高一数学必修1 函数的奇偶性 ppt
合集下载
高一数学人教A版必修1课件1321函数的奇偶性
总结:(1)偶函数 一般地,如果对于函数 f(x)的定义域内 每 一个 x,都有 f(-x)=f(x) ,那么函数 f(x)就叫做偶函数. (2)奇函数 一般地,如果对于函数 f(x)的定义域内 每 一个 x,都有 f(-x)=-f(x) ,那么函数 f(x)就叫做奇函数.
【归纳提升】 (1)奇偶函数的定义域关于原点对称,如 果函数的定义域不关于原点对称,则此函数既不是奇函数也 不是偶函数.
(6)显然函数 f(x)的定义域关于原点对称. 当 x>0 时,-x<0,f(-x)=x2-x=-(x-x2)=-f(x), 当 x<0 时,-x>0,f(-x)=-x-x2=-(x2+x)=-f(x), ∴f(-x)=-f(x), ∴函数 f(x)为奇函数.
2 利用函数的奇偶性求解析式
学法指导:利用函数奇偶性求函数解析式 利用函数奇偶性求函数解析式的关键是利用奇偶函数的 关系式 f(-x)=-f(x)或 f(-x)=f(x)成立,但要注意求给定哪 个区间的解析式就设这个区间上的变量为 x,然后把 x 转化 为-x(另一个已知区间上的解析式中的变量),通过适当推导, 求得所求区间上的解析式.
[例 2] 已知函数 y=f(x)的图象关于原点对称,且当 x>0 时,f(x)=x2-2x+3.试求 f(x)在 R 上的表达式,并画出它的图 象,根据图象写出它的单调区间.
[分析] 由函数图象关于原点对称可知 y=f(x)是奇函 数.利用奇函数性质可求得解析式.
[解析] ∵函数 f(x)的图象关于原点对称. ∴f(x)为奇函数,则 f(0)=0, 设 x<0,则-x>0,∵x>0 时,f(x)=x2-2x+3, ∴f(x)=-f(-x)=-(x2+2x+3)=-x2-2x-3 于是有:
人教版高中数学必修1《奇偶性》PPT课件
• (二)基本知能小试
• 1.判断正误:
•(1)f(x)是定义在R上的函数,若f(-1)=f(1),则f(x)一定是
偶函数.
()
•(2)对于函数y=f(x),若存在x,使f(-x)=-f(x),则函数
y=f(x)一定是奇函数.
()
•(3)若函数的定义域关于原点对称,则这个函数不是奇函 数就是偶函数.( )
()
•A.-1
B.0
•C.1
D.无法确定
• 解析:∵奇函数的定义域关于原点对称,∴a-1=0,即a =1.
•答案:C
• 4.函数f(x)是定义在R上的奇函数,当x>0时,f(x)=-x+1, 则当x<0时,f(x)=________.
• 解析:当x<0时,-x>0,则f(-x)=-(-x)+1=x+1=- f(x),所以f(x)=-x
又 f(0)=0,所以 f(x)=x-1x+x-x,1,x≥x0<,0.
• 3.设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x2+2x, 求函数f(x),g(x)的解析式.
• 解:∵f(x)是偶函数,g(x)是奇函数,
• ∴f(-x)=f(x),g(-x)=-g(x),
• 由f(x)+g(x)=2x+x2,
• [方法技巧]
• 比较大小的求解策略
• (1)若自变量在同一单调区间上,直接利用函数的单调性 比较大小.
• 3.2.2 奇偶性
明确目标
发展素养
1.理解奇函数、偶函数的定义,了解 1.借助奇(偶)函数的特征,培养直
奇函数、偶函数图象的特征.
观想象素养.
2.掌握判断函数奇偶性的方法,会根 2.借助函数奇偶性的判断方法,
高一数学必修一全套课件 PPT课件 人教课标版15
1.3.2 奇偶性 第一课时 函数的奇偶性
问题提出
1.研究函数的基本性质不仅是解决实际问题的 需要,也是数学自身发展的必然结果. 例如事物 的变化趋势,利润最大、效率最高等,这些特性 反映在函数上,就是要研究函数的单调性及最值.
2.我们从函数图象的升降变化引发了函数的单
调性,从函数图象的最高点最低点引发了函数的
最值,如果从函数图象的对称性出发又能得到什
么性质?
函数的奇偶性
知识探究(一)
考察下列两个函数:
(1) f (x) x2 ;
yo
x
(2) f (x) | x |.
y
o
x
图(1)
图(2)
思考1:这两个函数的图象分别是什么?二者
有何共同特征?
思考2:对于上述两个函数,f(1)与f(-1), f(2)与f(-2),f(3)与f(-3)有什么关系?
•
52、思想如钻子,必须集中在一点钻下去才有力量。
•
53、年少时,梦想在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。
•
54、最伟大的思想和行动往往需要最微不足道的开始。
•
55、不积小流无以成江海,不积跬步无以至千里。
•
56、远大抱负始于高中,辉煌人生起于今日。
•
57、理想的路总是为有信心的人预备着。
•
58、抱最大的希望,为最大的努力,做最坏的打算。
•
59、世上除了生死,都是小事。从今天开始,每天微笑吧。
•
60、一勤天下无难事,一懒天下皆难事。
•
61、在清醒中孤独,总好过于在喧嚣人群中寂寞。
问题提出
1.研究函数的基本性质不仅是解决实际问题的 需要,也是数学自身发展的必然结果. 例如事物 的变化趋势,利润最大、效率最高等,这些特性 反映在函数上,就是要研究函数的单调性及最值.
