反比例函数的图象和性质优秀教案

合集下载

反比例函数的图象与性质教案

反比例函数的图象与性质教案

反比例函数的图象与性质教案•相关推荐反比例函数的图象与性质教案范文(通用8篇)作为一名教师,时常会需要准备好教案,教案是教学蓝图,可以有效提高教学效率。

那么大家知道正规的教案是怎么写的吗?下面是小编精心整理的反比例函数的图象与性质教案范文,欢迎阅读与收藏。

反比例函数的图象与性质教案篇1教学目标知识与技能:1、进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。

2、体会函数的三种表示方法的相互转换,对函数进行认识上的整合。

3、培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。

过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力、情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。

教学重难点1) 重点:画反比例函数图象并认识图象的特点。

2)难点:画反比例函数图象。

教学关键:教师画图中要规范,为学生树立一个可以学习的模板。

教学方法:激发诱导,探索交流,讲练结合三位一体的教学方式。

教学手段:教师画图,学生模仿。

教具:三角板,小黑板。

学法:学生动手、动眼,、动耳、采用自主,合作、探究的学习方法。

教学过程一:课前检测:1、什么叫做反比例函数;(一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k0)的形式,那么称y是x的反比例函数。

)2、反比例函数的定义中需要注意什么?(1)k为常数,k0(2)从y= 中可知x作为分母,所以x不能为零。

二:激发兴趣导入新课问题1:对于一次函数 y = kx + b ( k 0 )的图象与性质,我们是如何研究的?y=kx+b y=kxK0 一、二、三一、三b0 一、三、四K0 一、二、四二、四b0 二、三、四问题2:对于反比例函数 y=k/x ( k是常数,k 0 ),我们能否象一次函数那样进行研究呢?可以问题3:画图象的步骤有哪些呢?(1)列表(2)描点(3)连线(教学片断:师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。

反比例函数教案(优秀7篇)

反比例函数教案(优秀7篇)

反比例函数教案(优秀7篇)反比例函数教案篇一一、背景分析1.对教材的分析本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。

本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。

本节课前一课时是在具体情境中领会反比例函数的意义和概念。

函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。

同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。

传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。

本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。

因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。

在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。

这也充分体现了重视获取知识过程体验的新课标的精神。

(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。

(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。

(3)难点:探索并掌握反比例函数的主要性质。

2、对学情的分析九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用z+z智能教育平台进行教学,比较形象,便于学生接受。

反比例函数的图象和性质优秀教案

反比例函数的图象和性质优秀教案

欧姆定律
在电路中,利用反比例函 数表示电阻、电流和电压 之间的关系。
万有引力定律
描述两物体间引力与它们 质量、距离之间的关系时 ,可以使用反比例函数。
在经济问题中应用
供需关系
劳动生产率
通过反比例函数表示商品价格与需求 量之间的关系,以及价格与供应量之 间的关系。
在经济学中,可以用反比例函数来表 示劳动生产率与劳动投入量之间的关 系。
反比例函数的图象和性质 优秀教案
汇报人:XXX 2024-01-22
目录
• 课程介绍与目标 • 反比例函数基本概念 • 反比例函数图像绘制方法 • 反比例函数性质分析 • 反比例函数应用举例 • 课程总结与拓展延伸
01
课程介绍与目标
教学目标
知识与技能
使学生理解反比例函数的概念,掌握反比例 函数的图象特征及其性质,能利用反比例函 数的性质解决简单问题。
感谢您的观看
THANKS
采用启发式、探究式、讨论式等 多种教学方法,引导学生主动思 考、积极探究。
教学手段
利用多媒体课件、几何画板等教 学工具辅助教学,提高教学效果 。
02
反比例函数基本概念
反比例函数定义
一般形式
$y = frac{k}{x}$ (其中 $k$ 是非零 常数)
变量关系
当 $x$ 增大时,$y$ 减小;当 $x$ 减 小时,$y$ 增大。
工程中的应用
探讨反比例函数在工程领域的应 用,如电阻、电容、电感等电子 元件的特性描述。
社会科学Байду номын сангаас的应用
讨论反比例函数在社会科学中的 应用,如人口增长模型、传播模 型等。
01
物理中的应用
介绍反比例函数在物理中的应用 ,如万有引力定律、库仑定律等 。

人教版九年级数学下册26.1.2反比例函数的图象与性质优秀教学案例

人教版九年级数学下册26.1.2反比例函数的图象与性质优秀教学案例
(三)学生小组讨论
在学生掌握了反比例函数的基本性质后,我会组织小组讨论。每个小组选取一个或几个反比例函数,通过绘制图象、分析性质,探讨反比例函数在实际问题中的应用。我会鼓励学生尝试用反比例函数解决一些简单的几何问题,如求两个反比例函数交点的问题。
(四)总结归纳
在总结归纳环节,我会邀请几个小组代表展示他们的讨论成果,让学生通过对比和讨论,总结出反比例函数的普遍性质和图象特征。我会引导学生从数形结合的角度,理解反比例函数的本质,并强调反比例函数在实际问题中的应用价值。
二、教学目标
(一)知识与技能
1.理解反比例函数的定义,掌握反比例函数的一般形式,并能准确表述。
2.学会绘制反比例函数的图象,分析图象特征,总结反比例函数的性质。
3.能够运用反比例函数的性质解决实际问题,提高数学应用能力。
4.掌握反比例函数与一次函数、二次函数等其他类型函数之间的关系,拓展函数知识体系。
(五)实施多元化评价
本案例采用多元化的评价方式,包括自评、互评、师评等,全面评价学生的学习过程和结果。这种评价方式有助于激发学生的学习动力,促使学生反思自己的学习,不断提高。
(二)问题导向
在教学过程中,我将采用问题导向法,引导学生发现问题、提出问题、解决问题。首先,通过提出问题“反比例函数的图象有什么特点?”让学生进行独立思考。然后,组织学生进行小组讨论,共同探讨反比例函数的性质。在学生掌握性质后,再提出问题:“反比例函数在实际生活中有哪些应用?”引导学生将所学知识运用到实际问题中。
(五)作业小结
为了巩固本节课的学习内容,我会布置以下作业:
1.绘制并分析至少三个不同反比例函数的图象,总结它们的性质。
2.结合实际情境,编写至少两个反比例函数的应用问题,并解答。

