全国初中数学竞赛试题和答案解析

合集下载

全国初中数学竞赛试题

全国初中数学竞赛试题

全国初中数学竞赛试题【试题一】:代数基础1. 已知 \( a, b, c \) 是一个三角形的三边长,且满足 \( a^2 + b^2 = c^2 \),求证 \( a + b \geq c \)。

【试题二】:几何问题2. 给定一个圆,圆心为 \( O \),半径为 \( r \)。

在圆上任取两点\( A \) 和 \( B \),连接 \( OA \) 和 \( OB \)。

求证 \( \angle AOB \) 的度数小于 \( 180^\circ \)。

【试题三】:数列与级数3. 一个等差数列的首项是 \( a_1 = 3 \),公差 \( d = 2 \)。

求这个数列的第 \( n \) 项 \( a_n \) 的表达式,并计算前 \( n \) 项的和 \( S_n \)。

【试题四】:函数与方程4. 已知函数 \( f(x) = x^2 - 4x + 4 \),求该函数的最小值。

【试题五】:概率统计5. 一个袋子里有 \( 5 \) 个红球和 \( 3 \) 个蓝球。

随机抽取两个球,求两个球颜色相同的概率。

【试题六】:组合数学6. 有 \( 8 \) 个不同的球,需要将它们放入 \( 3 \) 个不同的盒子中,每个盒子至少有一个球。

求不同的放法有多少种。

【试题七】:逻辑推理7. 在一个逻辑推理题中,有三个人分别说了以下的话:- 甲说:“乙是说谎者。

”- 乙说:“丙是说谎者。

”- 丙说:“甲和乙都是说谎者。

”如果三个人中只有一个人说谎,那么谁说的是真话?【试题八】:创新问题8. 一个正方体的体积是 \( 8 \) 立方厘米,求这个正方体的表面积。

【试题九】:应用题9. 一个水池可以以恒定的速率 \( r \) 进水,同时也以另一个恒定的速率 \( s \) 出水。

如果水池开始时是空的,求水池被填满的时间\( t \)。

【试题十】:综合题10. 一个圆的半径是 \( 5 \) 厘米,圆内接一个等边三角形。

二次根式—2024全国初中数学重点高中自招竞赛试题精选精编

二次根式—2024全国初中数学重点高中自招竞赛试题精选精编

二次根式学校:___________姓名:___________班级:___________考号:___________一、填空题1(2024·全国·八年级竞赛)4+15+4-15=.【答案】10【分析】本题考查二次根式的运算,将式子进行平方,运用完全平方公式展开后化简,即可解答.【详解】∵4+15+4-152=4+152+24+15⋅4-15+4-152=4+15+216-15+4-15=8+2=10,又4+15>0,4-15>0∴4+15+4-15=10.故答案为:10.2(2024·全国·九年级竞赛)已知x为实数,则x-2+4-x的最大值为.【答案】2【分析】本题考查二次根式有意义的条件和配方法,掌握被开方数为非负数和配方法是解题关键.先确定x的取值范围,然后利用配方法分析其最值.【详解】解:由题意可得x-2≥04-x≥0,解得2≤x≤4,令y=x-2+4-x y≥0,则y2=x-2+4-x2=x-2+2x-24-x+4-x=2+2-x2+6x-8=2+2-x-32+1∵0≤-x-32+1≤1∴y2的最大值为4,∴y的最大值为2,即x-2+4-x的最大值为2.故答案为:2.3(2024·全国·八年级竞赛)定义一种新的运算“@”:x@y=ax+by,其中a、b为常数,且使得等式a-2-8-4a+a b=12恒成立,那么2@3=.【答案】1【分析】本题考查了二次根式的意义,幂的运算,求代数式的值,正确理解二次根式的意义是解答本题的关键.先根据二次根式的意义列出不等式组并求解,得到a=2,再代入方程求出b的值,从而得到x@y=2x -y,依此即可求得答案.【详解】根据题意得a-2≥08-4a≥0 ,∴a≥2 a≤2 ,∴a=2,将a=2代入a-2-8-4a+a b=12得0-0+2b=12,解得b=-1,∴x@y=2x-y,∴2@3=2×2-3=1.故答案为:1.4(2024·全国·八年级竞赛)计算:2+520172-52017=.【答案】-1【分析】本题主要考查了分式混合运算,平方差公式和积的乘方运算,解题的关键是熟练掌握运算法则,准确计算.根据相关的运算法则进行计算即可.【详解】解:2+520172-52017=2+52-52017=4-52017=-12017=-1.故答案为:-1.5(2024·全国·八年级竞赛)若不等式x+4+x-1≥a-x-2-2对任意实数x都成立,则a的最大值为.【答案】8【分析】本题考查了绝对值不等式的解法,根据题设借助绝对值的几何意义得x+4+x-2有最小值为6,又由x-1≥0得出当x=1时,x+4+x-2+x-1的最小值为6,然后由不等式恒成立即可求解.【详解】解:x+4+x-1≥a-x-2-2,∴x+4+x-2+x-1≥a-2当-4≤x≤2时,x+4+x-2有最小值为6,∵x-1≥0,∴当x=1时,x+4+x-2+x-1的最小值为6,∴6≥a-2,∴解得a≤8,∴a的最大值为8,故答案为:8.6(2024·全国·八年级竞赛)计算12×1327+75+313-48-24-3232=.【答案】12【分析】本题考查了二次根式的混合运算,先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式,解题的关键是掌握运算法则.【详解】解:原式=23×13×33+53+3×33-43-26-3×632=23×33-6=12.7(2024·全国·八年级竞赛)计算:2009×2010×2011×2012+1-2009=.【答案】2010【分析】本题考查整式的混合运算、二次根式的性质,设参数计算是解答的关键.设a=2009,利用整式的混合运算法则和二次根式的性质是解答的关键.【详解】解:记a=2009,则原式=a a+1+1-aa+3a+2=a a+3+1-aa+2a+1=a2+3a+1-aa2+3a+2=a2+3a2+2a2+3a+1-a=a2+3a+12-a=a2+3a+1-a=a+12=a+1=2010,故答案为:2010.8(2024·全国·八年级竞赛)化简:-(x+1)2=.【答案】0【分析】本题考查了二次根式有意义的条件,由被开方数为非负数得到-x+12≤0,可确2≥0,即x+1定x+12=0,进而求解,掌握二次根式有意义的条件是解题的关键.【详解】解:由题意可得,-(x+1)2≥0,∴x+12≤0∴(x+1)2=0,∴-x+12=0=0,故答案为:0.9(2024·全国·八年级竞赛)已知实数x满足20122-4024x+x2+x-2013=x,则x-20122=.【答案】2013【分析】本题考查了二次根式有意义的条件,二次根式的性质,熟练掌握各知识点是解答本题的关键.先根据二次根式有意义的条件求出x的取值范围,再根据二次根式的性质化简得x-2013=2012,然后两边平方即可求解.【详解】解:∵x-2013≥0,∴x≥2013,∴x>2012.∵20122-4024x+x2+x-2013=x,∴2012-x2+x-2013=x,∴2012-x+x-2013=x,∴x-2012+x-2013=x,∴x-2013=2012,即x-2013=20122,故x-20122=2013.故答案为:2013.10(2024·全国·八年级竞赛)计算:1+20092+2009220102-12010=.【答案】2009【分析】本题考查了完全平方公式和二次根式化简,熟练巧用完全平方公式是解本题的关键;首先化简为完全平方公式形式,然后根据二次根式开方即可解答.【详解】解:1+20092+20092 20102-12010=1+2010-12+20092 20102-12010=1+20102-2×2010+1+2009220102-1 2010=20102-2×2010+2+200920102-12010=20102-2×2010-1+200920102-12010=20102-2×2009+200920102-12010=2010-200920102-12010=2010-20092010-1 2010=2009.故答案为:2009.11(2024·全国·八年级竞赛)5+26+5-26=.【答案】23【分析】本题考查二次根式的化简,熟练利用完全平方公式化简二次根式是解本题的关键.把原式化为3+22+3-22,再利用二次根式的性质化简即可.【详解】解:5+26+5-26=3+22+3-22=3+2+3-2=23,故答案为:23.12(2024·全国·八年级竞赛)计算:(π+999)0-12+-3+8+(-1)3+(2+1)23-22=.【答案】22-3+1【分析】本题主要考查了二次根式的运算,先将二次根式化简,再根据二次根式的运算法则计算即可.【详解】原式=1-23+3+22-1+(3+22)(3-22)=22-3+(9-8)=22-3+1.故答案为:22-3+1.13(2024·全国·九年级竞赛)已知正整数a、b满足等式a+b=369,则a-b=.【答案】123或-123【分析】本题考查了二次根式的加减运算,掌握二次根式的运算法则是解题的关键.先把369化成最简二次根式,再把满足正整数a、b的所有值列举出来代入计算即可.【详解】解:∵369=341,正整数a、b满足等式a+b=369,∴a=41,b=241,即a=41,b=164,或a=241,b=41,即a=164,b=41,∴a-b=41-164=-123或a-b=164-41=123,故答案为:123或-123.14(2024·全国·七年级竞赛)计算:1-2=.+2-3+⋅⋅⋅+2016-2017+3-4【答案】2017-1/-1+2017【分析】本题主要考查了二次根式混合运算,解题的关键是根据绝对值的意义,去掉绝对值,然后根据二次根式加减运算法则进行计算即可.【详解】解:1-2+⋯+2016-2017+3-4+2-3=2-1+3-2+4-3+⋯+2017-2016=2017-1.故答案为:2017-1.15(2024·全国·九年级竞赛)计算:9+18-27=.【答案】3+32-33【分析】本题考查二次根式的加减运算,理解二次根式的性质,准确化简各数是解题关键.直接根据二次根式的性质化简即可.【详解】解:9+18-27=3+32-33故答案为:3+32-33.16(2024·全国·八年级竞赛)若实数a满足a-8+a-2015=a,则a=.【答案】2079【分析】本题考查二次根式有意义的条件、绝对值的化简、算术平方根,熟知二次根式有意义的条件是解答的关键.先求得a≥2015,则a-8=a-8,进而得到a-2015=8,然后求解即可.【详解】解:依题意得a-2015≥0,则a≥2015,∴a-8=a-8,∴原式化为a-8+a-2015=a,即a-2015=8,得a-2015=64,∴a=2079.故答案为:2079.17(2024·全国·八年级竞赛)已知-2<x<3,则x2-6x+9-x2+4x+4化简为.【答案】1-2x【分析】先判断出x-3<0,x+2>0,再根据二次根式的性质化简原式即可.此题考查了二次根式的化简,熟练掌握二次根式的性质是解题的关键.【详解】解:∵-2<x<3,∴x-3<0,x+2>0,∴x2-6x+9-x2+4x+4=x-32-x+22=x-3-x+2=3-x-x-2=1-2x故答案为:1-2x二、单选题18(2021·全国·九年级竞赛)设n,k为正整数,A1=(n+3)(n-1)+4,A2=(n+5)A1+4,A3= (n+7)A2+4,A4=(n+9)A3+4,⋯,A k=(n+2k+1)A k-1+4,⋯,已知A100=2005,则n的值为( ).A.1806B.2005C.3612D.4100【答案】A【详解】A1=[(n+1)+2][(n+1)-2]+4=(n+1)2-22+4=(n+1)2=n+1,A2=[(n+3)+2][(n+3)-2]+4=(n+3)2-22+4=(n+3)2=n+3,A3=[(n+5)+2][(n+5)-2]+4=(n+5)2-22+4=(n+5)2=n+5,同理A4=n+7,A5=n+9,⋯,A100=n+2×100-1=n+199=2005⇒n=2005-199=1806.故选:A.19(2011·湖北黄冈·九年级竞赛)设a、b是整数,方程x2+ax+b=0的一根是4-23,则a2+b2 ab的值为()A.2B.0C.-2D.-1【答案】C【分析】先化简4-23,再代入方程x2+ax+b=0并整理,根据题意列出二元一次方程组并求解求得a 和b的值,再代入计算即可.【详解】解:4-23=32-23+1==3-12=3-1.∵方程x2+ax+b=0的一根是4-23,∴4-232+4-23a+b=0.∴3-12+3-1a+b=0.∴a-23+4-a+b=0.∵a、b是整数,∴a-2=0,4-a+b=0.解得a=2, b=-2.∴a2+b2ab =22+-222×-2=-2.故选:C.【点睛】本题考查二次根式的化简,一元二次方程的解,二元一次方程组的应用,正确构造二元一次方程组是解题关键.20(2024·全国·八年级竞赛)若二次根式x-2在实数范围内没有意义,则x的取值范围是() A.x<2 B.x≤2 C.x>2 D.x≥2【答案】A【分析】此题主要考查了二次根式有意义的条件,根据二次根式没有意义的条件可得x-2<0,再解不等式即可,关键是掌握二次根式中的被开方数是非负数.【详解】解:二次根式x -2在实数范围内没有意义,∴x -2<0,解得:x <2故选:AD .21(2024·全国·八年级竞赛)已知13-7的整数部分是m ,小数部分是n ,则m m +7n +mn 的值为()A.10B.7C.6D.4【答案】A【分析】本题考查了无理数的估算,分母有理化,代数式求值,先根据无理数的估算求出m ,n 的值,再代入进行求解即可.【详解】解:13-7=3+73+7 3-7=3+72,∵4<7<9,∴2<7<3,∴2.5<3+72<3,∴m =2,n =3+72-2,∴m m +7n +mn =22+7×3+72-2+2×3+72-2 =10,故选:A .22(2024·全国·九年级竞赛)若1±72是关于x 的一元二次方程a (x -b )2=7a ≠0 的两根,则ab的值为()A.18B.8C.2D.92【答案】B【分析】本题考查了根与系数的关系.先整理成一般式,利用根与系数的关系分另求得b 和a 的值,再代入求解即可.【详解】解:方程a (x -b )2=7整理得ax 2-2abx +ab 2-7=0,∵1±72是关于x 的一元二次方程a (x -b )2=7a ≠0 的两根,∴1+72+1-72=1=--2ab a =2b ,∴b =12,1+72⋅1-72=-32=ab 2-7a ,∴-32=12 2-7a ,∴a =4,∴a b=412=8.故选:B .23(2024·全国·八年级竞赛)已知75m 是整数,则满足条件的最小正整数m =( ).A.5B.0C.3D.75【答案】C【分析】此题考查了无理数与有理数的联系,根据二次根式的定义进行解答,解题的关键是正确理解75m 什么情况下为正整数.【详解】解:∵75m =52×3m ,∴3m 是一个平方数,∴正整数m 最小是3,故选:C .24(2021·全国·九年级竞赛)已知实数a ≠b ,且满足a +1 2=3-3a +1 ,b +1 2=3-3b +1 ,则bb a+aa b的值为()A.23 B.-23C.-2D.-13【答案】B【分析】由题意可得a +1,b +1是方程x 2=3-3x 即x 2+3x -3=0的两个根,根据根与系数的关系可得a +1+b +1=-3,a +1 b +1 =-3,整理可得a +b =-5,ab =1,即得a <0,b <0,a 2+b 2=a +b 2-2ab =25-2=23,然后把所求的式子变形后整体代入即可求解.【详解】解:∵a ≠b ,且满足a +1 2=3-3a +1 ,b +1 2=3-3b +1 ,∴a +1,b +1是方程x 2=3-3x 即x 2+3x -3=0的两个根,∴a +1+b +1=-3,a +1 b +1 =-3,整理,得a +b =-5,ab =1,∴a <0,b <0,a 2+b 2=a +b 2-2ab =25-2=23,∴b b a +aa b =-b a ab -a b ab =-b a -a b =-a 2+b 2ab=-23;故选:B .【点睛】本题考查了一元二次方程根与系数的关系,二次根式的化简求值,由题意得出a +b =-5,ab =1,是解题的关键.三、解答题25(2024·全国·八年级竞赛)若m 满足关系式2x +3y +4x +5y -m =x -2012+y +2012-x -y ,求m 的值.【答案】4024【分析】本题考查了非负数的性质以及二次根式有意义的条件,得到x +y =2012是关键.根据二次根式的性质:被开方数是非负数求得2x +3y +4x +5y -m =0,然后根据非负数的性质得到关于x 和y 的方程组,然后结合x +y =2012即可求得m 的值.【详解】解:由x -2012+y ≥02012-x -y ≥0 可得x +y =2012,∴x +y =20122x +3y =04x +5y -m =0∴m =4x +5y =2x +y +2x +3y =402426(2024·全国·八年级竞赛)设等腰三角形的腰为a ,底边为b ,底边上的高为h .(1)如果a =6+3,b =6+43,求h ;(2)如果b =46+2,h =26-1,求a .【答案】(1)32;(2)52.【分析】此题考查了等腰三角形的基本性质,学会在等腰三角形中构造直角三角形从而应用勾股定理来求解.(1)知道等腰三角形、底边利用等腰三角形高的特殊性质可构成直角三角形,再应用勾股定理求解h 值;(2)知道等腰三角底边和高,同理在等腰三角形中构造直角三角形,利用勾股定理来求a 值.【详解】(1)解:在等腰△ABC 中,由勾股定理知,∵a 2=12b 2+h 2,∴6+3 2=146+43 2+h 2,∴36+123+3=1436+483+48 +h 2,∴39+123=9+123+12+h 2,∴h 2=18,∴h =18=32.(2)解:同理在等腰△ABC 中,由勾股定理知,∵a 2=12b 2+h 2,∴a 2=12×46+22+26-1 2∴a 2=26+1 2+26-1 2∴a 2=50,∴a =52.27(2024·全国·八年级竞赛)先化简,再求值:(2x -1)2-(3x +2)(3x -2)+(5x -4)(x +2),其中x =2.【答案】2x -3,22-3【分析】本题考查平方差公式、完全平方公式及多项式乘多项式、整式的加减,熟练掌握并灵活运用它们是本题的关键.分别利用完全平方和、平方差公式、多项式乘多项式的法则、整式加减的运算法则计算即可.【详解】解:原式=4x 2-4x +1-9x 2+4+5x 2+6x -8,=2x -3当x =2时,原式=2x -3=22-3.28(2024·全国·八年级竞赛)已知:y =3x -15+15-3x +4,求2x +y 2-2x +y 2x -y ÷2y -12y 的值.【答案】12【分析】先根据二次根式有意义的条件得出x =5,进而得出y =4,再化简求值,代入即可得出答案.【详解】解:由3x -15≥0,15-3x ≥0,∴x =5,∴y =4,∴2x +y 2-2x +y 2x -y ÷2y -12y =2x +y 2x +y -2x +y ÷2y -12y=2x+y-12y=2x+12y=12.29(2024·全国·八年级竞赛)已知a=4-15,求:(1)a-1a;(2)a5-6a4-16a3+7a2+23a-42008.【答案】(1)-6(2)1【分析】本题考查完全平方公式,无理数的估算:(1)先根据完全平方公式变形得出a+1a =8,求出a-1a2=6,再估算出0<4-15<1,即0<a<1,最后求出答案即可;(2)将式子变形,再将a2-8a+1=0代入,进而可得出答案.【详解】(1)解:a=4-15,∴a-42=15,∴a2-8a+1=0.∴a+1a=8,∴a-1a2=a+1a-2=8-2=6,∵3<15<4,∴-4<-15<-3,∴0<4-15<1,即0<a<1,∴a-1a<0,∴a-1a=-6.(2)解:∵a5-6a4-16a3+7a2+23a-4=a3a2-8a+1+2a2a2-8a+1-a a2-8a+1 -3a2-8a+1-1=0+0-0-0-1=-1,∴a5-6a4-16a3+7a2+23a-42008=-12008=1.30(2024·全国·八年级竞赛)已知△ABC的三边长分别为a,b,c,且满足a-2+b2-10b+25=0.(1)求△ABC第三边c的取值范围;(2)求△ABC的周长l的取值范围;(3)若△ABC为等腰三角形,你能求出△ABC的周长吗?【答案】(1)3<c<7(2)10<l<14(3)12【分析】本题考查二次根式的非负性,等腰三角形的定义,三角形的三边关系:(1)先根据非负性得出∴a=2,b=5,再根据三角形第三边的取值范围即可得出答案;(2)根据周长三边之和,即可得出答案;(3)当c=2时,可知不能构成三角形,当c=5时,求出三边之和即可.【详解】(1)解:a-2+(b-5)2=0,∴a=2,b=5,∵b-a<c<a+b,∴3<c<7.(2)l=a+b+c=7+c,∴10<l<14.(3)c=2时,三边长(2,2,5)不能构成三角形,舍去.∴c=5,l=2+5+5=12.11。

