抽样知识点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 抽样调查

广义的抽样调查:是从研究对象的全体(总体) 中抽取一部分单位作为样本,根据对所抽取的样本进行调查,获得有关总体目标量的了解。 从总体中抽取样本的方法看,抽取方法可以分为两类:一类是非随机抽样(非概率抽样);一类是随机抽样(概率抽样),狭义上的抽样就是随机抽样。 2. 随机抽样(概率抽样)

随机抽样是从总体中按随机原则抽取样本,并依据样本观察值对总体的数量特征取得具有一定可靠性的推断,从而达到对总体的认识。

随机抽样的特点:1.所谓随机原则就是在抽取样本时排除主观上有意识地抽取调查单元,使每个单元都以一个事先已知的非零概率有机会被抽中。2.每个单元被抽中的概率是已知的,或是可以计算出来的,按照给定的入样概率通过一定的随机化程序进行抽样。3.估计量不仅与样本单元的观测值有关,也与其入样概率有关。

随机抽样的主要优点是:随机抽样比非随机抽样更具有客观性,而且随机抽样可以依据调查结果计算抽样误差,从而得到对总体目标量进行推断的可靠程度。

3. 非随机抽样(非概率抽样)

非随机抽样是相对于随机抽样而言的。非随机抽样的共同特点是:抽取样本时,是依据主观判断有目的、有意识地进行,或根据方便的原则进行。

⎪⎪

⎪⎪⎪

⎪⎩

⎪⎪

⎪⎪

⎨⎧⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧滚雪球抽样判断抽样定额抽样便利抽样)随意调查非随机调查系统抽样不等概率抽样多阶抽样整群抽样分层抽样简单随机抽样随机调查非全面调查全面调查统计调查(

4. 抽样调查的基本程序 一、确定调研问题——二、抽样调查设计(抽样

设计、问卷设计)——三、实施调查过程——四、数据处理分析——五、撰写调查报告——六、总结评估

5. 总体、目标总体与抽样总体、抽样框、样本(包含第十章抽样框误差定义)

所要研究对象的全体称为总体,组成这个总体的每个个别对象就称为总体单元或总体单位。总体又有目标总体与抽样总体之分。目标总体就是抽样调查预先确定的所要认识的对象的全体,也就是从样本中得到信息对之进行说明的总体。抽样总体就是从中进行抽样的总体,是抽取样本的依据,从样本中得到的结论只适用于抽样总体。抽样总体应该与目标总体完全一致,但实践中两者不一致的情况时常发生。

抽样框是一份包含所有抽样单元的名单、清册或地图。抽样单元是构成抽样框的基本要素。理想的抽样框标志是目标总体和抽样总体完全重合,就是说目标总体单元和抽样总体单元完全是一一对应的关系。否则,抽样框就是不完善的,这意味着有可能出现抽样框误差。这种误差并不是来自于抽样的随机性,而是产生于不完善的抽样框,所以抽样框误差是一种非抽样误差。

把从总体中按一定程序抽出的部分总体基本单元的集合称为样本。样本n

对总体单元数N 的比称为抽样比,即抽样比N

n

f =。

6. 几种基本的抽样方法

简单随机抽样、分层抽样、整群抽样、系统抽样、多阶抽样、不等概率抽样 7. 抽样误差与非抽样误差(包含第十章内容:非抽样误差的定义及分类)

由于样本的随机性引起的误差称为抽样误差,确切地讲,就是用样本数据估计总体指标而引起的总体指标估计值与总体指标真值之间的离差。非抽样误差是相对于抽样误差而言的,是指除抽样以外的,由于其他多种原因引起的总体指标估计值与总体指标真值之间的差异。

非抽样误差分类:1.抽样框误差,即由不完善的抽样框引起的误差。 2. 无回答误差,即由于种种原因没有能够从调查单元获得调查结果,造成调查数据的缺失。3.计量误差,即所获得的调查数据与调查项目的真值之间不一致造成的误差。

8. 精度与费用、最优设计

抽样误差的精度通常用给定置信度下的绝对误差限或相对误差限表示,也可以以估计量的方差、标准差或变异系数形式提出。抽样调查的精度取决于误差的大小。抽样误差越小,说明用样本统计量对总体指标进行估计时的精度越高。抽样误差与样本量有关,样本量越大,在其它条件相同情况下,抽样误差就越小,抽样调查的精度就越高。同时,样本量也与调查费用有关,样本量越大,调查费用就越高。样本量与调查费用大致呈线性关系,但样本量与精度却成非线性关系。对于一个具体的抽样设计,在核定的费用内达到最高的精度,或在达到精度要求的条件下使调查的费用最少,则称这样的抽样设计为最优设计。 9. 简单随机抽样(定义、作用、局限性)及其抽选方法

