椭圆的几何性质课件
合集下载
椭圆的简单几何性质ppt课件
由 e 1 ,得 1 k 1 ,即 k 5 .
2
94
4
∴满足条件的 k 4 或 k 5 .
4
例3:酒泉卫星发射中心将一颗人造卫星送入到 距地球表面近地点(离地面 近的点)高度约200km, 远地点(离地面最远的点)高度约350km的椭圆轨 道(将地球看作一个球,其半径约为6371km),求 椭圆轨道的标准方程。(注:地心(地球的中心)位
2.椭圆的标准方程
标准方程 图形
焦点在x轴上
x2 + y2 = 1a > b > 0
a2 b2
y P
F1 O F2
x
焦点在y轴上
x2 + y2 = 1a > b > 0
b2 a2
y
F2
P
O
x
F1
焦点坐标 a、b、c 的关系 焦点位置的判断
F1 -c , 0,F2 c , 0
F1 0,- c,F2 0,c
分别叫做椭圆的长轴和短轴。 A1
o
A2 x
B2(0,-b)
a、b分别叫做椭圆的长半轴长和短半轴长。
思考:椭圆的焦点与椭圆的长轴、短轴有什么关系? 焦点落在椭圆的长轴上
椭圆的简单几何性质
长轴:线段A1A2; 长轴长
短轴:线段B1B2; 短轴长
注意
焦距
|A1A2|=2a |B1B2|=2b |F1F2| =2c
y
B2(0,b)
①a和b分别叫做椭圆的 A1 (-a, 0)
b
a
A2 (a, 0)
长半轴长和短半轴长;
F1 a
o c F2 x
② a2=b2+c2,|B2F2|=a;
B1(0,-b)
椭圆的几何性质ppt课件
的对称轴,坐标原点是对称中心. 椭圆的对称中
(3)顶点
在方程①中,令
= 0,得
轴有两个交点,可以记作
=−
作
或
1 (0,
− ),
交点,即
的顶点.
= ,可知椭圆
2 (0,
1, 2
和
=−
1(
或
− ,0),
与
). 因此,椭圆
= ,可知椭圆
2(
,0);令
与
= 0 ,得
轴也有两个交点,可以记
与它的对称轴共有 4 个
=− , = , =− , =
x
a 且 b
y
b ,这说明,椭圆
所围成的矩形内,如图所示.
(2)对称性
如果 ( , ) 是方程①的一组解,则不难看出,( − , ),( , − ),( − , − )
都是方程的解,这说明椭圆
因此,
轴、
心也称为椭圆的中心.
关于
轴是椭圆
轴、
轴、坐标原点对称,如图所示.
1 , 2 ,如图所示,这四个点都称为椭圆
注意到
1 2
椭圆的长轴,线段
=2 ,
1
而且椭圆的长轴长为 2
2
1 2
=2
,而且
>
> 0 ,所以线段
1 2
称为
称为椭圆的短轴. 显然,椭圆的两个焦点在它的长轴上,
,短轴长为 2 .
于是, ,
距为 2 ,则
分别是椭圆的半长轴长和半短轴长,如果设椭圆的焦
是椭圆的半焦距,由
轴上的椭圆是一致的,如图所示.
例 1 求下列方程表示的椭圆的长轴长、半短轴长、焦点坐标以及离心率:
椭圆的简单几何性质一PPT课件
y2 a2
bx22
1(ab0)
3.椭圆中a,b,c的关系是:
c2 a2 b2
学习目的 1、掌握椭圆的范围、对称性、顶点、离心率、 理解a,b,c,e的几何意义 2 、通过对椭圆标准方程的讨论,理解在解析 几何中是怎样用代数方法研究几何问题的。
3 、初步利用椭圆的几何性质解决问题。
二、椭圆
x2 a2
例2、求合适以下条件的椭圆的标准方程:
〔3〕长轴长为6,中心O,焦点F,顶点A构成的角
OFA的余弦值为2/3.
解:由题知a=3 cos∠OFA= c
a
∴c=2,b2=a2-c2=5
因此所求椭圆的标准方程为
x2
9
y2
5
1或x52
y2
9
1
A
oF
例3、求合适以下条件的椭圆的标准方程:
与椭圆4x2+9y2=36有一样的焦距,且离
1,c
就越接近
a,从而
bB就1 越小,椭
2〕e 越接近 0,c 就越接近 0,从而 b就越大,椭 圆就越圆
考虑:当e=0时,曲线是什么?