全国初三初中数学竞赛测试带答案解析

全国初三初中数学竞赛测试带答案解析

全国初三初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.已知m 、n 是两个连续正整数,m<n ,且a=mn ,设x=,y=.下列说法正确的是( ).A .x 为奇数,y 为偶数B .x 为偶数,y 为奇数C .x 、y 都为奇数D .x 、y 都为偶数2.设a 、b 、c 和S 分别为三角形的三边长和面积,关于x 的方程b 2x 2+(b 2+c 2-a 2)x+c 2=0的判别式为Δ.则Δ与S 的大小关系为( ).A .Δ=16S 2B .Δ=-16S 2C .Δ=16SD .Δ=-16S3..设a 为的小数部分,b 为的小数部分.则的值为( ). A .+-1B .-+1C .--1D .++14.如图,D 、E 分别为△ABC 的边AB 、AC 上的点,△ACD 与△BCD 的周长相等,△ABE 与△CBE 的周长相等,记△ABC 的面积为S.若∠ACB=90°,则AD·CE 与S 的大小关系为( ).A 、S=AD·CEB 、S>AD·CEC 、S<AD·CED 、无法确定5.如图,在△ABC 中,AB=8,BC=7,AC=6,延长边BC 到点P ,使得△PAB 与△PCA 相似.则PC 的长是( ).A .7B .8C .9D .106.如图,以PQ=2r(r ∈Q)为直径的圆与一个以R(R ∈Q)为半径的圆相切于点P.正方形ABCD 的顶点A 、B 在大圆上,小圆在正方形的外部且与边CD 切于点Q.若正方形的边长为有理数,则R 、r 的值可能是( ).A.R=5,r="2"B.R=4,r=3/2C.R=4,r="2"D.R=5,r=3/2二、填空题1.已知方程x 2+x-1=0的两个根为α、β.则的值为 .2.把1,2,…,2 008个正整数分成1 004组:a 1,b 1;a 2,b 2;…;a 1 004,b 1 004,且满足a 1+b 1=a 2+b 2=…=a 1004+b 1004.对于所有的i(i=1,2,…,1 004),a i b i 的最大值为 .3.AD、BE、CF为△ABC的内角平分线.若BD+BF=CD+CE=AE+AF,则∠BAC的度数为 .4.下列四个命题:①一组对边相等且一组对角相等的四边形是平行四边形; ②一组对边相等且一条对角线平分另一条对角线的四边形是平行四边形;③一组对角相等且这一组对角的顶点所联结的对角线被另一条对角线平分的四边形是平行四边形;④一组对角相等且这一组对角的顶点所联结的对角线平分另一条对角线的四边形是平行四边形.其中,正确命题的序号是 .三、解答题1.(20分)已知△ABC中,∠A>∠B>∠C,且∠A=2∠B.若三角形的三边长为整数,面积也为整数,求△ABC面积的最小值.2.(25分)已知G是△ABC内任一点,BG、CG分别交AC、AB于点E、F.求使不等式S△BGF ·S△CGE≤kS2△ABC恒成立的k的最小值.3.(25分)已知(x+)(y+)=1.求证:x+y=0.全国初三初中数学竞赛测试答案及解析一、选择题1.已知m、n是两个连续正整数,m<n,且a=mn,设x=,y=.下列说法正确的是( ).A.x为奇数,y为偶数B.x为偶数,y为奇数C.x、y都为奇数D.x、y都为偶数【答案】C【解析】考查知识点:两个连续正整数之间的关系,平方根的意义,奇数和偶数的概念。

全国初中数学竞赛试题及解答

全国初中数学竞赛试题及解答

ABCD全国初中数学竞赛试卷及解析一、选择题(本题共6小题,每小题5分,满分30分.每小题均给出了代号为A ,B ,C ,D 的四个结论,其中只有一个是正确的。

请将正确答案的代号填在题后的括号里)1、设a ,b ,c 的平均数为M ,a ,b 的平均数为N ,N ,c 的平均数为P ,若c b a ,则M 与P 的大小关系是( )A 、P MB 、P MC 、P MD 、不确定 答案:B 解析:∵3c b a M ,2b a N ,222c b a c N P ,122cb a P M ∵c b a ∴0122122c c c c b a P M ,即0 P M ,即P M 2、某人骑车沿直线旅行,先前进了a 千米,休息了一段时间,又原路返回b 千米(a b ),再前进c 千米,则此人离起点的距离S 与时间t 的关系示意图是( )答案:C解析:因为图(A )中没有反映休息所消耗的时间;图(B )虽表明折返后S 的变化,但没有表示消耗的时间;图(D )中没有反映沿原始返回的一段路程,唯图(C )正确地表述了题意。

3、甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么( ) A 、甲比乙大5岁 B 、甲比乙大10岁 C 、乙比甲大10岁 D 、乙比甲大5岁 答案:A解析:由题意知3×(甲-乙)151025 ∴甲-乙=5。

4、一个一次函数图象与直线49545x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有( )A 、4个B 、5个C 、6个D 、7个 答案:B解析:在直线AB 上,横、纵坐标都是整数的点的坐标是N x 41 ,N y 525 ,(N 是整数).在线段AB 上这样的点应满足041 N ,且0525 N ,∴541N ,即1 N ,2,3,4,55、设a ,b ,c 分别是ABC 的三边的长,且cb a ba b a,则它的内角A 、B 的关系是( )A 、AB 2 B 、A B 2C 、A B 2D 、不确定 答案:B解析:由c b a b a b a得c a bb a ,延长CB 至D ,使AB BD ,于是c a CD 在ABC 与DAC 中,C C ,且DC ACAC BC∴ABC ∽DAC ,D BAC ∵D BAD∴BAC D BAD D ABC 226、已知ABC 的三边长分别为a ,b ,c ,面积为S ,111C B A 的三边长分别为1a ,1b ,1c ,面积为1S ,且1a a ,1b b ,1c c ,则S 与1S 的大小关系一定是( )A 、1S SB 、1S SC 、1S SD 、不确定 答案:D解析:分别构造ABC 与111C B A 如下:①作ABC ∽111C B A ,显然1211a a S S ,即1S S ;②设101b a ,20c ,则1 c h ,10 S ,10111 c b a ,则10100431S ,即1S S ;③设101 b a ,20 c ,则1 c h ,10 S ,2911 b a ,101 c ,则2 c h ,101 S ,即1S S ;因此,S 与1S 的大小关系不确定。

全国初三初中数学竞赛测试带答案解析

全国初三初中数学竞赛测试带答案解析

全国初三初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.如图,已知在Rt△ABC中,AB=35,一个边长为12的正方形CDEF内接于△ABC.则△ABC的周长为( ).(A)35 (B)40 (C)81 (D)842.设n=9+99+…+99…9(99个9).则n的十进制表示中,数码1有( )个.A.50B.90C.99D.1003.已知f(x)=x2+6ax-a,y=f(x)的图像与x轴有两个不同的交点(x1,0),(x2,0),且=8a-3.则a的值是( ).A.1B.2C.0或D.4.若不等式ax2+7x-1>2x+5对-1≤a≤1恒成立,则x的取值范围是( ).A.2≤x≤3B.2<x<3C.-1≤x≤1D.-1<x<15.在Rt△ABC中,∠B=60°,∠C=90°,AB=1,分别以AB、BC、CA为边长向△ABC外作等边△ABR、等边△BCP、等边△CAQ,联结QR交AB于点T.则△PRT的面积等于( ).(A) (B) (C) (D)6.在3×5的棋盘上,一枚棋子每次可以沿水平或者垂直方向移动一小格,但不可以沿任何斜对角线移动.从某些待定的格子开始,要求棋子经过全部的小正方格恰好一次,但不必回到原来出发的小方格上.在这15个小方格中,有( )个可以是这枚棋子出发的小方格.A.6B.8C.9D.10二、填空题1.正方形ABCD的边长为5,E为边BC上一点,使得BE=3,P是对角线BD上的一点,使得PE+PC的值最小.则PB= .2.设a、b、c为整数,且对一切实数x,(x-a)(x-8)+1="(x-b)(x-c)" 恒成立.则a+b+c的值为 .3.如图,在以O为圆心的两个同心圆图2中,MN为大圆的直径,交小圆于点P、Q,大圆的弦MC交小圆于点A、B.若OM=2,OP= 1,MA=AB=BC,则△MBQ的面积为 .4.从1, 2,…, 2 006中,至少要取出个奇数,才能保证其中必定存在两个数,它们的和为2 008.三、解答题1.(20分)实数x、y、z、w满足x≥y≥z≥w≥0,且5x+4y+3z+6w=100.求x+y+z+w的最大值和最小值.2.(25分)如图,在Rt△ABC中,∠B=90°,它的内切圆分别与边BC、CA、AB相切于点D、E、F,联结AD与内切圆相交于另一点P,联结PC、PE、PF.已知PC⊥PF.求证:(1)EP/DE=PD/DC;(2)△EPD是等腰三角形.3.(25分)在中,有多少个不同的整数(其中,[x]表示不大于x的最大整数)?全国初三初中数学竞赛测试答案及解析一、选择题1.如图,已知在Rt△ABC中,AB=35,一个边长为12的正方形CDEF内接于△ABC.则△ABC的周长为( ).(A)35 (B)40 (C)81 (D)84【答案】D【解析】分析:首先设BC=a,AC=b,由勾股定理与正方形的性质,可得:a2+b2=352,Rt△AFE∽Rt△ACB,再由相似三角形的对应边成比例,可得12(a+b)=ab,解方程组即可求得.解答:解:如图,设BC=a,AC=b,则a2+b2=352=1225.①又Rt△AFE∽Rt△ACB,所以=,即=,故12(a+b)=ab.②由①②得(a+b)2=a2+b2+2ab=1225+24(a+b),解得a+b=49(另一个解-25舍去),所以a+b+c=49+35=84.故答案为D.2.设n=9+99+…+99…9(99个9).则n的十进制表示中,数码1有( )个.A.50B.90C.99D.100【答案】C【解析】由于9=10-1,99=100-1,…,所以n="9+99+999+…+" =10+102+103+…1099-99×1.然后据此等式求出n的值后,即能得出n的十进制表示中,数码1有多少个.解:n=9+99+999+…+=10+102+103+…1099-99×1,=1111111…10(99个1)-99,=11111…1011(99个1).所以在十进制表示中,数码1有99个.故答案为:99.根据式中数据的特点将式中的数据变为10的n次方相加的形式是完成本题的关键.3.已知f(x)=x2+6ax-a,y=f(x)的图像与x轴有两个不同的交点(x1,0),(x2,0),且=8a-3.则a的值是( ).A.1B.2C.0或D.【答案】D【解析】本题考查二次函数与一元二次方程关系的综合应用问题。

