各种多址方式
移动通信技术可以分为几个发展阶段?各阶段采用何种系统?采用何种多址方式?
移动通信技术可以分为几个发展阶段?各阶段采用何种系统?采用何种多址方式?1、第一代模拟系统对应的接入技术是频分多址技术FDMA,它仅能提供9.6kbit/s通信带宽。
2、第二代窄带数字系统的接入技术主要有时分多址技术TDMA和码分多址技术CDMA两种,它可以提供9.6~28.8kbit/s的传输速率。
3、第三代移动通信技术3G是英文3rd Generation的缩写,是指将无线通信与国际互联网等多媒体通信结合的新一代移动通信系统。
它能够处理图像、音乐、视频流等多种媒体形式,提供包括网页浏览、会议、电子商务等多种信息服务。
能够提供从9.6kbit/s直至2Mbit/s的接入速率。
1、第一代移动通信系统是模拟移动通信系统,在20世纪初开始了商业运营试验。
它对移动通信的最大贡献是使用蜂窝结构,频带可重复利用,实现大区域覆盖;支持移动终端的漫游和越区切换,实现移动环境下不间断通信。
第一代移动通信系统的出现和发展,最重要的特点是体现在移动性上,这是其他任何通信方式和系统不可替代的,从而结束了过去无线通信发展过程中时常被其他通信手段替代而处于辅助地位的历史。
2、第二代移动通信系统是目前广泛使用的数字移动通信系统GSM及窄带CDMA(也叫cdmaone IS95CDMA),数字信号处理技术是其最基本的技术特征,提供了更高的频谱效率更先进的漫游。
它对移动通信发展的重大贡献是使用SIM卡,轻小手机和大量用户的网络支撑能力。
使用SIM卡作为移动通信用户个人身份和通信记录的载体,为移动通信管理、运营和服务带来极大便利。
3、第三代移动通信系统是正在全力投入开发的系统,其最基本的特征应当是智能信号处理技术,实现基于话音业务为主的多媒体数据通信,更高的频谱效率、更高的服务质量及低成本。
实现全球无线覆盖,真正实现“任何人,在任何地点、任何时间与任何人”都能便利的通信。
4、第四代移动通信系统是多功能集成的宽带移动通信系统,是宽(广)带接入IP系统,现在处在研究阶段,可提供的最大带宽为100Mbps。
《多址技术》PPT课件
h
22
FDMA典型应用
• 美国AMPS系统:FDMA/FDD,模拟窄带调 频(NBFM),按需分配频率;
• 同时支持的信道数: N=(Bt +B保护)/ (Bc + B保护)
Bt 系统带宽,Bc信道带宽, B保护为分配频率时 的保护带宽。
例:如Bt为12.5MHz, B保护 为10KHz,Bc为 30KHz,求FDMA系统的有效信道数。
h2h3源自一、多路复用和多址接入多路复用:多路复用是利用一条信道同时传输 多路信号的一种技术,可以解决在同一信道内同时 传送多个信号的问题。
常见的多路复用方式有
– 频分复用FDM – 时分复用TDM – 码分复用CDM – 波分复用WDM
h
4
多址接入:指多个通信站的射频信号在射频信道 上的复用,以实现各个通信站之间的通信。
• 一个信息分帧对应一个地球站的突发信号。 信息分帧中的信道定向采用逐字复用的时分 多路复用方式(TDM)。这样,一个地球站发 射的信号可由该站的消息分帧在一帧中的位 置来确定。
h
29
TDMA的效率
• 系统效率:在发射数据中信息所 占的百分比,不包括系统开销;
• 帧效率:发送数据比特在一帧中 所占的百分比;
h
18
FDMA的优点
✓ 技术成熟、设备简单、不需网同步、工作 可靠、可直接与地面频分制线路接口、工 作于大容量线路时效率高,特别适用于站 少而容量大的场合。
h
19
FDMA的缺点:
– 任一地球站为了能接收其他地球站的信号,都必 须设有除本站外的所有下行频率的接收电路;
– 转发器要同时放大多个载波,容易形成互调干扰。 为了减少互调干扰,必须进行电平“回退”补偿, 功率利用率不高;
多址方式
(3)在码分多址(CDMA)系统中,不同用户的传输信息用 各自不同的编码序列来区分。
多址方式
分类:频分多址、时分多址、码分多址 (1)在频分多址(FDMA)系统中,把总频段划分为若干个 占用较小带宽的、在频域上互不重叠的信道,每个频道就是一 个通信信道,手机通信均在临时指定的通信信道上进行;通信 结束后,先前被占用的信道被重新分配给其他用户使用。 (2)在时分多址(TDMA)系统中,把时间分成周期性的帧, 每一帧再分割成若干时隙,每一个时隙就是一个通信信道。根 据一定的时隙分配原则,使每个手机只能在指定的时隙内发射 或接收信息。
通信原理_第6章信道复用和多址技术.