[3]e与a,b的关系: ec a2b2 1b2
a
a2
a2
问 : 对 于 椭 圆 C 1:9 x2y23 6 与 椭 圆 C 2 : 1 x6 21 y 2 22 ,
美 A分椭别圆是,它设的左ax22焦点by22和右1(顶a点b,B20是)是它优短美轴椭的圆一,个F端,
点,那么∠ABF=
A、60° B、75° C、90° D、120°
例6. 如图,一种电影放映灯泡的反射镜面是旋转椭圆面〔椭圆 绕其对称轴旋转一周形成的曲面〕的一部分。过对称轴的截口 BAC是椭圆的一部分,灯丝位于椭圆的一个焦点F1上,片门位 于别一个焦点F2上。由椭圆一个焦点F1发出的光线,经过旋转 椭圆面反射后集中到另一个焦点F2。BC垂直于F1F2,|F1, |F1F2|=4.5cm.试建立适当的坐标系,求截口BAC所在椭圆的 方程〔准确到〕
椭圆的简单几何性质ppt课件
探究 离心率对椭圆形状的影响
a=1.81
c=1.2
a=1.81
c=1.5
c
=0.66
a
c
=0.83
a
离心率越大,椭圆越扁
离心率越小,椭圆越圆
c
a 2 b2
b2
e与a,b的关系: e
1 2
2
a
a
a
离心率反映
椭圆的扁平
程度
焦点的位置
焦点在x轴上
y
图形
标准
方程
范围
对称性
顶点坐标
轴长
焦点坐标
a
b
a 2 b 2 1,
消去y,得关于x的一元二次方程.
2
2
相交
当Δ>0时,方程有两个不同解,直线与椭圆_____;
y
当Δ=0时,方程有两个相同解,直线与椭圆_____;
相切
B(x2,y2)
相离
当Δ<0时,方程无解,直线与椭圆_____.
A(x1,y1)
3.弦长公式
设直线l与椭圆的两个交点分别为A(x1,y1),B(x2,y2).
x12
y12
2 1
2
a
b
2
2
x
y
2 2 1
b2
a2
两式相减得:
y1 y1
b2 x1 x2
b2 x0
2
2
x1 x2
a y1 y1
a y0
k AB
2
2
【典例 2】已知椭圆 C:2 + 2=1(a>b>0)的左焦点为 F,过点 F 的直线 x-y+ 2=0 与椭
a=1.81
c=1.2
a=1.81
c=1.5
c
=0.66
a
c
=0.83
a
离心率越大,椭圆越扁
离心率越小,椭圆越圆
c
a 2 b2
b2
e与a,b的关系: e
1 2
2
a
a
a
离心率反映
椭圆的扁平
程度
焦点的位置
焦点在x轴上
y
图形
标准
方程
范围
对称性
顶点坐标
轴长
焦点坐标
a
b
a 2 b 2 1,
消去y,得关于x的一元二次方程.
2
2
相交
当Δ>0时,方程有两个不同解,直线与椭圆_____;
y
当Δ=0时,方程有两个相同解,直线与椭圆_____;
相切
B(x2,y2)
相离
当Δ<0时,方程无解,直线与椭圆_____.
A(x1,y1)
3.弦长公式
设直线l与椭圆的两个交点分别为A(x1,y1),B(x2,y2).
x12
y12
2 1
2
a
b
2
2
x
y
2 2 1
b2
a2
两式相减得:
y1 y1
b2 x1 x2
b2 x0
2
2
x1 x2
a y1 y1
a y0
k AB
2
2
【典例 2】已知椭圆 C:2 + 2=1(a>b>0)的左焦点为 F,过点 F 的直线 x-y+ 2=0 与椭
椭圆的几何性质 课件(52张)
c 的等量关系.
[解] 设椭圆的方程为ax22+by22=1(a>b>0),焦点坐标为 F1(-c, 0),F2(c,0).
依题意设 A 点坐标为-c,ba2, 则 B 点坐标为-c,-ba2, ∴|AB|=2ab2.