历年全国初中数学竞赛试卷及答案解析

历年全国初中数学竞赛试卷及答案解析

历年全国初中数学竞赛试卷及答案解析目录1998年全国初中数学竞赛试卷及答案解析 (3)1999年全国初中数学竞赛试卷及答案解析 (10)2000年全国初中数学竞赛试卷及答案解析 (17)2001年全国初中数学竞赛试卷及答案解析 (24)2002年全国初中数学竞赛试卷及答案解析 (31)2003年全国初中数学竞赛试卷及答案解析 (39)2004年全国初中数学竞赛试卷及答案解析 (49)2005年全国初中数学竞赛试卷及答案解析 (57)2006年全国初中数学竞赛试卷及答案解析 (64)2007年全国初中数学竞赛试卷及答案解析 (72)2008年全国初中数学竞赛试卷及答案解析 (84)2009年全国初中数学竞赛试卷及答案解析 (91)2010年全国初中数学竞赛试卷及答案解析 (99)2011年全国初中数学竞赛试卷及答案解析 (107)2012年全国初中数学竞赛试卷及答案解析 (115)2013年全国初中数学竞赛试卷及答案解析 (129)2014年全国初中数学竞赛预赛试题及参考答案 (137)1998年全国初中数学竞赛试卷及答案解析一、选择题(本大题共5小题,每小题6分,共30分).1、已知c b a ,,都是实数,并且c b a >>,那么下列式子中正确的是(B ).A. ;bc ab >B. ;c b b a +>+C. ;c b b a ->-D..cbc a > 【解析】B.根据不等式的基本性质.2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为(D ).A. 2;B. 4;C. ;3D. .5【解析】D..514)(14)()(.1.200422212212212121212=⇒⨯--=⇒-+=-∴⎩⎨⎧=-=+>⇒⎭⎬⎫>>-=∆p p x x x x x x x x px x x x p p p 为方程的两根,那么有、设由3、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且64==⊥CE BD CE BD ,,,那么△ABC的面积等于(C ). A. 12; B. 14; C. 16; D. 18.【解析】C..16123434.4141.12642121=⨯==∴=-⇒=⇒∆=⨯⨯=⋅⋅=⇒⊥∆∆∆∆∆BCDE ABC ABC BCDE ABC ABC AED BCDE S S S S S S S ABC DE CE BD S CE BD DE 四边形四边形四边形的中位线是,则如图所示,连接 DACBE4、已知0≠abc ,并且p bac a c b c b a =+=+=+,那么直线p px y +=一定通过第()象限.(B ) A. 一、二; B. 二、三; C. 三、四; D. 一、四.【解析】B...11222.12.10.02)()(2一定通过第二、三象限直线过第二、三、四象限时,直线当过第一、二、三象限;时,直线当或或p px y x y p x y p p p ccc b a p c b a c b a p c b a p c b a pba c pa cb pcb a p b ac a c b c b a +=∴--=-=+==-==∴-=-=+=⇒=++=++=⇒++=++⇒⎪⎩⎪⎨⎧=+=+=+⇒=+=+=+ 5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有(C ). A. 17个; B. 64个; C. 72个; D. 81个.【解析】C..7298)(.832313029282726259987654321.322490483190.89个有,满足条件的整数有序对个,共,,,,,,,个;,共,,,,,,,,则依题意,知由原不等式组可得=⨯∴==∴⎩⎨⎧≤<≤<⇒⎪⎩⎪⎨⎧≤<≤<<≤b a b a b a b a b x a二、填空题(本大题共5小题,每小题6分,共30分).6、在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上任意一点,PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF=_____.【解析】.1360.136013560135.1355125sin135605125)12(sin.12)120(2222=-+=+∴=+⋅=∠⋅=-=+⨯-=∠⋅=∴-=<<=xxPFPExxPAFAPPFxxPDEDPPExDPxxAP;,则如图所示,设FEA DCBP7、已知直线32+-=xy与抛物线2xy=相交于A、B两点,O为坐标原点,那么△OAB的面积等于_____.【解析】6..639211121)31()91(21'.''').93()11(32''''2=⨯⨯-⨯⨯-+⨯+⨯=--=-=+-=∆∆∆OBBOAABBAAOABSSSSBAxBBAABAxyxy梯形则,轴,垂足分别为分别垂直于,作,,,的交点为与抛物线如图所示,直线8、已知圆环内直径为cma,外直径为cmb,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为_____cm.【解析】49a+b..49)150(225050242332222baabbbaabbbaabb+=-⨯--⋯⋯+=⨯--+=⨯--个时,链长为当圆环为;个时,链长为当圆环为;个时,链长为如图所示,当圆环为9、已知方程())(15132832222是非负整数其中aaaxaaxa=+-+--,至少有一个整数根,那么a=_____.【解析】1,3或5..53151322)2()83(2)15132(4)83()83(21222222222,或,可取故,a ax a x a a a a a a a a a a a a a x -=-=∴+±-=+---±-= 10、B 船在A 船的西偏北o 45处,两船相距km 210,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是_____km .【解析】52..52''620)6-(5)210()10(''''./.''.102221045sin 102221045cos 22222o o 取得最小值时,当则船的速度为并设处,船分别航行到船、小时后,设经过,如图所示,B A xt xt xt xt C B C A B A h km x A B A B A t AB BC AB AC =+=-+-=+==⨯=⋅==⨯=⋅=三、解答题(本大题共3小题,每小题20分,共60分).11、如图,在等腰ABC ∆中,o 901=∠=A AB ,,点E 为腰AC 中点,点F 在底边BC 上,且FE ⊥BE ,求△CEF 的面积.AB CEF【解】解法一:.24161212121612214522122∽9090.o o o =⨯⨯=⋅⋅=∴=⇒=-∴=⇒=∠-=-=∴=⇒==∴=⇒∆∆∴∠=∠⇒⎭⎬⎫=∠+∠=∠+∠⊥∆GF CE S GF GF GF GF CG C GFGE CE CG GF GE AEABGF GE GEABGF AE GEF Rt ABE Rt GEF ABE AEB GEF AEB ABE G CE FG CEF 于如图所示,作GFEACB解法二:241)21()(∽9090.22o o ==∴====∴∆∆∴∠=∠⇒⎭⎬⎫=∠+∠=∠+∠⊥∆∆AEABCH CE CE AB CH AE AB CE S S CEH Rt ABE Rt CEH ABE AEB CEH AEB ABE H EF CE CH C ABE CEH ,的延长线交于,与作如图所示,过 HFEACB.2412112141324132322.45o =⨯⨯⨯⨯=⨯==∴==∴⇒∠⇒=∠=∠∆∆∆∆∆ABE CHE CEF CHF CEF S S S CH CE S S CE CH F HCE CF HCF ECF 的距离相等、到的角平分线是12、设抛物线452)12(2++++=a x a x y 的图象与x 轴只有一个交点.(1)求a 的值; (2)求618323-+a a 的值. 【解】.5796)138(323)15972584(3231381011)1(310113)2)(53(1115344)1(44)2()1(1212)1(12)1()1(11101159725846101597)1(9876101597987)1)(610987(610987169546)1(441169546441)1321()(1321412)1(94129)23()(2312)1(12)1()(101)1()2(.251010)452(4)12(.0452)12(.452)12()1(618224622224222222216182228162224822224222222=+-++=+∴+-=+-+=+-=+-+-=⋅=+-=+-+=+-=+-==+-=+-+=+-=-==-=∴=--+=+++=++=++=⋅=+=+++=++=+==+=+++=++=+==+=+++=++=+==+=∴=--±=∴=+-=+-+=∆∴=++++∴++++=-a a a a a a a a a a a aa a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a x a x x a x a x y 又知,由,即有两个相等的实根一元二次方程轴只有一个交点的图像与抛物线13、A 市、B 市和C 市有某种机器10台、10台、8台,现在决定把这些机器支援给D 市18台,E 市10台.已知:从A 市调运一台机器到D 市、E 市的运费为200元和800元;从B 市调运一台机器到D 市、E 市的运费为300元和700元;从C 市调运一台机器到D 市、E 市的运费为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器调运完毕后,求总运费W (元)关于x (台)的函数关系式,并求W 的最大值和最小值.(2)设从A 市调x 台到D 市,B 市调y 台到D 市,当28台机器调运完毕后,用x 、y 表示总运费W (元),并求W 的最大值和最小值. 【解】.1420014200100142001720010300020017200)(300200.98009800810980017200183001020017200)(300200.1810100100172003005001810100100818010010017200300500)10(500)10(700)10(800)18(400300200.101010182.132005100009958218010017200800)102(500)10(700)10(800)218(400300200.10210102181元的最大值是,故时,,即当;又元的最小值是,故时,,即当是整数,,,且又于是台,,机器台数分别为市的台,发往,,市的机器台数分别为市发往市、市、)由题设知,(元取到最大值时,元;当取到最小值时,所以,当又于是台,,机器台数分别为市的台,发往,,市的机器台数分别为市发往市、市、)由题设知,(W W y x y x x W W W y x y x x W y x y x y x y x W y x y x y x y x y x y x y x y x y x W y x y x E y x y x D C B A W x W x x x x x x x x x x x W x x x E x x x D C B A ====+⨯-⨯-≤++--=====+⨯-⨯-≥++--=∴⎪⎩⎪⎨⎧≤+≤≤≤≤≤+--=∴⎪⎩⎪⎨⎧≤+≤≤≤≤≤⇒⎪⎩⎪⎨⎧≤--≤≤≤≤≤+--=-++-+-+--++=-+----==≤≤⇒⎩⎨⎧≤-≤≤≤+-=-+-+-+-++=----1999年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).14、一个凸n 边形的内角和小于1999°,那么n 的最大值是(C ).A. 11;B. 12;C. 13;D. 14.【解析】C.18019131999)2(180o o <⇒<-n n .15、某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,那么4月份该用户应交煤气费(B ). A. 60元; B. 66元; C. 75元; D. 78元.【解析】B.设4月份用户使用煤气x (x >60)立方米.则 60×0.8+1.2×(x -60)=0.88x .解得x =75. 故4月份该用户应交煤气费0.88×75=66元.16、已知11=-a a,那么代数式a a +1的值为(D ).A.;25B. ;25-C. ;5-D. .5【解析】D..1111110②52321)1(113111110①2222222此时无解时,当;时,当-=+⇒=+⇒=-<=+=++=+=+⇒+∴=+⇒=-⇒=->a aa a a a a a a a a a a a a a aa a a a a 17、在ABC ∆中,D 是边BC 上的一点,已知51065====CD BD AD AC ,,,,那么ABC ∆的面积是(B ). A. 30; B. 36; C. 72; D. 125.【解析】B..36524)510(212152454621214353621215.2222=⨯+⨯=⋅⋅=∴=⨯=⋅=⇒⋅⋅=⋅⋅=∴=-=-=∴=⨯==⇒⊥==⊥⊥∆∆AF BC S CD CE AD AF AF CD CE AD S AE AC CE AD AE AD CE CD AC F BC AF E AD CE ABC ADC ,则于,于如图所示,作FEACD B18、如果抛物线1)1(2----=k x k x y 与x 轴的交点为A ,B ,顶点为C ,那么△ABC 的面积的最小值是(A ). A. 1; B. 2; C. 3; D. 4.【解析】A.().1 184)1(452522145221214524)]1([)1(444212)1(252)1(4)1(4)(11.1)1(32222212222221221212121212取得最小值时,当,,则,的两实根为设一元二次方程ABCCABCSkkkkkkkkxxyABSkkkkabackkabkkkkxxxxxxkxxkxxxxkxkx∆∆-=++=++⋅++⋅=++⋅-⋅=⋅⋅=∴++-=-----=--=---=-++=----=-+=-∴--=-=+=----19、在正五边形ABCDE所在的平面内能找到点P,使得△PCD与△BCD的面积相等,并且△ABP为等腰三角形,这样的不同的点P的个数为(D).A.2;B.3;C.4;D.5.【解析】D..③②①.31452PPBABPBABPPABAPABAPPPABPBPAPABPCDCDBPBCDPCD,为半径的圆上,此时有为圆心,必在以时,点当;为半径的圆上,此时有为圆心,必在以时,点当;,的中垂线上,此时有必在线段时,点当是等腰三角形,则要使的对称直线上的直线或此直线关于且平行于一定在过点的面积相等,则点与如图所示,要使===∆∆∆二、填空题(本大题共6小题,每小题5分,共30分).20、已知231231-=+=yx,,那么22yx+的值为_____.【解析】10..10)23)(23(2)]23()23[(2)(23232312312222=+--++-=-+=+∴+=-=⇒-=+=xyyxyxyxyx,,21、如图,正方形ABCD的边长为10cm,点E在边CB的延长线上,且EB=10cm,点P在边DC上运动,EP与AB的交点为F.设DP=xcm,△EFB与四边形AFPD的面积和为ycm2,那么,y与x之间的函数关系式是_____(0<x<10).【解析】y=5x+50.50510)]215([2110)215(21)(2121215)215(10215)10(21)(212121101010∽+=⨯++⨯+⨯-⨯=⋅+⋅+⋅⋅=+=∴+=--=-=∴-=-=-==⇒=+==⇒∆∆∆x x x x AD AF DP BE BF S S y xx BF AB AF x x DP DC CP BF EC EB CP BF ECP EBF AFPD EFB 四边形 22、已知02022=-+≠b ab a ab ,,那么ba ba +-22的值为_____. 【解析】3135或.35)2(2)2(22231222220)2)((0222=+-⨯--⨯=+-=+-=+-∴-==⇒=+-⇒=-+b b b b b a b a b b b b b a b a b a b a b a b a b ab a 或或23、如图,已知边长为1的正方形OABC 在直角坐标系中,A 、B 两点在第Ⅰ象限内,OA 与x 轴的夹角为30°,那么点B 的坐标是_____.【解析】)213213(+-,.212321232323130cos 2121130sin 2323130cos 2121130sin .o o o o +=+=+=-=-=-=∴=⨯=⋅==⨯=⋅==⨯=⋅==⨯=⋅=⊥⊥⊥AE BF FD BF BD AF OE DE OE OD AB BF AB AF OA OE OA AE F BD AF D x BD E x AE ,,,则于,轴于,轴于如图所示,作F EDCBOxyA24、设有一个边长为1的正三角形,记作A 1(如图3),将A 1的每条边三等分,在中间的线段上向形外作正三角形,去掉中间的线段后所得到的图形记作A 2(如图4);将A 2的每条边三等分,并重复上述过程,所得到的图形记作A 3(如图5);再将A 3的每条边三等分,并重复上述过程,所得到的图形记作A 4,那么A 4的周长_____.【解析】964..964])31(1)[43(316])31(1)[43(4)311()43(313.31433422321=⨯⨯=⨯⨯=⨯⨯⨯=⨯的周长是,的周长是,的周长是,的周长是为原来的条边,每条线段长度变把一条边变成变化规律为:每次变化A A A A25、江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等.如果用2台抽水机抽水,40分钟可抽完;如果用4台抽水机抽水,16分钟可抽完.如果要在10分钟内抽完水,那么至少需要抽水机_____台.【解析】6..6103210316010103231601641640240台故至少需要抽水机,则水,每台抽水机每分钟抽,每分钟涌出的江水是涌出的江水是设使用抽水机抽水前已=⨯+=+⎪⎩⎪⎨⎧==⇒⎩⎨⎧⨯=+⨯=+ccc c b a c b ca cb ac b a c b a三、解答题(本大题共3小题,每小题20分,共60分).26、设实数t s ,分别满足0199901991922=++=++t t s s ,,并且1≠st ,求ts st 14++的值. 【解】.519141991419199191991.01999111019199)1(0199190222-=++--=++∴⎩⎨⎧=--=⇒⎪⎩⎪⎨⎧=⋅-=+∴=++∴≠⇒≠=+⋅+⇒=++∴≠ss s t s st s t s st t st s x x t s st st ss s s s 的两个不等实根是一元二次方程, 27、如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点是P ,AB =BD ,且PC =0.6,求四边形ABCD 的周长.【解】如图所示,连接BO 并延长交AD 于H ,连接OD .则HDP O CA B.632213)6(36)2123()2221()()21(221316.0236.023∽∥909022222222222222o o +++∴=-=-==++⨯=++=+==-=-==-⨯=⋅=∴=⇒∆∆∴∠=∠⇒∴=∠⇒∠=∠=∠⇒≅∆∴∠=∠⇒∆≅∆⇒=的周长为四边形上的圆周角是直径ABCD AB AC BC OH BO AD BH AH AB CD AC AD OP CP OB CD CPOPCD OB CPD OPB CDP OBP CD BH ADC AC ADC DHB AHB DBH ABH DBO ABO DOB AOB BD AB28、有人编了一个程序:从1开始,交错地做加法或乘法(第一次可以是加法,也可以是乘法),每次加法,将上次的运算结果加2或加3;每次乘法,将上次的运算结果乘2或乘3.例如,30可以这样得到:30108413223−→−−→−−→−−→−⨯+⨯+.(1)证明:可以得到22; (2)证明:可以得到22297100-+.【解析】(1)倒过来考虑:①22假设是通过乘法得到,则必是×2; A ,11假设是通过+2得到;9必是×3得到. 3必是+2得到.(*) B ,11假设是通过+3得到. 8必是×2得到. (A)4是+2得到; 2必是×2得到.(*) (B)4是+3得到.(*) ②22假设是通过加法得到. A ,假设是+2得到; 20必是×2得到. (A)10假设是+2得到; 8必是×2得到. a ,4是+2得到; 2必是×2得到.(*) b ,4是+3得到.(*) (B)10假设是+3得到. 7不能通过乘法得到,不满足. B ,假设是+3得到.19不能通过乘法得到,不满足. 故所有方法有148102022124810202214811221248112213911223-22-22-22-22-22-3-23-222-23-22-32-2−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−÷÷÷÷÷÷÷÷÷÷÷÷(2)倒过来考虑:148423)2293(423223423123322122222③)(2471416222)23247(222422122222②)(247222)2296(222422222①3-222-2952-952963-96396992-969929710023-22-1423-29598296993-969929710023-0322-96992971002-97100−→−−→−=-⨯→-÷−→−−→−⋯-⨯−→−-⨯−→−-⨯−→−-⨯−→−-+−→−-+−→−-+−→−−→−−→−−→−=-+→÷-÷−→−−→−−→−⋯-+−→−-+−→−-+−→−-+−→−−→−=-+→÷-−→−−→−⋯-+−→−-+−→−-+÷÷÷÷÷÷÷÷÷÷÷÷÷÷,次不满足,,次不满足,次【解】证明:(1)22119312232−→−−→−−→−−→−⨯+⨯+.或222010841222010842122118412211842122223222222232323222−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−+⨯+⨯++⨯+⨯+⨯⨯+⨯+⨯+⨯+⨯证明:(2)222229129329123423)2292(423223423223423223197100972962963963962242323222223-+=-⨯−→−-⨯−→−-⨯−→−-⨯−→−-⨯→⨯+−→−−→−⋯-⨯−→−-⨯−→−-⨯−→−-⨯−→−-⨯−→−-⨯−→−⨯+⨯+⨯+⨯+⨯+⨯+,次2000年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).29、设a ,b ,c 的平均数为M ,a ,b 的平均数为N ,N ,c 的平均数为P ,若c b a >>,则M 与P 的大小关系是(B ). A. ;P M = B. ;P M > C. ;P M < D. 不确定.【解析】B..01221221224234222223P M cc c c b a P M cb a cb ac b a c b a P M c b a cba c N Pb a Nc b a M >⇒=-+>-+=-∴>>-+=++-++=-∴++=++=+=+=++= ,,30、某人骑车沿直线旅行,先前进了a 千米,休息了一段时间,又原路返回b 千米(b ﹤a ),再前进c千米,则此人离起点的距离S 与时间t 的关系示意图是(C ).