反比例函数的图像与性质优秀教案

反比例函数的图像与性质优秀教案

17。

1.2反比例函数地图像与性质(2)教学目标:掌握反比例函数地图像与性质,理解反比例函数相关地面积问题。

教学重点:掌握反比例函数地图像与性质,理解反比例函数相关地面积问题. 教学难点:运用反比例函数地图像与性质解决有关问题。

教学过程:(一)复习与回忆1.函数4y x =地图象地两个分支在第象限;在每个象限y 都随x 地增大而.函数4y x=-地图象地两个分支在第象限;在每个象限y 都随x 地增大而。

2. 已知y 是x 地反比例函数,当x =3时,y =—6,则y 与x 地函数关系式是:;当x =—2时,y = ;当y =4时,x = 。

b5E2RGbCAP (二)自学新课并解决以下问题 问题1:如图,点A 是反比例函数6y x=图像上一点,过点A 作AB ⊥x 轴于点B ,连结AO,⑴若A 点地横坐标为3,则AOBS =____________; ⑵若A 点地横坐标为a ,则AOBS=____________;⑶思考:若点A 在函数图像上运动,△AOB 会否发生变化?问题2:如图,点A 是反比例函数6y x=图像上一点,过点A 作AB ⊥x 轴于点B,连结AO ,⑴若A 点地横坐标为—3,则AOBS =____________;⑵若A 点地横坐标为a ,则AOBS=____________;⑶思考:若点A 在函数图像上运动,△AOB 会否发生变化?归纳:若点A 在反比例函数ky x =地图像上运动,过点A 作AB ⊥x 轴于点B ,连结AO ,则△AOB 地面积______随点A 地运动而发生变化,并且我们可以得到AOBS =____________。

p1EanqFDPw (三)教师点拨与例题讲解例2如图,一次函数y =kx +b 地图象与反比例函数xmy =地图象交于A(-2,1)、B (1,n )两点 (1)求反比例函数和一次函数地解析式(2)根据图象写出一次函数地值大于反比例函数地值地x 地取值范围课堂练习:1.如图,若点A 是反比例函数ky x =地图像上一点,过点A 作AB ⊥x 轴于点B ,连结AO ,若AOBS=4,求反比例函数地解析式。

反比例函数的图象和性质(教案)

反比例函数的图象和性质(教案)

反比例函数的图象和性质(1)【课型】 新授课 【教学目标】1.会用描点法画反比例函数的图象2.结合图象分析并掌握反比例函数的性质3.体会函数的三种表示方法,领会数形结合的思想方法 【教学重点】理解并掌握反比例函数的图象和性质. 【教学难点】正确画出图象,通过观察、分析,归纳出反比例函数的性质 【教学过程】 一、探求新知1、提出问题:(1)一次函数y =kx +b (k 、b 是常数,k ≠0)的图象是什么?其性质有哪些?正比例函数y =kx (k ≠0)呢?(2)画函数图象的方法是什么?其一般步骤有哪些?应注意什么? (3)反比例函数的图象是什么样呢?例1、画出反比例函数y 6=与y 6-=的图象.小;② 当k <0时,图象的两支分别位于二、四象限,在每个象限内y 随x 的增大而增大;③ 图象的两个分支都无限接近x 轴、y 轴,但都与x 轴、y 轴不相交;④ k 越大,图象的弯曲度越小,曲线越平直,越远离坐标轴;⑤ 图象关于直线y =±x 对称.注:双曲线的两个分支是断开的,研究反比例函数的增减性时,要对两个分支分别讨论,不能一概而论.二、例题分析例2.见教材P48,用描点法画图,注意强调: (1)列表取值时,x ≠0,因为x =0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y 值(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线(4)由于x ≠0,k ≠0,所以y ≠0,函数图象永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴例3.(补充)已知反比例函数32)1(--=m x m y 的图象在第二、四象限,求m 值,并指出在每个象限内y 随x 的变化情况?分析:此题要考虑两个方面,一是反比例函数的定义,即1-=kx y (k ≠0)自变量x 的指数是-1,二是根据反比例函数的性质:当图象位于第二、四象限时,k <0,则m -1<0,不要忽视这个条件解:∵ 32)1(--=m xm y 是反比例函数∴ m 2-3=-1,且m -1≠0又∵ 图象在第二、四象限∴ m -1<0解得2±=m 且m <1 ∴ 2-=m例4.(补充)如图,过反比例函数xy 1=(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( )(A )S 1>S 2 (B )S 1=S 2(C )S 1<S 2 (D )大小关系不能确定分析:从反比例函数xky =(k ≠0)的图象上任一点P (x ,y )向x 轴、y 轴作垂线段,与x 轴、y 轴所围成的矩形面积k xy S ==,由此可得S 1=S 2 =21,故选B三、课堂练习1.已知反比例函数xky -=3,分别根据下列条件求出字母k 的取值范围 (1)函数图象位于第一、三象限(2)在第二象限内,y 随x 的增大而增大 2.函数y =-ax +a 与xay -=(a ≠0)在同一坐标系中的图象可能是( )3.在平面直角坐标系内,过反比例函数xky =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数解析式为四、课后作业1.课本习题第2、3题.2.若函数x m y )12(-=与xmy -=3的图象交于第一、三象限,求m 的取值范围. 3. 反比例函数xy 2-=,当x =-2时,y = ;当x <-2时;y 的取值范围是 ; 当x >-2时;y 的取值范围是4. 已知反比例函数y a x a=--()226,当x >0时,y 随x 的增大而增大,求该函数关系式. 五、课堂小结1、反比例函数的图象及性质.2、双曲线的两个分支是断开的,研究反比例函数的增减性时,要对两个分支分别讨论.3、在解决函数问题时,注意数形结合. 【课后反思】。

