疏水相互作用色谱讲述
疏水相互作用色谱法
疏水相互作用色谱法
疏水相互作用色谱法(Hydrophobic Interaction Chromatography,HIC)是一种利用样品中溶液中非极性(疏水)相互作用与静
电吸引作用的分离方法。
在HIC中,样品在高盐浓度条件下,通过疏水性固定相与非极性样品分子之间的相互作用来实现分离。
HIC的原理是利用样品分子之间和样品分子与固定相之间的疏水相互作用来进行分离。
在高盐浓度的条件下,溶液中水分子与溶剂中的盐离子形成水化层,减少了水分子与样品分子之间的水合作用,使得样品分子能够更容易与疏水性固定相发生相互作用。
相对疏水性的样品分子在固定相上停留时间较长,而相对亲水性的样品分子则较快地从固定相上洗脱。
通过调整盐浓度和pH值,可以控制疏水相互作用的强弱,实现对样品分
子的选择性分离。
HIC广泛应用于生物分子的分离和纯化,特别适用于分离非极性的蛋白质、多肽、核酸和多糖等生物大分子。
它在制药、生物工程和生物医学研究等领域具有重要的应用价值。
与其他色谱方法相比,HIC具有较好的选择性、温和的条件和较高的纯化效率,因此受到广泛关注和应用。
疏水作用色谱缩写
疏水作用色谱缩写
疏水作用色谱的缩写是HIC(Hydrophobic Interaction Chromatography)。
它是一种基于溶质分子与固定相之间的疏水相互作用进行分离的色谱技术。
在HIC 中,固定相通常是一些具有较高疏水性的物质,如烷基、苯基等,而流动相则是水或含有一定浓度有机溶剂的缓冲液。
当溶质分子进入色谱柱时,它们会与固定相之间发生疏水相互作用,从而被保留在固定相上。
不同的溶质分子由于其疏水性的差异,会在固定相上停留的时间不同,从而实现分离。
HIC 常用于分离蛋白质、多肽、核酸等生物大分子。
完整版第九节疏水作用色谱
第九节疏水作用色谱疏水作用色谱(Hydrophobic interaction chromatography HIC)是采用具有适度疏水性的填料作为固定相,以含盐的水溶液作为流动相,利用溶质分子的疏水性质差异从而与固定相间疏水相互作用的强弱不同实现分离的色谱方法。
关于在疏水作用色谱条件下进行分离的概念最早在1948年就由Tiselius提出,该技术真正得到发展和应用是在20世纪70年代早期开发出一系列适合进行疏水作用色谱的固定相以后。
此后随着新型色谱介质的开发生产和对机理认识的逐步深人,该技术得到了广泛的应用,并且随着高效疏水作用色谱介质的出现,HIC 已在HPLC平台上被使用,称为高效疏水作用色谱(High performance hydrophobic interaction chromatography HP-HIC)。
由于疏水作用色谱的分离原理完全不同于离子交换色潜或凝胶过滤色谱等色谱技术,使得该技术与后两者经常被联合使用分离复杂的生物样品。
目前该技术的主要应用领域是在蛋白质的纯化方面,成为血清蛋白、膜结合蛋白、核蛋白、受体、重组蛋白等,以及一些药物分子,甚至细胞等分离时的有效手段。
一、疏水作用色谱基本原理(一) 疏水作用疏水作用是一种广泛存在的作用,在生物系统中扮演着重要角色,它是球状蛋白高级结构的形成、寡聚蛋白亚基间结合、酶的催化和活性调节、生物体内一些小分子与蛋白质结合等生物过程的主要驱动力,同时也是磷脂和其他脂类共同形成生物膜双层结构并整合膜蛋白的基础。
根据热力学定律,当某个过程的自由能变化(△G)为负值时,该过程在热力学上是有利的,能够自发发生,反之则不能。
而根据热力学公式△G=△H一T△S (6.9-1) 式中,△G是由该过程的烩变(△H) ,熵变(△S)和热力学温度(T)决定的。
当疏水性溶质分子在水中分散时,会迫使水分子在其周围形成空穴状结构将其包裹,此有序结构的形成会导致熵的减小(△S<0),致使△G为正值,在热力学上不利。
疏水性相互作用色谱
疏水性相互作用色谱疏水性相互作用色谱(HILIC),是一种色谱技术,是在正相液相色谱(RPLC)的基础上发展起来的。