特点:简单,信道利用率低,不稳定。最大吞吐量仅为容 量的18.4%。
各种ALOHA方案网络吞吐量 S与提供负载 G的关系如图。
具有捕获效应的S-ALOHA 0.54
归一化信道吞吐量(S)
0.45 0.36 0.27 0.18 0.09 0.00 0.00 0.5
(a) 工作示意图。4个地球站,其中一个为基准站。
基准站任务:为其他各站发射定时信号。基准站也可由某一地球站兼 任。帧周期(帧):所有地球站在卫星内占有的整个时间间隔。 分帧(子帧):每个地球站占有的时隙帧。 (b) 帧结构。帧周期为125μs)或其整倍数。 帧:由所有分帧和一个基准站分帧组成。分帧的长度可以一样也可以 不一样。由前置码和数据两部分组成。
在FDMA中,是指各地球站占用转发器的频段;
在TDMA中,是指各站占用的时隙;
在CDMA中,是指各站使用的正交码组。
20/48
6.3.1 频分多址
FDMA按频率划分,把各站发射的信号配置在卫星频带内 的指定位置上,各中心频率留有保护频带。 示意图。
保护频带
转发器频带分配
f A fB
3/48
6.1.1 频分复用
低通滤波器 调制器 MOD 带通滤波器 BPF 带通滤波器 BPF 解调器 DEM 低通滤波器 LPF
f1 (t )
LPF
f1 (t )
01
f 2 (t )
消息输入 LPF MOD BPF
f S (t )
主调制器 MOD 信道 主解调器 DEM BPF
波分复用的两波道间隔为10 ~ 100nm。当间隔为1 ~ 10nm, 甚至1nm以下时,称为密集波分复用(DWDM)。
卫星通信第三卫星通信的多址技术
30
TDMA系统的不足
(1) 必须保持各地球站之间的精确同步,才 能让所有用户实现共享卫星资源的目的。 (2) 为了保证用户信息传递的连续性,要求 采用突发解调器(系统中各站在规定的 时隙内以突发的形式发射其已调信号)。 (3) 初期的投资较大,系统实现复杂,技术 设备复杂。
31
帧:整个系统的所有地球站时隙在卫星内占 据的整个时间段称为卫星的一个(TDMA)时帧。 一个TDMA帧是由一个同步分帧和若干个业 务分帧组成的。 基准分帧(同步分帧) :TDMA帧内的第一 个时隙,不含任何业务信息,仅用作同步 和网络控制。 数据分帧 :除基准地球站外其他地球站占 据的时隙。 保护时间:在各个时隙之间留有很小的时间 32 间隔,称为“保护时间”。
3.4.2 跳频码分多址系统
跳频(FH,Frequency Hopping)。在发送端, 利用PN码控制频率合成器,使频率在一个宽 范围内伪随机地跳变,跳频系统占用了比信 息带宽要宽得多的频带。在接收端,本地PN 码产生器提供一个和发端相同的 PN码,驱动 本地频率合成器产生同样规律的频率跳变, 和接收信号混频获得已调信号。
3.3.4 频分多址-时分多址 (FDMA-TDMA)方式 是指若干个窄带TDMA方式工作的地球站, 以频分多址方式共用一个转发器的一种技术。 传送相对较低速率(10Mbit/s以下)的信号。 特点:改变业务样式灵活,特别适合传输数 据,每个帧内的信道都可以采用按需分配方 式。但是由于要求功率放大器有输出补偿, 所以卫星转发器的效率低于单纯的TDMA系 统。 37
常用多址方式简介-PPT课件
将OFDM和FDMA技术结合形成的OFDMA技术是最常见的OFDM多址技术, 又分为子信道(Subchannel)OFDMA和跳频OFDMA。子信道OFDMA即将整 个OFDM系统的带宽分成若干子信道,每个子信道包括若干子载波,分配 给一个用户(也可以一个用户占用多个子信道)。 OFDM子载波可以按两 种方式组合成子信道:集中式(Locolized)和分布式(Distributed),如图 所示。集中式即将若干连续子载波分配给一个子信道(用户),这种方式 下系统可以通过频域调度(scheduling)选择较优的子信道(用户)进行 传输,从而获得多用户分集增益(图(a))。另外,集中方式也可以降 低信道估计的难度。但这种方式获得的频率分集增益较小,用户平均性能 略差。分布式系统将分配给一个子信道的子载波分散到整个带宽,各子载 波的子载波交替排列,从而获得频率分集增益(图(b))。但这种方式 下信道估计较为复杂,也无法采用频域调度,抗频偏能力也较差。设计中 应根据实际情况在上述两种方式中灵活进行选择。
正交频分多址接入(OFDMA)是OFDM(正交频分复用)调制的一种形式,它 针对多用户通信进行了优化,尤其是蜂窝电话和其它移动设备。4G正是 采用这种方式,利用这种技术可以实现例如无线区域环路(WLL)、数字音 讯广播(DAB)等方面的无线通信增值服务。