2.我们从函数图象的升降变化引发了函数的单
调性,从函数图象的最高点最低点引发了函数的
最值,如果从函数图象的对称性出发又能得到什
么性质?
函数的奇偶性
知识探究(一)
考察下列两个函数:
(1) f (x) x2 ;
yo
x
(2) f (x) | x |.
y
o
x
图(1)
图(2)
思考1:这两个函数的图象分别是什么?二者
有何共同特征?
思考2:对于上述两个函数,f(1)与f(-1), f(2)与f(-2),f(3)与f(-3)有什么关系?
•
52、思想如钻子,必须集中在一点钻下去才有力量。
•
53、年少时,梦想在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。
•
54、最伟大的思想和行动往往需要最微不足道的开始。
•
55、不积小流无以成江海,不积跬步无以至千里。
•
56、远大抱负始于高中,辉煌人生起于今日。
•
57、理想的路总是为有信心的人预备着。
•
58、抱最大的希望,为最大的努力,做最坏的打算。
•
59、世上除了生死,都是小事。从今天开始,每天微笑吧。
•
60、一勤天下无难事,一懒天下皆难事。
•
61、在清醒中孤独,总好过于在喧嚣人群中寂寞。
高中数学必修一北师大版本《2.4.1 函数的奇偶性》教学课件
)
A.-1 B.1
C.-32
3 D.2
解析:(2)由题意 f(x)为奇函数,则 f(0)=0,即 0+2a+3=0, ∴a=-32.此时 f(x)=x2+x 8为奇函数.
答案:(2)C
状元随笔 由函数的奇偶性求参数应注意两点
(1)函数奇偶性的定义既是判断函数的奇偶性的一种方法,也是 在已知函数奇偶性时可以运用的一个性质,要注意函数奇偶性定义 的正用和逆用.
综上,函数 f(x)的解析式为 f(x)=0x,x-x=10,,x>0, -xx+1,x<0.
xx-1,x>0, 答案:(2)f(x)=0,x=0,
-xx+1,x<0.
方法归纳
利用奇偶性求函数解析式的方法 已知函数的奇偶性及其在某区间上的解析式,求该函数在整个 定义域上的解析式的方法是:先设出未知解析式的定义区间上的自 变量,利用奇、偶函数的定义域关于原点对称的特点,把它转化到 已知的区间上,代入已知的解析式,然后利用函数的奇偶性求解即 可.具体如下:(1)求哪个区间上的解析式,x 就设在哪个区间上; (2)将-x 代入已知区间上的解析式;(3)利用 f(x)的奇偶性把 f(-x) 写成-f(x)或 f(x),从而解出对应区间上的 f(x).
4.1 函数的奇偶性
最新 课标
结合具体函数,了解奇偶性的概念和几何意义.
[教材要点]
要点 偶函数与奇函数 1.奇函数的概念 一般地,设函数 f(x)的定义域为 D,如果∀x∈D,都有-x∈D, 且 f(-x)=-f(x),那么称函数 f(x)为奇函数. 2.偶函数的概念 一般地,设函数 f(x)的定义域是 D,如果∀x∈D,都有-x ∈D,且 f(-x)=f(x),那么称函数 f(x)为偶函数.
高一数学人必修一课件时函数奇偶性的定义与判定
06
函数奇偶性的深入理解
奇偶性与函数周期性的关系
奇偶性是函数周期性的一种特 殊表现
奇偶性函数必定有周期性,但 周期性函数不一定有奇偶性
奇偶性函数周期性的判断可以 通过观察函数的图像或解析式 来实现
奇偶性函数周期性的应用在解 决实际问题中具有重要意义, 如信号处理、控制系统设计等
奇偶性与函数单调性的关系
反函数法:通过反函数判断其奇偶 性
图像法:通过观察函数图像判断其 奇偶性
02
复合函数法:通过复合函数判断其 奇偶性
04
特殊值法:通过特殊值判断其奇偶 性
06
04
函数奇偶性的性质
奇偶性对函数图像的影响
奇函数:关于原点对称,图像关于y轴对称 偶函数:关于y轴对称,图像关于x轴对称 非奇非偶函数:既不关于原点对称,也不关于y轴对称 奇偶性对函数图像的影响:决定了函数图像的对称性和周期性
奇偶性对函数值的影响
奇函数:f(-x)=-f(x),函数值关于原点对称
偶函数:f(-x)=f(x),函数值关于y轴对称
非奇非偶函数:既不是奇函数也不是偶函数 奇偶性对函数图像的影响:奇函数的图像关于原点对称,偶函数的图像关 于y轴对称,非奇非偶函数的图像既不关于原点对称也不关于y轴对称。
奇偶性对函数运算的影响
函数奇偶性的定义 与判定
汇报人:
目录
01 单 击 添 加 目 录 项 标 题 02 函 数 奇 偶 性 的 定 义 03 函 数 奇 偶 性 的 判 定 方 法 04 函 数 奇 偶 性 的 性 质 05 函 数 奇 偶 性 的 应 用 06 函 数 奇 偶 性 的 深 入 理 解
01
添加章节标题
在解决实际问题中的应用
3.2.2函数的奇偶性-高一数学课件(人教A版必修第一册)
且对任意的x∈[-7,-5],-x∈[5,7],由题意可得6= f(5) ≤ f(-x) ≤ f(7)
则6= f(-5) ≤ f(x) ≤ f(7)
