721763350258392120676 63016378591695556719981050717512867358074439523879 33211234297864560782524207443815510013429966027954 57608632440947279654491746096290528477270802734328第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916>799,将它去掉.按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出.这样我们就得到一个容量为60的样本.请归纳随机数表法的步骤.(4)当N=100时,分别以0,3,6为起点对总体编号,再利用随机数表抽取10个号码.你能说出从0开始对总体编号的好处吗?(5)请归纳随机数表法的优点和缺点.讨论结果:(1)一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.抽签法的步骤是:1°将总体中个体从1—N编号;2°将所有编号1—N写在形状、大小一样的号签上;3°将号签放在一个不透明的容器中,搅拌均匀;4°沉着器中每次抽取一个号签,并记录其编号,连续抽取n次;5°从总体中将与抽取到的签的编号相一致的个体取出.(2)抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,假设标号的签搅拌得不均匀,会导致抽样不公平.因此说当总体中的个体数很多时,用抽签法不方便.这时用随机数法.(3)随机数表法的步骤:1°将总体中个体编号;2°在随机数表中任选一个数作为开始;3°规定从选定的数读取数字的方向;4°开始读取数字,假设不在编号中,那么跳过,假设在编号中那么取出,依次取下去,直到取满为止;5°根据选定的号码抽取样本.(4)从0开始编号时,号码是00,01,02,…,99;从3开始编号时,号码是003,004,…,102;从6开始编号时,号码是006,007,…,105.所以以3,6为起点对总体编号时,所编的号码是三位,而从0开始编号时,所编的号码是两位,在随机数表中读数时,读取两位比读取三位要时,所以从0开始对总体编号较好.(5)综上所述可知,简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的.但是,假设总体中的个体数很多时,对个体编号的工作量太大,即使用随机数表法操作也并不方便快捷.另外,要想“搅拌均匀〞也非常困难,这就容易导致样本的代表性差.应用例如例1某车间工人加工一种轴一一共100件,为了理解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?分析:简单随机抽样有两种方法:抽签法和随机数表法,所以有两种思路.解法一〔抽签法〕:①将100件轴编号为1,2, (100)②做好大小、形状一样的号签,分别写上这100个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④逐个抽取10个号签;⑤然后测量这10个号签对应的轴的直径的样本.解法二〔随机数表法〕:①将100件轴编号为00,01,…99;②在随机数表中选定一个起始位置,如取第22行第1个数开始(见教材附录1:随机数表);③规定读数的方向,如向右读;④依次选取10个为68,34,30,13,70,55,74,77,40,44,那么这10个号签相应的个体即为所要抽取的样本.点评:此题主要考察简单随机抽样的步骤.抽签法的关键是为了保证每个个体被抽到的可能性相等而必须搅拌均匀,当总体中的个体无差异,并且总体容量较小时,用抽签法;用随机数表法读数时,所编的号码是几位,读数时相应地取连续的几个数字,当总体中的个体无差异,并且总体容量较多时,用抽签法.变式训练1.以下抽样的方式属于简单随机抽样的有____________.〔1〕从无限多个个体中抽取50个个体作为样本.〔2〕从1000个个体中一次性抽取50个个体作为样本.〔3〕将1000个个体编号,把号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本.〔4〕箱子里一一共有100个零件,从中选出10个零件进展质量检验,在抽样操作中,从中任意取出一个零件进展质量检验后,再把它放回箱子.〔5〕福利彩票用摇奖机摇奖.解析:〔1〕中,很明显简单随机抽样是从有限多个个体中抽取,所以〔1〕不属于;〔2〕中,简单随机抽样是逐个抽取,不能是一次性抽取,所以〔2〕不属于;很明显〔3〕属于简单随机抽样;〔4〕中,抽样是放回抽样,但是简单随机抽样是不放回抽样,所以〔4〕不属于;很明显〔5〕属于简单随机抽样.