4G 系统采用的核心技术是正交频分复用(OFDM) 技术,属于 多载波调制技术;3G系统中采用的是码分多址( CDMA) 技术, 是单载波,CDMA200虽采用的是多载波技术,但各个载波之 间相互独立,而OFDM各子载波之间有重叠部分。随着OFDM 技术的发展,也出现了一系列改进的OFDM技术,以解决 OFDM本身的一些问题。
下行速 率
上行速 率
384kbps 118kbps
多址方式
多址方式多址方式在移动通信中,许多用户同时通话,以不同的移动信道分隔,防止相互干扰的技术方式称为多址方式。
根据特征,有三种多址方式,即:频分多址(FDMA)、时分多址(TDMA)、码分多址(CDMA)等方式。
频分多址--以频率来区分信道。
目录定义技术发展历史种类划分容量比较相关问题定义技术发展历史种类划分容量比较相关问题展开定义在无线通信中,许多用户同时通话,以不同的无线信道分隔,防止相互干扰的技术方式称为多址方式。
技术公共陆基移动网(PLMN Public Land Mobile Network)主要使用使用的频分多址(FDMA Frequency Division Multiple Access),时分多址(TDMA Time Division Multiple拓扑结构Access),码分多址(CDMA Code Division Multiple Access),空分多址(SDMA Space Division Multiple Access)和包分多址(PDMA Packet Division Multiple Access)等技术另有仅仅停留在理论层面的极分多址(PDMA Polarization division multiple access)卫星通信中主要使用的按需分配多址接入(DAMA) 或脉冲寻址多址接入(PAMA Pulse Address Multiple Access)频分多址--以频率来区分信道。
特点:使用简单,信号连续传输,满足模拟话音通信,技术成熟。
缺点:多频道信号互调干扰严重,频率利用率低,容量小。
时分多址--在一个无线频道上,按时间分割为若干个时隙,每个信道占用一个时隙,在规定的时隙内收发信号。
时分多址只传数字信息,信息需经压缩和缓冲存储的过程,在实际使用时常FDMA/TDMA复分使用。
码分多址--采用扩频通信技术,每个用户具有特定的地址码(相当于扩频中的PN码),利用地址码相互之间的正交性(或准正交性)完成信道分离的任务。
常用多址方式简介
现实应用
1、实时移动视频 2、应急响应和远程医学 3、在线游戏 4、应用增强现实技术导航 5、基于云计算的应用
速率对比
无线蜂 窝制式
CDMA TDGSM(EDGE CDMA 2000 WCDMA( 2000(EVD SCDMA( ) HSPA) (1x) O RA) HSPA)
TD-LTE
FDD-LTE
正交频分多址接入(OFDMA)是OFDM(正交频分复用)调制的一种形式,它 针对多用户通信进行了优化,尤其是蜂窝电话和其它移动设备。4G正是 采用这种方式,利用这种技术可以实现例如无线区域环路(WLL)、数字音 讯广播(DAB)等方面的无线通信增值服务。
4G 系统采用的核心技术是正交频分复用(OFDM) 技术,属于 多载波调制技术;3G系统中采用的是码分多址( CDMA) 技术, 是单载波,CDMA200虽采用的是多载波技术,但各个载波之 间相互独立,而OFDM各子载波之间有重叠部分。随着OFDM 技术的发展,也出现了一系列改进的OFDM技术,以解决 OFDM本身的一些问题。
跳频OFDMA
在这种系统中,分配给一个用户的子载波资源快速变化, 每个时隙,此用户在所有子载波中抽取若干子载波使用, 同一时隙中,各用户选用不同的子载波组(如图所示)。 与基于频域调度的子信道化不同,这种子载波的选择通 常不依赖信道条件而定,而是随机抽取。在下一个时隙, 无论信道是否发生变化,各用户都跳到另一组子载波发 送,但用户使用的子载波仍不冲突。
第一代模拟系统对应的接入技术是频分多址技术FDMA,它 仅能提供9.6kbit/s通信带宽。 第二代窄带数字系统的接入技术主要有时分多址技术TDMA 和码分多址技术CDMA两种,它可以提供9.6~28.8kbit/s 的传输速率。 第三代移动通信技术3G是英文3rd Generation的缩写,是 指将无线通信与国际互联网等多媒体通信结合的新一代移 动通信系统。它能够处理图像、音乐、视频流等多种媒体 形式,提供包括网页浏览、电话会议、电子商务等多种信 息服务。能够提供从9.6kbit/s直至2Mbit/s的接入速率。 第四代移动通信系统是多功能集成的宽带移动通信系统, 是宽(广)带接入IP系统,可提供的最大带宽为100Mbps。 第四代移动通信将以宽带、接入因特网、具有多种综合功 能的系统形态出现。
