汽车构造_配气机构
汽车发动机的构造与维修(第二版)-电子演示文稿-配气机构构造与维修
1.故障现象 发动机发生类似普通机械气门脚响的现象。
3.6 配气机构异响的诊断
2.原因分析
3.6 配气机构异响的诊断
3.排除方法 (1)拆卸机油底壳,检查更换机油泵、集滤器; (2)调整机油液面或更换机油; (3)拆检配气机构; (4)更换液力挺柱或气门导管。
3.6 配气机构异响的诊断
3.6 配气机构异响的诊断
2.原因分析
3.6 配气机构异响的诊断
3.诊断流程
请点击图片观看大图
3.7 配气机构维修
配气机构的修理就是修复或更换新件,使配气正时、密封严密。 气门检查主要是检查它的: 1.弯曲度 2.气门杆的磨损程度 点击观看视频:检察气门杆的磨损程度.wmv 3.气门长度 4.进气门密封锥面母线长度等。
一、发动机密封性检测的目的
现象:发动机输出功率小,提速不快,油耗增加等,其影响的重要原 因之一就是密封性变差。对发动机密封性能参数进行检测、综合分析 及检修是改善发动机动力性能的重要手段。
二、发动机密封性检测的项目
1.气缸压缩压力 2.曲轴箱窜气量 3.气缸漏气量 4.进气歧管真空度 气缸压缩压力能反映气缸活塞组、气门与气门座、气缸垫的密封性。
启。从排气门开始开启到下止点所对应的曲轴转角
排气滞后角:活塞过上止点,排气门才关闭。从上止点到排气
门关闭所对应的曲轴转角
排气门开启持续时间内曲轴转角: +180°+
四、气门叠开:
进气门在上止点前开启,排气门在上止点后关闭,出现在一段时
间内进排气门同时开启现象。重叠的曲轴转角为: +
3.5 发动机密封性检测
三、正时齿轮(齿形带)响
1.故障现象 (1)声响比较复杂,有时有节奏,有时无节奏,有时间隙响,有时 又是连续响。 (2)发动机怠速运转或转速有变化,在正时齿轮室盖处发出杂乱而 轻微的噪声;转速提高后噪声消失;急减速时,此噪声尾随出现。 (3)有的声响不受温度和单缸断火试验的影响;有的声响受温度影 响,温度降低时无噪声,温度正常后才出现噪声。 (4)有的声响伴随正时齿轮室盖振动,有的声响不伴随振动。
汽车构造课件—配气机构
汽车工程系
3
§2 配气机构的布置及驱动
一、气门布置
现代汽车发动机都 采用气门顶置式配
气机构。
压缩比受到限制, 进排气门阻力较大, 发动机的动力性和 高速性均较差,逐
渐被淘汰。
汽车工程系
配时,在气门杆尾端与气门驱动零件(摇臂、挺柱或 凸轮)之间留有适当的间隙。
凸轮轴
气门 进气门 排气门
间隙 0.25~0.30mm 0.30~0.35mm
气 门杆
汽车工程系
8
实物图
测量气门间隙
拧松紧定螺母,调整调节螺钉
汽车工程系
9
§2 配气相位
气门的开启和关闭时刻,以及所经历的曲轴转角,称为
配气相位
➢ 当发动机转速下降到设定值,电脑切断电磁阀电流, 正时活塞一侧油压下降,各摇臂油缸孔内的活塞在回 位弹簧作用下,三个摇臂彼此分离而独立工作。
汽车工程系
29
VTEC工作原理
四个活塞 安装处
汽车工程系
30
发动机控制ECU根据发动机转速、负荷、冷却液温度 和车速信号控制VTEC电磁阀。电磁阀通电后,通过压力开
3、正时标记对准,活塞与气门 相对位置确定,保证了配气相 位和点火顺序。
汽车工程系
22
B、链条和齿形皮带传动:用于中置式或顶置式凸轮
中间轴齿形 带轮
曲轴正时齿 形带轮
汽车工程系
23
汽车工程系
24
其它部件
汽车工程系
25
可变配气机构
气门可变机构 配气相位可变机构 气门定时和气门升成可变机构
汽车构造课件-配气机构
B、头部承受气体压力、气门弹簧力等,
C、冷却和润滑条件差,
D、被气缸中燃烧生成物中的物质所腐蚀。
性能:
头部
强度和刚度大、耐热、耐腐蚀、耐磨
进气门570K~670K(铬钢 或铬镍钢)
排气门1050K~1200K(硅 铬钢)
气门头部的结构形式
平顶式
结构简单,制造方便,吸热面积小,质量也较小,进、 排气门都可采用。
气门间隙 调节螺钉
调节螺母
摇臂
易磨损部位 堆焊耐磨合金
摇臂结构示意图
摇臂轴套
易断裂处
2、气门座
气门座: 气缸盖的进、排气道与气门锥面相结 合的部位。
作用: 靠其内锥面与气门锥面的紧密贴合密封气缸。 接受气门传来的热量。
气门密封干涉角: 比气门锥角大0.5~1度的气门座圈锥角。