26.1.2反比例函数的图像与性质(教案)

26.1.2反比例函数的图像与性质(教案)
2.教学难点
-理解反比例函数图像与性质之间的关系,特别是\( x \)接近0时,\( y \)值的变化;
-将反比例函数图像与实际情境联系起来,进行数学建模;
-解决涉及反比例函数的实际问题时,如何提取关键信息,建立数学模型。
举例:在分析反比例函数图像时,难点在于让学生理解当\( x \)接近0时,\( y \)值会无限增大,图像呈现出渐进线。此时,教师可通过动态演示或实际案例(如速度与时间的关系),帮助学生形象理解这一难点。
此外,课堂总结时,我询问了学生们的疑问,他们提出了一些很好的问题,这表明他们在课堂上确实有所思考。我感到欣慰的同时,也意识到自己在解答问题时需要更加耐心和细致,确保每个学生都能跟上课堂节奏。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如\( y = \frac{k}{x} \)(\( k \neq 0 \))的函数。它在描述一些变量关系时非常重要,如在经济学、物理学等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。以速度与时间的关系为例,当速度固定时,行驶的距离与时间成反比,从而引入反比例函数的概念。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了反比例函数的基本概念、图像性质和实际应用。通过实践活动和小组讨论,我们加深了对反比例函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
三、教例函数的定义及其表达形式,强调\( k \neq 0 \)的条件;
-反比例函数图像的特点,包括图像在坐标轴上的分布、对称性等;

反比例函数的图象和性质教案(完美版)

反比例函数的图象和性质教案(完美版)

在线分享文档:麦群超反比例函数的图象和性质【知识与技能】1. 会用描点法画反比例函数的图象;2. 理解反比例函数的性质.【过程与方法】 经历实验操作、探索思考、观察分析的过程中,培养学生探究、归纳及概括的能力.【情感态度】在通过画图探究反比例函数图象及其性质过程中,发展学生的合作交流意识,增强求知欲望.【教学重点】画反比例函数图象,理解反比例函数的简单性质【教学难点】 理解反比例函数性质,能用性质解决简单的问题.一、情境导入,初步认识问题 我们知道,一次函数y = 6x 的图象是一条直线,那么反比例函数y =6x 的图象是什么形状呢?你能用“描点”的方法画出函数的图象?【教学说明】教师提出问题,学生思考、交流,尝试着解决问题,教师巡视,关注学生的画图,及时纠正个别同学在画图中的不足和失误之处,帮助学生尽可能得到其合适的图象.二、思考探究,获取新知问题1 在同一坐标系中画出反比例函数y =6x 和y =12x的图象; 【教学说明】将全班同学分成两大组,分别完成问题y =6x 、y =12x的画图,在学生探索画反比例函数的图象过程中,教师应给予恰当点拨:如学生列表时,由于自变量x ≠0,故在x <0和x >0时,应各取三个以上的数据,以便使描点画图更精确些;在连线上,x <0和x >0 的两个分支应根据变化趋势用平滑曲线连接,但它们是不能相交的;列表中数据,描点时点的位置等不能出错,以保证图象更能反映出反比例函数的性质.在线分享文档让每个人平等地提升自我:麦群超 问题2 反比例函数y =-6x 和y =-12x的图象有什么共同特点?它们之间有什么关系?反比例函数y = 6x 和y =-6x的图象呢?同学间相互交流. 【教学说明】让两组同学分别交流,找出图象的特征,教师可分别参与讨论,帮助学生获取正确认知. 【归纳结论】由图象可发现:(1)它们都是由两条曲线组成,并且随|x|的不断增大(或减 小),曲线越来越接近x 轴(或y 轴),但这两条曲线永不相交;(2) y = 6x 和y =-6x 及y =12x 和y =-12x 的图象分别关于x 轴对称,也关于y 轴对称. 思考 观察函数y = 6x 和y =-6x 以及y =12x 和y =-12x 的图象. (1)你能发现它们的共同特征以及不同点吗?(2)每个函数的图象分别位于哪几个象限? (3)在每个象限内y 随x 的变化如何变化? 【归纳结论】反比例函数y =k x 的图象及其性质: (1)反比例函数y=k x (k 为常数,且k 0)的图象是双曲线; (2)当k >0时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y 随x 值的增大而减小;(3)当k <0时,双曲线的两个分支分别位于第二、四象限,在每个象限内y 随x 值的增大而增大.三、典例精析,掌握新知例 如图,一次函数y = kx 十b 的图象与反比例函数y =m x 的图象相交于A 、B 两点.(1)根据图象,分别写出A 、B 的坐标;(2)求出两函数的解析式;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值. 【分析】(1)观察图象,可直接写出A 、B 两点的坐标;(2)利用A 、B 两点的坐标,用待定系数法建立方程组求解,可确定两函数的解析式;(3 )通过两函数的交点A 、B 的坐标得出答案.解:(1)观察图象可知A ( -6,-2),B (4,3)在线分享文档地提升自我By :麦群超(2)由点B 在反比例函数y =m x 的图象上,所以把B (4,3)代入y =m x 得3 =4m ,故m =12,所以y=12x.由点A 、B 在一次函数y =kx 十b 的图象上,所以把A 、B 两点坐标代入y = kx 十b 得14326+2,1k b k k b b ⎧+==⎧⎪⎨⎨-=-⎩⎪=⎩解得 . 所以一次函数解析式为y = 12x+1.(3)由图象可知,当一6<x <0或x >4时,一次函数的函数值大于反比例函数的函数值.【教学说明】本例有一定难度,教师可将题目展开,分步讲解,辅导学生克服对大题的恐惧.本题考查了从图象获取信息,应用待定系数法确定反比例函数与一次函数的关系式,以及利用图象比较函数值的大小等知识点. 四、运用新知,深化理解 1 .若反比例函数 y =21m x -的图象的一个分支在第三象限,则m 的取值范围是 . 2.如图是某一函数的一部分,则这个函数的表达式可能是( )A.y=5xB.y=-x+3C.y=-6xD.y=4x 【教学说明】学生独立完成,然后相互交流,谈谈自己的看法,教师应参与学生的讨论, 加深学生对反比例函数的图象及其性质的认识和理解,从而更好地掌握本节知识.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分. 【答案】1.m >122. C 五、师生互动,课堂小结 本节课学习了哪些知识?在知识应用过程中需要注意什么?你有哪些收获?1.布置作业:从教材“习题”中选取.在线分享文档让每个人平等2.完成创优作业中本课时的“课时作业”部分.“反比例函数的图象和性质”是反比例函数的教学重点,学生需要在理解的基础上熟练运用.在学习反比例函数图象和性质时k >0时,双曲线的两个分支在一、三象限;k <0时,双曲线的两个分支在二、四象限),学生可由画法观察图象得知.而增减性由解析式y =k x (k 0)可得到,学生也容易理解.但从图象观察增减性较难,借助计算机的动态演示就容易多了,所以本课教学最好用多媒体,因为运用多媒体比较函数图象,可以使学生更直观、更清楚地看清函数的变化,从而使学生加深对函数性质的理解.通过本课的教学,教师可深刻地体会到运用信息技术可加强数学课堂教学中的灵活性、直观性. 虽然制作起来比较麻烦,但能使课堂教学达到预想不到的效果,使课堂教学效率也明显提高.。