现代通信原理考题题解-浙江大学
参考样卷1(一) 填空题 (每空5分)1.根据仙农信道容量公式,信道频带宽度可以和信噪比 互换,无限增加信道带宽,能否增大信道容量否2.目前我国移动通信中有下列三种多址方式,频分多址FDMA ,时分多址TDMA ,码分多址CDMA 。
模拟移动通信采用FDMA 多址方式,全球通GMS 采用TDMA 多址方式。
3.已知下列两个码组,C1=(10110),C2-(01000)C2 码组的重量W (C2)=1,C1,C2两码组之间的距离(码距)为W (C1,C2)=4。
4.调频信号鉴频解调器输出噪音功率谱的形状是和频率有抛物线形状关系 ,改善调频系统信噪比的简单方法是预加重和去加重 。
5.数字复接中,帧同步码的作用是 接收端识别出帧同步码后,即可建立正确的路序。
;二次群准同步复接中,塞入码的作用是 调整码速 。
6.在语音信号脉冲编码调制中,采用非均匀量化的目的是降低信息速率,压缩传输频带。
(P129)我国的脉冲编码调制系统,采用哪种对数压缩特性A 率对数压缩特性。
7,设语音信号的最高频率为, 则双边带调幅信号带宽为,调频指数为10的调频信号的带宽为KHz f m FM 8.74)1(2=+β。
8. 计算机局域网(以太网)中采用的数字基带信号的码型为曼切斯特码(数字双相码),与AMI 码相比,HDB3码的主要优点是便于定时恢复。
9.在数字调制性能评价时,常用到Eb/N0,其含义是比特平均能量噪音单边功率密度比,BPSK 与QPSK 调制在相同Eb/N0时误比特率相同,这是否意味相同信息速率时两者信噪比相同不同。
10.多进制数字调制中,基带信号常采用格雷码,其目的是减少解调误码率,设QPSK 信号的0相位对应的格雷码为00,分别给出90,180,270 相位对应的格雷码。
01,11,10。
(二)问答题1. (10分)数据通信开放系统互联模型的七层协议是什么内容调制解调器属于哪一层 答:数据通信开放系统互联模型的七层协议是物理层,链路层、网络层、运输层——低层会晤层、表示层、应用层——高层, 调制解调器属于物理层。
《移动通信》课后答案
《移动通信》课后答案练习一一、填空题1、移动通信按工作方式分(单工)(双工)(半双工)。
2、移动通信按多址方式分(FDMA),(TDMA),(CDMA )。
3、移动通信按信号形式分(模拟网)(数字网)4、移动通信按覆盖范围分(城域网)(局域网)(广域网)。
5、移动通信按业务类型分( PSTN),(DDN),(ISDN )6、移动通信按服务特性分(专用网),(公用网)。
7、移动通信按使用环境分(陆地通信),(海上通信),(空中通信)。
8、移动通信按使用对象分(民用系统),(军用系统)。
二、简答题1、什么叫移动通信?答:通信双方至少有一方处在移动情况下(或临时静止)的相互信息传输和交换。
2、移动通信的特点。
答:1、移动通信必须利用无线电波进行信息传输2、移动通信是在复杂的干扰环境中运行的3、移动通信可以利用的频谱资源非常有限4、移动通信系统的网络结构多种多样,网络管理和控制必须有效5、移动台必须适合于在移动环境中使用3、移动通信的发展趋势。
答:1、开发更高频段2、有效利用频谱3、数字化4、向个人移动通信发展5、传输数据速率越来越高。
4、全球3G的三大标准是什么?答:WCDMA 、 CDMA2000、TD-SCDMA 。
5、什么是基站?答:固定不动接发移动台的信号完成与交换中心相连,从而实现移动台信号的收发。
6、什么是移动台?答:接收发送无线信号并且可以移动的终端;包括:手机,车载台、无绳电话等。
7、什么是交换中心?答:交换各种信息的中心,分为有线和无线。
无线交换中心为各个移动台所在的基站之间提供交换服务。
8、移动通信的发展目标是什么?答:就是向个人移动通信系统(PCS)发展:Whoever 、Whenever 、Wherever 、Whomever 、Whatever。
9、数字移动通信系统有哪些优点?答:频谱利用率高、容量大,同时可以自动漫游和自动切换,通信质量好,加上其业务种类多、易于加密、抗干扰能力强、用户设备小、成本低。
移动通信多址接入技术
0
1
2
3
4
5
6
7
8
ti
0.1
0.2
0.3
0.4
0.2
0.1
0.1
0.1
0.1
这说明在总共8个信道中,在2小时的观察时间内平均有3.5个信道同时被占用。每信道每小时的平均被占用时间为3.5/8=0.437 5小时。因为一个信道的最大可容纳的话务量是1爱尔兰,因此它的平均信道利用率就是43.75%。
01
在给定流入话务量 A 情况下, 由式(5-9)可算出为达到服务等级 B,小区应取的共用信道数 n .