因此,f(x) 在[-7,-5]上是减函数,最小值是6
方法小结
• 偶函数 y 轴两侧的函数单调性相反;
• 奇函数原点两侧的函数单调性相同;
题型三 利用奇偶性和单调性比较大小
则f(x)在[-7,-5]上是( C )
A.增函数,最大值是6
B.增函数,最小值是6
C.减函数,最小值是6
D.减函数,最大值是6
解析:任取x1、x2∈[-7,-5]且 x1<x2,即-7≤ x1< x2≤-5,则5≤-x2<-x1≤7,
由题意可得 f(-x2) < f(-x1),由偶函数的性质可得 f(x1) > f(x2),
题型二 奇偶性的应用
例2 已知函数 f(x)=x5-ax3+bx+2,f(-5)=17,则f(5)的
-13
值是________
解析:∵g(x)=x5-ax3+bx是奇函数,
∴g(-x)=-g(x),
∵f(-5)=17=g(-5)+2,
∴g(5)=-15,
∴f(5)=g(5)+2=-15+2=-13
x(x-1)
当x>0时,f(x)=________
解析:当x>0时,-x<0,
所以f(-x)=-x(-x+1)=x(x-1),
因为f(x)是偶函数,
所以当x>0时,f(x)=f(-x)=x(x-1)
题型一 利用函数奇偶性求解析式
例1(2) 已知f(x),g(x)分别是R上的奇函数和偶函数,
则6= f(-5) ≤ f(x) ≤ f(7)
因此,f(x) 在[-7,-5]上是减函数,最小值是6
方法小结
• 偶函数 y 轴两侧的函数单调性相反;
• 奇函数原点两侧的函数单调性相同;
题型三 利用奇偶性和单调性比较大小
则f(x)在[-7,-5]上是( C )
A.增函数,最大值是6
B.增函数,最小值是6
C.减函数,最小值是6
D.减函数,最大值是6
解析:任取x1、x2∈[-7,-5]且 x1<x2,即-7≤ x1< x2≤-5,则5≤-x2<-x1≤7,
由题意可得 f(-x2) < f(-x1),由偶函数的性质可得 f(x1) > f(x2),
题型二 奇偶性的应用
例2 已知函数 f(x)=x5-ax3+bx+2,f(-5)=17,则f(5)的
-13
值是________
解析:∵g(x)=x5-ax3+bx是奇函数,
∴g(-x)=-g(x),
∵f(-5)=17=g(-5)+2,
∴g(5)=-15,
∴f(5)=g(5)+2=-15+2=-13
x(x-1)
当x>0时,f(x)=________
解析:当x>0时,-x<0,
所以f(-x)=-x(-x+1)=x(x-1),
因为f(x)是偶函数,
所以当x>0时,f(x)=f(-x)=x(x-1)
题型一 利用函数奇偶性求解析式
例1(2) 已知f(x),g(x)分别是R上的奇函数和偶函数,
高中数学人教版《奇偶性》ppt教学课件1
∴f(x)偶函数
∴f(x)奇函数
(3)解:定义域为{x|x≠0},它 关于原点对称
且 f (x) x 1 (x 1) f (x)
x
x
∴f(x)奇函数
3高.2中.2数函学数人的教奇版偶《性奇-【偶 性新教 》上材 课】课人件教A1 版(20 19)高 中数学 必修第 一册课 件
(4)解:定义域为{x|x≠0} , 它关于原点对称
新课讲授
偶函数
图像关于y轴对称
代数特征 几何特征
首要条件:函数的定义域关于原点对称
奇函数
图像关于原点对称
代数特征 几何特征
高中数学 人教版 《奇偶 性》上 课课件1
3高.2中.2数函学数人的教奇版偶《性奇-【偶 性新教 》上材 课】课人件教A1 版(20 19)高 中数学 必修第 一册课 件 3高.2中.2数函学数人的教奇版偶《性奇-【偶 性新教 》上材 课】课人件教A1 版(20 19)高 中数学 必修第 一册课 件
f
(x)
1
x2
1 x2
f
(x)
∴f(x)偶函数
3高.2中.2数函学数人的教奇版偶《性奇-【偶 性新教 》上材 课】课人件教A1 版(20 19)高 中数学 必修第 一册课 件
判断或证明函数奇偶性的基本步骤
3高.2中.2数函学数人的教奇版偶《性奇-【偶 性新教 》上材 课】课人件教A1 版(20 19)高 中数学 必修第 一册课 件
例6、判断下列函数的奇偶性:
(1) f ( x) x 4
(3) f ( x) x 1 x
(1)解:定义域为R,∵∀x∈R,
都有-x∈R,且f(-x)=(-x)4=f(x)
(2) f ( x) x5
高一数学函数的奇偶性1(PPT)4-4