答案:〔3〕〔5〕2.要从某厂消费的30台机器中随机抽取3台进展测试,写出用抽签法抽样样本的过程.分析:由于总体容量和样本容量都较小,所以用抽签法.解:抽签法,步骤:第一步,将30台机器编号,号码是01,02, (30)第二步,将号码分别写在一张纸条上,揉成团,制成号签.第三步,将得到的号签放入不透明的袋子中,并充分搅匀.第四步,从袋子中依次抽取3个号签,并记录上面的编号.第五步,所得号码对应的3台机器就是要抽取的样本.例2人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?解:简单随机抽样的本质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始张,其他各张牌虽然是逐张起牌,但是各张在谁手里已被确定,所以不是简单随机抽样.点评:判断简单随机抽样时,要紧扣简单随机抽样的特征:逐个、不放回抽取且保证每个个体被抽到的可能性相等.变式训练如今有一种“够级〞游戏,其用具为四副扑克,包括大小鬼〔又称为花〕在内一一共216张牌,参与人数为6人并坐成一圈.“够级〞开始时,从这6人中随机指定一人从已经洗好的扑克牌中随机抽取一张牌〔这叫开牌〕,然后按逆时针方向,根据这张牌上的数字来确定谁先抓牌,这6人依次从216张牌中抓取36张牌,问这种抓牌方法是否是简单随机抽样?解:在这里只有抽取的第一张扑克牌是随机抽取的,其他215张牌已经确定,即这215张扑克牌被抽取的可能性与第一张扑克牌可能性不一样,所以不是简单随机抽样.知能训练1.为了理解全校240名学生的身高情况,从中抽取40名学生进展测量,以下说法正确的选项是〔〕A.总体是240B.个体C.样本是40名学生D.样本容量是40答案:D2.为了理解所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是〔〕A.总体B.个体C.总体的一个样本D.样本容量答案:C3.一个总体中一一共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,那么某一特定个体被抽到的可能性是____________.1答案:104.为了检验某种产品的质量,决定从40件产品中抽取10件进展检查,如何用简单随机抽样抽取样本?解:方法一〔抽签法〕:①将这40件产品编号为1,2, (40)②做好大小、形状一样的号签,分别写上这40个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④连续抽取10个号签;⑤然后对这10个号签对应的产品检验.方法二〔随机数表法〕:①将40件产品编号,可以编为00,01,02,…,38,39;②在随机数表中任选一个数作为开始,例如从第8行第9列的数5开始,;③从选定的数5开始向右读下去,得到一个两位数字号码59,由于59>39,将它去掉;继续向右读,得到16,将它取出;继续下去,又得到19,10,12,07,39,38,33,21,随后的两位数字号码是12,由于它在前面已经取出,将它去掉,再继续下去,得到34.至此,10个样本号码已经取满,于是,所要抽取的样本号码是16,19,10,12,07,39,38,33,21,34.拓展提升现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进展质量检验.如何用随机数法设计抽样方案?分析:重新编号,使每个号码的位数一样.解:方法一:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比方,选第6行第7个数“9〞,向右读.第三步,从数“9”开始,向右读,每次读取三位,凡不在010—600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.方法二:第一步,将每个元件的编号加100,重新编号为110,111,112,...,199,200, (700)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比方,选第8行第1个数“6〞,向右读.第三步,从数“6〞开始,向右读,每次读取三位,凡不在110—700中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到630,163,567,199,507,175.第四步,这6个号码分别对应原来的530,63,467,99,407,75.这些号码对应的6个元件就是要抽取的对象.课堂小结1.