它利用化合物在强极性固定相上的亲水性相互作用来分离样品中的化合物。
与RPLC不同,HILIC是在有机溶剂(通常是醇类)作为流动相的情况下进行操作。
HILIC技术的应用广泛,尤其是对极性化合物的分离和分析非常有效。
例如,天然产物中的多糖、核苷酸、氨基酸、酶、多肽以及其他含有极性官能团的化合物都可以通过HILIC进行分离。
此外,HILIC还可以用于药物代谢物的分离、药物残留物的分析及其他与生物领域相关的分析问题。
HILIC的分离机理主要有两个方面。
首先是与RPLC类似,样品溶解在流动相中时可以形成溶解度差异,从而导致不同化合物在固定相上的滞留时间差异。
其次,由于流动相是极性有机溶剂,这些极性有机溶剂与固定相中的未饱和硅键结构相互作用,形成了极性相互作用,从而影响化合物在固定相上的滞留行为。
选取适当的固定相材料,是进行HILIC分离的关键。
一般来说,HILIC的固定相都是由亲水性官能团修饰的残基固定在硅胶或硅胶化的载体上。
这些官能团可以是氨基(NH2)、羟基(OH)或者氨基醇(NH2-OH)等等。
不同的官能团会对不同的极性化合物表现出不同的特异性和选择性。
在进行HILIC分离时,首先进行样品的预处理。
然后,选择合适的流动相,通常是含有一定量的有机溶剂(如乙腈或甲醇)和极性有机溶剂(如醇类)的溶液。
流动相的组成需要调整,以达到良好的分离效果。
之后,将样品进样到色谱柱中,并通过调整流动相的成分和梯度进行分离。
最后,通过探测器检测化合物,并进行定性或定量分析。
HILIC相对于传统的RPLC具有许多优点。
首先,HILIC可以处理极性化合物,很多情况下很难通过RPLC方法进行分离。
其次,HILIC可以在短时间内实现高效分离,提高工作效率。
此外,HILIC还具有较低的操作压力,使得在分析中使用的色谱柱寿命更长。
亲水作用色谱和疏水作用色谱
亲水作用色谱和疏水作用色谱
亲水作用色谱和疏水作用色谱是两种常用的分离技术,它们在化学分析、生物医药等领域中广泛应用。
亲水作用色谱(Hydrophilic Interaction Chromatography,HILIC)是一种基于样品和固定相之间亲水作用进行分离的色谱技术。
在亲水作用色谱中,固定相通常采用极性的硅胶或亲水性的高性能液相色谱(HPLC)柱。
亲水作用色谱适用于分离极性化合物,如极性小分子、多肽、糖类、核酸等。
在亲水作用色谱中,样品溶液中的化合物与固定相之间通过氢键、静电相互作用等亲水作用进行分离。
通过调节流动相的组成和pH值,可以实现对目标化合物的选择性分离。
疏水作用色谱(Hydrophobic Interaction Chromatography,HIC)是一种基于样品和固定相之间疏水作用进行分离的色谱技术。
在疏水作用色谱中,固定相通常采用疏水性的高性能液相色谱柱,如碳链(C4、C8、C18等)柱。
疏水作用色谱适用于分离非极性和中等极性的化合物,如脂类、蛋白质、抗体等。
在疏水作用色谱中,样品溶液中的化合物与固定相之间通过疏水作用进行分离。
通过调节流动相的组成和温度,可以实现对目标化合物的选择性分离。
总的来说,亲水作用色谱和疏水作用色谱是两种互补的分离技术,可根据待分离化合物的性质选择合适的色谱方法,实现高效、精确的分析和纯化。
疏水性相互作用色谱
五.疏水性相互作用色谱(HIC)的操作
疏水性相互作用色谱在蛋白质的分离过程中由 于机理比较复杂,吸附剂的选择和洗脱分离条件 不易掌握所以难以取得良好的分离效果。因此, 在利用HIC 分离蛋白质的混合物时,需事先利用 各种小型预装柱进行吸附与洗脱实验,确定最佳 吸附剂和洗脱分离条件分离溶剂。
吸附生物大分子采用柱层析法,装柱和拆柱与 其他类型的柱层析法相同。
为了使要分离的生物大分子能紧密结合在柱上, 选择适当的缓冲液、pH和离子强度,也要考虑温 度因素。
为了有效地洗脱吸附剂上的生物大分子, 可以用下列的一种或几种方法: ①改换一种具有较低盐析效应的离子; ②降低离子强度; ③减弱洗脱剂的极性,也可加入乙二醇; ④用含有表面活性剂的洗脱剂; ⑤提高洗脱剂的pH。