反比例函数的图像与性质 优秀教案

反比例函数的图像与性质 优秀教案

反比例函数的图像与性质【教学目标】1.使学生会作反比例函数的图像;2.能理解反比例函数的性质;3.培养提高学生的计算能力和作图能力。

【教学重难点】1.作反比例函数的图像;2.理解反比例函数的性质。

【教学过程】一、自主探究复习一次函数的相关内容:一次函数y=kx+b(k≠0)的图像是。

当k>0时,y随x的增大而。

当k<0时,y随x的增大而。

二、自主合作探索活动一:1.作反比例函数y=6x的图像:列表:描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。

连线:用光滑的曲线顺次连结各点,即可得到函数y=6x的图像。

x …-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …y=6xk y x =y y y y x x x xA .B .C .D . O O O O 2.你认为作反比例函数图像时应注意哪些问题?列表时,自变量的值可以选取绝对值相等而符号相反的一对一对的数值,这样既可简化计算,又便于描点。

探索活动二:作反比例函数y=6x-的图像 探索活动三:1.观察函数y=6x 和y=6x -的图像,它们有什么相同点和不同点? 图像分别都是由两支曲线组成的(一般把这两个分支组成的曲线称为双曲线),它们都不与坐标轴相交,两个函数图像都是轴对称图形,它们各自都有两条对称轴。

2.归纳得出反比例函数图像特征: 反比例函数y=k x 的图像是由两支曲线组成的,当k>0时,两支曲线分别位于一、三象限内,当k<0时,两支曲线分别位于第二、四象限内。

三、自主展示1.已知变量y 与x 成反比例,并且当x=2时,y=-3.(1)求y 与x 的函数关系式;(2)求当y=2时x 的值;(3)在直角坐标系内画出2.反比例函数的图像经过点(-2,4),求它的解析式,并画出函数图像,图像分布在哪几个象限?与坐标轴的交点是什么?四、自主拓展1.写出一个图像在第二、四象限的反比例函数的表达式 。

反比例函数的图像和性质教案

反比例函数的图像和性质教案

反比例函数的图像和性质教案数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。

下面是店铺整理的关于反比例函数的图像和性质教案,希望大家认真阅读!【1】反比例函数的图像和性质教案一、教材依据人教版八年级第十七章《反比例函数》第二节第二课时二、设计思路(一)教材分析本节课讲述内容是在理解反比例函数的意义和概念、掌握了反比例函数的画法的基础上学习的,反比例函数的图象与性质的探索是对函数概念的深化,同时也是下一节反比例函数应用的基础,有了本节课的知识储备,便于学生利用函数的观点、数形结合的思想来处理问题和解释问题。

(二)教学方法鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想通过教师引导,学生积极“探究——讨论——交流——总结” ,同时在教学中通过演示,操作,观察,练习等师生的共同活动,让每个学生动手、动口、动眼、动脑,培养学生观察能力、直觉思维能力。

