红外光谱(最全,最详细明了)

合集下载

红外光谱(最全_最详细明了)、、分解共110页文档

红外光谱(最全_最详细明了)、、分解共110页文档
红外光谱(最全_最详细明了)、、分解
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为

红外光谱(最全-最详细明了)

红外光谱(最全-最详细明了)

1. 收集谱图数据
通过红外光谱仪获取样品的光 谱数据。
3. 峰识别与标记
识别谱图中的特征峰,并对其 进行标记。
5. 结果输出
得出样品成分的红外光谱解析 结果。
谱图解析技巧
1. 峰归属参考
查阅相关资料,了解常见官能团或分子结构 的红外光谱峰归属。
3. 多谱图比对
将待测样品谱图与标准样品谱图进行比对, 提高解析准确性。
红外光谱与其他谱学的联用技术
红外光谱与拉曼光谱联用
拉曼光谱可以提供分子振动信息,与红外光 谱结合,可更全面地解析分子结构和化学组 成。
红外光谱与核磁共振谱联用
核磁共振谱可以提供分子内部结构的详细信息,与 红外光谱结合,有助于深入理解分子结构和化学键 。
红外光谱与质谱联用
质谱可以提供分子质量和结构信息,与红外 光谱结合,有助于对复杂化合物进行鉴定和 分析。
红外光谱在大数据与人工智能领域的应用
红外光谱数据的处理与分析
利用大数据技术对大量红外光谱数据进行处理、分析和挖掘,提取有用的化学和物理信息 。
人工智能在红外光谱中的应用
利用人工智能技术对红外光谱数据进行模式识别和预测,提高红外光谱的解析能力和应用 范围。
红外光谱数据库的建立与完善
建立和完善红外光谱数据库,为科研和工业界提供方便、快捷的红外光谱查询和服务。
分子振动与转动能级
1 2
分子振动
分子中的原子或分子的振动,产生振动能级间的 跃迁。
转动能级
分子整体的转动,产生转动能级间的跃迁。
3
振动与转动能级间的耦合
某些特定的振动模式会导致分子的转动能级发生 跃迁。
红外光谱的吸收峰与跃迁类型
吸收峰
由于分子振动或转动能级间的跃迁,导致光谱上出现暗线或 暗带。

红外光谱(最全最详细明了)课件

红外光谱(最全最详细明了)课件

THANKS
感谢观看样ຫໍສະໝຸດ 制备固体样品液体样品
气体样品
注意事项
研磨成粉末,与KBr混合 压片或涂在ZnSe窗片上

稀释在适当的溶剂中, 涂在CaF2或ZnSe窗片
上。
通过干燥管进入光谱仪 。
避免样品中的水分和二 氧化碳干扰,确保样品
纯净。
实验操作
打开红外光谱仪电源,预热 稳定。
调整仪器至最佳状态,如光 路对中、调零等。
对实验操作的要求
总结词
红外光谱实验操作需要一定的技巧和经验,以确保结 果的准确性和可靠性。
详细描述
红外光谱实验涉及到样品的制备、仪器操作和谱图解析 等多个环节。每个环节都需要一定的技巧和经验,以确 保结果的准确性和可靠性。例如,在样品的制备过程中 ,需要选择合适的制样方法,以获得均匀、平整的样品 ;在仪器操作中,需要正确设置参数,以保证谱图的质 量;在谱图解析中,需要具备丰富的经验和专业知识, 以准确解析谱图特征。因此,进行红外光谱实验的人员 需要经过专业培训和实践经验的积累。
红外光谱(最全最详细 明了)课件
contents
目录
• 红外光谱基本原理 • 红外光谱与分子结构的关系 • 红外光谱的应用 • 红外光谱实验技术 • 红外光谱的局限性
01
红外光谱基本原理
红外光谱的产生
分子振动
分子中的原子或分子的振动,导致偶 极矩变化。
偶极矩变化
辐射吸收
分子吸收特定波长的红外光,导致振 动能级跃迁。
02
01 03
放入样品,记录光谱。
实验结束后,关闭仪器,清 理样品。
04
05
注意事项:保持室内温度和 湿度的稳定,避免仪器受到