02
呼损率不同情况下,信道的利用率也是不同的。信道利用率η可用每小时每信道的完成话务量来计算,即
表 5–2 呼损率和话务量与信道数及信道利用率的关系
表 5–2 呼损率和话务量与信道数及信道利用率的关系(续)
c. 有n个信道的系统 , 每个信道平均产生的话务量:
01
b. 有U个用户的系统产生的总话务量:
02
a . 每个用户的话务量强度等于呼叫请求速率乘以保持时间:
03
2)话务量 A :
例5.1:某系统有50个用户,每个用户平均每小时发出2次呼叫,每次呼叫平均保持3分钟,则每个用户的话务量:
其中 为完成话务量。式中看出: 呼损率 B ,呼叫成功率 ,用户越满意。 4)呼损率 B: 损失话务量占流入话务量的比率: B也称作服务等级GOS(Grade of Service). 但若B ,系统流入话务量A ,系统容量(用户数)U 。
例5.3 某个城市面积为1300平方公里, 由一个使用7小区复用模式的蜂窝系统覆盖。每个小区的半径为 4 公里, 该城市共有40MHz的频谱, 使用带宽为60kHz的双向信道。假设系统的GOS (呼损率B ) 为2%. 如每个用户提供的话务量为 0.03Erlang , 计算:
卫星通信的多址方式
图3-16 TDMA系统帧结构
(1)同步分帧
同步分帧中包括载波、位定时恢复(CR和BTR)、独特码(UW)、站址识别码(SIC)和指令信号(CW)。
(2)数据分帧
一个数据分帧包含了若干个业务分帧,并且每个业务分帧由分帧报头和多个PCM数据信道构成。
图3-11 SPADE终端设备组成图
公共信令信道的信令格式
03
为了实现按需分配,各地球站是按TDMA方式工作的,即按时分多址方式工作的。
04
按需分配方式下的信息传递过程
01
如图3-11所示,各地球站设置有按TDMA方式(在后面将详细介绍)工作的公用信令信道和话音传输信道。
02
公共信道工作特性
由上面的分析可知,SPADE系统可为48个地球站提供397条双向通路(如图4-10所示),这就是说,每个地球站可以每隔50ms向信道申请一次。
按需分配方式下的通信过程 在SPADE系统中,当某用户通过长途台将呼叫通信请求送至SPADE终端时,SPADE终端为其从397条卫星线路中选择任意一条空闲信道,并进行连通,同时通过此信道将呼叫请求帧送到对方用户所在的地球站,并由该站与对方局连通。
02
要求采用突发解调器(系统中各站在规定的时隙内以突发的形式发射其已调信号)。
03
模拟信号需转换成数字信号才能在网络中传输。
初期的投资较大,系统实现复杂。
05
3.3.2 TDMA地球站设备
01.
如图3-15所示为一个TDMA地球站设备组成示意图。
02.
图3-15 TDMA地球站设备
2
1
多址接入方式的基本原理
多址接入方式的基本原理
多址接入方式是指在一个网络中,所有的用户(或称用户节点)均能够通过物理层信道(PCH)上的不同信道来传递信息。
其基本思想是在网络中任何两个节点间都允许存在多个独立的信道,当其中一个节点向另一个节点发送信息时,只需要在这个独立的信道上发送信息即可。
多址接入方式一般有两种形式:频分多址和时分多址。
所谓频分多址,就是将通信系统的某一频率分成若干个子频带,而不是把频率分成若干个频段。
在一个频分多址系统中,每个用户都可以在某一段时间内通过其专用信道来传递信息,而不必占用全网的频率资源。
因此,频分多址系统中的每一个用户都可以同时共享全网的频率资源。
其优点是:(1)利用了不同频段上不同频率之间的正交性,消除了相邻信道间的干扰;(2)每一用户所占用的信道不受其它用户干扰;(3)各用户占用同一频段,能满足用户对信道带宽的需求。
但是,它也有缺点:(1)频分多址系统必须由一套硬件设备来实现信道接入,所需硬件设备数量较多。
—— 1 —1 —。
第4章_多址技术
根据是否使用基带信号复用,可分为多路单 载波(MCPC)和单路单载波(SCPC)方式。
17
18
4.2.1 MCPC和SCPC
多路单载波-频分多址(MCPC-FDMA)方式 每个地球站分配一个专用载波,首先把所有
39
帧同步包括两方面的内容 其一是指在地球站开始发射数据时,如何使
其进入指定的时隙,而不会对其他分帧构成 干扰,这就是分帧的初始捕获。 其二是指如何使进入指定时隙的分帧信号处 于稳定的工作状态,即使该分帧与其他分帧 维持正确的时间关系,不致出现相互重叠的 现象,这就是子帧同步技术。
40
要发射的基带信号复用在一起,然后调制、 上变频,将频率变换到指定频率 ,最后再以 FDMA方式发射和接收。因此,经卫星转发 的每个载波所传送的是多路信号。 一般采用预分配方式。
19
单路单载波-频分多址 (SCPC-FDMA)方式
在一路载波上只传送一路话音或数据。
特点:
可采用“话音激活”技术
4.3.3 数字话音内插
统计结果表明,在话音通信系统中,每条通 信线路上实际传送的话音信号只占总线路时 间的40%左右。利用话路的空闲时间传输其 他路的话音信号就可以提高信道利用率。