(三)学法指导本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想,体会数形结合的思想。

在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。

三、教学目标(一)知识目标探索并掌握反比例函数的主要性质,逐步提高从函数图象获取信息的能力,体会数形结合的思想.(二)能力目标通过观察图象,概括反比例函数的有关性质,训练学生的概括、总结能力.(三)情感与价值观让学生积极参与到数学学习活动中,增强他们对数学学习的好奇心与求知欲.四、教学重点探索反比例函数的性质,体会数形结合的思想.五、教学难点反比例函数的图象特点及性质的探索.六、教学准备学生课前将函数图象画在黑板上(两个)七、教学过程反比例函数的图象与性质(二)教学案(一)学习目标:1、探究反比例函数的性质.2、体验数形结合的数学思想.(二)自学及学法指导:1、用列表法画函数y= 和的图象.( 学生课前板画在黑板上)解:列表:图象:2、结合P41函数和的图象和黑板所画图象思考下列问题.(小组讨论完成)(1)所画的图象是什么形状?(2)每个函数的图象分别位于哪几个象限?(3)在每个象限内y随x的变化是如何变化的?(4)图象与x轴、y轴能相交吗?为什么?3、归纳总结:反比例函数的性质 (小组轮流回答)(1)反比例函数 (k为常数,k≠0)的图象是 .(2)当k>0时,双曲线的两分支分别位于象限. 在每个象限内,y 值随x值的增大而 .(3)当k<0时,双曲线的两分支分别位于象限,在每个象限内,y 值随x值的增大而 .(三)展示自学成果,教师答疑解惑:基础知识: (个人独立完成)1、课本P43-P44 1. 2.2、反比例函数的图象在第二、四象限.则m的取值范围是 .3、若该函数在每个象限内y随x的增大而减少,则m的值可能是( )A、-1B、3C、0D、-3能力提升: (小组合作探究)1、①若点A(-2,y)B(-1,y2)C(1,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是 .②若点A(x1,y1)、B(x2,y2)是反比例函数图象上的点,且x1>x2>0,y1与y2的大小关系是 .③若点A(x1,y1)、B(x2,y2)是反比例函数图象上的点,且0>x1>x2,y1与y2的大小关系是 .④若A(x1,y1)B(x2,y2)是反比例函数图象上的点,且x1>x2,则y1与y2的大小关系是 .A、y1>y2B、y1=y2C、y1<y2 p="" d、以上都不对<="">2、利用函数的图象探究长方形面积与K的关系.①.如图,点A是的图象上一点,AB⊥y轴于点B,则有△AOB的面积是( )A、1B、2C、3D、4②如图,P是反比例函数图象在第二象限上的一点,且长方形PEOF的面积为3,则反比例函数的关系式是(四)课堂检测:(个人独立完成)1、填空题:①反比例函数的常数k= .它的图象是当x>0时,图象在,当x<0时,图象在象限.②已知反比例函数的图象位于二、四象限,则k的取值范围是 .③如图:P是反比例函数;的图象上一点,若图中阴影部分的面积是5,则反比例函数的.关系式是2、选择题:①正比例函数y=kx和反比例函数,在同一坐标系中的图象可能是( )②若反比例函数的图象过P(2,m)Q(1,n).则m与n的大小关系是( )A、m>nB、m<n p="" d、无法确定<="" m="n">③如图所示:点P是函数的图象上一点,图中阴影部分的面积为( )A、6B、3C、2D、1八、教学反思通过本节课教学,我认为满意的地方有:1、课堂中,我营造了宽松的学习氛围,让学生参与到学习过程中,同时注重了学生的合作交流,在学生尝试探索反比例函数的性质前和后都安排了同桌交流、小组合作交流,之后又鼓励学生上讲台交流,让学生在不断交流中掌握反比例函数的性质,体会树形结合的思想。

反比例函数的图象和性质教案三套最新

反比例函数的图象和性质教案三套最新

26.1.2反比例函数的图像和性质(1)[教学目标]1、体会并了解反比例函数的图象的意义2、能描点画出反比例函数的图象3、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质 [教学重点和难点]本节教学的重点是反比例函数的图象及图象的性质由于反比例函数的图象分两支,给画图带来了复杂性是本节教学的难点教学方法: 启发 演示法 教学辅助: 投影片[教学过程] 1、情境创设可以从复习一次函数的图象开始:你还记得一次函数的图象吗?在回忆与交流中,进一步认识函数图象的直观有助于理解函数的性质。

转而导人关注新的函数——反比例函数的图象研究:反比例函数的图象又会是什么样子呢? 2、探索活动探索活动1 反比例函数xy 6=的图象. 由于反比例函数xy 6=的图象是曲线型的,且分成两支.对此,学生第一次接触有一定的难度,因此需要分几个层次来探求:(1)可以先估计——例如:位置(图象所在象限、图象与坐标轴的交点等)、趋势(上升、下降等);(2)方法与步骤——利用描点作图;列表:取自变量x 的哪些值? ——x 是不为零的任何实数,所以不能取x 的值的为零,但仍可以以零为基准,左右均匀,对称地取值。

描点:依据什么(数据、方法)找点?连线:怎样连线? ——可在各个象限内按照自变量从小到大的顺序用两条光滑的曲线把所描的点连接起来。

探索活动2 反比例函数xy 6-=的图象.可以引导学生采用多种方式进行自主探索活动:(1)可以用画反比例函数xy 6=的图象的方式与步骤进行自主探索其图象; (2)可以通过探索函数x y 6=与x y 6-=之间的关系,画出x y 6-=的图象.探索活动3 反比例函数x y 6-=与xy 6=的图象有什么共同特征?引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.反比例函数xky =(k ≠0)的图象是由两个分支组成的曲线。