气门座
气门座圈: 以较大过盈量镶嵌在气门座上的圆环。
镶嵌式气门座特点: 优点:提高气门座的使用寿命,便于更换。 缺点:导热性差,加工精度高,脱落时易造成严重 事故。
凸轮轴
凸轮轴正 时齿轮
推杆 挺柱
凸轮轴
作用: 驱动和控制各缸气门的开启和关闭,使其符合发动机的
工作顺序、配气相位和气门开度的变化规律等要求。 工作条件:
承受气门间歇性开启的冲击载荷。 材料:
优质钢、合金铸铁、球墨铸铁 结构:
凸轮
驱动分电器的螺旋齿轮
凸轮轴轴颈
凸轮
工作条件:
承受气门弹簧的张力,间歇性的 冲击载荷。
凸轮性能:
表面有良好的耐磨性,足够的刚 度。
凸轮与挺柱线接 触,接触压力大,
磨损快。
凸轮的轮廓
凸轮轮廓与气门的运动规律
缓冲结束点
气门升程最大时刻
汽车构造(上册)第3章 配气机构_OK
气门旋转机构:当气门工作时,如能产生缓慢的旋转
运动,可使气门头部周向温度分布比较均匀,从而
减少
44
小气门头部的热变形。同时,气门旋转时,在密封 锥面上产生轻微的摩擦力,能够清除锥面上的沉积
等螺距弹簧
非等螺距弹簧
变螺距弹簧
采用等螺距的单弹 簧,在其内圈加一 个过盈配合的阻尼45 摩擦片来消除共振
46
锥角作用: A、获得较大的气门座合压力,提高密封性和导热性
。 B、气门落座时有较好的对中、定位作用。 C、避免气流拐弯过边缘大应保而持降一定低的流厚 速。
度,1~3mm。
39
2.气门座 气门座概念:
气缸盖的进、排气道与气门锥面相结合的部位。 作用:
靠其内锥面与气门锥面的紧密贴合密封气缸。接受 气门传来的热量。
热作用。 工作条件: 工作温度较高,约500K。润滑困难,易磨
损。 材料: 用含石墨较多的铸铁,能提高自润滑作用。 装配: 气门与气门导管间隙0.05~0.12mm,确保气门
能在导管中自由运动。同时为防止过多润滑油进入 燃烧室,通常会在气门导管上安装橡胶油封。
42
气门导管
卡环:防止气门导 管在使用中脱落。
摇臂轴支座
摇臂称套
调整螺钉
定位弹簧
35
❖3.4 气门组
❖ 气门组件主要由气门、气门座、气门导管、气门弹 簧、气门锁夹零件组成。
要求: ①气门头部与气门座贴合严密; ②气门导管与气门杆上下运动有良好的导向; ③气门弹簧的两端面与气门杆的中心线相垂直; ④气门弹簧的弹力足以克服气门及其传动件的运动
惯性。
轮轴配气机构、顶置凸轮轴配气机构。
11
(3)按曲轴和配气凸轮轴的传动方式分 按曲轴和配气凸轮轴的传动方式可分为齿轮传动、 链传动和齿带传动。
汽车构造-第三章-配气机构
二、气门座和气门座圈
(5) 是否镶座的几种情况 1) 铝合金气缸盖必须镶双座圈,因其耐磨、耐热性差。 2) 有的汽油机的排气门镶座圈,而进气门不镶座圈。因为
排气门座热负荷大,而进气管中真空度大,会从气门导管间 隙吸进少量机油,对进气门座进行润滑。 3)柴油机一般情况是进、排气门都镶座,有的柴油机只镶进气 门座圈,这是由于柴油机的废气往往在排气过程中还有未燃 完的柴油,可对排气门座进行润滑。而柴油机因没有节气门, 进气管中真空度小,难以从进气门导管处吸进机油,对进气 门座进行润滑。
4、顶置气门配气机构的分类 (1)按凸轮轴的位置 (2)按气门驱动形式 (3)按凸轮轴传动的形式 (4)按每缸气门数及其排列方式
第一节 配气机构的功用和组成
4、顶置气门配气机构的分类 (1)按凸轮轴的位置 凸轮轴下置式、凸轮轴中置式、凸轮轴上置式。
凸轮轴下置式
凸轮轴中置式
第二节配气定时及气门间隙
气门间隙过大过小的危害? 间隙过小: 热态下使气门关闭不严而发生漏气,导致功率下降,
甚至烧坏气门。 间隙过大: (1)将在气门与气门座以及各传动件之间产生撞击和
响声。(2)使气门开启的持续时间减少,气缸充气 和排气情况变坏。
气门间隙
可变配气定时机构
180º+α+β
第二节配气定时及气门间隙
排气提前角:从排气门开启到活塞到达下止点,曲 轴转角;γ一般为:40º-80º
排气迟后角:从排气行程上止点到排气门关闭,曲 轴转角;δ一般为:10º-30º
排气持续角:排气门开启持续时间的曲轴转角。 180º+γ+δ
第二节配气定时及气门间隙
(1)进气提前的目的 进气开始时进气门有较大的开度或较大的进气通过
汽车构造-配气机构1