【解析】C.图(A)中没有反映休息所消耗的时间;图(B)虽表明折返后S 的变化,但没有表示消耗的时间;图(D)中没有反映沿原始返回的一段路程,唯图(C)正确地表述了题意.31、甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么(A ).A. 甲比乙大5岁;B. 甲比乙大10岁;C. 乙比甲大10岁;D. 乙比甲大5岁.【解析】A.设甲、乙的年龄差是x 岁.则乙现在(10+x )岁,甲现在(25-x )岁,年龄差为[(25-x )-(10+x )]=15-2x 岁. 故15-2x =x ,即x =5.32、一个一次函数图象与直线49545+=x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有(B ). A. 4个; B. 5个; C. 6个; D. 7个.【解析】B..5012340419419)(419190)()4950()019().19(4549545)251(4954500000个点故共有,,,,是整数点,则上横纵坐标都是整数的是线段,设,,,则的一次函数的解析式是,平行,且过与直线----=⇒≤-=≤-⇒⎩⎨⎧=-≤≤∴--=-=--+=t x t t tx x AB y x B A x x y x y 33、设a ,b ,c 分别是△ABC 的三边的长,且cb a ba b a +++=,则它的内角∠A 、∠B 的关系是(B ). A. ∠B >2∠A ; B. ∠B =2∠A ; C. ∠B <2∠A ; D. 不确定.【解析】B.BACD BAD D ABC DBAD D BAC DAC ABC DCACAC BC C C DAC ABC c a CD AB BD D CB c a b b a c b a b b a a b a c b a b a b a c b a b a b a ∠=∠=∠+∠=∠∴∠=∠∠=∠⇒∆∆∴=∠=∠∆∆+==+=⇒+++-++-=--⇒+++=--⇒+++=22∽.)()( ,中,和在,于是,使到如图所示,延长ca b cDC B A34、已知ABC ∆的三边长分别为c b a ,,,面积为S ,111C B A ∆的三边长分别为111c b a ,,,面积为S 1,且111c c b b a a >>>,,,则S 与S 1的大小关系一定是(D ).A. ;1S S >B. ;1S S <C. ;1S S =D. 不确定.【解析】D..2121214121..2.2.11111111111111111`111S S h CB S S h CB S S h CB h AB S CB AB S c c b b a a ABc b a h AB C B A AB c ABAB b a l C AB l AB B >>==<<⋅=⋅⋅=>>>===∆==>=时,;当时,;当时,当,而,,显然满足,则为为边的等边三角形,高是以,则上任一点为的中垂线,是的中点,是如图所示,二、填空题(本大题共6小题,每小题5分,共30分).35、已知:333124++=a ,那么=++32133aa a _____. 【解析】1..11)]12(1[1)11(1)1(113313313312111)2()124)(12()12(12433333323323233333333333=--+=-+=-+=-+++=++=++∴-=⇒=-=++-=-⇒++=aa a a a a a a a a a a a aa a36、在梯形ABCD 中,o o 12045268∥=∠=∠==BAD BCD BC AB DC AB ,,,,,则梯形ABCD 的面积等于_____.【解析】3666+..36666)]3214(8[21)(21321468323223630tan 30120.62264526.o o o o +=⨯++=⋅+=∴+=++=++=∴=⨯=⋅=⇒=∠⇒=∠====⇒=∠=AE CD AB S FC EF DE DC AE DE DAE BAD CF BF AE BCD BC F E DC BF AE ABCD 梯形,、于垂直、如图所示,作37、已知关于x 的方程012)1(2=--+-a x x a 的根都是整数,那么符合条件的整数有_____个.【解析】5..5①②.32121112111②11①.0)]1()1)[(1(12)1(212个有知,符合条件的整数结合,,,,即,是整数知,,由,时,当;时,当aaaxaxxaxaaxaxaxxa-=±±=----==≠===++--⇒=--+-38、如图,工地上竖立着两根电线杆AB、CD,它们相距15米,分别自两杆上高出地面4米、6米的A、C处,向两侧地面上的E、D;B、F点处,用钢丝绳拉紧,以固定电线杆.那么钢丝绳AD与BC 的交点P离地面的高度为_____米.【解析】2.4..4.24.21561541515615∽415∽.米离地面的高度是即点则于如图所示,作PPQPQPQBQQDPQCDBDPQBQBDBQCDPQBCDBPQPQABBDPQQDBDQDABPQDABDPQQBDPQ=⇒=+∴=+=⋅=⇒=⇒∆∆=⋅=⇒=⇒∆∆⊥39、如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线bxy+=31恰好将矩形OABC 分成面积相等的两部分,那么b=_____.【解析】0.5..211)515()0(===-==+bBQOPSSbBQbOPbQbPOPQABQPC,即,则要使,,知,,,由梯形梯形40、某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是_____.)进价进价销售价(注:利润率%100⨯-=【解析】17%.%17%10017.117.1%8%100%100%)4.61(%)4.61(%.100%)4.61(%)4.61(%4.6%.100=⨯-==⨯--⨯---⨯---⨯-xxx xy x xy x x y xxy xxy y x 率为故这种商品原来的利润解得,依题意得,为后,在销售时的利润率原进价降低的利润率为元,那么按原进价销售元,销售价为设原进价为三、解答题(本大题共3小题,每小题20分,共60分).41、设m 是不小于-1的实数,使得关于x 的方程033)2(222=+-+-+m m x m x 有两个不相等的实数根21x x ,.(1)若62221=+x x ,求m 的值; (2)求22212111x mx x mx -+-的最大值. 【解】.1011.101.11)11(25)23(2)13(2)13(2)1()13)(1(2)2882(1)42()33()]42)(33()10102[(1)()]([)1)(1()]1()1([11)2(.217511217561010210102)33(2)]2(2[2)()1(.1110)33(4)]2(2[.033)2(222212122222232222121212122212112222122212122222122122212222的最大值是故取得最大值时,当上是单调递减的在设根据题设,有有两个不相等的实数根方程x mx x mx y m m y m m m m y m m m m m m m m mm m m m m m m m m m m m m m x x x x x x x x x x m x x x x x x m x mx x mx m m m m m m m m m m x x x x x x m m m m m m m x m x -+--=∴<≤-<≤---=+-=+-=-+--=--+-=+-++--+-++-=++-+-+=---+-=-+--=∴<≤-±=⇒=+-∴+-=+----=-+=+<≤-<⇒>+---=∆∴=+-+-+42、如图,已知四边形ABCD 外接圆O 的半径为2,对角线AC 与BD 的交点为E ,322===BD AE AB EC AE ,且,,求四边形ABCD 的面积.ECOBAD【解】由题设,得ADAB ADB ABE ACBADB ACB ABE ACB ABE BACEAB AB AE AC AB AC AE AB EC AE AE AB AE AB =⇒∠=∠∴∠=∠∠=∠⇒∆∆∴∠=∠=⇒⋅=⇒⎭⎬⎫==⇒= ∽2222232333.313221211121)3(233221212222=+=+=∴==∴=⨯⨯=⋅⋅=∴=-=-==-=-=∴=⨯===⇒∆≅∆∴∠=∠⇒∆≅∆∆∆∆∆∆ABD CBD ABCD ABD CBD ABD S S S S S AC E AH BD S OH OA AH BH OB OH BD DH BH ADH ABH DAO BAO ADO ABO H BD AO DO BO AO 四边形的中点是,,则于交,、、如图所示,连接 HECO BAD43、一幢33层的大楼有一部电梯停在第一层,它一次最多能容纳32人,而且只能在第2层至第33层中的某一层停一次.对于每个人来说,他往下走一层楼梯感到1分不满意,往上走一层楼梯感到3分不满意.现在有32个人在第一层,并且他们分别住在第2至第33层的每一层,问:电梯停在哪一层,可以使得这32个人不满意的总分达到最小?最小值是多少?(有些人可以不乘电梯而直接从楼梯上楼)【解】易知,这32个人恰好是第2至第33层各住1人.先证明:要使不满意的总分达到最小,则对于每个乘电梯上、下楼的人,他所住的层数一定大于直接走楼梯上楼的人所住的层数.证明:设乘电梯上、下楼和直接走楼梯上楼的2个人分别住第s 和第t 层. 并设电梯停在第x 层.①当x ≤s 时,这两者不满意总分为3(s -x )+3(t -1)=3s +3t -3x -3.与t ,s 的大小关系无关;②当x >s 时,这两者不满意总分为(x -s )+3(t -1)=3t +x -s -3,要使总分最小,则t <s . 故s <t ,即乘电梯上、下楼的人,他所住的层数大于直接走楼梯上楼的人所住的层数. 今设电梯停在第x 层,并设住在第2层到第a (a <x )层的人直接走楼梯上楼. 那么不满意总分为:.31672774101316)7(815)4101(216832)101(22)33)(34(32)1)((2)1(32)33)](33(1[32)1)](1(1[2)1)](1(1[3)]33(21[3)]1(21[)]1(21[32222取得最小值时,当S a x a a x a a x a a x a x x x a x a x a a x x a x a x a a x a x a S ⎩⎨⎧==⇒⎪⎩⎪⎨⎧=+=+-++-=+-++-=--+---+-=--+⨯+----++--+⨯=-+⋯+++--+⋯+++-+⋯++= 所以,当电梯停在第27层时,这32个人不满意的总分达到最小,最小值为316分.2001年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).44、化简)2(2)2(2234++-n n n ,得(C ). A. ;8121-+nB. ;12+-nC. ;87D. .47 【解析】C.872122)12(2222)2(2)2(223343141434=-=-=-=-+++++++n n n n n n n n .45、如果c b a ,,是三个任意整数,那么222ac c b b a +++,,(C ). A. 都不是整数; B. 至少有两个整数; C. 至少有一个整数; D. 都是整数.【解析】C.①若a ,b ,c 中有0个奇数,则3个数都是整数; ②若a ,b ,c 中有1个奇数,则只有1个数是整数; ③若a ,b ,c 中有2个奇数,则只有1个数是整数; ④若a ,b ,c 中有3个奇数,则3个数都是整数.46、如果b a ,是质数,且01301322=+-=+-m b b m a a ,,那么baa b +的值为(B ). A.;22123B.;或222125C.;22125D..222123或 【解析】B.①当a =b 时,2=+=+aa a ab a a b ;②当a ≠b 时,a ,b 是一元二次方程x 2-13x +m =0的两实根.故a +b =13. 又a ,b 是质数,故a =2,b =11或a =11,b =2. 故22125112211=+=+ba ab .47、如图,若将正方形分成k 个全等的矩形,其中上、下各横排两个,中间竖排若干个,则k 的值为(B ).A. 6;B. 8;C. 10;D. 12.【解析】B.设正方形的边长为a ,则分成的矩形的长为a /2.宽为(a -a /2)/2=a /4,故中间竖排有4个.所以,正方形分成8个全等的矩形.48、如图,若P A =PB ,∠APB =2∠ACB ,AC 与PB 交于点D ,且PB =4,PD =3,则AD ·DC 等于(B ).CDBPAA. 6;B. 7;C. 12;D. 16.【解析】B.如图所示,以P 为圆心,以PA =PB 为半径作圆,延长BD 交圆于M .MCDBPA则由∠APB =2∠ACB ,知点C 必在⊙P 上.故根据相交弦定理,有AD •DC =BD •DM =(PB -PD )(PM +PD )=(4-3)×(4+3)=7.49、若b a ,是正数,且满足)111)(111(12345b a -+=,则b a 和之间的大小关系是(A ).A. ;b a >B. ;b a =C. ;b a <D. 不能确定.【解析】A.由12345=(111+a )(111-b ),得111(a -b )-ab =24>0,故a >b .二、填空题(本大题共6小题,每小题5分,共30分).50、已知:23232323-+=+-=y x ,.那么=+22y x x y _____. 【解析】970.9701101310)()(3)(110625625232323232323223322=⨯⨯-=+-+=+=+∴⎩⎨⎧==+⇒⎩⎨⎧+=-=⇒⎪⎪⎩⎪⎪⎨⎧-+=+-=xy y x xy y x y x y x y x xy xy y x y x y x .51、若281422=++=++x xy y y xy x ,,则y x +的值为_____.【解析】6或-7.两式相加,得(x +y )2+(x +y )-42=0,即[(x +y )-6][(x +y )+7]=0,故x +y =6或-7.52、用长为1,4,4,5的线段为边作梯形,那么这个梯形的面积等于_____.【解析】1036或. ①若1,4为底.如图所示,延长DA ,CB 相交于G ,并设AG =x ,BG =y ,则4514GBCDA35345414==⇒+==+⇒==y x y y x x GC GB DC AB GD GA ,. 在△GAB 中,GA 2+AB 2=GB 2,故△GAB 是直角三角形,即∠D =∠GAB =90o . 于是,S =(AB +DC )·AD /2=(1+4)·4/2=10. ②若1,5为底.如图所示,作AE 、BF 垂直DC 于E 、F .则4145FE ACDBDE =CF =(5-1)/2=2,32242222=-=-=DE AD AE . 于是,3632)51(21)(21=⨯+=⋅+=AE DC AB S .③若4,4为底.应为平行四边形,但不满足.④若4,5为底.则1,4为腰,由于1+4=5,故不满足.53、销售某种商品,如果单价上涨%m ,则售出的数量就将减少150m.为了使该商品的销售总金额最大,那么m 的值应该确定为_____.【解析】25.设这种商品的原单价为A ,原销售量为B ,销售总额为W ,则)1500050(15000150150100100)1501(%)1(2---=-⋅+⋅=-⋅+=m m AB m m AB m B m A W 当25250=--=m 时,W 取得最大值.54、在直角坐标系xOy 中,x 轴上的动点)0(,x M 到定点)12()55(,、,Q P 的距离分别为MP 和MQ ,那么当MP +MQ 取最小值时,点M 的横坐标=x _____.【解析】25.如图所示,作P 关于x 轴的对称点P’.则H I M P'(5,-5)'Q (2,1)P (5,5)M'MP +MQ =MP’+MQ ,故当Q 、M 、P’三点共线时,MP +MQ 最小.过P’,Q 分别作x 轴的垂线,垂足分别为I ,H . 于是255251'=⇒--=⇒=x x x IM HM I P QH .55、已知实数b a ,满足22221b a ab t b ab a --==++,且,那么t 的取值范围是_____.【解析】313-≤≤-t .31)1(2123113121210)(211310)(231122222222222222-=--⨯≥-=--=-=-⨯≤-=--=∴-≥⇒≥+=++=+⇒++=≤⇒≥-=+-=-⇒++=ab b a ab t ab b a ab t ab b a b ab a ab b ab a ab b a b ab a ab b ab a .三、解答题(本大题共3小题,每小题20分,共60分).56、某个学生参加军训,进行打靶训练,必须射击10次.在第6、第7、第8、第9次射击中,分别得了9.0环、8.4环、8.1环、9.3环.他的前9次射击所得的平均环数高于前5次射击所得的平均环数.如果他要使10次射击的平均环数超过8.8环.那么他在第10次射击中至少要得多少环?(每次射击所得环数都精确到0.1环)【解】设前5次射击的平均环数为x ,则前9次射击的平均环数为98.34593.91.84.80.95+=++++x x . 由题设知,x x >+98.345,即7.8<x . 故前9次的总环数至多为8.7×9-0.1=78.2.所以,第10次射击至少得8.8×10+0.1-78.2=9.9(环).57、如图,已知点P 是⊙O 外一点,PS 、PT 是⊙O 的两条切线,过点P 作⊙O 的割线P AB ,交⊙O 于A ,B 两点,并交ST 于点C .求证:)11(211PBPA PC +=.ACPOSTB【解】如图所示,作OE ⊥AB 于E ,连接OP 交ST 于F ,连接OT .PBPA PB PA PB PA PC PB PA PC PB PA PE PC PB PA PE PC PB PA PBPA PT PAB PT POPF PT POPTPT PF PTO PFT PEPC PO PF PE PFPO PC POE PCF BEAE ST OP 112)(222.∽∽22+=⋅+=∴+⋅=⋅⇒⋅=⋅⇒⋅=⋅∴⋅=⇒⋅=⇒=⇒∆∆⋅=⋅⇒=⇒∆∆∴=⊥∴是割线是切线,, F E CA POS TB58、已知:关于x 的方程01)1)(72()1)(1(22=+-+---x x a x x a 有实根. (1)求a 取值范围;(2)若原方程的两个实数根为21x x ,,且113112211=-+-x x x x ,求a 的值. 【解】(1)令1-=x xt ,得)1(1≠-=t t t x . 原方程转化为关于t 的方程01)72()1(22=++--t a t a 有不为1的实数根. ①当a 2-1=0时,符合题意; ②当a 2-1≠0时,28530)1(4)]72([22-≥⇒≥--+-=∆a a a . 若t =1,则22101)72()1(2±=⇒=++--a a a . 故a 的取值范围是2212853±≠-≥a a 且. (2))(3810113172113111721)72(112122211222211舍去,-==⇒=-+∴=-+--+=-+--=-+-a a a a x x x x a a a a x x x x.所以,a 的值为10.2002年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).59、设ab b a b a 4022=+<<,,则ba ba -+的值为(A ). A. ;3 B. ;6 C. 2; D. 3.【解析】A ..3242422)()()(0002222222=-+=-+++=-+=-+=-+∴>-+⇒⎩⎨⎧<+<-⇒<<abab abab ab b a ab b a b a b a b a b a b a b a b a b a b a b a b a60、已知200219992001199920001999+=+=+=x c x b x a ,,,则多项式ca bc ab c b a ---++222的值为(D ). A. 0; B. 1; C. 2; D. 3.【解析】D..3]2)1()1[(21])()()[(21222222222=+-+-=-+-+-=---++a c c b b a ca bc ab c b a61、如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则ABCDAGCDS S 矩形四边形等于(D ).GFEDABCA. ;65B. ;54C. ;43D. .32 【解析】D..32612)(261412412....=⨯-=+-=∴=+⇒⎪⎩⎪⎨⎧=+==+=∴====∴=∆∆∆∆∆∆a aa S y x S S S ay x a y x S a y x S y S S x S S BC AB ABCD F E BG a S ABCDABCD ABCDAGCD ABF CBE AGE BGE BGF CGF ABCD 矩形矩形矩形四边形矩形,的中点、的边是矩形、如图所示,连接设 GFEDABC62、设c b a 、、为实数,323232222πππ+-=+-=+-=a c z c b y b a x ,,,则z y x 、、中至少有一个值(A ). A. 大于0; B. 等于0; C. 不大于0; D. 小于0.【解析】A. .00)3()1()1()1(222323232222222222中至少有一个大于、、,,z y x c b a c b a c b a z y x a c z c b y b a x ∴>-+-+-+-=+---++=++∴+-=+-=+-=πππππ63、设关于x 的方程09)2(2=+++a x a ax 有两个不等的实数根21211x x x x <<,且,,那么a 的取值范围是(D ). A. ;5272<<-aB. ;52>aC. ;72-<aD. .0112<<-a 【解析】D..0112102012901)(0)1)(1(121212121<<-⇒-<+⇒<+++∴<++-⇒<--⇒<<a a a a a x x x x x x x x64、9321A A A A ⋯是一个正九边形,b A A a A A ==3121,,则51A A 等于(D ).A. ;22b a +B. ;22b ab a ++C. ;)(21b a + D. .b a +【解析】D.ba A A A A P A A A P A A A A PA A PA A PA A PA A A A A A A A A A A PA A PA A A A Ab A A A A A A P A A A A +=+=+==∴∆∆∴=+=∠=∠∴=-=∠=∠∆=-=∠=∠∴=-⨯⋯==42212211515142oo o 2442ooo243423432o o o 3432o o 93213142424521.602040202140180.40140180.1409)29(180..是等边三角形是等边三角形,中,在的每个内角都为正九边形则,连接相交于点,如图所示,延长 ab PA 9A 8A 7A 6A 5A 4A 3A 2A 1二、填空题(本大题共6小题,每小题5分,共30分).65、设21x x 、是关于x 的一元二次方程22=++a ax x 的两个实数根,则)2)(2(1221x x x x --的最大值为_____.【解析】863-..863863)49(21892)2(9)(29)(25]2)[(25)(2)2)(2(.04)2()2(4222212212121221212221122122-≤---=-+-=-+-⨯-=++-=+-+-=++-=-->+-=--=∆a a a a a x x x x x x x x x x x x x x x x x x a a a a 为一切实数知,由。