数字话音内插(DSI)就是利用话音通信的这个
特点,将路数较多的话音信号压缩到路数较
少的信道上进行传输的技术。在TDMA系统
• 时分复用(TDM):利用时间的正交性,即以时间作为 信号分割的参量,使各路信号在时间轴上互不重叠,它利 用不同时隙来传送各路不同信号。在TDM系统中,每个 信号占据着不同的时间区间,但每个信号均占有相同的频 域,各路信号在频域中混叠在一起,在时域中可分辨。
TDMA,FDMA,CDMA,OFDM,OFDMA区别
TDMA,FDMA,CDMA,OFDM,OFDMA区别?1.时分多址,频分多址,码分多址, 后两个一个用作频率正交调制,另一个已正交调制为基础用于多址接入。
二者本质原理可以说是一样的,用途不同。
正交频分多址接入(OFDMA)是OFDM(正交频分复用)调制的一种形式,它针对多用户通信进行了优化,好处在于具有更高的频谱效率和更好的抗衰落性能。
这也归根于OFDM本质特点。
对于低数据率用户,它只需要更低的发射功耗。
2.OFDMA与OFDM,最根本的区别在于,前者在上行和下行都支持子信道化,后者仅在上行方向支持子信道化。
1、子信道化通俗讲,就是将子载波进行分组,一个子信道可包含多个子载波2、OFDMA中子信道化在上下行均支持。
例如在上行,一个用户可能获得一个或几个子信道;下行亦然,一个子信道可以为不同用户或者用户组服务。
一个信道中子载波可以相邻,也可以不相邻。
3、OFDM仅仅在上行支持子信道化。
3.严格的讲,OFDM是一种调制方式,类似于QPSK、16QAM等,用于对信息比特调制成码片发送出去而OFDMA是一种多址接入方式,类似于FDMA 等,利用频率的不同,将同一小区的多个用户区分开来举个最简单的例子(不考虑TDMA)同一个小区内有100 个子载波可用,有10 个用户可以有多种方案,下面举两种最简单的方案(1) 将前10 个子载波分给第一个用户,第11~20 个子载波分给第二个用户,……而每个用户的编码方式都采用了10 载波的OFDM 调制方式(2) 将子载波1、11、21、…、91 分给第一个用户,将子载波2、12、22、…、92 分给第二个用户,…同样每个用户的编码方式都采用了10 载波的OFDM 调制方式当然,也各根据需要的不同,分给不同用户的子载波数不同4.前面两个是基础性的,目前主流通信系统都用到这两种多址方式CDMA不用说了吧,3G就用的这种多址方式OFDM是一种复用方式OFDMA是OFDM复用方式的多址方式,目前wimax就用的这个吧,以后4G可能就要用这个5.FDMA、TDMA和CDMA的区别频分多址(FDMA)是采用调频的多址技术。
无线通信原理与应用-9.1 固定多址(频分多址、时分多址、码分多址、空分多址)
时隙1 时隙2 时隙3 - - - - - 时隙N
频率
尾比特 同步比特
信息数据 保护比特
时间
电气工程学院 通信工程系
无线通信原理与应用
Wireless Communications Principles and Practice
§9.3 时分多址(TDMA)
• TDMA的效率:发射的数据中信息所占的百分比,不包 括为接入模式而提供的系统开销。
§9.3 时分多址(TDMA)
• 发射数据是用缓存-突发法,省电,切换简单,不需要双工器, 不同用户分配不同的带宽;
• 同步开销大,必须有自适应均衡、保护时隙;
• 用户共享一个载波频率,利用互不交叉的时隙,时隙数取决于调 制技术、有效带宽等;
代码 信道N
头比特
一个TDMA帧 信息
尾比特
时隙
信道3 信道2 信道1
无线通信原理与应用
Wireless Communications Principles and Practice
第9章 无线通信多址技术
• 9.1 概述 • 9.2 频分多址(FDMA) • 9.3 时分多址(TDMA) • 9.4 扩频多址(SSMA) • 9.5 空分多址(SDMA) • 9.6 分组无线电(PR) • 9.7 蜂窝系统的容量
§9.1 概述
• 频分双工(FDD):为一个用户提供两个确定的频段。前向 频段提供从基站到移动台的传输,而反向频段提供从移动台 到基站的传输。
• 在FDD中,前向和反向频段的频率分配在整个系统中是固定 的。
• 时分双工(TDD):用时间而不是频率来提供前向链路和反 向链路。前向时隙和反向时隙之间的时间分隔很小时,用户 听起来就是同时的。
移动通信不同制式简介
移动通信不同制式简介多址方式调制方式频段GSM多址方式:FDMA+TDMA调制方式:GMSK频段划分:900频段890—915为上行935—960为下行简介:全球移动通讯系统Global System of Mobile communication就是众所周知的GSM,是当前应用最为广泛的移动电话标准。
全球超过200个国家和地区超过10亿人正在使用GSM电话。
GSM标准的无处不在使得在移动电话运营商之间签署"漫游协定"后用户的国际漫游变得很平常。