③拖延:他舍不得走,~到第二天才动身。 【挨板子】?被人用板子责打,比喻受到严厉的批评或处罚。 【挨批】∥ī动受到批评或批判:挨了一顿批。 【挨 宰】∥〈口〉动比喻购物或接受服务时被索取高价而遭受经济损失。 【挨整】∥动受到打击迫害:他过去挨过整。 【??】(騃)〈书〉傻:痴~|愚~。 【皑】(皚)〈书〉洁白:~如山; 杭州知识产权代理 杭州知识产权代理 ;上雪,皎若云间月。 【皑皑】’形形容霜、雪洁白:白雪~。 【癌】(旧读)名上皮组织生长出来的恶性肿瘤,常见的有胃癌、肺癌、肝癌、食管癌、肠癌、乳腺癌等。 【癌变】动组织细胞由良性病变转化为癌症病变。 【癌症】名生有恶性肿瘤的病:身患~。 【毐】用于人名,嫪度(’),战国时秦国人。 【欸】[欸乃]()〈书〉拟声①形容摇橹的声音。②划船时歌唱 的声音。 【嗳】(噯)叹表示不同意或否定:~,不是这样的|~,话可不能那么说。 【嗳气】动胃里的气体从嘴里出来,并发出声音。通称打嗝儿。 【嗳酸】动胃酸从胃里涌到嘴里。 【矮】形①身材短:~个儿|个头儿不~。②高度小的:~墙|~凳儿。③(级别、地位)低:他在学校里比我~一级。 【矮半截】(~儿)〈口〉相比之下低很多,多比喻在身份、地位、水平等方面差得远:他很自卑,觉得自己比别人~。 【矮墩墩】(~的)形状态词。形 容矮而粗壮:他长得~的。 【矮小】形又矮又小:身材~。 【矮星】ī名光度小、体积小、密度大的恒星,如天狼星的伴星。 【矮子】?名个子矮的人。 【蔼】(藹)①和气;态度好:和~|~然。②(?)名姓。 【蔼】(藹)〈书〉繁茂。 【蔼蔼】’〈书〉形①形容树木茂盛。②形容昏暗。 【蔼然】形和 气;和善:~可亲。 【霭】(靄)〈书〉云气:烟~|暮~。 【艾】名①多年生草本植物,叶子有香气,可入,内服可做止血剂,又供灸法上用。也叫艾蒿。 ②()姓。 【艾】〈书〉年老的,也指老年人:耆~。 【艾】〈书〉停止:方兴未~。 【艾】〈书〉美好;漂亮:少~(年轻漂亮的人)。 【艾蒿】名 艾?。 【艾虎】名艾鼬。 【艾虎】名用艾做成的像老虎的东西,旧俗端午节给儿童戴在头上,认为可以驱邪。 【艾绒】名把艾叶晒干捣碎而成的绒状物,中 医用来治病。参看页“灸”。 【艾窝窝】?名用熟糯米做成的球形食品,有馅儿。也作爱窝窝。 【艾叶豹】名雪豹。 【艾鼬】名哺乳动物,比黄鼬稍大,颈 较长,四肢短,背部棕黄色或淡黄色。性凶猛,昼伏夜出,捕食小动物。也叫艾虎。 【艾滋病】ī名获得性免疫缺陷综合征的通称,是一种传
函数的奇偶性(课件)高一数学(人教A版2019必修第一册)
答案:(1) 偶 ;
(2) 奇 ;
(5) 非奇非偶 ;
(3) 奇 ;
(4) 偶.3 函数的奇偶性
思维篇
知识篇
素养篇
1.已知f(x)=ax3-bx+4(a,b∈R), f(m)=5, 则
f(-m)=
.
解:令g(x)=ax2-bx,易知
g(-x)=-g(x)
又 g(m)= f(m)-4=1,
x
例如,函数 f(x)=x3就是奇函数.
练一练
1.奇函数f(x)的定义域是(2t-3, t),则t=
答案:t = 1
.
练一练
2.判断下列函数的奇偶性:
(1)f(x)=x4;
(2)f(x)=x5;
1
(3)f(x)=x+ ;
1
(4)f(x)= 2;
(5)f(x)=x-1;
(6)f(x)=x2 , x∈[-3, 7].
所以 f(-x)=(-x-5)2-4=(x+5)2-4=f(x)
当x>1时,-x<-1, 由
所以f(-x)=(-x+5)2-4=(x-5)2-4=f(x)
从而对于定义域内任意x,都有f(-x)=f(x) ;
故函数是偶函数.
6.判断下列函数的奇偶性:
( + 5)2 − 4 , ( < −1)
(1) f(x)=
( − 5)2 − 4 , ( > 1)
(2) f(x)= + − − (a∈R)
分
类
讨
论
解:(2)定义域为R,
当a≠0时,f(-x)=-f(x)
函数f(x)= + − − 是奇函数;
函数的奇偶性课件(共14张PPT)
y
则f (x) f (x) 2x
即2 f (x) 2x
2
即f (x) x
-2 o
2
x
故解集为:- 2,-1 0,1
-2
高中数学必修1同步辅导课程——函数的奇偶性
变式2:定义在R 上的函数 f (x), 对任意x, y R都有 f (x y) f (x) f ( y) 1, 且x 0时,f (x) 1, f (1) 2
f (x)单调递减,则f (1 m) f (m) 成立的 m 取值范围 是 ________。
高中数学必修1同步辅导课程——函数的奇偶性
例2:定义在 3,3 上的函数 f (x), g(x)分别为偶函数、
奇函数,图像如下,则不等式 f (x) 0的解集是:
g(x)
(_2_,_1_)__(_0_,1_) __(_2,_3_) 。
(1)求证:f (x)是R上的增函数; (2)解不等式: f (3x 1) 7; (3)求证:g(x) f (x) 1是奇函数。
高中数学必修1同步辅导课程——函数的奇偶性
课堂总结:
1:函数奇偶性的定义: “数”与“形”的特征
2:利用函数的奇偶性求值、求解析式
3:函数奇偶性与单调性的联系: “模拟图像”
题型三:奇偶性与单调性的联系:
例:已知函数 y f (x)(x 0)为奇函数,在 x 0,
上为单调增函数,且 f (1) 0 ,则不等式 f (2x 1) 0 解集为__________.