(完整word版)红外光谱各基团出峰位置

(完整word版)红外光谱各基团出峰位置
CH
810~750
s
725~680
m
五取代(孤H)
CH
870
s
1,3,5三取代(孤H)
CH
865~810
s
730~675
s
羟基
OH
OH(游离)
3600
m(尖)
OH(締合)
3300
s(宽)
C-OH(伯醇)
C-O
1050
s(宽)
C-OH(仲醇)
C-O
1100
s(宽)
C-OH(叔醇)
C-O
1150
s(宽)
2250~2100
伸缩振动
3300

C=C
asC=C
1650~1450
m~s
=C-H
CH
3100~3000
m
苯(邻接六个H)
CH
675
s
一取代苯(邻接 五个H)
CH
770~730
s
710~690
s
邻二取代苯(邻接四个H)
CH
770~730
s
对二取代苯(邻接二个H)
CH
860~800
s
间二取代苯(邻接三个
较特征
酸酐(RCO)2O
C=O
1880~1800
S
C-O-C
1800~1750
S
1170~1050
S
酰胺(RCONH2)
C=O
1690~1650
S(酰胺Ⅰ峰)
N-H
3500~3050
m
N-H
1650~1620
m(酰胺Ⅱ峰)
硝基
R-NO2
asNO2
1560~1545

红外光谱(超级实用版)

红外光谱(超级实用版)
羧酸的C=O
1820~1750 cm-1 , 氢键,二分子缔合体;
10:59:21
4. X—Y,X—H 变形振动区 < 1650 cm-1
指纹区(1350 650 cm-1 ) ,较复杂。 C-H,N-H的变形振动; C-O,C-X的伸缩振动; C-C骨架振动等。精细结构的区分。 顺、反结构区分;
吸 收 带
变 形 振
C-N-O H-C=C-H
500 960(反)

R-Ar-H
650-900
H-C-H
1450
常见基团的红外吸收带
=C-H
C-H
CC
C=C
O-H
O-H(氢键) S-H P-H
C-C,C-N,C-O C=O
N-O N-N C-F
C-X
N-H
CN
C=N
3500
3000 2500 特征区
H H
H
与一定结构单元相联系的、在一定范围内出现的化学键振动频率——基团 特征频率(特征峰);
例: 2800 3000 cm-1 —CH3 特征峰; 1600 1850 cm-1 — C=O 特征峰;
基团所处化学环境不同,特征峰出现位置变化:
—CH2—CO—CH2— 1715 cm-1 酮
—CH2—CO—O—
注意:溴化钾必须干燥 溴化钾研磨很细 控制溴化钾与样品的比例
此法适用于可以研细的样品,但对于不稳定的化合物, 如发生分解、异构化、升华等变化的化合物不宜使用 压片法。注意样品的干燥,不能吸水。
红外实验所需的油压机以及模具
红外实验所需的样品架
•糊剂法:
对于吸水性很强、有可能与溴化钾发生 反应的样品采用制成糊剂的方法进行测量。 取2mg样品与 1滴石蜡油研磨后,涂在溴 化钾窗片上测量。

红外光谱分析全解

红外光谱分析全解

第三节 红外光谱实验技术
一、红外光谱分析样品制备
1、固体样品
KBr压片法:固体样品常用压片法,它也是固体样品红外
测定的标准方法。将固体样品0.5-2.0mg与150mg左右的 KBr一起粉碎,用压片机压成薄片。薄片应透明均匀。
制样过程: 1)称样。样品:0.5-2mg,KBr:150mg。 2)研磨混合。将样品与KBr混合均匀,充分研 磨。 3)压片。将样品倒入压模中均匀堆积,在油压机 上缓慢加压至15MPa,维持1分钟即可获得透明 薄片。
0.1nm X-射线谱(XPS)
10nm
紫外-可见(UV-V)谱
500nm 100um
红外(IR),Raman 谱
电子自旋共振(EPR)
10cm
核磁共振(NMR)谱
绝大多数有机化合物和无机化合物分子的振动 能级跃迁而引起的吸收均出现在中红外区域。通常 所说的红外光谱就是指中红外区域形成的光谱,它 在结构分析和组成分析中非常重要。至于近红外区 和远红外区形成的光谱,分别叫近红外光谱与远红 外光谱图。近红外光谱主要用来研究分子的化学键, 远红外光谱主要用来研究晶体的晶格振动、金属有 机物的金属有机键以及分子的纯转动吸收等。
第五章 振动光谱分析
振动光谱分类
定义: 所谓振动光谱是指物质由于吸收了能量而引
起其分子或原子内部基团振动的能量改变所产生 的光谱。 分类:
主要包括红外吸收光谱和激光拉曼光谱。 如果用的光源是红外光谱范围,即0.781000µm,就是红外吸收光谱。如果用的是强单色 光,例如激光,产生的是激光拉曼光谱。
红外光谱 图中,横坐标:吸收波长()或波数(), 表示吸收峰位置; 纵坐标:透过率(T%)或吸光度(A), 表示吸收峰强度。