简单随机抽样是一种最简单、最根本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法.2.抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,假设标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法一样,缺点是当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适宜总体容量较小的抽样类型.3.简单随机抽样每个个体入样的可能性都相等,均为N n ,但是这里一定要将每个个体入样的可能性、第n 次每个个体入样的可能性、特定的个体在第n 次被抽到的可能性这三种情况区分开来,防止在解题中出现错误.作业课本本节练习2、3.设计感想本节教学设计以课程标准的要求为指导,重视引导学生参与到教学中,表达了学生的主体地位.同时,根据高考的要求,适当拓展了教材,做到了用教材,而不是教教材.。
初中随机抽样教案
![初中随机抽样教案](https://img.taocdn.com/s3/m/ccdf2adadc88d0d233d4b14e852458fb770b38d3.png)
初中随机抽样教案教学目标:1. 理解随机抽样的概念和意义;2. 学会使用简单随机抽样的方法进行数据收集;3. 能够运用随机抽样方法解决实际问题。
教学重点:1. 随机抽样的概念和意义;2. 简单随机抽样的方法。
教学难点:1. 随机抽样的实际应用。
教学准备:1. 教师准备一些小物品,如糖果、笔等,作为抽样样本;2. 准备一些实际问题,让学生进行随机抽样解决。
教学过程:一、导入(5分钟)1. 教师向学生介绍随机抽样的概念,引导学生思考随机抽样在实际生活中的应用;2. 学生分享生活中遇到的需要进行随机抽样的情况。
二、学习随机抽样(10分钟)1. 教师讲解简单随机抽样的方法,如抽签法、随机数表法等;2. 学生通过小组讨论,理解并掌握简单随机抽样的步骤和注意事项;3. 教师进行示范,使用小物品进行简单随机抽样,并让学生参与其中,加深理解。
三、实践操作(10分钟)1. 教师提出一些实际问题,如调查班级同学最喜欢的科目等,让学生使用随机抽样方法进行数据收集;2. 学生分组进行随机抽样,记录数据,并总结抽样结果;3. 各组学生分享自己的抽样结果,讨论抽样结果的可靠性和代表性。
四、总结与拓展(10分钟)1. 教师引导学生总结随机抽样的优点和局限性;2. 学生思考如何改进随机抽样方法,提高抽样的准确性和效率;3. 教师提出一些拓展问题,引导学生思考随机抽样在其他领域的应用。
五、课堂小结(5分钟)1. 教师回顾本节课所学内容,强调随机抽样的概念和意义;2. 学生分享自己对随机抽样的理解和体会。
教学反思:本节课通过讲解和实践活动,让学生掌握了随机抽样的方法和步骤,能够运用随机抽样解决实际问题。
在实践操作环节,学生积极参与,通过小组合作,锻炼了团队合作能力和解决问题的能力。
在总结与拓展环节,学生思考了随机抽样的优点和局限性,并提出了一些改进意见,拓展了随机抽样在其他领域的应用。
整体来看,本节课达到了预期的教学目标,学生对随机抽样有了更深入的理解和掌握。
人教版高二年级数学教科书必修三《简单随机抽样》教案
![人教版高二年级数学教科书必修三《简单随机抽样》教案](https://img.taocdn.com/s3/m/8480944fc77da26924c5b03d.png)
第二章统计2.1.1 简单随机抽样一、教学分析:1.教材分析:教材以质量检测为导向,逐步引入简单随机抽样的概念,并通过实例介绍了两种随机抽样的方法:抽签法和随机数法。
2.学情分析:为了使学生获得随机抽样的经验,教学时注意增加学生实践的机会。
二、三维目标:1.能从现实生活或其它学科中推出具有一定价值的统计问题,提高学生分析问题的能力。
2.了解随机抽样的必要性和重要性,提高学生学习数学的兴趣。
3.学会用抽签法和随机数法抽取样本,培养学生的应用能力。
三、重点和难点:重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本。
难点:抽签法和随机数法的实施步骤。
教具:不透明的盒子、30个乒乓球及号签。
五、教学方法:小组讨论与动手实践相结合。
六、教学过程:问题情境一:据大河网报道,河南省郑州食安办日前公布了2017年上半年郑州市乳制品调查结果,其中酸奶、纯奶合格率均为100%,但是鲜奶合格率仅为68.66% ;不合格指标主要为大肠菌群超标。