当0>k 时,图象在一、三象限:当0<k 时,图象在二、四象限。

反比例函数的图象和性质教案设计

反比例函数的图象和性质教案设计

反比例函数的图象和性质教案设计第一章:反比例函数的定义与表达式1.1 反比例函数的定义引导学生回顾正比例函数的定义,提出反比例函数的概念。

通过实际例子,让学生理解反比例函数的定义:当两个变量x和y满足y=k/x (其中k为常数,k≠0)时,称y是x的反比例函数。

1.2 反比例函数的表达式介绍反比例函数的一般表达式y=k/x,解释k的含义。

强调反比例函数中x不能等于0的条件。

第二章:反比例函数的图象2.1 反比例函数图象的特点引导学生绘制反比例函数的图象,观察图象的特点。

总结反比例函数图象是一条经过原点的曲线,且在每个象限内,随着x的增大,y的值减小。

2.2 反比例函数图象的渐近线解释反比例函数图象在x趋近于正无穷和负无穷时,y趋近于0的性质。

引导学生理解反比例函数图象在x轴和y轴上分别有两条渐近线。

第三章:反比例函数的性质3.1 反比例函数的单调性分析反比例函数在不同区间上的单调性。

引导学生得出结论:反比例函数在每一个象限内是单调递减的。

3.2 反比例函数的奇偶性探讨反比例函数的奇偶性,证明反比例函数是奇函数。

引导学生理解反比例函数的奇偶性与x的奇偶性有关。

第四章:反比例函数的应用4.1 反比例函数在实际问题中的应用提供实际问题,让学生运用反比例函数解决问题。

强调反比例函数在实际问题中的应用,如比例尺计算、速度与时间的关系等。

4.2 反比例函数的综合应用引导学生综合运用反比例函数解决复杂问题。

通过案例分析,让学生学会将实际问题转化为反比例函数问题,并求解。

第五章:反比例函数的性质总结与拓展5.1 反比例函数的性质总结回顾本章所学的内容,总结反比例函数的定义、表达式、图象和性质。

强调反比例函数的重要性和在实际问题中的应用。

5.2 反比例函数的拓展引导学生思考反比例函数与其他函数的关系,探讨反比例函数的图象与性质的拓展。

提供一些反比例函数的拓展问题,激发学生的学习兴趣。

第六章:反比例函数的变换6.1 反比例函数的平移解释反比例函数图象如何通过平移进行变换。

反比例函数的图象与性质教案优秀3篇

反比例函数的图象与性质教案优秀3篇

反比例函数的图象与性质教案优秀3篇反比例函数的图象与性质教案篇一教学目标1. 经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。

2. 理解反比例函数的概念,会列出实际问题的反比例函数关系式。

3. 使学生会画出反比例函数的图象。

4. 经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质。

教学重点1、使学生了解反比例函数的表达式,会画反比例函数图象2、使学生掌握反比例函数的图象性质3、利用反比例函数解题教学难点1、列函数表达式2、反比例函数图象解题教学过程教师活动一、作业检查与讲评二、复习导入1.什么是正比例函数?我们知道当(1) 当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2) 当矩形面积一定时,长a和宽b成反比例,即ab=s(s是常数)创设问题情境问题1:小华的爸爸早晨骑自行车带小华到15千米外的镇上去赶集,回来时让小华乘坐公共汽车,用的时间少了。

假设自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系。

分析和其他实际问题一样,要探求两个变量之间的关系,就应先选用适当的符号表示变量,再根据题意列出相应的函数关系式。

设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时。

因为在匀速运动中,时间=路程÷速度,所以从这个关系式中发现:1.路程一定时,时间t就是速度v的反比例函数。

即速度增大了,时间变小;速度减小了,时间增大。

2.自变量v的取值是v0.问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场。

设它的一边长为x(米),求另一边的长y(米)与x的函数关系式。

分析根据矩形面积可知xy=24,即从这个关系中发现:1.当矩形的面积一定时,矩形的一边是另一边的反比例函数。

即矩形的一边长增大了,则另一边减小;若一边减小了,则另一边增大;2.自变量的取值是x0.三、新课讲解上述两个函数都具有的形式,一般地,形如(k是常数,k≠0)的函数叫做反比例函数(proportional function).说明1.反比例函数与正比例函数定义相比较,本质上,正比例y=kx,即,k是常数,且k≠0;反比例函数,则xy=k,k是常数,且k≠0.可利用定义判断两个量x和y满足哪一种比例关系。