高中数学必修1同步辅导课程——函数的奇偶性
变式:定义在 2,2上的偶函数 f (x),当x 0 时,
高中数学必修1同步辅导课程——函数的奇偶性
高一数学备课课件函数的奇偶性
关键知识点总结回顾
两个偶函数的和或差仍是偶函数 奇函数与偶函数的乘积是奇函数
易错难点剖析及注意事项提醒
易错点 误将非原点对称的函数视为奇函数 误将非$y$轴对称的函数视为偶函数
易错难点剖析及注意事项提醒
01
在应用奇偶性简化计算时出错
02
注意事项
在判断奇偶性前,首先要确定函数的定义域是否关于原点对称
于所有$x$,都有$f(x+T) = f(x)$
05
与奇偶性的关系:周期函数可
以同时具有奇偶性,也可以不
具有
06
感谢您的观看
THANKS
性质
奇函数的图像关于原点对称。
如果$f(x)$在$x=0$处有定义,则 $f(0)=0$。
奇函数与奇函数相加或相减仍为奇函 数。
奇函数与偶函数相乘得到奇函数。
偶函数定义及性质
01
定义:对于函数$f(x)$,如果对于定义域内的任意$x$, 都有$f(-x) = f(x)$,则称$f(x)$为偶函数。
对数函数 $y = log_a x$ ($a > 0, a neq 1$)的 奇偶性也取决于底数 $a$
的值。
特别地,当 $a = e$(自 然对数的底数)时,函数 $y = ln x$ 为非奇非偶函
数。
04
复合函数与分段函数奇偶性探讨
复合函数奇偶性判断方法
观察内外函数的奇偶性
若内函数为奇函数,外函数为偶函数,则复 合函数为偶函数;若内函数为偶函数,外函 数为奇函数,则复合函数为奇函数。
二次函数奇偶性
二次函数 $y = ax^2 + bx + c$ ($a neq 0$)的奇偶性取决于
$b$ 的值。
高中数学必修一课件:奇偶性(第1课时)
(3)∵定义域为[-1,2]且定义域不关于原点对称,∴f(x)是非奇非偶函数. (4)f(x)=x2+x+1的定义域为R,∀x∈R都有-x∈R且f(-x)=x2-x+1, ∴f(-x)≠f(x),且f(-x)≠-f(x). ∴f(x)为非奇非偶函数.
(5)由x2-1≠0,得x≠±1,
∴f(x)=
1 x2-1
【分析】 讨论函数的奇偶性首先要确定函数的定义域,如果定义域不关 于原点对称,那么可判定为非奇非偶函数,如果定义域关于原点对称,那么看 f(-x)=±f(x)(或f(-x)±f(x)=0)是否成立.
【解析】 (1)f(x)的定义域为R,∀x∈R,都有-x∈R,
且f(-x)=-x5-x3-x=-f(x),∴f(x)为奇函数.
(2)如图2是偶函数y=f(x)的部分图象,比较f(1)与f(3)的大小的结果为 __f(_3)_>_f(_1)__.
【解析】 ∵偶函数f(x)满足f(-3)>f(-1), ∴f(3)>f(1).
(3)已知函数y=f(x)是偶函数,其图象与x轴有四个交点,则方程f(x)=0的所
有实根之和是( D )
课后巩固
1.函数f(x)=x2+ x的奇偶性为( D )
A.奇函数
B.偶函数
C.既是奇函数又是偶函数
D.非奇非偶函数
解析 定义域为[0,+∞),不关于原点对称.
2.【多选题】下列函数中是偶函数的是( AD )
A.y=x4-3
B.y=x2,x∈(-3,3]
C.y=-x-3x
D.y=x2-1 1
3.已知y=f(x),x∈(-a,a),F(x)=f(x)+f(-x),则F(x)( B )
探究2 (1)如果函数图象经过原点,那么此函数不论是奇函数还是偶函数, 其图象与x轴的交点个数必为奇数.如果函数图象不经过原点,那么此函数不论 是奇函数还是偶函数,其函数图象与x轴的交点个数必为偶数.
(5)由x2-1≠0,得x≠±1,
∴f(x)=
1 x2-1
【分析】 讨论函数的奇偶性首先要确定函数的定义域,如果定义域不关 于原点对称,那么可判定为非奇非偶函数,如果定义域关于原点对称,那么看 f(-x)=±f(x)(或f(-x)±f(x)=0)是否成立.
【解析】 (1)f(x)的定义域为R,∀x∈R,都有-x∈R,
且f(-x)=-x5-x3-x=-f(x),∴f(x)为奇函数.
(2)如图2是偶函数y=f(x)的部分图象,比较f(1)与f(3)的大小的结果为 __f(_3)_>_f(_1)__.