配气机构的功用 功用是按照发动机各缸工作过程的需要,准时地开闭进、排气门,向气 功用 缸供给可燃混合气(汽油机)或新鲜空气(柴油机)并及时排出废气。目前广泛采用气 门顶置式配气机构,气门侧置式配气机构已被淘汰。
气门式配气机构由气门组和气门传动组两部分组成,每组零件的组成则与气门位 置、凸轮轴位置和气门驱动形式等因素有关。
气门弹簧用于使气门回位,保证气门关闭时气门与气门座之间的密封,开启时气 门不因运动产生的惯性力而脱离凸轮。气门弹簧多为螺旋弹簧,一端支承在气缸盖上 ,另一端压靠在气门杆尾端的弹簧座上。当气门弹簧的工作频率与其自然振动频率相 等或成某一倍数时,将会发生共振,造成气门反跳、落座冲击,并可使弹簧折断。
共振
充纳排气门 液态
气门头部是一个具有圆锥斜面的圆盘,气门锥角一般为45°,少数进气门30°,气门头 边缘应保持一定厚度,一般为1~3 mm,以防工作中冲击损坏和被高温烧蚀。气门密封锥面 与气门座配对研磨。
气门头顶部形状有平顶、凹顶和凸顶。平顶结构简单,制造方便,吸热面积小,进、排 气门均可。 凹顶头部与杆部过渡部分流线形好,进气阻力小,质量轻,用于进气门。凸顶用于排气 门,强度大,排气阻力小,但吸热面积大,质量大,加工复杂。
三、气门导管
气门导管的功用是对气门的运动导向,使气门与气门座能正确贴合,并将气门杆 接受的热量传给气缸盖。一般用灰铸铁 球墨铸铁 铁基粉末冶金 灰铸铁、球墨铸铁 铁基粉末冶金制造,靠配气机构 灰铸铁 球墨铸铁或铁基粉末冶金 工作时飞溅起来的机油来润滑,气门油封控制进入气门导管孔内的机油。
四、气门弹簧
两气门
四气门
16.正时齿形带 17.凸轮轴正时齿形带轮 19.曲轴正时齿形带轮 25.排气门 26.进气门 27.气缸体 28.气缸盖 29.液压挺柱 30.凸轮轴
汽车构造课件--配气机构
三、凸轮轴的传动方式及传动比
凸轮轴由曲轴带动旋转,其传动方式有齿轮传动、链传动和齿形带传动。
1. 齿轮传动 齿轮传动多用于凸轮轴下置(或凸轮轴中置)
式配气机构中,如图所示。一般从曲轴到凸轮轴的 传动只需要一对正时齿轮,必要时可加装中间齿轮。 为了啮合平稳,减小噪声,正时齿轮多采用圆柱斜 齿轮,并用不同材料制成。曲轴正时齿轮常用中碳 钢来制造,而凸轮轴正时齿轮则常用铸铁或夹布胶 木制成。东风EQ6100—1型、解放CA6102型发动机 采用这种传动方式。
配气相位
概述
配气机构的主要部件
3. 齿形带传动
齿形带传动多用于凸轮 轴上置式配气机构中,如图 所示。齿形带一般用氯丁橡 胶制成。与链传动相比,齿 形带传动具有传动平稳、噪 声小、质量轻、不需要润滑, 且制造成本低等优点。另外, 齿形带伸长量小,有利于发 动机正时的精确控制。因此, 齿形带传动被越来越多的汽 车发动机,特别是轿车发动 机所采用。如桑塔纳JV型、 奥迪JW型发动机均采用齿 形带传动。
概述
配气机构的主要部件
配气相位
2.凸轮轴中置式配气机构
如图所示,凸轮轴位于气缸体上 部,这种形式将推杆缩短或适当加长 挺柱后去掉推杆,提高了刚度,减轻 了往复运动件的质量,有利于发动机 转速的提高,但由于凸轮轴与曲轴间 的距离增大,已不可能直接采用正时 齿轮来传动,需增加中间齿轮(惰性 轮)或采用链条传动方式。如玉柴 YC6105Qc型、依维柯8210.22型发动 机采用这种结构形式。
概述
配气机构的主要部件
配气相位
四冲程车用发动机大都采用气门式配气机构。其结构形式多种多样: 1、按气门布置形式不同分为:气门顶置式和气门侧置式; 2、按凸轮轴布置形式不同分为:凸轮轴下置式、凸轮轴中置式和凸轮轴上置式; 3、按曲轴和凸轮轴的传动方式不同分为:齿轮传动式、链条传动式和齿形带传动式。
三《汽车构造》配气机构(题库加答案)
三《汽车构造》配气机构(题库加答案)第三章配气机构一、选择题1.气门烧损与变形现象主要发生在()。
(B)(A)进气门(B)排气门(C)进排气门处均有(D)不一定2.对于非增压的发动机来讲,充气系数η值总是()。
(B)(A)大于1(B)小于1(C)等于1(D)大于等于13.六缸发动机(1-5-3-6-2-4)第一缸处于压缩上止点时,第六缸的两气门处于()状态。