问题情境二:据《北京晚报》报道,最新调查统计显示,中国青少年学生的近视率已居世界第二位.小学生近视率为28%,初中生近视率为60%,高中生近视率为85%,大学生近视率为90%。
1.通过上述实例,了解随机抽样的必要性及原则。
①所考察的总体中个体数往往很多;②许多考察带有破坏性。
③易失误。
抽样的原则通过著名案例:在1936年美国总统选举前,一份颇有名气的杂志(Literary Digest)的工作人员做了一次民意测验。
调查兰顿和罗斯福中谁将当选下一届的总统。
为了了解公众意向,调查者通过电话薄和车辆登记薄上的名单给一大批人发了调查表,(注意在1936年电话和汽车只有少数富人拥有)。
通过分析收回的调查表,显示兰顿非常受欢迎,于是此杂志社预测兰顿将在选举中获胜。
实际的选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:小组讨论,预测失败的原因。
得出如何科学地抽取样本:尽量使每个个体有同样的机会被抽中。
初中简单随机抽样教案
![初中简单随机抽样教案](https://img.taocdn.com/s3/m/0abe85886037ee06eff9aef8941ea76e59fa4a51.png)
教案:初中简单随机抽样教学目标:1. 让学生理解随机抽样的概念,知道随机抽样的意义和作用。
2. 学会使用简单随机抽样的方法进行数据收集和分析。
3. 培养学生的观察能力、思考能力和动手能力。
教学重点:1. 随机抽样的概念和意义。
2. 简单随机抽样的方法。
教学难点:1. 随机抽样的实际操作。
教学准备:1. PPT课件。
2. 学生分组,每组准备一些小物品,如糖果、小球等。
教学过程:一、导入(5分钟)1. 利用PPT课件,展示一些生活中的随机抽样现象,如彩票抽奖、糖果包装上的随机颜色等。
2. 引导学生思考:这些现象有什么共同特点?它们的意义和作用是什么?二、自主学习(10分钟)1. 让学生阅读教材,了解随机抽样的概念和意义。
2. 学生分享学习心得,教师点评并总结。
三、课堂讲解(15分钟)1. 讲解简单随机抽样的方法,如抽签法、随机数表法等。
2. 举例说明如何使用这些方法进行数据收集和分析。
四、实践操作(15分钟)1. 学生分组,每组选择一种物品进行随机抽样。
2. 教师巡回指导,解答学生在操作过程中遇到的问题。
3. 各组汇报抽样结果,教师点评并总结。
五、课堂小结(5分钟)1. 让学生回顾本节课所学内容,总结随机抽样的概念、意义和作用。
2. 强调随机抽样在实际生活中的应用价值。
六、课后作业(课后自主完成)1. 结合教材,思考生活中还有哪些随机抽样的现象?它们是如何实现的?2. 尝试使用简单随机抽样的方法,对身边的物品进行数据收集和分析。
教学反思:本节课通过引导学生观察生活中的随机抽样现象,让学生了解随机抽样的概念和意义。
通过课堂讲解和实践操作,让学生学会使用简单随机抽样的方法进行数据收集和分析。
在教学过程中,要注意关注学生的学习情况,及时解答学生的问题,确保学生能够掌握所学知识。
同时,要注重培养学生的观察能力、思考能力和动手能力,提高学生的学习兴趣和积极性。
高一数学 增效减负 抽样方法(1)简单随机抽样教学案-人教版高一全册数学教学案
![高一数学 增效减负 抽样方法(1)简单随机抽样教学案-人教版高一全册数学教学案](https://img.taocdn.com/s3/m/ff19e67400f69e3143323968011ca300a6c3f672.png)
第二章统计第1课时抽样方法(1)——简单随机抽样课标导航:1.正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;2.在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本;3.感受抽样统计的重要性和必要性4.初步感受收集数据的科学性对决策所起的作用.课堂实录:思维点击:例1: 为了了解高一(1)班50名学生的视力状况,从中抽取10名学生进行检查,如何抽取呢?(1)抽签法:一般地,抽签法就是把总体中的N个个体编号,把写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n 的样本.一般步骤:(1);(2);(3);(4);(5).(2)随机数表法:按照一定的规则到随机数表中选取的抽样方法.一般步骤:①;②;③;④;随机数表的制作:(1)(2)(3)例2.下列抽样的方式是否属于简单随机抽样?为什么?(1)从无限多个个体中抽取50个个体作为样本.(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子.