红外吸收光谱特征峰,史上最全

红外吸收光谱特征峰,史上最全

表典型有机化合物的重要基团频率(/cm-1)* 表中vs,s,m,w,vw用于定性地表示吸收强度很强,强,中,弱,很弱。

中红外光谱区一般划分为官能团区和指纹区两个区域,而每个区域又可以分为若干个波段。

官能团区官能团区(或称基团频率区)波数范围为4000~1300cm-1,又可以分为四个波段。

★4000~2500cm-1为含氢基团x—H(x为O、N、C)的伸缩振动区,因为折合质量小,所以波数高,主要有以下五种基团吸收●醇、酚中O—H:3700~无缔合的O—H在高一侧,峰形尖锐,强度为s3200cm-1,缔合的O—H在低一侧,峰形宽钝,强度为s●羧基中O—H:3600~2500无缔合的O—H在高一侧,峰形尖锐,强度为scm-1,缔合可延伸至2500 cm-1,峰非常宽钝,强度为s●N—H: 3500~3300伯胺有两个H,有对称和非对称两个峰,强度为s—mcm-1,叔胺无H,故无吸收峰●C—H:<3000 cm-1为饱和C:~2960 cm-1 (),~2870 cm-1 ()强度为m-s~2925 cm-1 (),~2850 cm-1 () 强度为m-s~2890 cm-1强度为w>3000 cm-1为不饱和(及苯环上C-H)3090~3030 cm-1强度为mC:~3300 cm-1强度为m强度为m-s●醛基中C—H:~2820及~2720两个峰★2500~2000 cm-1为叁键和累积双键伸缩振动吸收峰,主要包括-C≡C-、-C≡N叁键的伸缩振动及、等累积双键的非对称伸缩振动,呈现中等强度的吸收。

在此波段区中,还有S—H、Si—H、P—H、B—H的伸缩振动。

★2000~1500 cm-1为双键的伸缩振动吸收区,这个波段也是比较重要的区域,主要包括以下几种吸收峰带。

●C=O伸缩振动,出现在1960~1650 cm-1,是红外光谱中很特征的且往往是最强的吸收峰,以此很容易判断酮类、醛类、酸类、酯类、酸酐及酰胺、酰卤等含有C=O的有机化合物。

红外光谱-全

红外光谱-全

O C R NH 2
vC=0=1735cm-1 vC=0=1715cm-1 I效应 > M效应
vC=0=1690cm-1 vC=0=1680cm-1 M效应 > I效应
空间效应:环张力
环数减小,环的张力增大,环外的键加强,吸收频率增大, 环内双键减弱,吸收频率减小.
H
H
H
υ C=C υ =C H
1645cm-1 3017cm-1
饱和烃
C-H伸缩振动:对称伸缩振动νs和反对称伸缩振动
νas ,在3000-2800cm-1之间,νas较νs在较 高频率. C-H弯曲振动 :1475-1300 cm-1 ,甲基 的对称变形振动出现在5 cm-1处 ,对于异 丙基和叔丁基,吸收峰发生分裂. 亚甲基平面摇摆:800-720cm-1对判断CH2n-的碳链长度有用, n>4 725, n=3 729-726,
通常,物质由液态向气态变化,其波数将增加.
如: 丙酮
液态时:
C=O=1718cm-1;
气态时:
C=O=1742cm-1,
因此在制作和查阅红外图谱时,应注意试样状态和制样方法.
2溶剂效应
极性基团的伸缩振动频率通常随溶剂极性增加而降低.
如: 羧酸中的C=O:

态: C=O=1780cm-1
非极性溶剂: C=O=1760cm-1
到了六十年代,用光栅代替棱镜作分光器 的第二 代 红外光谱仪投入了使用.这种计算机化的光栅为分光部 件的第二代红外分光光度计仍在应用.
七十年代后期,干涉型傅里叶变换红外光谱仪FT-IR 投入了使用,这就是第三代红外分光光度计.
近来,已采用可调激光器作为光源来代替单色器,研 制成功了激光红外分光光度计,即第四代红外分光光度 计,它具有更高的分辨率和更广的应用范围,但目前还未