(A)(A)两气门都开启(B)两气门都关闭(C)只有进气门开启(D)只有排气门开启 4.进、排气门在压缩上止点时()CA.进气门开,排气门关B.排气门开,进气门关C.进、排气门全关D.进、排气门全开5.进、排气门在进气下止点时()。
AA.进气门开、排气门关B.进气门关、排气门开C.进气门开、排气门开D.进气门关、排气门关6.为了获得较大的充气系数,一般进气门锥角是()。
BA.35°B. 30°C.40°D.45°7.气门间隙()会影响发动机配气相位的变化。
CA.过大B.过小C.过大和过小D.都不是8.气门座与()一同对气缸起密封作用。
AA气门头部B.气门杆身C.气门弹簧D.气门导管9.()气门弹簧的刚度,就能提高气门弹簧的自然震动频次。
AA.提高B.降低C.扩大D.缩小10.在气门传动组中,()将凸轮的推力传给推杆。
AA.挺住B.气门杆C.气门弹簧D.气门座圈11.调解直列四冲程六缸发起机(1-5-3-6-2-4)气门,当第六缸处于压缩上止点时,第二缸调()。
(B)(A)进气门(B)排气门(C)都可调(D)都不可调12.四冲程发动机曲轴,当其转速为3000r/min时,则同一气缸的进气门,在1min时间内开闭次数应该是()。
(B)(A)3000次(B)1500次(C)750次(D)6000次13.安装不等距气门弹簧时,向着气缸盖的一端应该是()。
(A)(A)螺距小的(B)螺距大的(C)没有区别(D)以上都不是14.曲轴正时齿轮与凸轮轴正时齿轮的传动比是()。
4 汽车构造-第三章 配气机构
2020/11/17
21
第三节 配 气 相 位
一、进气门配气相位
2.进气迟后角β
在进气行程活塞到达下止点过后,活塞又上行一段时间,进气门才关闭。从 下止点到进气门关闭所对应的曲轴转角称为进气迟后角β。
进气门迟后关闭的目的,是由 于活塞到达下止点时,气缸内 压力仍低于大气压力,气流还 有相当大的惯性,仍可以利用 气流惯性和压力差继续进气。
排气过程持续t:180+ γ + δ
24
动画演示
动画演示
2020/11/17
25
第三节 配 气 相 位
三、气门重叠 由于进气门在上止点前即开启,而排气门在上止点后才关闭,这就出现了在 一段时间内进、排气门同时开启的现象,这种现象称为气门重叠,同时开启 的曲轴转角(α+δ)称为气门重叠角。
在这一重叠时间内,由于进气歧管内的新鲜 气流和排气歧管内的废气流的流动惯性都比 较大,致使气缸内的气体在短时间内是不会 改变流向的。所以只要气门重叠角选择适当, 就不会有废气倒流入进气歧管和新鲜气体随 同废气排出的可能性。相反,由于废气气流 周围有一定的真空度,对排气速度有一定影 响,从进气门进人的少量新鲜气体可对此真 空度加以填补,还有助于废气的排出。
凸轮轴上置式 配气机构
齿形带传 动
曲轴→齿形 皮带→凸轮 轴正时齿轮
成本低,但 凸轮轴上置式 工作性能好 配气机构
2020/11/17
15
第二节 配气机构的布置形式
四、气门数目及排列方式 一般发动机都采用每缸两气门,即一个进气 门和一个排气门的结构。随着发动机转速的 提高,需要进一步改善气缸的换气性能。因 此,目前高性能发动机普遍每缸采用多气门 结构(三、四、五个气门)。如日本丰田、 德国大众VR6等汽车发动机采用每缸三气门 结构;广州本田雅阁、奥迪V8、欧保V6、奔 驰320E型等发动机采用每缸四气门结构(图 3-9);
汽车构造与拆装 任务2.4.1 配气机构认知与拆装
(a)OHV(底置凸轮轴)式;
(b)SOHC(单顶置凸轮轴)式
技术站办理的货物列车和气货车门传动组
【气门组】——气门挺柱
(a)气门开始开启
(b)气门开度最大位置
(c)气门关闭位置
气门传动组
气门传动组
气门传动组
气门传动组
气门传动组拆装流程
气门传动组拆装流程
气门传动组拆装流程
或凸轮轴直接驱动气门。它省去了挺柱 和推杆,使往复运动质量大大减小,因
此它适用于高速发动机。
技术站办理的货物列车配和气货车机构的类型
按凸轮轴的传动方式分
1、齿轮传动 可靠性高,寿命长;但要求较高的制造
和安装精度,成本较高;
齿轮传动
技术站办理的货物列车配和气货车机构的类型
按凸轮轴的传动方式分
链传动
要求:足够的强度、刚度、耐磨、耐高温、耐腐蚀、 耐冲击材料
进气门:合金钢(铬钢或镍铬等); 排气门:耐热合金钢(硅铬钢等)
技术站办理的货物列车和货车气门组
【气门组】——气门