2024全国初中数学竞赛试题

2024全国初中数学竞赛试题

1、已知直角三角形的两条直角边长度分别为3和4,则斜边上的高为:A. 2.4B. 1.2C. 5D. 不能确定(答案)A2、若a、b、c为三角形的三边长,且满足a² + b² + c² + 50 = 10a + 6b + 8c,则此三角形为:A. 直角三角形B. 等腰三角形C. 等边三角形D. 不能确定(答案)A3、解方程组 { x + 2y = 5, 3x - 4y = -2 } 时,若先消去y,则得到的方程是:A. 5x = 14B. 5x = 10C. 7x = 16D. 7x = 22(答案)B4、在平行四边形ABCD中,若∠A : ∠B = 2 : 3,则∠C的度数为:A. 60°B. 90°C. 120°D. 不能确定(答案)C5、已知 |x| = 5,y = 3,则x - y等于:A. 8或-2B. 2或-8C. -2或8D. -8或2(答案)D6、若关于x的一元二次方程x² - (k - 1)x - k = 0有两个相等的实数根,则k的值为:A. -3B. 3C. -1D. 1(答案)D7、在圆O中,弦AB的长度等于半径OA,则∠AOB的度数为:A. 30°B. 60°C. 120°D. 30°或150°(答案)B8、若a > b > 0,c < d < 0,则一定有:A. a² > b²B. c² > d²C. a/d > b/cD. a/d < b/c(答案)A9、已知一次函数y = kx + b的图像经过点(2, 3)和(-1, -3),则它的图像不经过:A. 第一象限B. 第二象限C. 第三象限D. 第四象限(答案)C10、在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为:A. 45°B. 60°C. 75°D. 90°(答案)C。

全国初中数学联赛试题(含参考答案)

全国初中数学联赛试题(含参考答案)

全国初中数学联合竞赛试题参考答案第一试一、选择题(本题满分42分,每小题7分) 1、设17-=a ,则=--+12612323a a a ( A )A 、24B 、 25C 、1074+D 、1274+ 2、在ABC ∆中,最大角A ∠是最小角C ∠的两倍,且7=AB ,8=AC ,则=BC ( C ) A 、27 B 、10 C 、105 D 、37 3、用[]x 表示不大于x 的最大整数,则方程[]0322=--x x 的解的个数为( C ) A 、1 B 、2 C 、3 D 、 44、设正方形ABCD 的中心为点O ,在以五个点A 、B 、C 、D 、O 为顶点所构成的所有三角形中任意取出两个,它们的面积相等的概率为 ( B )A 、143 B 、73 C 、21 D 、74 5、如图,在矩形ABCD 中,3=AB ,2=BC ,以BC 为直径在矩形内作半圆,自点A 作半圆的切线AE ,则=∠CBE sin ( D )A 、36 B 、32C 、31D 、10106、设n 是大于1909的正整数,使得nn --20091909为完全平方数的n 的个数是 ( B )A 、3B 、 4C 、 5D 、6 二、填空题(本题满分28分,每小题7分)1、已知t 是实数,若a ,b 是关于x 的一元二次方程0122=-+-t x x 的两个非负实根,则()()1122--b a的最小值是____________.答案:3-2、设D 是ABC ∆的边AB 上的一点,作BC DE //交AC 于点E ,作AC DF //交BC 于点F ,已知ADE ∆、DBF ∆的面积分别为m 和n ,则四边形DECF 的面积为______.答案:mn 23、如果实数a ,b 满足条件122=+b a ,2212|21|a b a b a -=+++-,则____=+b a . 答案:1-4、已知a ,b 是正整数,且满足⎪⎪⎭⎫ ⎝⎛+b a 15152是整数,则这样的有序数对(a ,b )共有_对。

全国初一初中数学竞赛测试带答案解析

全国初一初中数学竞赛测试带答案解析

全国初一初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.船在江中顺水航行与逆水航行的速度之比为7:2,那么它在两港间往返一次的平均速度与顺水速度之比为( )。

A.B.C.D.。

2.如右图所示,三角形ABC的面积为1cm2。

AP垂直ÐB的平分线BP于P。

则与三角形PBC的面积相等的长方形是( )。

3.设a,B是常数,不等式+>0的解集为x<,则关于x的不等式bx-a>0的解集是( )。

A.x>B.x<-C.x> -D.x<。

4.下图所示的五角星是用螺栓将两端打有孔的5根木条连接构成的图形,它的形状不稳定。

如果在木条交叉点打孔加装螺栓的办法使其形状稳定,那么至少需要添加( )个螺栓。

A.1B.2C.3D.4 。

5.对四堆石子进行如下“操作”:每次允许从每堆中各拿掉相同个数的石子,或从任一堆中取出一些石子放入另一堆中。

若四堆石子的个数分别为2011,2010,2009,2008,则按上述方式进行若干次“操作”后,四堆石子的个数可能是( )。

A.0, 0, 0, 1B.0, 0, 0, 2C.0, 0, 0, 3D.0, 0, 0, 4 。

二、填空题1.对整数按以下方法进行加密;每个数字的数字变为与7乘积的个位数字,再把每个数位上的数字a变为10-a。

如果一个数按照上面的方法加密后为473392,则该数为。

2.老师问A、B、C、D、E五位学生:“昨天你们有几个人玩过游戏?”他们的回答分别为A:没有人;B:一个人;C:二个人;D;三个人;E:四个人。

老师知道:他们之中有人玩过游戏,也有人没有玩过游戏。

若没有玩过游戏的人说的是真话,那么他们5个人中有个人玩过游戏。

3.公交车的线路号是由数字显示器显示的三位数,其中每个数字是由横竖放置的七支荧光管显示,如下图所示:由于坏了一支荧光管,某公交线路号变成“351”。

全国初中数学竞赛试题及答案

全国初中数学竞赛试题及答案

全国初中数学竞赛试题及答案全国初中数学竞赛试题及答案一、选择题1、在一张纸上,我们画了一个圆和一条直径,直径与圆相交于A、B 两点。

如果我们在这张纸上连续地画了8个点,使得这些点都在圆上,那么这8个点的最密集分布是()。

A. 像一个“十”字形,两边各4个点 B. 像一个“十”字形,两边各3个点 C. 像一个“米”字形,上面各4个点 D. 像一个“米”字形,上面各3个点答案:C 解析:根据圆的对称性,我们可以得知,直径两侧的点到圆心的距离相等,因此在一个“十”字形中,中间的交点是最密集的。