【解析】 ∵偶函数f(x)满足f(-3)>f(-1), ∴f(3)>f(1).
(3)已知函数y=f(x)是偶函数,其图象与x轴有四个交点,则方程f(x)=0的所
有实根之和是( D )
课后巩固
1.函数f(x)=x2+ x的奇偶性为( D )
A.奇函数
B.偶函数
C.既是奇函数又是偶函数
D.非奇非偶函数
解析 定义域为[0,+∞),不关于原点对称.
2.【多选题】下列函数中是偶函数的是( AD )
A.y=x4-3
B.y=x2,x∈(-3,3]
C.y=-x-3x
D.y=x2-1 1
3.已知y=f(x),x∈(-a,a),F(x)=f(x)+f(-x),则F(x)( B )
探究2 (1)如果函数图象经过原点,那么此函数不论是奇函数还是偶函数, 其图象与x轴的交点个数必为奇数.如果函数图象不经过原点,那么此函数不论 是奇函数还是偶函数,其函数图象与x轴的交点个数必为偶数.
北师大版高中数学必修第一册 第二章 4-1《函数的奇偶性》课件PPT
所以f(x)的解析式为f(x)=൞
2 2 + 3−1, < 0.
反思感悟
1.这类问题常见的情形是:已知当x∈(a,b)时,f(x)=φ(x),求当x∈(-b,-a)时f(x)的解析式.
若f(x)为奇函数,则当x∈(-b,-a)时, f(x)=-f(-x)=-φ(-x);
若f(x)为偶函数,则当x∈(-b,-a)时, f(x)=f(-x)=φ(-x).
提示:∵f(x)为奇函数,∴对任意x∈D,f(-x)=-f(x),∴f(-0)=-f(0),即f(0)=0,为定值.
二、函数奇偶性与单调性的关系
1.奇函数在关于原点对称的区间上具有相同的单调性;偶函数在关于原点对称的区间上具有相反的单调性.上
述结论可简记为“奇同偶异”.
2.偶函数在关于原点对称的区间上有相同的最大(小)值,取得最值时的自变量的值互为相反数;奇函数在关于
2.若函数f(x)的定义域内含0且为奇函数,则必有f(0)=0,不能漏掉.
延伸探究
若将本例中的“奇”改为“偶”,“x>0”改为“x≥0”,其他条件不变,求f(x)的解析式.
解:当x<0时,-x>0,此时f(-x)=-2(-x)2+3(-x)+1=-2x2-3x+1.
由于f(x)是偶函数,则f(x)=f(-x)=-2x2-3x+1,
当x<0时,-x>0,f(-x)=(-x)[1+(-x)]=-x(1-x)=-f(x).∴f(-x)=-f(x). ∴f(x)是奇函数.
(1−), < 0,
的图象如图所示.
(1 + ), > 0
图象关于原点对称,∴f(x)是奇函数.
(方法二)函数f(x)=ቊ
2 2 + 3−1, < 0.
反思感悟
1.这类问题常见的情形是:已知当x∈(a,b)时,f(x)=φ(x),求当x∈(-b,-a)时f(x)的解析式.
若f(x)为奇函数,则当x∈(-b,-a)时, f(x)=-f(-x)=-φ(-x);
若f(x)为偶函数,则当x∈(-b,-a)时, f(x)=f(-x)=φ(-x).
提示:∵f(x)为奇函数,∴对任意x∈D,f(-x)=-f(x),∴f(-0)=-f(0),即f(0)=0,为定值.
二、函数奇偶性与单调性的关系
1.奇函数在关于原点对称的区间上具有相同的单调性;偶函数在关于原点对称的区间上具有相反的单调性.上
述结论可简记为“奇同偶异”.
2.偶函数在关于原点对称的区间上有相同的最大(小)值,取得最值时的自变量的值互为相反数;奇函数在关于
2.若函数f(x)的定义域内含0且为奇函数,则必有f(0)=0,不能漏掉.
延伸探究
若将本例中的“奇”改为“偶”,“x>0”改为“x≥0”,其他条件不变,求f(x)的解析式.
解:当x<0时,-x>0,此时f(-x)=-2(-x)2+3(-x)+1=-2x2-3x+1.
由于f(x)是偶函数,则f(x)=f(-x)=-2x2-3x+1,
当x<0时,-x>0,f(-x)=(-x)[1+(-x)]=-x(1-x)=-f(x).∴f(-x)=-f(x). ∴f(x)是奇函数.
(1−), < 0,
的图象如图所示.
(1 + ), > 0
图象关于原点对称,∴f(x)是奇函数.
(方法二)函数f(x)=ቊ
人教B版高中数学必修第一册 3-1-3《函数的奇偶性》课件PPT
第三章
3.1
函 数
3.1.3 函数的奇偶性
学习目标
1.了解奇函数、偶函数的定义及其判断方法.
2.了解函数奇偶性与函数图像对称性之间的关系.
3.会利用函数的奇偶性求函数的解析式.
4.能运用函数的单调性与奇偶性解决比较大小、求最值、解不等式等综合问题.
核心素养:数学抽象、逻辑推理、直观想象
新知学习
函数的奇偶性
知识回顾
初中时我们学习过有关轴对称和中心对称的知识,而且已经知道,在平面直角坐标系中,点(x,y)
关于y轴的对称点为(-x,y),关于原点的对称点为(-x,-y).例如,(-2,3)关于y轴的对称点
为(2,3)
,关于原点的对称点为(2,-3)
.