技术站办理的货物列车和货车气门组
【气门组】——气门
平顶:结构简单,制造容易,吸热面积小, 质量小,进排气门均有采用。
凹顶:质量小;喇叭型顶头部与杆部流线 过渡,进气阻力小,适用于进气门。但顶部 受热面积大,不适合于排气门。
球顶:强度高,排气阻力小,废气的清除 效果好,适用于排气门。但受热面积大,质 量和惯性力大,加工复杂。
技术站办理的货物列车和货车气门组
【气门组】——气门
进、排气门数目相等,进 气门头部尺寸大(每缸二气 门、四气门)。
进气门数多的,排气门大。 (每缸三气门,二进一排; 每缸五气门,三进二排)
配气机构结构及工作原理
配气机构结构及工作原理配气机构,这个名字听起来就像个高大上的东西,其实说白了就是机器里面用来控制气体进出的部件。
想象一下,你的汽车发动机,它可不是简单地一转就能工作的,里面有一套复杂的配气机构在忙活。
这个机构的主要任务就是让空气和燃料在恰当的时机进入发动机,给它提供动力。
说到这里,大家是不是有点好奇了,配气机构是怎么一回事呢?咱们先来聊聊它的构造。
配气机构通常包括气门、凸轮轴、摇臂等等。
气门就像个守门员,专门负责打开和关闭,让空气和燃料能够顺利通过。
你要知道,如果气门不听话,发动机就得“闹脾气”,运转得很费劲。
凸轮轴的作用也很重要,它控制气门的开合,就像一个调皮的小孩,不时地来一下。
摇臂则是传递力量的“小帮手”,把凸轮轴的动作转化成气门的开关动作。
这样一来,整个配气机构就形成了一套默契的团队,缺一不可。
咱们聊聊它的工作原理。
发动机在工作时,活塞往下运动,形成负压,这时候气门就会打开,空气和燃油就顺利进来了。
然后,活塞往上运动,气门关上,空气和燃油混合物在气缸内被压缩。
等到压缩到一定程度,火花塞一发火,轰的一声,能量瞬间释放,发动机就“启动”了!听起来是不是很刺激?不过,这一切的顺利进行都离不开配气机构的“默默奉献”,它的每一次开合都是为了让发动机能高效运转。
配气机构也不是永远不出问题的。
气门可能会卡住,或者凸轮轴磨损得厉害。
这时候,发动机就会发出奇怪的声音,甚至动力下降。
就像人一样,长时间不运动,身体也会“跟不上”,所以定期检查配气机构就显得特别重要。
大家要记得,保养得当,才能让你的“机器小子”跑得飞快。
说到这里,很多人可能会觉得,配气机构的工作原理其实挺简单的。
是的,原理简单,但要想把它做得好,可就得花不少心思了。
汽车制造商在设计配气机构的时候,得考虑到很多因素,比如发动机的排量、转速,甚至是车主的驾驶习惯。
这些细节决定了配气机构的性能,直接影响到汽车的动力和油耗。
谁不想在开车时,既能享受速度,又能省油呢?此外,现代汽车越来越智能,配气机构也在不断进化。
汽车发动机构造与维修配气机构的构造与维修(2)教案优选全文
板
书
设
计
一、配气机构的拆装要点
二、进、排气门和一缸压缩行程上止点确认
三、气门组零件的检修
四、气门传动组零件的检修
教
学
反
思
理实一体,学练结合可提高学生的学习兴趣
作业
简述配气机构的拆装要点
备注
总之,在这一学年中,我不仅在业务能力上,还是在教育教学上都有了一定的提高。 金无足赤,人无完人,在教学工作中难免有缺陷,例如,课堂语言平缓,语言不够生动,理论知识不够,教学经验不足,组织教学能力还有待提高。在今后的工作中,我将更严格要求自己,努力工作,发扬优点,改正缺点
课题
项目三:配气机构的构造与维修(2)
课时安排
授课班级
授课时间
教
学
目
标
一、掌握配气机构的拆装要点
二、掌握进、排气门和一缸压零件的检修
教学重点与难点
配气机构的拆装要点、气门组和气门传动组零件的检修
教学方法与手段
多媒体展示、分组讨论、情景模拟、引导启发
进、排气门和一缸压缩行程上止点确认:1、进、排气门的确认,2、一缸压缩上止点的确定
听课、做笔记、举手用自己的语言描述配气机构的拆装要点
教学过程
教学
环节
内容
教学活动
教师
学生
二、知识点讲述
气门组零件的检修、气门传动组零件的检修
气门组零件的检修:1.气门与气门座的配合要求,2.气门的检修。
气门传动组零件的检修:1.凸轮轴及轴承的检修,包括凸轮磨损的检测 、凸轮轴弯曲变形的检修、凸轮轴轴颈的检修、正时齿轮轴颈键槽的检修。2、正时链轮和链条的检查。 3.同步带的定期更换。4.正时齿轮的检查。