GSM 较之它以前的标准最大的不同是他的信令和语音信道都是数字式的,因此GSM被看作是第二代(2G)移动电话系统。
这说明数字通讯从很早就已经构建到系统中。
GSM是一个当前由3GPP 开发的开放标准。
CDMA2000 1X多址方式:CDMA调制方式:QPSK频段划分:900频段810—820为上行875—885为下行简介:全球移动通讯系统Global System of Mobile communication就是众所周知的GSM,是当前应用最为广泛的移动电话标准。
全球超过200个国家和地区超过10亿人正在使用GSM电话。
GSM标准的无处不在使得在移动电话运营商之间签署"漫游协定"后用户的国际漫游变得很平常。
GSM 较之它以前的标准最大的不同是他的信令和语音信道都是数字式的,因此GSM被看作是第二代(2G)移动电话系统。
这说明数字通讯从很早就已经构建到系统中。
GSM是一个当前由3GPP 开发的开放标准。
3G标准TD-SCDMA WCDMA CDMA2000 WinMAXWCDMA 欧洲广泛应用属于FDD频分双工CDMA码分多址国内频段:1920—1980为上行2110—2170为下行CDMA2000 美日韩混账东西再用暂不介绍TD-SCDMA 主要在中国用属于TDD时分双工TDMA+CDMA时分+码分多址国内频段:1880—1920 2010—2025 2300--2400接入网知识产权大部分为我国所有目前设备厂商有8家目前分三个派系中兴-普天系华为-诺西-新邮通系大唐-爱立信-烽火系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章各种多址方式多址接入和广播使用公共的媒质连接多个通信设备,不象交换是在各媒质之间交换转发。
通过公共的媒质实现一对多广播、多对一的多址接入。
节点只有一个公共收、发设备和相应的缓存器。
多址方式:时分多址、频分多址、码分多址信号工作总是要占一定时间、频带和功率的。
多址信道的划分从时间、频率、功率三个轴上进行。
时分多址:组成一定的时间结构,形成帧帧是由时隙组成的,每个用户分配一个时隙。
1 2一般一个用户时隙由以下几部分组成:导引:针对非连续信号,用于建立接收同步,尽可能缩短同步时间。
突发字:巴克码,标志信息的开始,自相关性极好。
帧头:维持通信,传输勤务、信令。
信息:用户信息。
校验:如CRC校验,用于碰撞检测。
保护:频分:构成一定的频谱结构。
划分频带,每用户一个频道,频道之间要有保护间隔。
由于存在带外辐射:产生邻道干扰对带外辐射有一定要求,在一倍频程处,信号能量应衰减10〜20dB。
经过非线性设备会增加带外辐射,出现交调干扰,产生串话现象FDMA t解决方法:采用恒定包络信号。
码分:所有信号都在共同的频带和时隙上发射,按不同的码型调制接收信号的格式:Ka j t - jb i t -,i cos w o ti 二a j t - .i :码型信号b j t —切:信息cos W ot:* :载波希望格式之间的相互干扰越少越好,即a j t - .j a j t - .j dt =0就可保证相互间干扰为0要找到这样的码型,即对任意的,任意的旋转方向即正交的多对码是不太容易的,这是一种理想的状况。
解决方法1使尸j,即整个系统是同步的,在广播型的网络中可以实现,但是对于不同源的多址接入则不能做到。
解决方法2:使上述的互相关值尽可能地小,不一定非为0。
假设信息带宽为r b,公用信道带宽为 5。
定一个量,n二上,如果互相关值接近丄就可以使相互干扰降到丄,这样的系统称为r b n n“准正交系统”。
码分系统中近远干扰韭常严重,即距离接收站远近不同的发射站之间的干扰。
前面曾经提到:地面电磁波与r4成反比。
如果二者的发射功率是相同的,那么距离接收端0.5米和10米的两个手机的接收功率相差52dB。
当n=1000时,要求丄=10-3,与52dB相比很小,因此近远干扰极为严重。
n因此,在码分系统中功率控制是必须的。
要求近的站功率小些,远的功率大些,发射功率要随距离发生变化,一般要能控制到90dB。
三种体制争论的焦点:①频带利用率的高、低频带资源有限,是宝贵资源。
②系统容量的大小系统容量要大。
TDMA系统的容量取决于:(1)时隙的个数(2)受到的干扰(邻区干扰、外来干扰)FDMA系统的容量取决于:(1)频道的个数(2)受到的干扰(邻区干扰、外来干扰、邻道干扰)CDMA系统的容量取决于(1)正交码的个数对于“准正交系统”,码个数是不受限制的,它只受干扰的影响。
(2)干扰(邻区干扰、外来干扰、本区其他用户干扰)目前比较推崇CDMA体制,它的优点:①用户容量大理论分析表明可提供相当于TDMA系统4倍,FDMA系统20倍的容量。
②CDMA系统可与目前使用的窄带FDMA系统信号共存。
重复利用现有的微波系统占用的系统,不影响现有系统。
③覆盖范围广同一小区内提供的信道多,小区的划分不如FDMA系统细,基站个数因此减少,节约投资。