新知学习
尝试与发现
填写下表,观察指定函数的自变量x互为相反数时,函数值之间具有什么关系,并分别说出函数
函数图像,并总结出当函数具有奇偶性时,函数单调性的规律.
1.函数奇偶性与单调性的关系
如果y=f(x)是偶函数,那么其在x>0与x<0时的单调性相反;
如果y=f(x)是奇函数,那么其在x>0与x<0时的单调性相同.
即时巩固
例4
1
研究函数y=²的性质,并作出函数图像.
解 要使函数表达式有意义,需有x≠0,因此函数的定义域为D={x∈R|x≠0},
的解析式时,先设出未知区间上的自变量,利用奇、偶函数的定义域关
点对称的两部分,得出函数在其中一部分上的性质和图像,就可得出这个函数在另一
部分上的性质和图像.
尝试与发现
已知函数f(x)满足f(5)=-3,分别在条件“f(x)是偶函数”与“f(x)是奇函数”
下求出f(-5)的值.
3.1
函 数
3.1.3 函数的奇偶性
学习目标
1.了解奇函数、偶函数的定义及其判断方法.
2.了解函数奇偶性与函数图像对称性之间的关系.
3.会利用函数的奇偶性求函数的解析式.
4.能运用函数的单调性与奇偶性解决比较大小、求最值、解不等式等综合问题.
核心素养:数学抽象、逻辑推理、直观想象
新知学习
函数的奇偶性
知识回顾
初中时我们学习过有关轴对称和中心对称的知识,而且已经知道,在平面直角坐标系中,点(x,y)
关于y轴的对称点为(-x,y),关于原点的对称点为(-x,-y).例如,(-2,3)关于y轴的对称点
为(2,3)
,关于原点的对称点为(2,-3)
.
新知学习
尝试与发现
填写下表,观察指定函数的自变量x互为相反数时,函数值之间具有什么关系,并分别说出函数
函数图像,并总结出当函数具有奇偶性时,函数单调性的规律.
1.函数奇偶性与单调性的关系
如果y=f(x)是偶函数,那么其在x>0与x<0时的单调性相反;
如果y=f(x)是奇函数,那么其在x>0与x<0时的单调性相同.
即时巩固
例4
1
研究函数y=²的性质,并作出函数图像.
解 要使函数表达式有意义,需有x≠0,因此函数的定义域为D={x∈R|x≠0},
的解析式时,先设出未知区间上的自变量,利用奇、偶函数的定义域关
点对称的两部分,得出函数在其中一部分上的性质和图像,就可得出这个函数在另一
部分上的性质和图像.
尝试与发现
已知函数f(x)满足f(5)=-3,分别在条件“f(x)是偶函数”与“f(x)是奇函数”
下求出f(-5)的值.
函数的的奇偶性PPT教学课件
又∵f(x)在(-1,1)上为减函数, ∴
1-a>a2-1 -1<1-a<1 -1<a2-1<1,解得0<a<1.
(2)因为函数g(x)在[-2,2]上是偶函数,则由g(1-m)<g(m),可得g(|1m|)<g(|m|),
又当x≥0时,g(x)为减函数,得到
|1-m|≤2 |m|≤2
1 解之得-1≤m< 2
(4)f(x)= 1 x2 x2 1
.
x
11
(1)x x 定1 1
(x)2 1 x2 x2
义 域 为
x1 x
得x2 1
(
3 )
函
数
的
定
义
域
为
A
=
{
学点二 由奇偶性求函数解析式 设f(x)是定义在R上的奇函数,当x>0时,f(x)= x2 +x+1,求 函数解析式. 【分析】由奇函数的图象关于原点对称,找x≥0和x<0时解析 式间的联系.
(2)如果一个函数的定义域关于原点不对称,那么这个 函数既不是奇函数,也不是偶函数.
(3)定义域关于原点对称,满足f(-x)=-f(x)=f(x)的函数, 既是奇函数,又是偶函数,如f(x)=0,x∈R.
判断下列函数的奇偶性:
1
1
(1)f(x)=x+ (3)f(x)=x+
xx
;
1
;
(2)f(x)=x2+ x2 ;
|1-m|>|m|,.
1.在函数的奇偶性中应注意什么问题?
(1)对于函数奇偶性的理解
①函数的奇偶性与单调性的差异:函数的奇偶性是相对于函数 的整个定义域来说的,这一点与函数的单调性不同.从这个意 义上来讲,函数的单调性是函数的“局部”性质,而奇偶性是 函数的“整体”性质,只有对函数定义域内的每一个值x,都 有f(-x)=-f(x)(或f(-x)=f(x)),才能说f(x)是奇(或偶)函数.
高一数学人教版必修一函数的奇偶性 PPT课件 图文
猜想: f(x)f(x)
x ..3.2 1 0 1 2 3..
... f (x) x2
941
0
14
9..
偶函数的定义
一般地,如果对函数 f (x) 的定义域内任意一个 x, 都有f (x) f (x), 那么函数 f (x)就叫偶函数 .