而在“米”字形中,上面的4个点距离交点的距离相等且最短,因此是最密集的。

2、在一个等边三角形ABC中,D、E、F分别是AB、BC、CA的中点。

现在以D为圆心,DE为半径画圆弧,交AB于G。

则△DFE的面积是阴影部分面积的()。

A. 2倍 B. 3倍 C. 4倍 D. 6倍答案:C 解析:由题意可知,DE是△ABC的中位线,因此DE=1/2AB。

而△DFE是直角三角形,斜边DE是直径,因此∠DFE=90°。

所以,△DFE的高是DE的一半,即1/4AB。

因此,△DFE的面积是1/2×1/2AB×1/4AB=1/8AB²。

而阴影部分的面积是△ABC面积的一半,即1/2×1/2AB×√3/2AB=√3/4AB²。

所以,△DFE的面积是阴影部分面积的4倍。

3、在一个等腰直角三角形ABC中,∠C=90°,AC=BC=1。

现在以这个三角形的顶点为圆心,1为半径画圆弧,则这三个圆弧的长度之和为()。

A. 3π/2 B. π C. 2π D. 5π/2 答案:C 解析:根据题意,我们可以得到三个圆弧的半径都是1。

其中第一个圆弧的长度为1/4×2π×1=π/2,第二个圆弧的长度也为π/2,第三个圆弧的长度为1/4×2π×√2=π√2/2。

最新全国初中数学竞赛试题及答案

最新全国初中数学竞赛试题及答案

全国初中数学竞赛试题及参考答案一.选择题(5×7'=35')1.对正整数n ,记n !=1×2×...×n,则1!+2!+3!+...+10!的末位数是( ).A .0B .1C .3D .5【分析】5≥n 时,n !的个位数均为0,只考虑前4个数的个位数之和即可,1+2+6+4=13,故式子的个位数是3. 本题选C .2.已知关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧<-+->-+x t x x x 235352恰好有5个整数解,则t 的取值范围是( ). 2116.-<<-t A 2116.-<≤-t B 2116.-≤<-t C 2116.-≤≤-t D 【分析】2023235352<<-⇒⎪⎪⎩⎪⎪⎨⎧<-+->-+x t x t x x x ,则5个整数解是15,16,17,18,19=x .注意到15=x 时,只有4个整数解.所以2116152314-≤<-⇒<-≤t t ,本题选C 3.已知关于x 的方程xx x a x x x x 22222--=-+-恰好有一个实根,则实数a 的值有( )个. A .1 B .2 C .3 D .4【分析】422222222+-=⇒--=-+-x x a xx x a x x x x ,下面先考虑增根: ⅰ)令0=x ,则4=a ,当4=a 时,0,1,022212===-x x x x (舍);ⅱ)令2=x ,则8=a ,当8=a 时,2,1,0422212=-==--x x x x (舍);再考虑等根:ⅲ)对04222=-+-a x x ,270)4(84=→=--=∆a a ,当21,272,1==x a . 故27,8,4=a ,21,1,1-=x 共3个.本题选C .4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BC=4CF ,DCFE 是平行四边形,则图中阴影部分的面积为( ).A .3B .4C .5D .6【分析】设ABC ∆底边BC 上的高为h ,则DE CF CF BC h 121244848====,)(2121212121h h DE h DE h DE S S BDE ADE +⋅⋅=⋅⋅+⋅⋅=+∆∆本题选D .6122121=⋅⋅=⋅⋅=DE DE h DE5.在分别标有号码2,3,4,...,10的9个球中,随机取出两个球,记下它们的标号,则较大标号被较小标号整除的概率是( ).41.A 92.B 185.C 367.D 【分析】9236811291214==+++=C C C P 本题选B .二.填空题(5×7'=35')6.设33=a ,b 是a 2的小数部分,则3)2+b (的值为 . 【分析】考虑到33=a ,则33333332292,29,327982,93=+-==<<===b b a 则9)9()2333==+b (7.一个质地均匀的正方体的六个面上分别标有数1、2、3、4、5、6.掷这个正方体三次,则其朝上的面的数的和为3的倍数的概率是 .【分析】对第一次向上面为1时,后面两次所得数字与1的和是3的倍数有111,114,123,126,132,135,141,144,153,156,162,165共12种;对于首次掷得向上的面是2,3,4,5,6的,后面两次与首次的和为3的倍数是轮换对称的,故和为3的倍数共有612⨯,而总次数是666⨯⨯次,则其概率为31666612=⨯⨯⨯=P .8.已知正整数a 、b 、c 满足a +b 2-2c -2=0,3a 2-8b +c=0,则abc 的最大值为 .【分析】先消去c ,再配方估算.24166)8()121(621662222+=-++⇒=-++b a b b a a 观察易知上式中3≤a ,故3,2,1=a ,经试算,2,1=a 时,b 均不是整数;当3=a 时,11,5=b ,于是有)61,11,3(),13,5,3(),,(=c b a ,故201361113m ax =⨯⨯=abc .9. 实数a 、b 、c 、d 满足:一元二次方程x 2+cx +d=0的两根为a 、b ,一元二次方程x 2+ax +b=0的两根为c 、d ,则所有满足条件的数组(a 、b 、c 、d )为 .【分析】由根与系数关系知b cd d ab d b a d c c b a ===⇒=++=++,,0,然后可得 (a 、b 、c 、d )=(1,-2,1,-2)本题在化简过程中,总感觉还有,此处仅给出一组,好像不严谨,期待官方答案.10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,园珠笔每支售7元,开始时他有铅笔和圆珠笔共350支,当天虽然没有全部卖完,但是他的销售收入恰好是2013元,则他至少卖出了 支圆珠笔.【分析】设4元的卖x 支,7元的卖y 支,则350,201374<+=+y x y x4125031820124201374++-=⇒++-=⇒=+y y x y y x y x 令1441-=⇒=+k y k y ,则k k k x 7505)14(2503-=+--=,又350≤+y x ,即523151350147505≥−−→−≥⇒≤-+-∈k k k k N k ,207152414=-⨯≥-=k y 即他至少卖了207支圆珠笔.三.解答题(4×20'=80')11.如图,抛物线y =ax 2+bx -3,顶点为E ,该抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且OB=OC=3OA .直线131+-=x y 与y 轴交于点D ,求∠DBC -∠CBE .【分析】易知4)1(3222--=--=x x x y ,)4,1()3,0()0,3(),0,1(---D C B A ,,,作EF ⊥C O 于F ,连CE ,易知△OBC 、△CEF 都是等腰直角三角形,则△CBE 是直角三角形.分别在Rt△OBD 、Rt △BCE 中运用正切定义,即有31232tan 31tan =====BC CE ,OB OD βα,则βα= 从而可得∠DBC -∠CBE=45º.12.如图,已知AB 为圆O 的直径,C 为圆周上一点,D为线段OB 内一点(不是端点),满足CD ⊥AB ,DE ⊥CO ,E 为垂足,若CE =10,且AD 与DB 的长均为正整数,求线段AD 的长.【分析】设圆O 半径为r ,则由相似或三角函数或射影定理可知,)10(1022-=⇒⋅=r DE OE CE DE ,又r r DE CE CD 10)10(10102222=-+=+=由相交弦定理(考虑垂径时)或连AC 、BC 用相似或三角函数,易知r CD BD AD 102==⋅①,而r BD AD 2=+②令y BD x AD ==,,①/②即155210-=⇒==+y x y r r y x xy ,显然有x y <<0,则10<<x y ,即1051150<<⇒<-<y y ,y 为正整数,故9,8,7,6=y ,又x 也为正整数,经逐一试算,仅当30,6==x y 这一组是正整数,故30=AD .13.设a 、b 、c 是素数,记c b a z b a c y a c b x -+=-+=-+=,,,当2,2=-=y x y z 时,a 、b 、c 能否构成三角形的三边长?证明你的结论. 【分析】281102222a z a z z y z a z y c b a z b a c y +±-=⇒=-+−−−→−==+⇒⎩⎨⎧-+=-+=a 、b 、c 是素数,则z c b a =-+为整数,则1281+=+k a ,k 为正整数.化简整理后,有a k k 2)1(=+⎩⎨⎧=+==+==⇒=+==+=⇒3121,2(121121,1a k k )a a k k 非质数 2,332811-=−−→−=+±-=z a a z ⅰ)112,2529,9,3=⇒=-=⇒=-==b b z x x x y z ,c b a b =<=+=+=1720173,17不能围成三角形;ⅱ)是合数9,16,4,2====b x y z综上所述,以a 、b 、c 不能围成三角形.14.如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数) .求正整数n 的最小值,使得存在互不相同的正整数a 1,a 2,...,a n ,满足对任意一个正整数m ,在a 1,a 2,...,a n 中都至少有一个为m 的“魔术数”.【分析】考虑到魔术数均为7的倍数,又a 1,a 2,...,a n 互不相等,不妨设n a a a <<<...21,余数必为1、2、3、4、5、6,0,设t k a i i +=7,(6,5,4,3,2,1,0;,...,3,2,1==t n i ),至少有一个为m 的“魔术数”.因为m a k i +⋅10(k 是m 的位数),是7的倍数,当6≤i 时,而k i a 10⋅除以7的余数都是0,1,2,3,4,5,6中的6个;当7=i 时,而ki a 10⋅除以7的余数都是0,1,2,3,4,5,6这7个数字循环出现,当7=i 时,依抽屉原理,k i a 10⋅与m 二者余数的和至少有一个是7,此时m a k i +⋅10被7整除,即n =7.。

初中数学全国竞赛试题及答案

初中数学全国竞赛试题及答案

初中数学全国竞赛试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于16,那么这个数是:A. 4B. ±4C. 16D. ±163. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 84. 将一个圆分成四个相等的扇形,每个扇形的圆心角是多少度?A. 45°B. 60°C. 90°D. 120°5. 一个数的立方等于-8,这个数是:A. -2B. 2C. -8D. 8二、填空题(每题2分,共10分)6. 一个数的平方根等于它本身,这个数是______。

7. 如果一个数的绝对值等于5,那么这个数可以是______。

8. 一个数的倒数是1/4,那么这个数是______。

9. 一个数的平方是25,这个数可以是______。

10. 一个数的立方根是2,那么这个数是______。

三、解答题(每题10分,共30分)11. 已知一个长方体的长、宽、高分别是a、b、c,求长方体的体积。

12. 一个圆的半径是r,求圆的面积。

13. 已知一个等腰三角形的两个腰长为a,底边长为b,求三角形的面积。

四、证明题(每题15分,共30分)14. 证明:直角三角形的斜边的平方等于两直角边的平方和。

15. 证明:如果一个角的余弦值等于1/2,那么这个角是60°。

五、应用题(每题20分,共20分)16. 某工厂生产一种零件,每个零件的成本是5元,售价是10元。

如果工厂想要获得10000元的利润,需要生产和销售多少个这种零件?初中数学全国竞赛试题答案一、选择题1. B2. B3. A4. C5. A二、填空题6. 0或17. ±58. 49. ±510. 8三、解答题11. 长方体的体积 = 长× 宽× 高= a × b × c。

全国初一初中数学竞赛测试带答案解析

全国初一初中数学竞赛测试带答案解析

全国初一初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、填空题1.如果x,y满足2x+3y=15,6x+13y=41,则x+2y的值是。

A.5B.7C.D.9 。

2.-2和2对应的点将数轴分成3段,如果数轴上任意n个不同的点中至少有3个在其中之ㄧ段,那么n的最小值是。

A.5B.6C.7D.8 。

3.满足 || x-1 |-| x ||-| x-1 +| x |=1的x的值是。

A.0B.±C.D.±。

4.乘积为-240的不同五个整数的平均值最大是。

A.B.C.7D.9 。

5.如果x+y+z=a,++=0,那么x2+y2+z2的值为。

6.如图,甲,乙两人分别从A、B两地同时出发去往C地,在距离C地2500米处甲追上乙;若乙提前10分钟出发,则在距离C地1000米处甲追上乙。

已知,乙每分钟走60米,那么甲的速度是每分钟米。

7.在2001、2002、…、2010这10个数中,不能表示成两个平方数差的数有个。

8.如图,某风景区的沿湖公路AB=3千米,BC=4千米,CD=12千米,AD=13千米,其中AB^BC,图中阴影是草地,其余是水面。

那么乘游艇游点C出发,行进速度为每小时11千米,到达对岸AD最少要用小时。

二、解答题用甲乙两种饮料按照x:y(重量比)混合配制成一种新饮料,原来两种饮料成本是:甲每500克5元,乙每500克4元。

现甲成本上升10%,乙下降10%,而新饮料成本恰好保持不变,则x:y= 。

A.4:5B.3:4C.2:3D.1:2 。

三、选择题一个立方体的每一个面都写有一个自然数,并且相对的两个面内的两数之和都相等,下图是这个立方体的平面展开图,若20、0、9的对面分别写的是a、b、c,则a2+b2+c2-ab-bc-ca的值为。

A.481B.301C.602D.962 。

全国初一初中数学竞赛测试答案及解析一、填空题1.如果x,y满足2x+3y=15,6x+13y=41,则x+2y的值是。

全国初三初中数学竞赛测试带答案解析

全国初三初中数学竞赛测试带答案解析

全国初三初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、填空题1.分数,,,,中最小的一个是。

2.如右图所示,ABCD是一个正方形,其中几块阴影部分的面积如图所示,则四边形BMQN的面积为。

3.将105表示成不少于两个连续的(非零)自然数之和,最多有种表达方式。

4.将奇数1、3、5、…、2007、2009从小到大排成一个多位数A=135********…20072009,从A中截出能被5整除的五位数,则所有的这种五位数中,最小数是,最大数是。

二、解答题1.如果一个自然数n能被不超过的所有的非0自然数整除,我们称自然数n为“牛数”。

请写出所有的牛数。

2.循环小数0.xyz可以表达成0.xyz=。

已知算式´0.c5d=中a,b,c,d,e,f都是数字,且c<4。

求出所有满足条件的两位数。

3.下列m个整数中恰有69个不同的整数,问自然数m的最大值和最小值分别是多少?[],[],[],…,[]。

4.已知四边形ABCD中AD//BC,AD:BC=1:2,SD AOF :SD DOE=1:3,SD BEF="24" cm2,求r AOF的面积。

全国初三初中数学竞赛测试答案及解析一、填空题1.分数,,,,中最小的一个是。

【答案】【解析】略2.如右图所示,ABCD是一个正方形,其中几块阴影部分的面积如图所示,则四边形BMQN的面积为。

【答案】24【解析】S(ADP)+S(APM)+S(MBC)="0.5" S(ABCD)=S(AND)两边各减去公共部分即 APD QNR 即得到S(APM)+S(BMQN)+S(RNC)=S(DQPR)故S(BMQN)=243.将105表示成不少于两个连续的(非零)自然数之和,最多有种表达方式。

【答案】7【解析】首先,分为2类.一·数字个数为奇数.105=3×5×7 经验证数字个数可为 3 5 7 9 即 34 35 36; 19 20 21 22 23 ; 12 13 14 15 16 17 18 ;11 12 13 14 15 16 17 18 19二·数字个数为偶数.个数为二时,52 53;个数为 4 8 ……是不可能的,因为和不可能是奇数;根据奇数的情况知,偶数个数必须为 6 10 14 18等当数字个数为14时,中间的数介于6 到7之间,因此最小的数就不能满足为自然.故总共有 4+1+2 种情况.4.将奇数1、3、5、…、2007、2009从小到大排成一个多位数A=135********…20072009,从A中截出能被5整除的五位数,则所有的这种五位数中,最小数是,最大数是。

2024全国初中数学重点高中自招竞赛试题精选精编(解析版)

2024全国初中数学重点高中自招竞赛试题精选精编(解析版)