再生
每次实验结束后,吸附剂需要再生。 因为吸附剂中尚留有结合紧密的生物大分子、 表面活性剂等。未经再生的疏水吸附剂,其吸附 容量将明显降低。 一般来说可用蒸馏水、乙醇、正丁醇、乙醇、 蒸馏水依次洗涤,装柱,用初始缓冲液平衡吸附 剂。吸附剂经再生后可反复使用。
蛋白质的纯化过程中,各种分离技术结 合的顺序是很重要的。
它不仅是一种有效的分离纯化手段,而且还可与IEC互补短 长,分离纯化利用IEC难以分离的蛋白质。
但是,疏水性相互作用机理比较复状。吸附剂的选择和洗脱 分离条件不易掌握。
六、疏水性相互作用色谱的应用及特点
特点
HIC可作为IEC的补充工具。 可直接分离盐析后的蛋白质 可通过调节疏水性配基链长和密度调节HIC的吸附力 疏水性吸附剂种类多,选择余地大,价格与离子交换
剂相当
谢 谢!
盐析作用强的高价阴离子(如SO42-,HPO42-等)的作用正 好相反,称为反离液离子(antichaotropic ion)。
dna 疏水相互作用色谱原理
dna 疏水相互作用色谱原理全文共四篇示例,供读者参考第一篇示例:DNA疏水相互作用色谱是一种基于DNA与疏水相互作用的色谱分离技术。
这种色谱技术能够通过控制DNA与疏水相溶剂之间的相互作用,实现对DNA的分离和纯化,为生物医学领域中的DNA研究提供了强大的工具。
DNA疏水相互作用色谱的原理主要是基于DNA的双螺旋结构中存在的疏水性。
DNA分子是由具有疏水性碱基和糖磷酸骨架组成的双链螺旋结构。
在DNA分子的空间结构中,疏水性碱基倾向于隐藏在分子的内部,从而使整个分子具有疏水性。
而疏水相互作用是指在疏水性分子中,疏水基团倾向于聚集在一起,远离水相,以减少与水分子的接触,从而降低体系的自由能。
基于这种原理,可以利用DNA分子中的疏水性来实现其在溶液中的分离和纯化。
DNA疏水相互作用色谱的分离原理可以简单描述为:利用DNA 的疏水性与疏水相溶剂之间的相互作用,在特定的分析条件下,DNA 分子将与疏水相相互作用,形成DNA-疏水相复合物。
随后,通过调节色谱柱中的分析条件,如溶剂流速、温度等参数,可以实现DNA分子的分离。
在色谱柱上,DNA分子与疏水相复合物的保留时间会受到疏水性的影响而发生变化,从而实现DNA分子的分离。
DNA疏水相互作用色谱的操作步骤主要包括样品预处理、色谱柱装填、分离过程等几个关键步骤。
样品需要进行预处理,如通过酶切、PCR扩增等方式提取DNA并进行纯化。
将处理好的样品加载到色谱柱中,色谱柱中填充有具有疏水性的填料,如疏水性聚合物或疏水性有机化合物。
随后,在一定的分析条件下,如流速、温度等参数,进行分离过程。
在这个过程中,DNA分子会与疏水相填料发生相互作用,形成DNA-疏水相复合物,然后通过调节分析条件,如溶剂流速、温度等参数,实现DNA分子的分离。
DNA疏水相互作用色谱在生物医学领域中具有广泛的应用前景。
这种色谱技术可以用于DNA的纯化和分离,可以帮助科研人员高效地获取纯净的DNA样品,从而进一步开展DNA研究工作。
dna 疏水相互作用色谱原理
dna 疏水相互作用色谱原理全文共四篇示例,供读者参考第一篇示例:DNA疏水相互作用色谱原理是一种在DNA分析中广泛应用的技术,它利用DNA双链的疏水性质来实现DNA的分离和分析。
DNA是生物体中存储遗传信息的重要分子,在疏水相互作用色谱中,DNA分子与疏水性固相之间发生相互作用,根据DNA分子的疏水性质差异实现DNA的分离。
DNA的疏水性质来源于其双链结构。
DNA分子由两条互补的链组成,在水溶液中,疏水基团会主要暴露在DNA的内部,而极性基团则暴露在外部。
这使得DNA分子具有较强的疏水性质,能够与疏水性固相相互作用。
DNA疏水相互作用色谱技术在DNA分析中有着广泛的应用。
它可以用于DNA序列的测定、DNA片段的纯化和寡核苷酸的合成等。
在DNA测序中,DNA疏水相互作用色谱可以根据DNA碱基的序列特征对DNA进行高效的分离和测序,从而实现DNA序列的测定。
DNA疏水相互作用色谱也可用于DNA片段的纯化。