第9章红外光谱

第9章红外光谱
T%=I/I0*100%(透射率)
w m s
vs
根据吸收峰的大小一般可分为四种相对吸收强度:
①很强峰 (very strong 简称 vs) 2900-2800cm-1峰 ②强峰 (strong 简称 s) 1470峰 ③中等峰(medium 简称 m) 1380cm-1峰 ④弱峰(week 简称 w) 720cm-1峰
1、电磁波(electromagnetic wave ):
光是一种电磁波,它既有波动性又有粒子性(波粒二象性)即 波长(λ 表示)和频率(ν )来描述。其 相互关系可由下列来表示:
ν= C/λ 波动性 E = hν= h C/λ 粒子性
式中: ν— 频率 单位Hz (每秒振动的次数) λ— 波长 单位cm 1m=102cm=106μm=109nm c—光速 (3*1010cm/s) 单位 cm/s h— 普朗克常数 (planck) (6.63*10-34/s) E—光量子能量 J
2、红外光谱图及吸收强度(IR spectrogram and its absorb intension)
红外光谱图是以波长或波数为横坐标,百分透射率T%(或吸光 度A)为纵坐标作图,百分透射率是指通过样品的光强度(I)占 原入射光强度(I0)的百分数。在某一频率位置上T值越小,说 明在该频率处有强吸收。因此红外光谱的吸收峰(谱带)是向 下的,请看下图正辛烷的IR.
1、红外光谱仪及工作原理(IR instrument and its principium):
红外光谱仪是用来测定化合物中红外辐射吸收的仪器,其基本 构造原理图见书149页图9-1。选择红外光源,使两束光分别 进入参比池和样品池,然后经过单色池、检测器、放大器并 扣除参比池吸收的光强度,最后把结果传到记录仪上,画出红 外吸收光谱图。

红外光谱最全最详细明了、、共110页

红外光谱最全最详细明了、、共110页
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。——在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
红外光谱最全最详细明了、、
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分子的振动分为伸缩振动和变形振动两类。
伸缩振动是沿原子核之间的轴线作振动,键长有变化 而键角不变,用字母υ来表示。 伸缩振动分为不对称伸缩振动υas和对称伸缩振动υs。 变形振动是键长不变而键角改变的振动方式,用字母δ 表示。
伸缩 振动 υ 亚甲基 的振动
对称伸 缩振动 不对称 伸缩振动
υS
υ as
CH3-CO-CH3 CH2Cl-CO-CH3 CI-CO-CH3 Cl-COCl F-CO-F υC=O 1715 1724 1806 1828 1928
(2)共轭效应(C效应): 共轭效应要求共轭体系有共平面性。 共轭效应使共轭体系的电子云密度平均化,键长也平均 化,双键略有伸长,单键略有缩短。
1. 内部结构
日本岛津公司的
DT-40 FT-IR
14:46:03
2. 傅里叶变换红外光谱仪结构框图
干涉仪 样品室 检测器 显示器 光源 计算机 绘图仪
干涉图
FTS
光谱图
14:46:03
3. 傅立叶变换红外光谱仪的原理与特点
光源发出的辐射经干涉仪转变为干涉光,通
过试样后,包含的光信息需要经过数学上的傅立
硅碳棒:两端粗,中间细;直径5 mm,长2050mm;不需预热;两端需用水冷却;
(2) 单色器
光栅;傅立叶变换红外光谱仪不需要分光;
14:46:03
(3) 检测器
真空热电偶;不同导体构成回路时的温差电现象
涂黑金箔接受红外辐射;
傅立叶变换红外光谱仪采用热释电(TGS)和碲镉 汞(MCT)检测器; TGS:硫酸三苷肽单晶为热检测元件;极化效应 与温度有关,温度高表面电荷减少(热释电);
T%= I/I0×100%,
I是透过强度,Io为入射强度。
横坐标:上方的横坐标是波长λ,单位μm;下方的横坐 _ 标是波数(用 表示,波数大,频率也大),单位是 cm-1。
波数即波长的倒数,表示单位(cm)长度光中所含光波的 数目。波长或波数可以按下式互换:

_
( cm-1)=1/λ(cm)=104/λ(μm)
分子振动光谱
Vibration spectroscopy
Infrared spectroscopy and Raman spectroscopy ( IR and Raman )
分子振动光谱 ---红外光谱与拉曼光谱---
一、红外光谱