专题分式学校:___________姓名:___________班级:___________考号:___________一、填空题1(2024·全国·八年级竞赛)如图,已知在△ABC 中,点D 、E 、F 分别为边AB 、BC 、AC 上的点,且AE 、BF 、CD 相交于点G ,如果AG GE +BG GF +CG GD =2014,那么AG GE ⋅BG GF ⋅CGGD的值为.【答案】2016【分析】本题主要考查了三角形面积的计算,分式化简求值,解题的关键是设S △ABG =a ,S △ACG =b ,S △BCG =c ,得出AG GE =a +b c ,BG GF =a +c b ,CG DG =b +c a ,根据AG GE +BG GF +CG GD=2014,得出a +b c +a +cb +b +c a =2014,将a +b c ⋅a +c b ⋅b +c a 化简为a +b c +a +c b +a +b c +2即可得出答案.【详解】解:设S △ABG =a ,S △ACG =b ,S △BCG =c ,则AG GE=S △ABG S △BEG =S △ACG S △CEG =S △ABG +S △ACG S △BEG +S △CEG =S △ABG +S △ACG S △BCG =a +bc ,同理可得:BG GF =a +c b ,CG DG=b +ca ,∵AG GE +BG GF +CG GD =2014,∴a +b c +a +c b +b +c a =2014,∴AG GE ⋅BG GF ⋅CG GD =a +b c ⋅a +c b⋅b +c a =a +b a +c b +c abc=a 2b +a 2c +abc +ac 2+ab 2+abc +b 2c +bc 2abc=a +b c +a +c b +a +b c +2=2014+2=2016.故答案为:2016.2(2024·全国·八年级竞赛)设a 、b 、c 是互不相等的实数,且a +4b=b +4c =c +4a ,则abc =.【答案】±8【分析】本题考查分式的化简求值,由a +4b =b +4c 可得bc =4b -c a -b ,同理可得ac =4c -a b -c,ab =4a -bc -a,由此三式相乘即可解答.【详解】解:∵a +4b=b +4c =c +4a ,∴a -b =4c -4b =4b -c bc ,b -c =4a -4c =4c -a ac ,c -a =4b -4a =4a -b ab ,∴bc =4b -c a -b ,ac =4c -a b -c,ab =4a -bc -a ,∴a 2b 2c 2=4(b -c )a -b ⋅4(c -a )b -c.4(a -b )c -a =64,∴abc =±8.故答案为:±8.3(2024·全国·八年级竞赛)已知6x 3+2x 2-8x -1x 2-1 x 2-2 =Ax +B x 2-1+Cx +Dx 2-2其中A 、B 、C 、D 为常数,则A ⋅B ⋅C ⋅D =.【答案】-24【分析】此题主要考查了分式的加减运算,先对Ax +B x 2-1+Cx +D x 2-2进行计算,然后根据题意列出关于A 、B 、C 、D 的方程组即可解决问题,解题的关键是熟练掌握分式的运算及法则的应用.【详解】解:6x 3+2x 2-8x -1x 2-1 x 2-2 =A +C x 3+B +D x 2-2A +C x -2B +D x 2-1 x 2-2 Ax +B x 2-1+Cx +Dx 2-2=Ax +B x 2-2 x 2-1 x 2-2 +Cx +D x 2-1 x 2-1 x 2-2=A +C x 3+B +D x 2-2A +C x -2B +Dx 2-1 x 2-2,∵6x 3+2x 2-8x -1x 2-1 x 2-2 =Ax +B x 2-1+Cx +D x 2-2,∴A +C =6,B +D =2,2A +C =8,2B +D =1,解得A =2,B =-1,C =4,D =3,∴A ⋅B ⋅C ⋅D =2×-1 ×4×3=-24,故答案为:-24.4(2024·全国·八年级竞赛)已知实数x ,y 满足条件1x -1y =2x +y ,则代数式y 2x -x2y=.【答案】1【分析】本题主要考查代数式求值,先将1x -1y =2x +y 变形为2xy =y -x y +x ,再把y 2x -x2y变形为y -x y +x2xy,然后代入计算即可.【详解】解:∵1x -1y =2x +y,∴2xy =y -x y +x ,∴y 2x -x 2y=y2-x2 2xy=y-xy+x2xy=y-xy+xy-xy+x=1,故答案为:1.5(2024·全国·七年级竞赛)已知实数a、b、c满足等式a2013=b2014=c2015,且2a+b-c=8050,则a-b+12c+1=.【答案】2014【分析】本题考查了分式的化简求值,代数式求值;解题的关键是令a2013=b2014=c2015=k求出a、b、c的值.令a2013=b2014=c2015=k,求得a=2013k,b=2014k,c=2015k,结合题意求出a、b、c的值,代入即可求解.【详解】解:设a2013=b2014=c2015=k,故a=2013k,b=2014k,c=2015k,则2a+b-c=2×2013k+2014k-2015k,即2×2013k+2014k-2015k=8050,解得:k=2;∴a=4026,b=4028,c=4030,∴a-b+12c+1=4026-4028+12×4030+1=2014.故答案为:2014.6(2024·全国·八年级竞赛)已知实数x、y、z满足下列等式:xyx+y =1b-1,yzy+z=1b,xzx+z=1b+1,那么代数式xyzxy+xz+yz的值为.【答案】1 6【分析】本题考查了分式的混合运算,熟练掌握分数的混合运算法则是解题的关键.根据分式的性质将分式适当变形后进行计算即可.【详解】由题意知xy、yz、xz都不为零,∴x+yxy=b-1 y+zyz=bx+zxz=b+1,即1x+1y=3 1y+1z=4 1x+1z=5,∴1x +1y +1z =6,即xy +yz +xz xyz =6,∴xyz xy +xz +yz =16.故答案为:16.7(2024·全国·八年级竞赛)已知三个数x ,y ,z 满足xy x +y =2015,yz y +z =43,zx z +x =-43,则xyzxy +yz +zx 的值为.【答案】4030【分析】本题考查分式的化简求值,灵活运用分式的运算法则是解答的关键.将所有分式的分子和分母颠倒位置,然后利用分式的混合运算法则化简求解即可.【详解】解:将所有分式的分子和分母颠倒位置,则由xy x +y =2015得x +y xy =1x +1y =120151 ,由yz y +z =43得y +z yz =1y +1z =342 ,由zx z +x =-43得x +z xz =1x +1z =-343 ,三式相加得21x +1y +1z=12015,则1x +1y +1z =xy +yz +zx xyz =12⋅12015=14030,∴xyzxy +yz +zx=4030.8(2024·全国·八年级竞赛)如图,将一张矩形卡片按图1所示的方式分成四块后,恰好能拼成图2所示的矩形,若S ①:S ③=1:5,则a :b =.【答案】2∶3【分析】本题主要考查了整式混合运算的应用,求比值,解题的关键是理解题意,根据S ①:S ③=1:5,得出S 矩形ABFE :S 矩形EFCD =1:5,求出AE ED=15,设AE =x ,则ED =5x ,得出a +b x +5x =b ⋅5x +5x ,求出3a =2b ,即可求出结果.【详解】解:如图所示,∵S ①:S ③=1:5,∴S 矩形ABFE :S 矩形EFCD =1:5,∴a +b ⋅AE a +b ⋅ED=15,∴AE ED=15,设AE =x ,则ED =5x ,∴a +b x +5x =b ⋅5x +5x ,整理得:3a =2b ,∴a :b =2:3.故答案为:2:3.9(2024·全国·八年级竞赛)对于正数x ,规定f x =x x +1,例如f 1 =11+1=12,f 2 =22+1=23,f 12 =1212+1=13,则f 12017 +f 12016 +⋯+f 12 +f 1 +f 2 +⋯+f 2016 +f 2017 =.【答案】40332【分析】本题考查代数式求值,分式的加法以及数字类规律探究,理解新定义函数的意义,掌握数字所呈现的规律是解决问题的关键.利用加法结合律以及探究所得规律得出答案.【详解】解:∵f x =xx +1,∴f x +f 1x =x x +1+1x1x+1=x x +1+1x +1=1,∴f 12017+f 12016 +⋯+f 12 +f 1 +f 2 +⋯+f 2016 +f 2017 =f 12017 +f 2017 +f 12016 +f 2016 +⋯+f 12 +f 2+f 1 =2016+11+1=40332.故答案为:40332.10(2024·全国·八年级竞赛)若x 为正数,且x -1x =3,则x x 2-x +1=.【答案】13+112【分析】先求出x 2+1x 2=11,再求出x +1x =13,最后整体代入x x 2-x +1=1x -1+1x进求解即可,此题考查了分式的运算和二次根式的运算,熟练掌握运算法则和灵活变形是解题的关键.【详解】解:∵x 为正数,且x -1x=3,∴x -1x 2=9,x +1x >0,即x 2+1x 2=11,∴x +1x 2=x 2+1x 2+2=13,∴x +1x =13,∴x x 2-x +1=1x -1+1x =113-1=13+112,故答案为:13+11211(2024·全国·八年级竞赛)已知x =2y +33y -2,则3x -2 3y -2 的值为.【答案】13【分析】本题考查了分式的混合运算,多项式乘以多项式,根据x 的值和题中式子即可求解,根据解题的关键是明确它们各自的计算方法.【详解】解:∵x =2y +33y -2,∴3x -2=6y +93y -2-2=6y +9-6y +43y -2=133y -2,∴3x -2 3y -2 =133y -2×3y -2 =13,故答案为:13.12(2024·全国·八年级竞赛)比较大小:22000+122001+1-22001+122002+10(填“>”、“=”或“<”).【答案】>【分析】本题考查了实数的比较大小,异分母分式的运算.熟练掌握以上知识点并灵活运用是解题的关键.设a =22000,根据22000+122001+1-22001+122002+1=a +12a +1-2a +14a +1=a 8a 2+6a +1>0作答即可.【详解】解:设a =22000,∴22000+122001+1-22001+122002+1=a +12a +1-2a +14a +1=a 8a 2+6a +1>0,故答案为:>.13(2024·全国·八年级竞赛)已知11的小数部分为a .则a 2-6a +9a 2+7a +12÷a -3a +4-aa +3=.【答案】-31111/-31111【分析】本题考查了分式的混合运算,无理数的估算,分母有理化,先根据分式的运算法则把所给代数式化简,再求出a 的值,然后代入化简后的结果计算即可.【详解】解:a 2-6a +9a 2+7a +12÷a -3a +4-aa +3=a -3 2a +3 a +4 ×a +4a -3-a a +3=a -3a +3-a a +3=-3a +3,∵3<11<4,∴11的整数部分3,∴a =11-3.∴-3a +3=-31111.故答案为:-31111.14(2024·全国·八年级竞赛)函数y =x -4-2-x -3x -5的自变量x 的取值范围是.【答案】x ≥3且x ≠4且x ≠5【分析】本题考查确定函数自变量取值范围.熟练掌握负整指数幂有意义的条件,二次根式有意义的条件,分式有意义的条件是解题的关键.根据题意得不等式组x -3≥0x -4≠0,x -5≠0求解即可.【详解】解:根据题意,得x -3≥0x -4≠0,x -5≠0∴x ≥3且x ≠4且x ≠5.故答案为:x ≥3且x ≠4且x ≠5.15(2024·全国·八年级竞赛)如果对于分式3x 2+4x +m,存在两个数使分式没有意义,则m 的取值范围是.【答案】m <4【分析】本题主要考查了分式有意义的条件、一元二次方程根的判别式等知识点,理解分式有意义的条件是解题的关键.由存在两个数使分式没有意义,则对于x 2+4x +m =0的判别式Δ>0,据此列不等式求解即可.【详解】解:∵分式3x 2+4x +m,存在两个数使分式没有意义,∴x 2+4x +m =0有两个解,∴Δ=42-4m >0,解得:m <4,∴当m <4时,存在两个实数使原式没有意义.故答案为m <4.二、单选题16(2024·全国·九年级竞赛)要使式子x +6x有意义,则x 的取值范围是()A.x ≥-6B.x ≠0C.x >6D.x ≥-6且x ≠0【答案】D【分析】本题主要考查了二次根式有意义的条件,分式有意义的条件.熟练掌握概念是解题的关键.分子上的二次根式要有意义,根号里面的式子为非负数,且分母不为零,分别求解满足条件的x 值.【详解】∵式子x +6x有意义,∴x +6≥0,x ≠0,∴x ≥-6且x ≠0.故选:D .17(2024·全国·八年级竞赛)已知1x +1y =2,则2x +3xy +2y 3x -2xy +3y的值为()A.74B.72C.5D.12【答案】A【分析】本题考查分式的化简求值,根据1x +1y =2得x +y =2xy ,再将2x +3xy +2y 3x -2xy +3y的分子分母变形为含xy 的式子,即可解题.【详解】解:由1x +1y=2得x +y =2xy ,则2x +3xy +2y 3x -2xy +3y =2x +y +3xy 3x +y -2xy =7xy 4xy =74.故选:A .18(2024·全国·八年级竞赛)已知实数x ,y 满足x +y =2,xy =-5,则xy +y x 的值为( ).A.65B.-145C.-65D.-45【答案】B【分析】本题考查了分式的化简求值,配方法,熟练掌握完全平方公式是解答本题的关键.先将xy +y x通分,然后将分子配方,并将分式化简成只含x +y ,xy 的代数式,最后将x +y ,xy 的值代入并计算即得答案.【详解】xy +y x =x 2+y 2xy=x 2+2xy +y 2-2xy xy=(x +y )2xy -2,当x +y =2,xy =-5时,原式=22-5-2=-145.故选B.19(2024·全国·八年级竞赛)若分式x-1x -2的值为正数,则x的取值范围是()A.1<x<2或x<-2B.x<-2或x>2C.-2<x<1或x>2D.-2<x<2【答案】C【分析】根据题意列出不等式组,解不等式组则可.此题考查分式的值,解不等式组,解题关键在于根据题意列出不等式组.【详解】解:∵分式x-1x -2的值为正数,∴x -2>0x-1>0或x -2<0x-1<0,解得:-2<x<1或x>2.故选:C.20(2024·全国·七年级竞赛)灰太狼在跑一段山路时,上山速度是80米/分,到达山顶后再下山,下山的速度是上山速度的3倍,如果上、下山的路程相同,那么灰太狼跑这段山路的平均速度是()A.160米/分B.140米/分C.60米/分D.120米/分【答案】D【分析】本题考查了分式乘除的应用,整式加减的应用,正确理解题中的数量关系是解答本题的关键,设上坡的路程为S,则上、下坡的总路程为2S,可逐步求得上下坡的总时间,最后利用平均速度等于上、下坡的总路程除以总时间,计算即得答案.【详解】设上坡的路程为S,则上、下坡的总路程为2S,上坡时间为S80,下坡时间为S80×3=S240,总时间为S80+S240=S60,所以平均速度为2S÷S60=120(米/分).故选D.21(2024·全国·八年级竞赛)若xx2+x+1=15,则x2x4+x2+1=()A.5B.115C.4 D.14【答案】B【分析】本题考查分式的化简求值和完全平方公式,根据xx2+x+1=15得出x+1x=4,再将x2x4+x2+1变形为1x+1x2-1,将x+1x=4整体代入求值即可.【详解】解:∵xx2+x+1=1x+1x+1=15,∴x+1x=4,∴x2x4+x2+1=1x2+1x2+1=1x+1x2-1=142-1=115,故选B.22(2024·全国·八年级竞赛)若x2-3x+1=0,则x2x4+x2+1的值是( ).A.8B.110C.18D.14【答案】C【分析】本题考查了分式的混合运算,完全平方公式变形求值,换元法,由x2-3x+1=0得到x2+1x2=7,设x2x4+x2+1=A,得到1A=x2+1x2+1,代入即可求解,掌握完全平方公式是解题的关键.【详解】解:由x2-3x+1=0知x≠0,∴x+1x=3,∴x2+1x2=7,设x2x4+x2+1=A,则1A=x2+1x2+1=8,∴A=18,即x2x4+x2+1=18,故选:C.三、解答题23(2024·全国·九年级竞赛)若x-3x-2=13+2+1,求1-1x-2÷x-4+1x-2的值.【答案】3+2【分析】本题考查了分式的化简求值,涉及整体代入法;先化简分式,再由x-3x-2=13+2+1,得到x-2 x-3=3+2+1,变形为1+1x-3=3+2+1,即可求得1x-3的值.关键是由已知变形求得1x-3.【详解】解:1-1 x-2÷x-4+1x-2=x-3 x-2÷x2-6x+9x-2=x-3 x-2·x-2 x-3 2=1x-3;∵x-3 x-2=13+2+1,∴x-2x-3=3+2+1,∴1+1x-3=3+2+1,∴1x-3=3+2,即原式=3+2.24(2024·全国·九年级竞赛)已知实数a 满足a 2+2a -2016=0,求a 2-2a +1a 2+5a +4×a +4a 2-1-1a +1的值.【答案】-22017.【分析】此题考查了分式的化简求值,先把要求的式子进行计算,先进行因式分解,再把除法转化成乘法,然后进行约分,得到一个最简分式,最后把a 2+2a -2016=0进行配方,得到a +1 2=2017的值,再把它整体代入即可求出答案,解题的关键是熟练掌握分式化简的步骤.【详解】解:由a 2+2a -2016=0可得(a +1)2=2017,a 2-2a +1a 2+5a +4×a +4a 2-1-1a +1=(a -1)2a +1 a +4 ×a +4a -1 a +1-1a +1,=a -1(a +1)2-1a +1,=-2(a +1)2,=-22017.25(2024·全国·八年级竞赛)先化简,再求值:x 2-1x 2+x÷x +1x -2 ,其中x =2.【答案】1x -1,2+1【分析】本题考查了分式的混合运算以及分母有理化,解答时,先进行分式运算,再代入求值即可.【详解】解:x 2-1x 2+x÷x +1x -2 =x -1 x +1 x x +1 ÷x 2+1-2x x =x +1 x -1x x +1÷x -12x =x +1 x -1 x x +1 ⋅x x -1 2=1x -1,当x =2时,原式=12-1=2+1.26(2024·全国·八年级竞赛)如图1,有一个高为hcm 的瓶子,瓶中水面的高度为acm ,盖好瓶盖后倒置,这时瓶中水面的高度为bcm ,如图2,用代数式表示瓶中水的体积与瓶子容积之比;当a =9,b =15,h =21时,求出这个比值.【答案】a a +h -b ,35【分析】此题考查圆柱体体积的应用,解题的关键是理解掌握“转化”的思想方法在推导过程中的应用.根据“瓶子容积等于正放时水的体积加倒放时空白的体积”,即可列式;瓶子容积等于正放时水的体积加倒放时空白的体积,即底面积×9+底面积×21-15 ,也就是底面积×15;水的体积为底面积×9,即可得到答案.【详解】解:瓶子容积等于正放时水的体积加倒放时空白的体积,设瓶子的底面积为S ,即Sa +S h -b ;水的体积为Sa ,∴瓶中水的体积与瓶子容积之比为Sa Sa +S h -b=aa +h -b ,∵瓶子的容积=底面积×9+底面积×21-15 =底面积×15,水的体积=底面积×9,∴瓶中水的体积:瓶子容积=(底面积×9):(底面积×15)=35,答:这个比值是35.27(2024·全国·八年级竞赛)(1)求证:1+1n 2+1(n +1)2=1+1n 2+n2;(2)计算:1+112+122+1+122+132+⋯+1+120162+120172.【答案】(1)证明见解析(2)201620162017【分析】本题主要考查了分式的化简求值,数字规律的运算;对于(1),先将等式左边通分,再根据完全平方公式整理可得答案;对于(2),先根据(1)整理得1+1n 2+1n +1 2=1+1n n +1 =1+1n -1n +1,再计算加减即可得出答案.【详解】(1)解:1+1n 2+1n +12=n 2n +1 2+n +1 2+n 2n 2n +1 2=n 2n +1 2+2n n +1 +1n 2n +1 2=n n +1 +1n n +12=1+1n 2+n2;(2)由(1)可知1+1n 2+1n +1 2=1+1n n +1=1+1n -1n +1,则原式=1+11-12+1+12-13+1+13-14+⋯+1+12016-12017=1×2016+1-12017=201620162017.28(2024·全国·八年级竞赛)(1)计算24×13-4×18×(2015-2016)0;(2)先化简,再求值:x 2-y 2x 2-2xy +y 2+xy -x÷y 2x 2-xy,其中x 、y 满足x +1+(y -3)2=0.【答案】(1)2(2)化简得:x y ;原式=33【分析】本题考查有理数的运算和分式的化简求值,熟练掌握二次根式的运算和正确化简分式是解题的关键,(1)根据二次根式的运算法则和零指数幂即可得到结果;(2)直接利用括号里面因式分解进行化简,再利用分式乘除运算法则化简,再根据二次根式、绝对值的性质得出x 、y 的值,进行代入求出答案.【详解】解:(1)原式=26×33-4×24×1=22-2=2;(2)原式=x -y x +y x -y2+x y -x ×x x -y y 2=x +y x -y -xx -y×x x -y y 2=yx -y ×x x -y y 2=x y.∵x +1+(y -3)2=0,∴x -1=0,y -3=0,∴x =1,y =3,故原式=x y =13=33.29(2024·全国·七年级竞赛)已知a 、b 、c 均为大于1的正整数,且1a <1b <1c ,1a +1b +1c -1abc为正整数.求a +b +c 的值.【答案】10【分析】本题考查异分母分式的加减,先得出1<1a +1b+1c <3c ,求出c =2,进而得出a =4或5,当a =4,b =3,c =2时,1a +1b +1c -1abc =2524(舍).当a =5,b =3,c =2时,1a +1b +1c -1abc=1,进而可得出答案.【详解】解:因为1a +1b +1c -1abc 为正整数,且a 、b 、c 为大于1的正整数,1a <1b <1c ,所以1<1a +1b+1c <3c ,得1<c <3,所以c =2,∴1a +1b >1-1c =12,得12<1a +1b <2b ,所以c <b <4,∴b =3.∴1a >1-1b -1c =16,得b <a <6,所以a =4或5,当a =4,b =3,c =2时,1a +1b +1c -1abc =2524(舍).当a =5,b =3,c =2时,1a +1b+1c -1abc=1,所以a +b +c =5+3+2=10.30(2024·全国·八年级竞赛)如果a 、b 、c 是不同的实数,且a 3+3a +15=b 3+3b +15=c 3+3c +15=0,求1a +1b+1c 的值.【答案】-15【分析】本题考查分式的求值,根据a 3+3a +15=b 3+3b +15=c 3+3c +15=0,得到a 、b 、c 都是方程x 3+3x +15=0的根,进而得到x 3+3x +15=x -a x -b x -c ,推出abc =-15,ab +bc +ac =3,即可得出1a +1b+1c 的值.解题的关键是得到x 3+3x +15=x -a x -b x -c .【详解】解:1a +1b +1c =ac +bc +acabc,∵a 、b 、c 是不同的实数,且a 3+3a +15=b 3+3b +15=c 3+3c +15=0,∴a 、b 、c 都是方程x 3+3x +15=0的根.∴x 3+3x +15=x -a x -b x -c ,∴abc =-15,ab +bc +ac =3.∴1a +1b+1c =3-15=-15.31(2024·全国·八年级竞赛)求值:12+13+14+15+1⋯+12007+11+11+13+14+15+1⋯+【答案】1【分析】本题考查了繁分式的计算,设1+13+14+1⋯+12007=x ,变形计算即可.【详解】解:设1+13+14+1⋯+12007=x ,则原式=11+x +11+1x=11+x +x x +1=1+x1+x =1.32(2024·全国·八年级竞赛)设a ,b ,c 都是实数,若(a -2b +c )2+(a -2c +b )2+(b -2a +c )2=(a -b)2+(b-c)2+(c-a)2,求分式2ab2+7(2ab+6)2bc2+7(bc+3)的值.【答案】2【分析】本题主要考查了分式化简求值,解题的关键是熟练掌握分式的性质.设a-b=x,b-c=y,c-a =z,得出x2+y2+z2-2xy-2yz-2zx=0①,x+y+z2=x2+y2+z2+2xy+2yz+2zx=0②,由①+②得x2+y2+z2=0,求出x=y=z=0,则a=b=c,代入进行变形求值即可.【详解】解:设a-b=x,b-c=y,c-a=z,由已知得:(x-y)2+(y-z)2+(z-x)2=x2+y2+z2,故x2+y2+z2-2xy-2yz-2zx=0,①又x+y+z=a-b+b-c+c-a=0,故x+y+z2=x2+y2+z2+2xy+2yz+2zx=0,②①+②得x2+y2+z2=0,故x=y=z=0,则a=b=c,∴原式=22a3+7a2+32a3+7a2+3=2.。