通过调整疏水性固相柱的条件,可以将DNA样品中的杂质分离出来,实现对DNA片段的纯化。
这对于实验室中需要高纯度DNA的应用非常有用。
DNA疏水相互作用色谱还可以用于寡核苷酸的合成。
通过在疏水性固相上引入不同的碱基保护基团,可以实现寡核苷酸序列的选择性合成。
这为寡核苷酸的研究提供了便利。
第二篇示例:DNA疏水相互作用色谱原理是一种基于DNA分子在不同溶剂中疏水相互作用特性的色谱技术。
DNA在不同溶剂中的溶解度不同,主要是由于DNA双螺旋结构中含有大量的碱基序列,附带有负电荷,使其在水中存在明显的亲水性。
而在有机溶剂中,DNA双螺旋结构和碱基序列更多地被认为是疏水性,因此DNA在有机溶剂中有更好的溶解度。
DNA疏水相互作用色谱利用了DNA在不同疏水溶剂中的溶解度差异,通过改变溶剂的质量浓度和类型,实现对DNA的分离和分析。
在DNA疏水相互作用色谱中,通常以有机溶剂和水为移动相,DNA 在移动相中的溶解度受到溶剂种类和浓度的影响,从而根据DNA分子在固相和移动相中的相互作用来进行色谱分离。
疏水性相互作用色谱
应用
主要用于分离纯化大分子物质。
六、疏水性相互作用色谱的应用及特点
应用
HIC主要用于蛋白质类生物大分子的分离纯化。这种方法 与IEC的离子交换作用完全不同。 它不仅是一种有效的分离纯化手段,而且还可与IEC互补短 长,分离纯化利用IEC难以分离的蛋白质。
但是,疏水性相互作用机理比较复状。吸附剂的选择和洗脱 分离条件不易掌握。
五.疏水性相互作用色谱(HIC)的操作
疏水性相互作用色谱在蛋白质的分离过程中由 于机理比较复杂,吸附剂的选择和洗脱分离条件 不易掌握所以难以取得良好的分离效果。因此, 在利用HIC 分离蛋白质的混合物时,需事先利用 各种小型预装柱进行吸附与洗脱实验,确定最佳 吸附剂和洗脱分离条件分离溶剂。 吸附生物大分子采用柱层析法,装柱和拆柱与 其他类型的柱层析法相同。 为了使要分离的生物大分子能紧密结合在柱上, 选择适当的缓冲液、pH和离子强度,也要考虑温 度因素。
疏水性相互作用色谱 (HIC)
目录
一、概念 二、原理 三、疏水性的吸附剂 四、影响疏水性吸附的因素 五、疏水性相互作用色谱的操作 六、HIC的特点及应用
疏水性相互作用色谱
一、概念
疏 水 性 相 互 作 用 色 谱 (Hydrophobic interaction chromatography , HIC) 是利用表面偶联弱疏水性基团 ( 疏水性配 基)的疏水性吸附剂为固定相,根据蛋白质与疏水性吸附剂之间 的弱疏水性相互作用的差别进行蛋白质类生物大分子分离纯化 的洗脱层析法。
六、疏水性相互作用色谱的应用及特点
特点
HIC可作为IEC的补充工具。 可直接分离盐析后的蛋白质 可通过调节疏水性配基链长和密度调节HIC的吸附力 疏水性吸附剂种类多,选择余地大,价格与离子交换 剂相当
第九节--疏水作用色谱
第九节疏水作用色谱疏水作用色谱(Hydrophobic interaction chromatography HIC)是采用具有适度疏水性的填料作为固定相,以含盐的水溶液作为流动相,利用溶质分子的疏水性质差异从而与固定相间疏水相互作用的强弱不同实现分离的色谱方法。
关于在疏水作用色谱条件下进行分离的概念最早在1948年就由Tiselius提出,该技术真正得到发展和应用是在20世纪70年代早期开发出一系列适合进行疏水作用色谱的固定相以后。
此后随着新型色谱介质的开发生产和对机理认识的逐步深人,该技术得到了广泛的应用,并且随着高效疏水作用色谱介质的出现,HIC已在HPLC平台上被使用,称为高效疏水作用色谱(High performance hydrophobic interaction chromatography HP-HIC)。
由于疏水作用色谱的分离原理完全不同于离子交换色潜或凝胶过滤色谱等色谱技术,使得该技术与后两者经常被联合使用分离复杂的生物样品。
目前该技术的主要应用领域是在蛋白质的纯化方面,成为血清蛋白、膜结合蛋白、核蛋白、受体、重组蛋白等,以及一些药物分子,甚至细胞等分离时的有效手段。