简单随机抽样(或单纯随机抽样)是一种等概率的抽样方法,即每一个总体单元进入样本的概率都是相同的,一般局限于不放回随机抽样。简单随机样本的抽选通常有两种做法:抽签法和随机数法。

简单随机抽样在抽样理论中占有重要的地位,其他抽样方法技术都是在它的基础上建立发展起来的。简单随机抽样的局限性主要表现在:首先,当总体单位数N 很大时,则编制抽样框比较困难;其次,简单随机抽样也不利用其他辅助信息,使得它的效率较其他利用辅助信息的抽样设计方法低。最后,由于样本在总体中的地理分布很广,如果采取面访,就费时费力,实际操作难度很大,完全有可能得到一个代表性很差的样本。 10. 设计效应

一个特定的抽样设计(包括抽样设计方法以及对总体目标量的估计方法)估计量的方差对相同样本量下(不放回)简单随机抽样的(简单)估计量的方差之比,即效率越低。值越大,抽样估计量的方差

相同样本量下简单随机的方差

所考虑抽样设计估计量,deff deff =

11. 分层抽样的定义、特点、划分原则

将容量为N 的总体分成L 个不相重叠的子总体,子总体的大小分别为N1、 N2、… NL ,皆已知,且每个子总体就称为层。从每层中独立地进行抽样,这样的抽样方法称为分层抽样。

分层随机抽样:在分层抽样中,如果每层中的抽样都是简单随机抽样,则这样的分层抽样称为分层随机抽样。

分层随抽样的特点:1.分层抽样的抽样效率较高,也就是说分层抽样的估计精度较高。2.分层抽样不仅能对总体指标进行推算,而且能对各层指标进行推算。3.层内抽样方法可以不同,而且便于抽样工作的组织。4.为了组织调查的方便,各层可以根据层内的特点,分别采取不同的抽样方法。

层的划分原则:1.层内单元具有相同性质,通常按调查对象的不同类型进行划分。2.尽可能使层内单元的标志值相近,层间单元的差异尽可能大(层间方差大,层内方差小),从而达到提高抽样估计精度的目的。3.既按类型又按层内单元标志值相近的原则进行多重分层,同时达到实现估计类值以及提高估计精度的目的。4.抽样组织实施的方便,通常按行政管理机构设置进行分层。 12. 比率估计与回归估计概念与应用条件

X

Y

X Y R ==

即均值)之比值体的两个指标总量(或所需估计的目标值是总,。 比率估计量又称比估计。在简单随机条件下,若分别以y ,x 表示两个指标

均值,以R

ˆ表示样本比率,则∑∑==i

i

x

y x

y R ˆ,若以R

ˆ作为总体比率R 的估计,就称为R 的比率估计。

在简单随机抽样下,总体均值与总体总量的线性回归估计量定义为:

()x X y y

lr -+=βˆ,tr y N Y ˆˆ=,其中,y 、x 分别为调查变量、辅助变量的样本均值,X 是辅助变量的总体均值,β称为回归系数。

有两种情况需要应用比率估计量。一是利用两种变量样本对总体比率进行估

计时需要应用比率估计量;二是一个变量为调查变量,另一个变量表现为与调查变量有密切关系的辅助变量,在对调查变量总体总量、总体均值等目标量进行估计时,利用已知的辅助变量信息构造比率估计量可以提高估计的精度。比率估计、回归估计是非线性估计,于简单估计相比,其优劣取决于辅助变量的选择,也就是辅助变量应该与调查指标有较好的正相关关系,例如正比例关系或线性回归估计。

13. 不等概率抽样定义与适用场合

总体单元差异特别大的情况时,通常是牺牲“简单”来提高抽样效率。一是将总体单元按规模(大小)分层,对较大单元的层抽样比定的高些,抽样比甚至可以是100%,而较小单元的层抽样比定的低些。二是赋予每个单元与其规模(或辅助变量)成比例的入样概率,这样一来,大单元入样概率大,小单元入样概率小。这就是不等概率抽样。

实际工作中,以下情况可以考虑使用不等概率抽样:1.需要估计总体总量但

相关文档
最新文档