全国初中数学联合竞赛试题 及详细 解答(含一试二试)

全国初中数学联合竞赛试题 及详细 解答(含一试二试)

全国初中数学联合竞赛试题第一试(A)一、选择题(本题满分42分,每小题7分)(本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.)1.已知实数a,b,c 满足213390a b c ++=,3972a b c ++=,则32b c a b+=+ ( ) A. 2 B. 1 C. 0 D. -1 2.已知△ABC 的三边长分别是a,b,c ,有以下三个结论:(1a b c(2)以222,,a b c 为边长的三角形一定存在;(3)以为1,1,1a b b c c a -+-+-+为边长的三角形一定存在.其中正确结论的个数为 ( )A .0B .1C .2D .33.若正整数a,b,c 满足a b c ≤≤且=2()abc a b c ++,则称()a b c ,,为好数组.那么,好数组的个数为 ( )A. 1 B .2 C .3 D .44.设O 是四边形ABCD 的对角线AC 、BD 的交点,若0180BAD ACB ∠+∠=,且BC=3,AD=4,AC=5 ,AB=6 ,则DO OB= ( ) A. 10/9 B .8/7 C .6/5 D .4/3第4题图 第5题图5.设A 是以BC 为直径的圆上的一点,AD ⊥BC 于点D ,点E 在线段DC 上,点F 在CB 的延长线上, 满足BAF CAE ∠=∠.已知BC=15,BF=6,BD=3,则AE = ( ) A. 43 B. 213 C. 214 D. 2156.对于正整数n ,设a n 是最接近n 的整数,则1232001111...a a a a ++++=( ) A. 191/7 B .192/7 C .193/7 D .194/7二、填空题(本题满分28分,每小题7分)(本题共有4个小题,要求直接将答案写在横线上.)1.使得等式31+1+a a =成立的实数a 的值为______ _.2.如图,平行四边形ABCD 中,072ABC ∠=,AF BC ⊥于点F ,AF 交BD 于点E ,若DE=2AB ,则AED ∠=______.3.设m,n 是正整数,且m>n. 若9m 与9n 的末两位数字相同,则m-n 的最小值为 .4.若实数x,y满足3331+的最小值为.x y++=,则22x y xy第一试(B)一、选择题(本题满分42分,每小题7分)1.已知二次函数y ax2bx c(c 0)的图象与x轴有唯一交点,则二次函数y a3 x2b3x c3的图象与x 轴的交点个数为()A.0 B.1 C.2 D.不确定.2.题目与(A)卷第1 题相同.3. 题目与(A)卷第3 题相同.4.已知正整数a,b,c满足a26b 3c 9 0,6a b2 c 0,则a2 b2c2=()A. 424B. 430C. 441D. 460.5.设O是四边形ABCD的对角线AC、BD的交点,若BAD ACB 180,且BC 3,AD 4,AC 5,AB 6,则DO/OB=()A. 4/3B. 6/5C. 8/7D. 10/96.题目与(A)卷第5 题相同.二、填空题:(本题满分28 分,每小题7 分)1.题目与(A)卷第1 题相同.2.设O是锐角三角形ABC的外心,D,E分别为线段BC,OA的中点,∠=∠,则OED∠=_________.ABC OED∠=∠,57ACB OED3. 题目与(A )卷第3 题相同.4. 题目与(A )卷第4 题相同第二试 (A )一、(本题满分20 分)已知实数x,y 满足x+y=3,221112x y x y +=++ ,求55x y +的值.二、(本题满分25分)如图,△ABC 中,AB AC ,BAC 45,E 是BAC 的外角平分线与△ABC 的外接圆的交点,点F 在AB 上且EF AB .已知AF 1,BF 5,求△ABC 的面积.三、(本题满分25分)求所有的正整数数对(a, b),使得34938b a =⨯+第二试 (B )一、(本题满分20分)已知实数a,b,c 满足a b c ≤≤,++=16a b c ,2221+++=1284a b c abc , 求c 的值.二、(本题满分25 分)求所有的正整数m ,使得212-2+1m m -是完全平方数.三、(本题满分25分)如图,O 为四边形ABCD 内一点,OAD OCB ,OA OD ,OB OC .求证: AB 2 CD 2 AD 2 BC 2 .。

初中数学竞赛试卷及答案解析

初中数学竞赛试卷及答案解析

初中数学竞赛试卷及答案解析一、选择题1.已知函数f(x) = 2x - 3,求f(4)的值。

A. 2B. 5C. 6D. 7答案:C. 6解析:将x = 4代入函数f(x) = 2x - 3,得到f(4) = 2(4) - 3 = 8 - 3 = 5。

因此,答案为C. 6。

2.下列哪个不是三角形的内角?A. 90度B. 120度C. 180度D. 270度答案:C. 180度解析:三角形的内角之和总是等于180度。

因此,180度不是三角形的内角,而是一条直线的内角。

答案为C. 180度。

3.已知a = 3,b = 4,c = 5,求三角形的周长。

A. 6B. 12C. 15D. 20答案:C. 15解析:三角形的周长等于三条边的长度之和。

因此,周长 = a + b +c = 3 + 4 + 5 = 12。

答案为C. 15。

4.若x + 3 = 7,则x的值是多少?A. 2B. 3C. 4D. 5答案:A. 2解析:将x + 3 = 7转化为x = 7 - 3,得到x的值为2。

因此,答案为A. 2。

5.已知正方形的周长为20cm,求正方形的边长。

A. 4cmB. 5cmC. 10cmD. 20cm答案:B. 5cm解析:正方形的周长等于4倍的边长。

因此,边长 = 周长 / 4 = 20 /4 = 5。

答案为B. 5cm。

二、填空题1.已知等差数列的首项a₁ = 2,公差d = 3,求该数列的第10项。

答案:28解析:根据等差数列的通项公式an = a₁ + (n - 1) * d,代入a₁ = 2,d = 3,n = 10,得到a10 = 2 + (10 - 1) * 3 = 2 + 9 * 3 = 2 + 27 = 28。

2.若x² + 3x + k是一个完全平方数,则k的值为多少?答案:9/4解析:对于一个完全平方数,它的因式分解必然是两个相同的因式相乘。

根据已知的二次项系数求平方根的方法,可以得到k = (b/2a)² = (3/2)² = 9/4。

全国初中数学竞赛试题及答案大全

全国初中数学竞赛试题及答案大全

全国初中数学竞赛试题及答案大全试题一:代数基础题目:若\( a \), \( b \), \( c \)为实数,且满足\( a + b + c = 3 \),\( ab + ac + bc = 1 \),求\( a^2 + b^2 + c^2 \)的值。

解答:根据已知条件,我们可以使用配方法来求解。

首先,我们知道\( (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \)。

将已知条件代入,得到\( 3^2 = a^2 + b^2 + c^2 + 2 \times 1 \)。

简化后,我们得到\( a^2 + b^2 + c^2 = 9 - 2 = 7 \)。

试题二:几何问题题目:在直角三角形ABC中,∠A=90°,AB=6,AC=8,求斜边BC的长度。

解答:根据勾股定理,直角三角形的斜边BC的平方等于两直角边的平方和,即\( BC^2 = AB^2 + AC^2 \)。

代入已知数值,得到\( BC^2 = 6^2 + 8^2 = 36 + 64 = 100 \)。

因此,\( BC = \sqrt{100} = 10 \)。

试题三:数列问题题目:一个等差数列的首项是2,公差是3,求第10项的值。

解答:等差数列的第n项可以通过公式\( a_n = a_1 + (n - 1)d \)来计算,其中\( a_1 \)是首项,d是公差,n是项数。

将已知条件代入公式,得到\( a_{10} = 2 + (10 - 1) \times 3 = 2 + 9 \times 3 = 29 \)。

试题四:概率问题题目:一个袋子里有5个红球和3个蓝球,随机取出2个球,求取出的两个球颜色相同的概率。

解答:首先计算总的可能情况,即从8个球中取2个球的组合数,用组合公式C(8,2)计算。

然后计算取出两个红球或两个蓝球的情况。

两个红球的情况有C(5,2)种,两个蓝球的情况有C(3,2)种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

又 易 知 △ AEP ∽ △ BDP , 所 以 AE PE , 从 而 可 得 BD DP
AE PE BD 1 6 2 .
DP
3
4.6 张不同的卡片上分别写有数字 2,2,4,4,6,6,从中取出 3 张,则这 3 张卡片 上所写的数字可以作为三角形的三边长的概率是
()
A. 1 B. 2 C. 2 D. 3 2534
2014 年全国初中数学竞赛试题和答案解析
DF AC 1 , 故 12 x2 [ 2(1 x)]2 , 即 x2 4x 1 0 . 又 0 x 1 , 故 可 得
x2 3.
故 BE 2x 4 2 3 .
二、填空题:(本题满分 28 分,每小题 7 分)
1 . 已 知 实 数 a,b, c 满 足 a b c 1 , 1 1 1 1 , 则 abc bca cab
abc ____.
【答】 0.
由题意知 1 1 1 1,所以 1 2c 1 2a 1 2b
(1 2a)(1 2b) (1 2b)(1 2c) (1 2a)(1 2c) (1 2a)(1 2b)(1 2c)
整理得 2 2(a b c) 8abc ,所以 abc 0.
2.使得不等式 9 n 8 对唯一的整数 k 成立的最大正整数 n 为. 17 n k 15
【答】144.
由 条 件 得 7 k 8 , 由 k 的 唯 一 性 , 得 k 1 7 且 k 1 8 , 所 以
8n9
n8
n9
2 k 1 k 1 8 7 1 ,所以 n 144. n n n 9 8 72
当 n 144 时,由 7 k 8 可得126 k 128 , k 可取唯一整数值 127. 8n9
故满足条件的正整数 n 的最大值为 144.
3.已知 P 为等腰△ ABC 内一点,AB BC ,BPC 108 ,D 为 AC 的中点,BD
与 PC 交于点 E ,如果点 P 为△ ABE 的内心,则 PAC .
【答】 48.
由题意可得 PEA PEB CED AED ,
B
而 PEA PEB AED 180,
所以 PEA PEB CED AED 60 ,
从而可得 PCA 30 .
6),(4,6,6),由于不同的卡片上所写数字有重复,所以,取出的 3 张卡片上所写的数字
可以作为三角形的三边长的情况共有 4×2=8 种.
因此,所求概率为 8 2 . 20 5
5.设[t]表示不超过实数 t 的最大整数,令{t} t
[t] .已知实数 x
满足 x3
1 x3
18,
则{x}{1} x
()
A. 1 B. 3 5 C. 1 (3 5) D.1
2
2
【答】 D.

x
1 x
a
,则
x3
1 x3
(x
1 )( x2 x
1 x2
1)
(x
1)[(x x
1 )2 x
3]
a(a2
3)

所以 a(a2 3) 18 ,因式分解得 (a 3)(a2 3a 6) 0 ,所以 a 3.
BP 3

PE 1


AE

()
A. 6 B. 2 C. 3 D. 6 2
【答】 B.
因为 AD BC ,BE AC ,所以 P, D,C, E 四点共圆,所以 BD BC BP BE 12,
又 BC 2BD ,所以 BD 6 ,所以 DP 3 .
1/6
2014 年全国初中数学竞赛试题和答案解析
2x(1 x) 1 (1 x)2 7 x2 3 x 1:当 x 3 , y z 2 时, t 2xy yz 2zx 取得最大值 4 .
7
7
7
3.在△ ABC 中, AB AC , D 为 BC 的中点, BE AC 于 E ,交 AD 于 P ,已知
由 x 1 3 解得 x 1 (3 5) ,显然 0 {x} 1, 0 {1} 1,所以{x}{1} 1.
x
2
x
x
6.在△ ABC 中, C 90 , A 60 , AC 1, D 在 BC 上, E 在 AB 上,使
得 △ ADE 为 等 腰 直 角 三 角 形 , ADE 90 , 则 BE 的 长 为
因此, x y 的可能的值有 3 个.
2 . 已 知 非 负 实 数 x, y, z 满 足 x y z 1 , 则 t 2xy yz 2zx 的 最 大 值 为
()
A. 4 B. 5 C. 9 D. 12 7 9 16 25
【答】 A.
t 2xy yz 2zx 2x( y z) yz 2x( y z) 1 ( y z)2 4
()
A. 4 2 3 B. 2 3 C. 1 ( 3 1) D. 3 1 2
【答】 A.
过 E 作 EF BC 于 F ,易知△ ACD ≌△ DFE ,△ EFB ∽△ ACB .
C D
设 EF x , 则 BE 2x , AE 2 2x , DE 2(1 x) ,
A
2/6
F
B E
【答】 B.
若取出的 3 张卡片上的数字互不相同,有 2×2×2=8 种取法;若取出的 3 张卡片上的
数字有相同的,有 3×4=12 种取法.所以,从 6 张不同的卡片中取出 3 张,共有 8+12=20
种取法.
要使得三个数字可以构成三角形的三边长,只可能是:(2,4,4),(4,4,6),(2,6,
D.4 个
由已知等式得
x y xy
x2 y2 x2 y2
2 3
x4 y4 x4 y4
,显然 x, y 均不为
0,所以 x y =0

3xy 2(x y) .

3xy
2(x
y)


(3x
2)(3y
2)
4
.又
x,
y

整数,
可求得
x
y
1,或 2,
x y
2,所以 1.
x
y
1

x
y
1.
2014 年全国初中数学竞赛试题和答案解析
2014 年全国初中数学竞赛试题和答案解析
一、选择题:(本题满分 42 分,每小题 7 分)
1.已知
x,
y 为整数,且满足 ( 1 x
1 y
)(
1 x2
1 y2
)
2 3
(
1 x4
1 y4
) ,则
x
y
的可能的值
有( ) A.1 个 【答】 C.
B. 2 个
C. 3 个
相关文档
最新文档