由△ABF2 是正三角形得 2c= 23×2ab2, 即 3b2=2ac. 又∵b2=a2-c2,∴ 3a2- 3c2-2ac=0, 两边同除以 a2 得 3×ac2+2×ac- 3=0, 解得 e=ac= 33.
心率 e=ac=35,两个焦点分别是 F1(-3,0)和 F2(3,0),椭圆的四个 顶点是 A1(-5,0),A2(5,0),B1(0,-4)和 B2(0,4).
1.已知椭圆的方程讨论性质时,若不是标准形式的先化成标准 形式,再确定焦点的位置,进而确定椭圆的类型.
2.焦点位置不确定的要分类讨论,找准 a 与 b,正确利用 a2= b2+c2 求出焦点坐标,再写出顶点坐标.
NO.3 当堂达标·夯基础
1.椭圆x92+1y62 =1 的离心率(
)
A.
7 4
B.196
C.13
A [a2=16,b2=9,c2=7,
设 A 点坐标为(0,y0)(y0>0), 则 B 点坐标为-2c,y20, ∵B 点在椭圆上,∴4ca22+4yb202=1,
解得 y20=4b2-ba2c22, 由△AF1F2 为正三角形得 4b2-ba2c22=3c2, 即 c4-8a2c2+4a4=0, 两边同除以 a4 得 e4-8e2+4=0, 解得 e= 3-1.
∠F1F2P=120°,∴|PF2|=|F1F2|=2c,∠PF2B=60°.∵|OF2|=c,∴ 点 P 的坐标为(c+2ccos 60°,2csin 60°),即点 P(2c, 3c).∵点 P
[解] 设椭圆的方程为ax22+by22=1(a>b>0),焦点坐标为 F1(-c, 0),F2(c,0).
依题意设 A 点坐标为-c,ba2, 则 B 点坐标为-c,-ba2, ∴|AB|=2ab2.
由△ABF2 是正三角形得 2c= 23×2ab2, 即 3b2=2ac. 又∵b2=a2-c2,∴ 3a2- 3c2-2ac=0, 两边同除以 a2 得 3×ac2+2×ac- 3=0, 解得 e=ac= 33.
心率 e=ac=35,两个焦点分别是 F1(-3,0)和 F2(3,0),椭圆的四个 顶点是 A1(-5,0),A2(5,0),B1(0,-4)和 B2(0,4).
1.已知椭圆的方程讨论性质时,若不是标准形式的先化成标准 形式,再确定焦点的位置,进而确定椭圆的类型.
2.焦点位置不确定的要分类讨论,找准 a 与 b,正确利用 a2= b2+c2 求出焦点坐标,再写出顶点坐标.
NO.3 当堂达标·夯基础
1.椭圆x92+1y62 =1 的离心率(
)
A.
7 4
B.196
C.13
A [a2=16,b2=9,c2=7,
设 A 点坐标为(0,y0)(y0>0), 则 B 点坐标为-2c,y20, ∵B 点在椭圆上,∴4ca22+4yb202=1,
解得 y20=4b2-ba2c22, 由△AF1F2 为正三角形得 4b2-ba2c22=3c2, 即 c4-8a2c2+4a4=0, 两边同除以 a4 得 e4-8e2+4=0, 解得 e= 3-1.