汽车构造-配气机构之气门传动组
功用:将推杆和凸轮传来的力改变 方向,作用到气门杆以推开气门。
工作过程:实际是一个双臂杠杆。 润滑油道
1 Click here to add text.
调节螺母
摇臂
气门间隙 调节螺钉
易磨损部位 堆焊耐磨合金
摇臂轴套
2、正时机构的安装
(1)注意各机型正时标记的要求 (2)如传动机构为皮带,注意皮带的安装方向 (3)正时机构安装完成之后,不能逆时针旋转曲 轴
结构形式:筒式、滚轮式。
材普挺料通柱:镍硌合金、用合途金铸铁。
图示
筒式
气门顶置式
滚轮式
减小摩擦所造成的对挺柱 的侧向力。多用于大缸径 柴油机。
挺柱的旋转:
目的:使挺柱损均匀。
因挺柱工作时,由于受凸轮侧向推力的作用会 引起挺柱与导管之间单面磨损,又因挺柱底面与凸 轮始终在一处接触,也会造成磨损不均匀。
B、链条和齿形皮带传动:链条传动噪声小,用于中置式或顶 置式凸轮轴发动机。为了防止链条抖振,设有导链板和张紧 装置,张紧装置有机械式和液压式两种。
凸轮轴正时齿形带轮
张紧轮 中间轴齿形带轮 曲轴正时齿形带轮
挺柱
功用:将凸轮的推力传给推杆或气门,并承受凸轮轴旋转时 所
施加的侧向力。
挺柱的分类:普通挺柱和液压挺柱。
卡环 球形支座 进油口 柱塞
挺柱体
进油通道
柱塞腔
单向阀架 单向阀 柱塞弹簧 挺柱体腔
使用液力挺柱的发动机应注意以下问题:
1)对润滑油的压力和滤清质量要求较严格。当润滑 油压力过低时,补油能力下降,气门间隙大;
2)拆卸后,液力挺柱需要浸泡油,液力挺柱拆洗后, 装机前必须人工排气,否则起动困难;
3)拆卸时,各液力挺柱有顺序要求。
汽车构造-配气机构之气门组
气门座
气门导管
气门弹簧
1.气门组结构
主要组成:气门、气门座、气门导管、气门弹簧、弹簧座 及锁
片等。 要求:
弹簧座
➢气门头部与气门座贴合严密; ➢气门导管与气门杆上下运动有锁片
良好的导向;
➢气门弹簧的两端面与气门杆的 中心线相垂直;
➢气门弹簧的弹力足以克服气门气
气门弹簧座
锁片 气门弹簧
气门座圈锥角。
气门座圈:
以较大过盈量镶嵌在气门座上的圆环。 镶嵌式气门座特点: 优点:提高气门座的使用寿命,便于更换。 缺点:导热性差,加工精度高,脱落时易造 成严重事故。
气门座圈
气门导管
功用:为气门的运动导向,保证气门直线运动兼起导热作用。 工作条件:工作温度较高,约500K。润滑困难,易磨损。 材料:灰铸铁、球墨铸铁或铁基粉末冶金材料。 装配:气门导管内外圆柱面经加工后压入气缸盖的气门导管 孔中,然后再精铰内孔,并用卡环定位。气门杆与气门导管 间隙0.05~0.12mm。
装配前应将密 封锥面研磨。
气门座
气缸盖的进、排气道与气门锥面相结合的部位。
功用:与气门头部共同对气缸起密封作用,并接受气门传 来的热量。
工作条件:高温、磨损严重。
类型:直接镗出(进气门座)、
(气门座圈)镶嵌(排气门和铝合金发动机的
进、排气门座)。
气门密封干涉角:
比气门锥角大0.5~1度的 气门座
平顶式 结构简单,制造方便,吸热面积小,质量也较小,进、排气门都可采用。
适用于排气门,因为其强度高,排气阻力小,废气的清除效果好,但球形
球面顶 的受热面积大,质量和惯性力大加工较复杂。
凹顶头部与杆部的过渡部分具有一定的流线形,可以减少进气阻力,故适
3汽车构造课程教案-配气机构-电子教案
(三)配气相位图
(四)气门间隙
所谓气门间隙就是指:发动机在冷状态时,在气门传动机
气门弹簧的作用是使气门自动回位,防止气门传动机构中产生间隙,气门弹簧应具有足够的刚度和安装预紧力。
气门旋转机构,为了改善气门和气门座密封面的工作条件,可设法使气门在工作中能相对气门座缓慢旋转。
这样可使气门头沿圆周温度均匀,减小气门头部热变形。
气门缓慢旋转时在密封锥面上产生轻微的摩擦力,有阻止沉积物形成的自洁作用。
(二)气门传动组
气门传动组主要包括凸轮轴及正时齿轮、挺柱、导管、推杆、摇臂和摇臂轴等。
气门传动组的作用是使进、排气门能按配气相位规定的时刻开闭,且保证有足够的开度。
(1)凸轮轴(图3-21)上主要配置有各缸进、排气凸轮1,可以使气门按一定的工作次序和配气相位及时开闭,并保证气门有足够的升程。
凸轮受到气门间歇性开启的周期性冲击载荷,因此对凸轮表面要求耐磨,对凸轮轴要求有足够的韧性和刚度。
同一气缸的进、排气凸轮的相对角位置是与既定的配气相
该系统是利用进气管通道面积的变化形成可变系统来改善可燃混合气的混合和燃烧状况,如图3-38所示。
(三)进气管长度及面积可变进气系统
如图3-39所示,发动机在中小负荷,低速工作时,使用长而细的进气管,保证其经济性及低速的稳定性;而在高速、大负荷工况时,采用短而粗的进气管,提高了发动机的动力性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实物图
测量气门间隙
拧松紧定螺母,调正调节螺钉
(6)逆时针方向旋转曲轴180度(凸轮轴皮带轮转动90 度),“UP” 记号应在排气门侧。调节第3号气缸进、 排气门的间隙。
(7)继续逆时针方向转动曲轴180。使第4号 气缸活塞处于压缩上死点位置。调节第4 号气缸进、排气门的间隙。
(8)再逆时针转动曲轴180°。使第2号气缸活 塞处于压缩上死点位置,“UP”记号应在进气 门侧。调节第2号气缸进、排气门的间隙。
利用配气相位调节气门间隙
例:α=8º β=31º γ=28º δ=8º 点火次序:1—5—3—6—2—4 一缸在压缩上止点,问那些气门的间隙可调?