一、疏水作用色谱基本原理(一) 疏水作用疏水作用是一种广泛存在的作用,在生物系统中扮演着重要角色,它是球状蛋白高级结构的形成、寡聚蛋白亚基间结合、酶的催化和活性调节、生物体内一些小分子与蛋白质结合等生物过程的主要驱动力,同时也是磷脂和其他脂类共同形成生物膜双层结构并整合膜蛋白的基础。
根据热力学定律,当某个过程的自由能变化(△G)为负值时,该过程在热力学上是有利的,能够自发发生,反之则不能。
而根据热力学公式△G=△H一T△S (6.9-1) 式中,△G是由该过程的烩变(△H) ,熵变(△S)和热力学温度(T)决定的。
当疏水性溶质分子在水中分散时,会迫使水分子在其周围形成空穴状结构将其包裹,此有序结构的形成会导致熵的减小(△S<0),致使△G为正值,在热力学上不利。
第九节 疏水作用色谱
第九节疏水作用色谱疏水作用色谱(Hydrophobic interaction chromatography HIC)是采用具有适度疏水性的填料作为固定相,以含盐的水溶液作为流动相,利用溶质分子的疏水性质差异从而与固定相间疏水相互作用的强弱不同实现分离的色谱方法。
关于在疏水作用色谱条件下进行分离的概念最早在1948年就由Tiselius提出,该技术真正得到发展和应用是在20世纪70年代早期开发出一系列适合进行疏水作用色谱的固定相以后。
此后随着新型色谱介质的开发生产和对机理认识的逐步深人,该技术得到了广泛的应用,并且随着高效疏水作用色谱介质的出现,HIC已在HPLC平台上被使用,称为高效疏水作用色谱(High performance hydrophobic interaction chromatography HP-HIC)。
由于疏水作用色谱的分离原理完全不同于离子交换色潜或凝胶过滤色谱等色谱技术,使得该技术与后两者经常被联合使用分离复杂的生物样品。
目前该技术的主要应用领域是在蛋白质的纯化方面,成为血清蛋白、膜结合蛋白、核蛋白、受体、重组蛋白等,以及一些药物分子,甚至细胞等分离时的有效手段。
一、疏水作用色谱基本原理(一) 疏水作用疏水作用是一种广泛存在的作用,在生物系统中扮演着重要角色,它是球状蛋白高级结构的形成、寡聚蛋白亚基间结合、酶的催化和活性调节、生物体内一些小分子与蛋白质结合等生物过程的主要驱动力,同时也是磷脂和其他脂类共同形成生物膜双层结构并整合膜蛋白的基础。
根据热力学定律,当某个过程的自由能变化(△G)为负值时,该过程在热力学上是有利的,能够自发发生,反之则不能。
而根据热力学公式△G=△H一T△S (6.9-1) 式中,△G是由该过程的烩变(△H) ,熵变(△S)和热力学温度(T)决定的。
当疏水性溶质分子在水中分散时,会迫使水分子在其周围形成空穴状结构将其包裹,此有序结构的形成会导致熵的减小(△S<0),致使△G为正值,在热力学上不利。
第九节疏水作用色谱
第九节疏水作用色谱疏水作用色谱(Hydrophobic interaction chromatography HIC)是采用具有适度疏水性的填料作为固定相,以含盐的水溶液作为流动相,利用溶质分子的疏水性质差异从而与固定相间疏水相互作用的强弱不同实现分离的色谱方法。
关于在疏水作用色谱条件下进行分离的概念最早在1948年就由Tiselius提出,该技术真正得到发展和应用是在20世纪70年代早期开发出一系列适合进行疏水作用色谱的固定相以后。
此后随着新型色谱介质的开发生产和对机理认识的逐步深人,该技术得到了广泛的应用,并且随着高效疏水作用色谱介质的出现,HIC已在HPLC平台上被使用,称为高效疏水作用色谱(High performance hydrophobic interaction chromatography HP-HIC)。
由于疏水作用色谱的分离原理完全不同于离子交换色潜或凝胶过滤色谱等色谱技术,使得该技术与后两者经常被联合使用分离复杂的生物样品。
目前该技术的主要应用领域是在蛋白质的纯化方面,成为血清蛋白、膜结合蛋白、核蛋白、受体、重组蛋白等,以及一些药物分子,甚至细胞等分离时的有效手段。