1.1 红外光谱概述 1.2 红外光谱仪及实验方法 1.3 影响振动频率的因素 1.4 有机化合物基团的特征吸收
1.1红外光谱概述
(1)红外光谱图(表示方法一)
纵坐标为吸收强度,横坐标为波长λ(m)和波数 1/λ,单位:cm-1 。可以用峰数,峰位,峰形,峰强 来描述。 纵坐标是:吸光度A 应用:有机 化合物的结 构解析 定性:基团 的特征吸收 频率;
定量:特征 峰的强度;
(表示方法二) 纵坐标是百分透过率T%。 百分透过率的定义是辅射光透过样品物质的百分率,即
(3)溶剂效应: 用溶液法测定光谱时,使用的溶剂种类、 浓度不同对图谱会有影响。
1.3.2 分子结构对基团吸收谱带位置的影响 (1)诱导效应(I效应):基团邻近有不同电负性的取代 基时,由于诱导效应引起分子中电子云分布的变化,从而 引起键力常数的改变,使基团吸收频率变化。 吸电子基团(-I效应)使邻近基团吸收波数升高,给电 子基团(I效应)使波数降低。
_ 在2.5μm处,对应的波数值为: = 104/2.5 (cm-1)=4000cm-1 一般扫描范围在4000~400cm-1。
4.红外吸收光谱产生的条件
满足两个条件: (1)辐射应具有能满足物质产生振动跃迁所需的能量 (2)辐射与物质间有相互偶合作用。 对称分子:没有偶极矩,辐射不能引起共振, 无红外活性。如:N2、O2、Cl2 等。 非对称分子:有偶极矩,红外活性。
响应速度快;高速扫描;
14:46:03
(2)试样的制备
1.3
影响振动频率的因素
1.3.1 外部条件对吸收位置的影响 1.3.2 分子结构对基团吸收谱带位 置的影响
某一基团的特征吸收频率,同时还要受到分子结构 和外界条件的影响。 同一种基团,由于其周围的化学环境不同,其特征吸 收频率会有所位移,不是在同一个位置出峰。
叶变换解析成普通的谱图。 特点:(1) 扫描速度极快(1s);适合仪器联用; (2)不需要分光,信号强,灵敏度很高; (3)仪器小巧。
14:46:03
傅里叶变换红外光谱仪工作原理图
14:46:03
4. 色散型红外光谱仪主要部件
(1) 光源
能斯特灯:氧化锆、氧化钇和氧化钍烧结制成 的中空或实心圆棒,直径1-3 mm,长20-50mm; 室温下,非导体,使用前预热到800 C; 特点:发光强度大;寿命0.5-1年;
偶基距变化时,无红外吸收。
(3)瞬间偶极矩大,吸收峰强;键两端原子电 负性相差越大(极性越大),吸收峰越强;
(4)由基态跃迁到第一激发态,产生一个强的 吸收峰,基频峰; (5)由基态直接跃迁到第二激发态,产生一个 弱的吸收峰,倍频峰.
问题:C=O
强;C=C
弱;为什么?
吸收峰强度跃迁几率偶极矩变化
吸收峰强度 偶极矩的平方
偶极矩变化——结构对称性;
对称性差偶极矩变化大吸收峰强度大 符号:S (strong) M (medium) W (weak)
B (broad) Sh (sharp)
红外吸收峰强度比紫外吸收峰小2~3个数量级;
1.2
红外光谱仪及实验方法
(1)仪器类型与结构
两种类型:色散型 干涉型(傅立叶变换红外光谱仪)
基团的吸收不是固定在某一个频率上,而是在一个范围 内波动。
1.3.1 外部条件对吸收位置的影响 (1)物态效应:同一个化合物固态、液态和气态的红外光 谱会有较大的差异。如丙酮的υC=O,汽态时在1742cm-1,液 态时1718cm-1,而且强度也有变化。
(2)晶体状态的影响:固体样品如果晶形不同或粒子大小 不同都会产生谱图的差异。
变形 振动 δ
面内变 形振动 δ 面内
面内摇摆 剪式振动
ρ δs
面外变 形振动 δ 面外
面外摇摆 扭曲振动
ωτ
5.峰位、峰数与峰强
(1)峰位 化学键的力常数K越大,原子折合质量
越小,键的振动频率越大,吸收峰将出现在高波数
区(短波长区);反之,出现在低波数区(高波长区)
(2)峰数
峰数与分子自由度有关。无瞬间
相关文档
最新文档