(3)关于简单随机抽样的特点,有以下几种说法,其中不正确的是要求总体中的个数有限从总体中逐个抽取它是一种不放回抽样每个个体被抽到的机会不一样,与先后顺序有关例3.现有30个零件,需从中抽取10个进行检查,问如何采用简单随机抽样得到一个容量为10的样本?解法一(抽签法)解法二(随机数表法)例4.(拓展尝新)中央电视台希望在春节晚会播出后一周内获得当年春节联欢晚会的收视率,下面是三名同学为电视台设计的调查方案.同学A:我把这X《春节联欢晚会收视率调查表》放在互联网上,只要上网登录该网址的人就可以看到这X表,他们填表的信息可以很快地反馈到我的电脑中,这样,我就可以很快的统计出收视率了.同学B:我给我们居民小区的每一份住户发一个是否在除夕那天晚上看过中央电视台春节联欢的调查表,只要一两天就可以统计出收视率.同学C:我在本上随机地选出一定数量的,然后逐个给他们打,问一下他们是否收看了中央电视台春节联欢晚会,我不出家门就可以统计出中央电视台春节联欢晚会的收视率.请问:上述三名同学设计的调查方案能够获得比较准确的收视率吗?为什么?随堂训练:5.在简单抽样中,某一个个体被抽的可能是A.与第几次抽样有关,第一次抽中的可能性大些.B.与第几次抽样无关,每次抽中的可能性相等.C.与第几次抽样有关,最后一次抽中的可能性较大.D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能不一样.6.简单随机抽样的常用方法有_________和_____________.当随机地选定随机数表读数选定开始读数的数后,读数的方向可以是________________________________.7.某班有50名学生,要从中随机地抽取6人参加一项活动,请用抽签法和随机数表法进行抽取,并写出具体过程.8.如“现代研究证明,99%以上的人感染有螨虫, ”请你从统计学的角度分析该数据的产生情况,如果样本是从去医院看皮肤病的人中产生,那么样本具有代表性吗?回顾思考:。
34183_《简单随机抽样》教案3
![34183_《简单随机抽样》教案3](https://img.taocdn.com/s3/m/e47e425327284b73f2425080.png)
2.1.1简单随机抽样【知识与技能】1.一般地,设一个总体的个体总数为N ,如果通过逐个抽取的方法从中抽取样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
(1)用简单随机抽样的方法从个体数为N 的总体中逐个抽取一个容量为n 的样本,那么每次抽取时各个个体被抽到的概率相等,依次是N 1,11-N ,21-N ,……,)1(1--n N ,且在整个抽样过程中每个个体被抽到的概率都等于N n;(2)简单随机抽样体现了抽样的客观性与公平性;(3)简单随机的特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样。
2.简单随机抽样(1)抽签法:先将总体中的所有个体编号(号码可以从1到N ),并把号码写在形状、大小相同的号签上,号签可以用小球、卡片、纸条等制作,然后将这些号签放在同一个箱子里,进行均匀搅拌。
抽签时,每次从中抽出1个号签,连续抽取n 次,就得到一个容量为n 的样本,对个体编号时,也可以利用已有的编号,例如从全班学生中抽取样本时,可以利用学生的学号、座位号等,抽签法简便易行,当总体的个体数不多,适宜采用这种方法。
(2)随机数表法随机数表抽样“三步曲”:第一步是将总体中的个体编号;第二步是选定开始的数字;第三步是确定读数方向获取样本号码。
【过程与方法】【例1】某班有50名学生,现在采用逐一抽取的方法从中抽取5名同学参加夏令营,学生甲最后一个去抽,求他被选中的概率。
【分析】利用简单随机抽样的特点去说明。
【解】因为用简单随机抽样从个体数为50的总体中取一个容量为5的总体的样本,那么每个个体被抽到的概率都等于505=101,不论学生甲抽取的位置,他抽到参加夏令营的概率均为101。
【例2】欲从全班45名学生中随机抽取10名学生参加一项社区服务活动,试用随机数表法确定这10名学生。
【分析】用随机数表抽样:第一步是将总体中的个体编号;第二步是选定开始的数字;第三步是确定读数方向获取样本号码。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)简单随机抽样要求被抽取的样本的总体个数N是有限的。
(2)简单随机样本数n小于等于样本总体的个数N。
(3)简单随机样本是从总体中逐个抽取的。
(4)简单随机抽样是一种不放回的抽样。
(5)简单随机抽样的每个个体入样的可能性均为n/N。
思考?