最新最全《反比例函数的图像和性质》的教案完整版

最新最全《反比例函数的图像和性质》的教案完整版

《反比例函数的图象和性质》教学设计教学目标1.知识与技能会画反比例函数的图象,并知道该图象与正比例函数、一次函数图象的区别,能从反比例函数的图象上分析出简单的性质.能用反比例函数的定义和性质解决实际问题.2.过程与方法通过画图象,进一步培养“描点法”画图的能力和方法,并提高对函数图象的分析能力.同时尝试用类比和特殊到一般的思路方法,归纳反比例函数一些性质特征.3.情感、态度与价值观由图象的画法和分析,体验数学活动中的探索性和创造性,感受数学美,并通过图象的直观教学激发学习兴趣.教学重点难点重点:反比例函数图象的画法及探究,反比例函数的性质的运用.难点:反比例函数图象是平滑双曲线的理解及对图象特征的分析.(一)创设情境,导入新课问题:1.若y=x n n )1)(12(+-是反比例函数,则n 必须满足条件 n ≠21或n ≠-1 . 2.用描点法画图象的步骤简单地说是 列表 、 描点 、 连线 .3.试用描点法画出下列函数的图象:(1)y=2x ; (2)y=1-2x .(二)合作交流,解读探究问题:我们已知道,一次函数y=kx+b(k ≠0)的图象是一条直线,•那么反比例函数xk y =(k 为常数且k ≠0)的图象是什么样呢?尝试 用描点法来画出反比例函数的图象.画出反比例函数y=x 6和y=-x 6的图象. 解:列表描点,以表中各对应值为坐标,在直角坐标系中描出各点.连线,用平滑的曲线把所描的点依次连接起来.探究 反比例函数y=x 6和y= −x 6的图象有什么共同特征?它们之间有什么关系?做一做 把y=x 6和y= −x 6的图象放到同一坐标系中,观察一下,看它们是否对称.归纳 反比例函数y=x 6和y= −x 6的图象的共同特征:(1)它们都由两条曲线组成.(2)随着x 的不断增大(或减小),曲线越来越接近坐标轴(x 轴、y 轴).(3)反比例函数的图象属于双曲线(hyperbola ).此外,y=x 6的图象和y= −x 6的图象关于x 轴对称,也关于y 轴对称.做一做 在平面直角坐标系中画出反比例函数y=x 3和y= −x 3的图象.交流 两个函数图象都用描点法画出?【分析】由y=x 6和y= −x 6的图象及y=x 3和y= −x 3的图象知道,(1)它们有什么共同特征和不同点?(2)每个函数的图象分别位于哪几个象限?(3)在每一个象限内,y 随x 的变化而如何变化?猜想 反比例函数xk y =(k ≠0)的图象在哪些象限由什么因素决定?在每一个象限内,y 随x 的变化情况如何?它可能与坐标轴相交吗?【归纳】 (1)反比例函数xk y =(k 为常数,k ≠0)的图象是双曲线. (2)当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内,y•值随x 值的增大而减小.(3)当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内,y•值随x 值的增大而增大.(三)应用迁移,巩固提高例题 指出当k>0时,下列图象中哪些可能是y=kx 与xk y = (k ≠0)在同一坐标系中的图象( )【答案】 B(四)总结反思,拓展升华1.画反比例函数的图象.2.反比例函数的性质.3.反比例函数的图象在哪个象限由k 决定,且y 值随x 值变化只能在“每一个象限内”研究.4.在xk y =(k ≠0)中,由于x ≠0,同时y ≠0,因此双曲线两个分支不可能到达坐标轴. 反比例函数的性质及运用(1)k 的符号决定图象所在象限.(2)在每一象限内,y 随x 的变化情况,在不同象限,不能运用此性质.(3)从反比例函数x k y =的图象上任一点向一坐标轴作垂线,这一点和垂足及坐标原点所构成的三角形面积S △=21│k │. (4)性质与图象在涉及点的坐标,确定解析式方面的运用.一、选择题的特点与答题技巧选择题有单项选择和多项选择之分,通常占卷面分数的30%—40%左右,主要测试考生对基本知识、基本方法的掌握程度,具有很大的灵活性。

反比例函数的图象与性质的教学案-经典教学教辅文档

反比例函数的图象与性质的教学案-经典教学教辅文档
教学难点
画出反比例函数的图象和比较函数值的大小.
教学过程
情境导入
课件展现故事,引入课题.
话说刘备去请诸葛亮,途中遇到一片十几米宽的烂泥湿地。为了安全、迅速经过这片湿地到达卧龙岗,刘备让关羽和张飞找些木板,构构成一条临时通道。结果关羽找了几块小的木块,刘备摇了摇头说:“这几块不行,太风险了”,这时分,张飞又找了几块大的木块,刘备笑着说:“这样我们可以安全经过了”.关羽很纳闷:为甚么他找的可以,我找的不可以?
达标检测
先生独立完成以下成绩,师生共同纠错.
1.以下图象中,()是反比例函数的图象的.
2.已知反比例函数 的图象如图所示,则 0,且在图象的每一支上,
值随 的增大而.
3.已知反比例函数 的图象过点(2,1),则它的图象在象限.
4.若反比例函数 的图象上有两点 (1, ), ( , ),则 与 的大小关系是
(三)师生共同归纳总结反比例函数的性质.
归纳总结:
函数
图象外形
的符号
图象地位图象变化趋势 Nhomakorabea﹥0﹤0
(四)师生共同完成例题,然后先生独立完成课件上的跟踪练习.
典例讲解
例1:已知点 是反比例函数 (﹤0)的图象上的两点,则 、 的大小关系是__________.
课堂小结
1.这节课你学习了反比例函数的哪些知识?
26.1.2 反比例函数的图象和性质(第一课时)
教学目标
知识与技能:会画反比例函数图象,理解反比例函数的性质,并用性质解决简单成绩.
过程与方法:经过观察反比例函数的图象,引导先生分析、归纳反比例函数的性质.
情感、态度与价值观:在先生的动手理论操作合作交流中,培养先生的团队协作精神.
教学重点