类比&探究
f(1)f(1) f(2)f(2) f(3)f(3)
1.3.2函数的奇偶性
必修1(人教版)
故宫
女子跳水10米跳台决赛,正反跳映衬对称美
数学&生活
生活中的对称美引入我们的数学领 域中,它又是怎样的情况呢?
请同学们观察下列函数图形,说出 他们各有怎样的对称性?
问题与思考
以上函数图像有什么共同特征呢? 哈哈,我来回答
以上函数图像都关于y轴对称
把图像关于y轴对称函数称为偶函数
问题与思考
以上函数图像有什么共同特征 呢?
以上函数图像都关于原点对称
把图像关于原点对称函数称为奇函数
根据下列函数图象,判断其奇偶性.
y
y
o
奇函数
x
o
x 偶函数
y
b
oLeabharlann x 偶函数yo
x 奇函数
观察 & 发现
f(1)1f(1)
f(2)4f(2)
f( 3)9f(3) ……
2.两个性质:
一个函数为奇函数 它的图象关于原点对称。 一个函数为偶函数 它的图象关于y 轴对称。
3. 判断函数奇偶性的方法和步骤
我来总结
判断函数的奇偶性,注意定 义域优先
1.
课堂小结
f ( x )是 函数f (x)的图像 对函数 f (x)的定义
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、奇、偶函数定义的逆命题也成立,即 若f(x)为奇函数,则f(-x)=-f(x)有成立. 若f(x)为偶函数,则f(-x)=f(x)有成立. 4、如果一个函数f(x)是奇函数或偶函数,那么我 们就说函数f(x)具有奇偶性.
例5、判断下列函数的奇偶性:
(1) f ( x) x 4 1 (3) f ( x ) x x
(2) f ( x) x 1
2
(4) f ( x) 0 (6) f ( x) x , x [1,3]
2
3.奇偶函数图象的性质
1、奇函数的图象关于原点对称. 反过来,如果一个函数的图象关于原 点对称,那么就称这个函数为奇函数.
2、偶函数的图象关于y轴对称. 反过来,如果一个函数的图象关于y轴对称, 那么就称这个函数为偶函数.
2
它们的图象分别如下图(1)、(2)所示.
观察函数f(x)=x和f(x)=1/x的图象(下图),你能发
现两个函数图象有什么共同特征吗?
f(-3)=-3=-f(3) f(-2)=-2=-f(2) f(-1)=-1=-f(1)
f(-3)=-1/3=-f(3) f(-2)=-1/2=-f(2) f(-1)=-1=-f(1)
说明:奇偶函数图象的性质可用于: a、简化函数图象的画法. B、判断函数的奇偶性
例3、已知函数y=f(x)是偶函数,它在y轴右边的图 象如下图,画出在y轴左边的图象. 解:画法略
y
相等
0
x
y
相等
0
x
本课小结
1、两个定义:对于f(x)定义域内的任意一个x,
f(x)为奇函数 如果都有f(-x)=f(x) f(x)为偶函数 如果都有f(-x)=-f(x) 2、两个性质:
∴f(x)奇函数
∴f(x)偶函数
3.用定义判断函数奇偶性的步骤:
(1)、先求定义域,看是否关于原点对称; (2)、再判断f(-x)=-f(x)或f(-x)=f(x)是否恒成立.
课堂练习
判断下列函数的奇偶性:
1 (1) f ( x) x x (3) f ( x) 5 (5) f ( x) x 1
它的图象关于原点对称 一个函数为偶函数 它的图象关于y轴对称 一个函数为奇函数
y
0
x
观察下图,思考并讨论以下问题:
(1) 这两个函数图象有什么共同特征吗? (2) 相应的两个函数值对应表是如何体现这些特征的?
f(x)=x2
f(-3)=9=f(3) f(-2)=4=f(2) f(-1)=1=f(1)
f(x)=|x|
f(-3)=3=f(3) f(-2)=2=f(2) f(-1)=1=f(1)
实际上,对于R内任意的一个x,都有f(-x)=-x=-f(x),这时 我们称函数y=x为奇函数.
2.奇函数
一般地,对于函数f(x)的定义域内的任意一个x, 都有f(-x)= - f(x),那么f(x)就叫做奇函数. 注意: 1、函数是奇函数或是偶函数称为函数的奇偶性, 函数的奇偶性是函数的整体性质; 2、由函数的奇偶性定义可知,函数具有奇偶性的 一个必要条件是,对于定义域内的任意一个x,则 -x也一定是定义域内的一个自变量(即定义域关 于原点对称).
( 2) f ( x) x 5 1 ( 4) f ( x ) 2 x
(1)解:定义域为R ∵ f(-x)=(-x)4=f(x) 即f(-x)=f(x)
(2)解:定义域为R f(-x)=(-x)5=- x5 =-f(x) 即f(-x)=-f(x)
∴f(x)偶函数 ∴f(x)奇函数 (3)解:定义域为{x|x≠0} (4)解:定义域为{x|x≠0} ∵ f(-x)=-x+1/(-x)=-f(x) ∵ f(-x)=1/(-x)2=f(x) 即f(-x)=-f(x) 即f(-x)=f(x)
实际上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x), 这时我们称函数y=x2为偶函数.
1.偶函数
一般地,对于函数f(x)的定义域内的任意一个x, 都有f(-x)=f(x),那么f(x)就叫做偶函数.
2 例如,函数 f ( x) x 1, f ( x) x 2 1 都是偶函数,