下列抽样的方式是否属于简单随机抽样?为什么?
(1)从无限多个个体中抽取50个个体作为样本。
(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。
二、抽签法和随机数法
1、抽签法的定义。
一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
第课时第周年月日星期
课题
2.1.1 简单随机抽样
教学目标
知识与能力
正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;
过程与方法
(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;
(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
育人目标
让学生知道数学来源于生活服务于生活,更加清楚学习数学的必要性和重要性
抽样调查,评估,彩票,保险等经常会遇到要计算概率的时候,举个例子在保险公司里有2500个同一年龄的人参加了人寿保险,在一年里死亡的概率为0.002,每个人一年付12元保险费,而在死亡的时候家属可以领取由保险公司支付的2000元,问保险公司盈利的概率是多少,公司获利不少于10000的概率是多少?
这样的问题咋一看很难知道保险公司是否盈利,但经过概率统计的知识一计算就可以得知公司是几乎必定盈利的
教学过程
初次备课
二次备课
假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?
显然,你只能从中抽取一定数量的饼干作为检验的样本。(为什么?)那么,应当怎样获取样本呢?
【探究新知】
一、简单随机抽样的概念
一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。
第一步,先将800袋牛奶编号,可以编为000,001,…,799。
第二步,在随机数表中任选一个数,例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行)。
第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916>799,将它去掉,按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出,这样我们就得到一个容量为60的样本。
教学重
难点
教学重点
正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤
教学难点
能灵活应用相关知识从总体中抽取样本。
教学用具
三角板、彩色粉笔
学情分析
学生在初中已经学习了简单的抽样方法,对简单的抽签法已经有了一定的了解
教学方法
引导学习法、讲练结合学习法
教学资源
练习册、书本、试卷
思政教育
课前三分钟:
随着科学的发展,数学在生活中的应用越来越广,生活的数学无处不在。而概率作为数学的一个重要部分,同样也在发挥着越来越广泛的用处。
例2:某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?
[分析]简单随机抽样一般采用两种方法:抽签法和随机数表法。
解法1:(抽签法)将100件轴编号为1,2,…,100,并做好大小、形状相同的号签,分别写上这100个数,将这些号签放在一起,进行均匀搅拌,接着连续抽取10个号签,然后测量这个10个号签对应的轴的直径。
【说明】抽签法的一般步骤:
(1)将总体的个体编号。
(2)连续抽签获取样本号码。
思考?
你认为抽签法有什么优点和缺点:当总体中的个体数很多时,用抽签法方便吗?
2、随机数法的定义:
利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法,这里仅介绍随机数表法。
怎样利用随机数表产生样本呢?下面通过例子来说明,假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行。
【说明】随机数表法的步骤:
(1)将总体的个体编号。
(2)在随机数表中选择开始数字。
(3)读数获取样本号码。
【例题精析】
例1:人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?
[分析]简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始张,其他各张牌虽然是逐张起牌,但是各张在谁手里已被确定,所以不是简单随机抽样。
布置作业
练习册习题
板书设计
2.1.1 简单随机抽样
1.简单随机抽样例1例2
(1)抽签法
(2)随机数表法
教学反思:
1.亮点:
2.不足及改进措施:
2、抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点上当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较少的抽样类型。
3、简单随机抽样每个个体入样的可能性都相等,均为n/N,但是这里一定要将每个个体入样的可能性、第n次每个个体入样的可能性、特定的个体在第n次被抽到的可能性这三种情况区分开业,避免在解题中出现错误。
解法2:(随机数表法)将100件轴编号为00,0数开始,选取10个为68,34,30,13,70,55,74,77,40,44,这10件即为所要抽取的样
课堂总结
1、简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法。