④具有抗干扰和保密的能力,因此话音质量高,系统规划简单扩展频谱信号具有抗干扰能力码调制本身具有加密性质⑤CDMA系统的越区切换可使用“软切换”不用关掉信道,再打开另一个同时接收两个基站的信号,这样切换过程中用户不会中断通话。
即,先“换”后“断”,掉话(drop)的概率很小。
FDMA则为“硬切换”。
⑥可以采用多种分集技术,抗多径干扰空间分集、频率分集(本身固有的,宽带信号)、时间分集、路径分集(多径RAKE接收机、软切换)CDMA缺点:①设备复杂度高。
②存在近远效应,功率控制增加设备复杂度。
多址接入中信道的分配方法①固定分配方法②竞争分配(随机分配)③按需分配:预约、轮询以TDMA为例说明几种分配的方法①固定时隙的TDMA最简单,效率最低,用户数受到时隙个数的限制②随机分配的TDMA : ALOHA,S-ALOHA也比较简单,但用户数不受限,有碰撞,效率不高③预约:没有人用时,随机申请,占用以后保持该时隙,效率较高随机分配方式效率分析ALOHA :夏威夷的问候语。
1968.9夏威夷大学一项研究计划取名为 ALOHA ,解决岛间通信。
基本特征是所有用户对信道有同等的访问权, 因此有时称为同等站系统。
是适于广播网的方式。
①随机ALOHA (纯ALOHA 方式)方法:任何一个站有消息传给广播网的其他站, 可以利用共同媒介随时地立即发送;若不成功,随机时延一段后再发送,直至成功为止。
只有一个站发送 > 成功多于一个站发送 > 不成功 系统效率: 假设:用户的数据包长度都是定长,持续时间为单位时间 系统中大量的站是按泊松律发送数据包, 单位时间包的到达率, 也就是网络的负荷, 定 义为G按上述假设:任何一个站发送一个数据包时不会产生碰撞, 要求在两个单位时间内没有任何其他用户发送信号:泊松律’t e — 'tk!此时 t=2, k=0,= G 概率为e'G此时泊松通过量(成功发送的包) S 二Ge%取极大值-dS =o=. G =05dG贝U S =0.5e ,=018可见,在信道负荷加重时(G 较大时),网络的吞吐量会明显下降,但信道中不需传送控制 信息,系统简单,适于突发性信息发送。
②时隙 ALOHA 方式(SLOT-ALOHA )规定固定的时隙,只能在时隙开始点发送,但并不规定是哪个时隙。
减少碰撞系统中每个站都有一个统一的钟,因此在一个时隙内只有一个分组时即可避免碰 撞。
S = GeG =1,S max =0.36系统效率高一些。
用监听或收ACK 的方法确定是否成功Sf0.18ACKET 申0.5 GCSMA/CD 以太网中使用的多址方式,与ALOHA方式类似。
C: collisi on ; D: detect ion ; CS:carrier sense①每个站都在监听线路上的情况,发送之前监听是否有别的站要发,无,才发送。
②发之后,发现碰撞,持续一段时间,使碰撞传递给整个系统,使所有的站都发现碰撞。
③然后停止发送,不象ALOHA系统中完全发送完才停止。
④随机延迟一段时间后,再重发。
随机时间应是信号从系统一头传到另一头时间的2倍的倍数。
这种系统效率高于ALOHA,因为首先判断是否发生碰撞,发现碰撞后可以主动停止。
预约ALOHA方式:M个时隙,其中一个分成v个小时隙,用于申请、预约,没有用户预约时这种方式变成S-ALHOA。
按需分配方式:DAMA 系统,Dema nd assig nment MA要求站提供通信带宽所要求的直接或隐含信息。
①去掉给空闲站分配信道的浪费②去掉碰撞浪费。
因此在高信道负荷下工作很好。
缺点:开销大。
机制:①用固定的时隙用于申请信道和取消信道,有中心控制②隐含的按需分配,无控制发现空闲时隙,下一次就可以随机申请,二者同时申请,就失败。
③轮询系统由一个主站和多个从站组成,主站一次轮询各个从站,收到主站轮询的从站可以把数据帧发给主站,依次轮询各从站。
轮叫轮询roll-call polli ng传递轮询hub polli ng自适应轮询(探询):询问是否有信息要发,将分组终端的响应分组,用逐次细分的方法,定位发响应的站。
平均时间总是比普通轮询短,重负荷时可以改进对分的原则。
轮询适于:1)轮询报文消耗低2)往返时延小3)站数不多消耗与终端数目成正比。
④令牌环:由所有用户控制整个信道,无主站,可靠性高。
发送站负责去掉自己的发送包。
特点:无碰撞、无资源浪费,只有令牌传递的开销。
从站的发送有三种方式:①耗尽法,直到无信息传递为止。
②有限耗尽法,直到传送完轮询前的所有信息②门控法,至多传送指定个数信息包。
比较以上三种:③照顾小数量用户,保证及时得到服务;①照顾大数量用户,保证信道使用。
时隙环:允许一个以上用户同时传信号,最长为时隙长度。
各种方式各有适用情况,主要应以吞吐量和时延两个标准来衡量。
思考题:数据率为10Mbps的分组无线网,有两个相距 1.5km的站。
分组长度1000比特,传播速度3*10 8m/s假设每个站平均分组的产生率为1000分组/秒,其产生服从泊松分布。
如果一个站开始发送信号,其冲突概率是多少?1)对纯ALOHA系统2)对时隙ALOHA系统。