1缸
αδ
6缸
2缸
4缸
1—5—3—6—2—4
5缸
进气门
排气门
β
1缸
γ
2缸 3缸 4缸
3缸
5缸 6缸
可调
可调
可调
不可调
不可调
可调
不可调
不可调
不可调
不可调
可调
已趋于淘汰。
二、凸轮轴的布置型式
二、凸轮轴的布置型式
1、凸轮轴下置
有利因素:简化曲轴与 凸轮轴之间才传动装置, 有利于发动机的布置。
不利因素:凸轮轴与气 门相距较远,动力传递 路线较长,环节多,因 此不适用于高速发动机。
2、凸轮轴中置式
传动方式:凸轮轴 经过挺柱直接驱动 摇臂,省去了推杆。 应用:适用于发 动机转速较高时, 可以减少气门传动 机构的往复运动质 量。
调整螺钉
摇臂
挺柱
凸轮轴
活塞
3、凸轮轴上置式
凸轮轴
凸轮轴
特点: 凸轮轴与 气门距离近,不 需要推杆、挺柱, 使往复运动的惯 量减少。
双凸轮轴上置式发动机
应用:高速发动机 桑塔纳轿车发动机 活塞
a)凸轮摇臂驱动式
b)凸轮直接驱动式
GL1
三、气门间隙
1、概念:
气门间隙:为保证气门关闭严密,通常发动机在冷态装配时,在
凸轮轴正时 齿形带轮 张紧轮
中间轴齿 形带轮
曲轴正时 齿形带轮
2、挺柱
(1)作用:将凸轮的推力传给推杆或气门。 (2)挺柱的分类:
菌式
气门侧置式
筒式
气门顶置式
滚轮式
减小摩擦所造成的对挺柱 的侧向力。多用于大缸径 柴油机。
挺柱端面与凸轮的关系
锥形凸轮
由于气间隙的存在,配气机构工作时将产生冲击,而发出响声
气缸盖
伸入深度应适量。锥度 可减少气流阻力。
过盈配合
4、气门弹簧
功用:保证气门的回位。 材料:高锰碳钢、铬钒钢 锁片
气门弹簧座 气门弹簧
气门关闭
保证气门及时关 闭、密封 保证气门不脱离 凸轮
气门开启
气门弹簧的装配
气门弹簧
随着有效圈数的 减少,自然频率 提高。
不等螺距弹簧安装 时应注意什么问题?
1、气门
功用:燃烧室的组成部分,是气体进、出燃烧室通道的开关,承受冲击
力、高温冲击、高速气流冲击。
杆部
工作条件:
A、进气门570K~670K,排气门1050K~1200K。 B、头部承受气体压力、气门弹簧力等, C、冷却和润滑条件差, D、被气缸中燃烧生成物中的物质所腐蚀。
头部
性能:
进气门570K~670K(铬钢或 强度和刚度大、耐热、耐腐蚀、耐磨
思考题
1.气门顶置式配气机构有哪几种形式?各有何特点 及应用? 2.影响充气效率的因素主要有哪些? 3.如何从一根凸轮轴上找出各缸的进排气凸轮和该 发动机的发火顺序? 4.气门弹簧起什么作用,为什么在装配气门弹簧要 预先压缩? 5.挺柱的类型主要有哪些,液压挺柱有哪些优点? 6.可变进气系统主要有哪几种型式?