一、疏水作用色谱基本原理(一) 疏水作用疏水作用是一种广泛存在的作用,在生物系统中扮演着重要角色,它是球状蛋白高级结构的形成、寡聚蛋白亚基间结合、酶的催化和活性调节、生物体内一些小分子与蛋白质结合等生物过程的主要驱动力,同时也是磷脂和其他脂类共同形成生物膜双层结构并整合膜蛋白的基础。
根据热力学定律,当某个过程的自由能变化(△G)为负值时,该过程在热力学上是有利的,能够自发发生,反之则不能。
而根据热力学公式△G=△H一T△S (6.9-1) 式中,△G是由该过程的烩变(△H) ,熵变(△S)和热力学温度(T)决定的。
当疏水性溶质分子在水中分散时,会迫使水分子在其周围形成空穴状结构将其包裹,此有序结构的形成会导致熵的减小(△S<0),致使△G为正值,在热力学上不利。
dna 疏水相互作用色谱原理
DNA疏水相互作用色谱是一种用于分离和纯化DNA的技术,其原理基于DNA与疏水相互作用的特性。
在疏水相互作用色谱中,使用了含有疏水性固定相的柱子,通过DNA分子与固定相之间的疏水作用来实现DNA的分离。
具体原理如下:
1.疏水性固定相:色谱柱填充有疏水性固定相,常用的固定相包括疏水性树脂或疏水
修饰的聚合物。
这些固定相具有较强的疏水性质,能够与DNA中的疏水部分发生相互作用。
2.DNA样品加载:待分离的DNA样品通过柱子时,DNA分子中的碱基对和疏水区域
会与固定相发生疏水相互作用,从而使DNA分子滞留在色谱柱中,而非极性或疏水性较低的杂质则会迅速流过色谱柱。
3.洗脱:在DNA样品加载完成后,通过改变溶剂条件(如溶剂类型、浓度或pH 值
等),可以改变DNA与固定相之间的相互作用强度,进而实现DNA分子的逐步洗脱。
DNA疏水相互作用色谱的原理基于DNA分子的结构特性和与固定相的相互作用,通过调控疏水相互作用的强度来实现DNA的选择性吸附和洗脱分离。
这种方法通常用于分离DNA的不同构象或大小,以及用于DNA的富集和纯化等应用。
(完整版)第九节疏水作用色谱
第九节疏水作用色谱疏水作用色谱(Hydrophobic interaction chromatography HIC)是采用具有适度疏水性的填料作为固定相,以含盐的水溶液作为流动相,利用溶质分子的疏水性质差异从而与固定相间疏水相互作用的强弱不同实现分离的色谱方法。
关于在疏水作用色谱条件下进行分离的概念最早在1948年就由Tiselius提出,该技术真正得到发展和应用是在20世纪70年代早期开发出一系列适合进行疏水作用色谱的固定相以后。
此后随着新型色谱介质的开发生产和对机理认识的逐步深人,该技术得到了广泛的应用,并且随着高效疏水作用色谱介质的出现,HIC已在HPLC平台上被使用,称为高效疏水作用色谱(High performance hydrophobic interaction chromatography HP-HIC)。
由于疏水作用色谱的分离原理完全不同于离子交换色潜或凝胶过滤色谱等色谱技术,使得该技术与后两者经常被联合使用分离复杂的生物样品。
目前该技术的主要应用领域是在蛋白质的纯化方面,成为血清蛋白、膜结合蛋白、核蛋白、受体、重组蛋白等,以及一些药物分子,甚至细胞等分离时的有效手段。
一、疏水作用色谱基本原理(一) 疏水作用疏水作用是一种广泛存在的作用,在生物系统中扮演着重要角色,它是球状蛋白高级结构的形成、寡聚蛋白亚基间结合、酶的催化和活性调节、生物体内一些小分子与蛋白质结合等生物过程的主要驱动力,同时也是磷脂和其他脂类共同形成生物膜双层结构并整合膜蛋白的基础。
根据热力学定律,当某个过程的自由能变化(△G)为负值时,该过程在热力学上是有利的,能够自发发生,反之则不能。
而根据热力学公式△G=△H一T△S (6.9-1) 式中,△G是由该过程的烩变(△H) ,熵变(△S)和热力学温度(T)决定的。
当疏水性溶质分子在水中分散时,会迫使水分子在其周围形成空穴状结构将其包裹,此有序结构的形成会导致熵的减小(△S<0),致使△G为正值,在热力学上不利。
第九节--疏水作用色谱