∠F1F2P=120°,∴|PF2|=|F1F2|=2c,∠PF2B=60°.∵|OF2|=c,∴ 点 P 的坐标为(c+2ccos 60°,2csin 60°),即点 P(2c, 3c).∵点 P
《椭圆的几何性质》课件
椭圆的焦点性质
1 焦距定理
椭圆上任意一点到两个焦点的距离之和等于长轴的长度。
2 焦点到直线的距离
椭圆上任意一点到直线的距离与其与两个焦点的距离相等。
3 焦点到任一点距离之和
焦点到椭圆上任意一点距离之和等于长轴的长度。
椭圆的切线
1
切点和法线垂直于切线。
2
切线的斜率和方程
总结
1 椭圆的定义及特点
椭圆是由两个焦点和常距 离点的连线构成的几何形 态。
2 椭圆的焦点、切线和
双曲线性质
椭圆具有焦点性质,切线 和双曲线也与椭圆有所关 联。
3 椭圆的应用和意义
椭圆在工程、艺术和日常 生活中扮演着重要的角色, 具有广泛的应用和意义。
切线的斜率可以通过椭圆的参数表示,方程可以通过切点和斜率求得。
3
切线和弦的交点和中垂线
切线和椭圆上任意一条弦的交点在椭圆的中垂线上。
椭圆的双曲线性质
椭圆与双曲线的区别
椭圆的焦点在内部,离心率小 于1;双曲线的焦点在外部,离 心率大于1。
双曲线的基本形态
双曲线具有两个分离的曲线臂, 曲线臂的形状类似于打开的喇 叭。
双曲线的焦点和离心 率
双曲线也有焦点和离心率的概 念,但与椭圆略有不同。
椭圆的应用
椭圆在工程中的应用
椭圆在艺术中的运用
椭圆形状可以应用于桥梁设计, 提供更好的结构支持和负载分散。
椭圆形状在艺术作品中常用于创 造平衡、和谐和美感的效果。
椭圆在日常生活中的例子
行星轨道、椭圆形家具等都是椭 圆在日常生活中的例子。
《椭圆的几何性质》PPT 课件
欢迎来到《椭圆的几何性质》PPT课件!在本课程中,我们将深入研究椭圆的 几何性质,涵盖定义、基本形态、焦点性质、切线、双曲线性质、应用等内 容。让我们一起开始这个精彩的学习之旅吧。
椭圆的简单几何性质ppt课件
研究直线与椭圆的位置关系的思路方法
1.研究直线与椭圆的位置关系,可联立直线与椭圆的方程,消元后用 判别式讨论. 2.求直线被椭圆截得的弦长,一般利用弦长公式,对于与坐标轴平行 的直线,直接求交点 坐标即可求解. 3.有关弦长的最值问题,可以运用二次函数性质、一元二次方程的判 别式、基本不等式等来求解.
m
4
4.已知椭圆 C :
x2 a2
y2 b2
1(a
b
0) 的左、右焦点分别为 F1 ,F2
,A
15 2
,
1 2
在椭圆
B C 上,且 AF1 AF2 ,则椭圆 C 的长轴长为( )
A. 5
B. 2 5
C. 5 或 3
D.2 5 或2 3
解析:由 AF1
AF2 ,得
OA
1 2
F1F2
,所以c
3.1.2 椭圆的简单几何性质
学习目标
01 掌握椭圆的范围、对称点、顶点、离心率等简单性质 02 能 利 用 椭 圆 的 简 单 性 质 求 椭 圆 方 程 03 能 用 椭 圆 的 简 单 性 质 分 析 解 决 有 关 问 题 04 理 解 数 形 结 合 思 想
学习重点
椭圆的几何性质
学习重点
y2 b2
1 (a
b
0) 的长半轴长为
a,半焦距为
c.利
y
用信息技术,保持长半轴长 a 不变,改变椭圆的半焦距
c,可以发现,c 越接近 a,椭圆越扁平.类似地,保持 c
O
x
不变,改变 a 的大小,则 a 越接近 c,椭圆越扁平;而
当 a,c 扩大或缩小相同倍数时,椭圆的形状不变.
这样,利用c和a这两个量,可以刻画椭圆的扁平程度.
椭圆的简单几何性质完整版课件
②当m>4时,a= m,b=2, ∴c= m-4, ∴e=ac= mm-4=12,解得m=136, ∴a=4 3 3,c=2 3 3,
∴椭圆的长轴长和短轴长分别为
83 3
,4,焦点坐标为
F10,-2
3
3,F20,2
3
3,顶点坐标为A10,-4
3
3,A20,4
3
3,
B1(-2,0),B2(2,0).
③根据已知条件构造关于参数的关系式,利用方程(组)求参 数,列方程(组)时常用的关系式有b2=a2-c2,e=ac等.
(2)在椭圆的简单几何性质中,轴长、离心率不能确定椭圆的焦 点位置,因此仅依据这些条件求所要确定的椭圆的标准方程可能有 两个.
提醒:与椭圆
x2 a2
+
y2 b2
=1(a>b>0)有相同离心率的椭圆方程为
试总结根据椭圆的标准方程研究其几何性质的基本步骤.