反比例函数的图象与性质教案

反比例函数的图象与性质教案

反比例函数的图象与性质第六章反比例函数2.反比例函数的图象与性质(一)一、知识目标:1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象.2.体会函数的三种表示方法的互相转换.对函数进行认识上的整合.3.逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质.二、教学重点:画反比例函数的图象;并从函数图象中获取信息,探索并研究反比例函数的主要性质.三、教学难点:反比例函数的图象特点及性质的探究.四、教学方法:引导发现法、讨论法.五、教具准备:多媒体课件、幻灯片六、教学过程第一环节:复习引入问题:1.当初我们从哪些方面研究了一次函数?2.画一次函数图象的步骤是什么?3.借助图象我们研究了一次函数的哪些性质?第二环节:合作探究发现问题教师引导学生类比着画一次函数图象的过程来尝试画出反比例函数4yx的图象.(1)列表: x-8 -4 -3 -2 -1-21211 2 34 8y=x 4-21-1-34-2 -4 -8 8 4 2 34121(2)描点: (图5-1) (3)连线:(图5-2)画法不正确,不是用光滑的曲线顺次连接各点;图象不是无限延伸的.教师再结合以上几个环节,进行总的总结和点评教师用幻灯片展示正确的反比例函数图象(图5-3):问题:1.反比例函数图象是什么?2.画反比例函数图象应该注意的问题是什么?总结归纳:(1) 0x≠(2)用光滑的曲线连接各点(3)图象是延伸的,不要画成有明确端点。

(4)曲线的发展趋势是无限靠近坐标轴,但不和坐标轴相交第三环节:巩固新知夯实基础活动一:小华画的反比例函数6yx=的图象如图所示,你认为他画的对吗?目的:巩固第二环节学生们的发现,加深对反比例函数的认识. 活动二:画反比例函数4yx-=的图象.目的:让学生巩固作反比例函数图象的步骤,并且初步感受反比例函数图象的特征。

第四环节: 观察思考 再探新知观察4y x=和4y x -=的图象的形状和位置,有什么相同点和不同点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17.1.2反比例函数地图象和性质(1)
教学目标:会画反比例函数地图象,并知道该图象与正比例函数、一次函数图象地区别,能从反比例函数地图象上分析出简单地性质
教学重点:反比例函数图象地画法及探究,反比例函数地性质地运用.
教学难点:反比例函数图象是平滑双曲线地理解及对图象特征地分析
教学过程:
(一)复习与回忆
1.过点(2,5)地反比例函数地解析式是:.
2一次函数y=2x-1地图象是:,y随x地增大而;
3.用描点法作函数图象地步骤:.
(二)教师点拨与例题讲解
例1.分别在下列两个坐标系中作出y=
6
x
和y=-
6
x
地图象.
解:列表
(请把表中空白处填好)
归纳:反比例函数y =
x
与y = -
x
6
地图象是.
y =
x
6
地图象地两分支分别位于第象限,在每个象限内,y值随x值地增大而;
y = -
x
6
地图象地两分支分别位于第象限,在每个象限内,y值随x值地增大而.
思考:为什么强调在每个象限内?
小结:(1)反比例函数地图象都有两个分支,我们将反比例函数地图象称为.
(2)当k>0时,反比例函数地图象地两个分支位于第象限,且在每个象限内y值随x地增大而;
当k<0时,反比例函数地图象地两个分支位于第象限,且在每个象限内y值随x地增大而. (3)反比例函数图象地两个分支关于对称,且随着x地不断增大(或减小),反比例函数地图象越来越接近于坐标轴,但永不相交.
课堂练习:
1.
2 / 3
2.如图,这是下列四个函数中哪一个函数地图象?()
(A) y = 5x (B) y = 2x+3 (C) y =
x
4
(D) y = -
x
3
3.如果点(1,-2)在双曲线
x
k
y=上,那么该双曲线在第______象限.
4.已知反比例函数
x
k
y
-
=
3
,分别根据下列条件求出字母k地取值范围
(1)函数图象位于第一、三象限
(2)在第二象限内,y随x地增大而增大
5.函数y=-kx+k与
x
k
y
-
=(k≠0)在同一坐标系中地图象可能是()
6.已知y与x+2成反比例函数,当x=4时,y=1.(1)求这个函数地解析式;(2)当x=0
时,求y地值.
课后作业:A组
1.已知反比例函数y=
k
x
地图象如图所示,则k0,在图象地每一支上,y值随x地增大而.
2.下列图象中,是反比例函数地图象地是()
(B) (C) (D)
x
o
y
x
o
y
3 / 3
3.下列函数中,当x >0时,y 随x 地增大而减小地是( ). (A)y =x
(B)x
y 1=
(C)x
y 1-
= (D)y =2x
4.下列反比例函数图象一定在第一、三象限地是( ).
(A)x m
y =
(B)x
m y 1+=
(C)x
m y 1
2+=
(D)x
m
y -=
5.若点(-1,y 1),(2,y 2),(3,y 3)都在反比例函数x
y 5
=地图象上,则( ). (A)y 1<y 2<y 3(B)y 2<y 1<y 3 (C)y 3<y 2<y 1(D)y 1<y 3<y 2
B 组
6.在反比例函数x
y 2
=
地图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1>x 2>0,则y 1-y 2地值为 ( ) (A )正数 (B )负数 (C )非正数 (D )非负数7.已知反比例函数y=
2
k x
-地图象在第一、三象限内,则k 地值可是________(写出满足条件地一个k 值即可).8.若正比例函数y=kx 地图象经过第一、三象限,则反比例函数y=x
k
地图象一定在象限. 9.如图,过反比例函数x
y 1
=
(x >0)地图象上任意两点A 、B 分别作x 轴地垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 地面积分别是S 1、S 2,比较它们地大小,可得() (A )S 1>S 2(B )S 1=S 2
(C )S 1<S 2(D )大小关系不能确定
课后反思:。

相关文档
最新文档