第九节疏水作用色谱疏水作用色谱(Hydrophobic interaction chromatography HIC)是采用具有适度疏水性的填料作为固定相,以含盐的水溶液作为流动相,利用溶质分子的疏水性质差异从而与固定相间疏水相互作用的强弱不同实现分离的色谱方法。
关于在疏水作用色谱条件下进行分离的概念最早在1948年就由Tiselius提出,该技术真正得到发展和应用是在20世纪70年代早期开发出一系列适合进行疏水作用色谱的固定相以后。
此后随着新型色谱介质的开发生产和对机理认识的逐步深人,该技术得到了广泛的应用,并且随着高效疏水作用色谱介质的出现,HIC已在HPLC平台上被使用,称为高效疏水作用色谱(High performance hydrophobic interaction chromatography HP-HIC)。
由于疏水作用色谱的分离原理完全不同于离子交换色潜或凝胶过滤色谱等色谱技术,使得该技术与后两者经常被联合使用分离复杂的生物样品。
目前该技术的主要应用领域是在蛋白质的纯化方面,成为血清蛋白、膜结合蛋白、核蛋白、受体、重组蛋白等,以及一些药物分子,甚至细胞等分离时的有效手段。
一、疏水作用色谱基本原理(一) 疏水作用疏水作用是一种广泛存在的作用,在生物系统中扮演着重要角色,它是球状蛋白高级结构的形成、寡聚蛋白亚基间结合、酶的催化和活性调节、生物体一些小分子与蛋白质结合等生物过程的主要驱动力,同时也是磷脂和其他脂类共同形成生物膜双层结构并整合膜蛋白的基础。
根据热力学定律,当某个过程的自由能变化(△G)为负值时,该过程在热力学上是有利的,能够自发发生,反之则不能。
而根据热力学公式△G=△H一T△S (6.9-1) 式中,△G是由该过程的烩变(△H) ,熵变(△S)和热力学温度(T)决定的。
当疏水性溶质分子在水中分散时,会迫使水分子在其周围形成空穴状结构将其包裹,此有序结构的形成会导致熵的减小(△S<0),致使△G为正值,在热力学上不利。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Extraction
Separation
• How is this achieved?
Purity & characterization
General Concept
Hydrophobic Interaction Chromatography
Experimental Technique
■ Choice of column → XK colums for HIC. • Column dimensions → Short bed height (5-15 cm) suitable for HIC ■ Packing of Column: a modern, highly
crosslinked agarose-based gel such as Sepharose Fast Flow is however easier than packing a gel filtration column since the bed height required is much smaller.
Principle
•
Source of protein
•
Separation of substances is based on their varying strength of interaction with hydrophobic groups attached to an uncharged gel matrix Hydrophobic groups on proteins are sufficiently exposed to bind to the hydrophobic groups on the matrix.
Contents
→ Purpose → Principle of HIC → Advantages of using HIC → What are the factors affecting HIC → Conclusion