第三章
配气机构的构造与维修
第一节配气机构的构造和工作原理
一、配气机构功用: 按照发动机每个气缸内所进行的工作循环和发火次序的要 求,定时开启和关闭气缸的进、排气门,使新鲜可燃混合气( 汽油机)或空气(柴油机)得以及时进入气缸,废气得以及时从 气缸排出。
要求:开闭及时 开度足够 关闭严密
气门实物图
进气门 排气门
气门锥角
气门锥角:气门头部与气门座圈接触的锥面与气门顶 部平面的夹角。
锥角作用: A、获得较大的气门座合压力,提高密封性和导热性。 B、气门落座时有较好的对中、定位作用。 C、避免气流拐弯过大而降低流速。
边缘应保持 一定的厚度, 1~3mm。 装配前应将 密封锥面研 磨。
摇臂
推杆 凸轮轴正 时齿轮
挺柱
凸轮轴
作用: 驱动和控制各缸气门的开启和关闭,使其符合发动机的工作 顺序、配气相位和气门开度的变化规律等要求。 工作条件: 承受气门间歇性开启的冲击载荷。 材料: 优质钢、合金铸铁、球墨铸铁 结构:
凸轮
驱动分电器的螺旋齿轮
凸轮轴轴颈
空心凸轮轴 凸轮支架从原来的独立式变成了现在 的与气缸盖做成一体式结构。 紧凑型气缸盖 节省空间链式传动型配气机构。
3、气门推杆
作用: 将挺柱传来的推力传给摇臂。 工作情况: 是气门机构中最容易弯曲的零件。 材料: 硬铝或钢
4、摇臂
功用:将推杆或凸轮传来的力改变方向,作用到气门杆端以推开气门。
气门间隙 调节螺钉
调节螺母
摇臂
易磨损部位 堆焊耐磨合金
摇臂轴套 摇臂结构示意图
摇臂结构示意图
油槽 润滑油道
润滑油道
摇臂组示意图
气门杆
气门杆尾部: 环形槽、锁 销孔
凹槽
较高的加工精度,表面 经过热处理和磨光,保 证同气门导管的配合精 度和耐磨性
易断裂处
2、气门座
气门座: 气缸盖的进、排气道与气门锥面相结 合的部位。 作用: 靠其内锥面与气门锥面的紧密贴合密封气缸。 接受气门传来的热量。 气门密封干涉角: 比气门锥角大0.5~1度的气门座圈锥角。
点火顺序: 1—2—4—3
四缸发动机凸轮投影
凸轮轴的轴向定位:
作用: 为了防止凸轮轴在工作中产生轴向窜动和承受斜齿轮产生的轴向力。
气缸体 止推板
凸轮轴颈
窜动量
隔圈(调节环)
凸轮轴的 轴向间隙 利用调节环控制轴向窜动
正时齿轮
凸轮轴的驱动
A、齿轮传动:应用在下置凸轮轴发动 机。采用斜齿齿轮。
B、链条和齿形皮带传动:链条传动噪声小,用 于中置式或顶置式凸轮轴发动机。
铬镍钢) 排气门 1050K~1200K(硅铬钢)
气门头部的结构形式
平顶式
结构简单,制造方便,吸热面积小,质量也较小,进、排气 门都可采用。
适用于排气门,因为其强度高,排气阻力小,废气的清除效 凸 顶 式 ( 球 果好,但球形的受势面积大,质量和惯性力大加工较复杂。
面顶)
凹顶头部与杆部的过渡部分具有一定的流线形,可以减少进 凹 顶 式 ( 喇 气阻力,但其顶部受热面积大,故适用于进气门,而不宜用 叭顶) 于排气门。
配气机构概述
前面我们学习了发动机的工作原理,知道了发动一 个工作循环都要经过进气、压缩、做功、排气四个行 程,其中进气、排气过程中进排气门的打开和关闭都 跟活塞在气缸中的位置有一定的关联,这种联系要靠 什么机构来完成呢? 这就是发动机中的配气机构 下面我们就来了解一下,汽车发动机中的配气机构 的工作状况。
圆柱等螺距弹簧
不等距弹簧 圆柱形螺旋弹簧 应用:CA7560
双弹簧布置
旋向相反的 两个弹簧, 防止断裂的 弹簧卡入另 一弹簧
应用车型:
奥迪100,捷达,桑塔纳, 广州标致505
气门旋转机构
锥形套筒
锁片
二、气门驱动组
1、组成 2、功用:定时驱动气门开闭,并保证气门有足够的开度和适当的气门间隙。
摇臂轴 凸轮轴
齿轮传动
链条传动
曲轴→链条→凸轮轴正时齿轮
齿形带传动
曲轴→齿形皮带→凸轮轴正时齿轮
凸轮轴上置式 配气机构
传动方式图例
凸轮轴
齿形带传动装置
曲轴
片式链条张紧器
允许对链条施加较低的张紧力,实现低摩擦。 比带式更节省空间。
片式链条张紧器
3.3
配气机构的组件和工作情况
包括气门组和气门传动组
一、气门组
气门组实物图
液力挺柱可不预留间隙
结构: 性能: 消除了配气机构的 间隙,减小了各零 件的冲击载荷和噪 声提高发动机高速 时的性能。 卡环 球形支座 进油口 柱塞
柱塞腔
单向阀架
单向阀
挺柱体 进油通道
柱塞弹簧 挺柱体腔
桑塔纳发动机液压挺柱工作示意图
可不预留间隙,凸轮与挺柱始终贴合
单向阀
弹簧被压缩
气门关闭时
气门打开时
3.2 配气机构的布置和工作情况
一、气门的布置型式
一、气门的布置型式
1、气门顶置式 组成:
工作过程
特点: A、气门行程大,结构较复杂,燃烧室紧凑。 B、曲轴与凸轮轴传动比为2:1。
2、气门侧置式
进排气门都布置在气缸 的一侧,结构简单、零件数 目少。
气门布置在同一侧导致 燃烧室结构不紧凑、热量损 失大、进气道曲折、进气阻 力大,使发动机性能下降,
凸轮
工作条件:
表面有良好的耐磨性,足够的刚度。
凸轮性能:
承受气门弹簧的张力,间歇性的冲击 载荷。
凸轮与挺柱线接 触,接触压力大, 磨损快。
凸轮的轮廓
凸轮轮廓与气门的运动规律
气门升程最大时刻 缓冲结束点
气门开启点
气门关闭点
消除气门 间隙阶段
出现气门 间隙阶段
同名凸轮的相对角位置
同一气缸的进、排气凸轮的相对角位置是与相应的配 气相位相对应的。