Source of protein
Extraction
Separation
Hydrophobic interaction chromatography
Umair Saleem Methods in protein chemistry
■ Alternatives
• Gel filtration chromatography • Ion exchange chromatography • Reverse phase chromatography Why HIC? • Different basis of separation • Weaker interactions → Less structural damage → Maintain high activity
OH O C H 2 C H CH 2 O ( C H 2) 3 CH 3 Butyl
OH O CH 2 C H CH 2 O
( C H 2) 7
CH 3
Octyl
OH O C H 2 C H CH 2 O
Phenyl
Effects of ligand density
Degree of substitution • ‰ Binding capacity of protein to HIC increases with increased alkyl chain length (A) and increased degree of substitution of immobilized ligand (B) • ‰ Caution: protein can bind via multipoint attachment, thus difficult to elute
Samples with high ionic strength can be used
Well suited to use before gel filtration, ion-exchange and affinity chromatography Sample eluted with low salt Purification steps that generate large sample volume can be coupled with this method
Good for samples after ammonium sulfate fractionation. These techniques may require pretreatment of samples (e.g. reducing ionic strength) Sample can be used in ion exchange chromatography step
■ Sample preparation • Sample composition • Sample volume • Sample viscosity ■ Sample application ■ Batch Separation
Advantages of HIC
Large volume of sample can be loaded
Purity & haracterization
■ Purpose
• Downstream purification • Separation of biomolecuoles • Exploits differences in hydrophobicity. → Number of hydrophobic aminoacids. → Distribution of these aminoacids.
Factors affecting HIC
Type
and concentration of ligand Type of base matrix. Type and concentration of salt pH Temperature Additives
HIC Ligands