[提示] 1将椭圆方程化为标准形式. 2确定焦点位置.焦点位置不确定的要分类讨论 3求出a,b,c. 4写出椭圆的几何性质.
[跟进训练] 1.已知椭圆C1:1x020+6y42 =1,设椭圆C2与椭圆C1的长轴长、短 轴长分别相等,且椭圆C2的焦点在y轴上. (1)求椭圆C1的长半轴长、短半轴长、焦点坐标及离心率; (2)写出椭圆C2的方程,并研究其几何性质.
1234 5
3.已知椭圆C2过椭圆C1:
x2 14
+
y2 9
=1的两个焦点和短轴的两个
端点,则椭圆C2的离心率为( A )
A.23
B.
2 2
C.12
D.13
1234 5
4.与椭圆y42+x32=1有相同的离心率且长轴长与x82+y32=1的长轴 长相等的椭圆的标准方程为________.
椭圆的简单几何性质:课件一(15张PPT).ppt
是长轴顶点, 是短轴顶点 解:(1)P是长轴顶点,Q是短轴顶点 是长轴顶点 轴上. 故a=3,b=2,焦点在 轴上. , ,焦点在x轴上 x2 y2 即椭圆的方程为 + =1 9 4 (2)a=10,离心率 /a=0.6 离心率c/
x2 y2 + =1 故c=6,b=8.若焦点在x轴上,则 64 , .若焦点在 轴上, 100 轴上 x2 y2 =1 若焦点在y轴上 轴上, 若焦点在 轴上,则 + 64 100
对称轴:x轴、y轴 对称轴: 轴 轴 对称中心: 对称中心:原点
(±a,0) (0,±b) (0,±a) (±b,0) ± ± ± ±
c e = ,0 < e < 1 a
求椭圆16x2+25y2=400的长轴和短轴的 求椭圆 的长轴和短轴的 离心率、焦点和顶点的坐标. 长、离心率、焦点和顶点的坐标.
2
2
比较下列每组中椭圆的形状, 比较下列每组中椭圆的形状, 哪一个更圆,为什么? 哪一个更圆,为什么?
x2 y2 2 2 (1)9x + y = 36, + = 1; 16 12 1 第一个椭圆的离心率 = 2 2 第二个椭圆的离心率 = e2 e1
e1>e2,所以第二个椭圆比较圆. 所以第二个椭圆比较圆.
求下列椭圆的焦点坐标: 求下列椭圆的焦点坐标:
x y 2 2 (1) + = 1; (2)2 x + y = 8. 100 36
(1)a=10,b=6,c=8, 焦点在 轴, , , , 焦点在x轴 (1) 焦点(-8 焦点 ,0),(8,0); , ;
x2 y2 (2)先化为标准方程 (2)先化为标准方程 + =1 4 8 a= 22 ,b=4,c=2, 焦点在y轴 , , 焦点在 轴, 焦点(0 焦点 ,-2),(0,2). , .
x2 y2 + =1 故c=6,b=8.若焦点在x轴上,则 64 , .若焦点在 轴上, 100 轴上 x2 y2 =1 若焦点在y轴上 轴上, 若焦点在 轴上,则 + 64 100
对称轴:x轴、y轴 对称轴: 轴 轴 对称中心: 对称中心:原点
(±a,0) (0,±b) (0,±a) (±b,0) ± ± ± ±
c e = ,0 < e < 1 a
求椭圆16x2+25y2=400的长轴和短轴的 求椭圆 的长轴和短轴的 离心率、焦点和顶点的坐标. 长、离心率、焦点和顶点的坐标.
2
2
比较下列每组中椭圆的形状, 比较下列每组中椭圆的形状, 哪一个更圆,为什么? 哪一个更圆,为什么?
x2 y2 2 2 (1)9x + y = 36, + = 1; 16 12 1 第一个椭圆的离心率 = 2 2 第二个椭圆的离心率 = e2 e1
e1>e2,所以第二个椭圆比较圆. 所以第二个椭圆比较圆.
求下列椭圆的焦点坐标: 求下列椭圆的焦点坐标:
x y 2 2 (1) + = 1; (2)2 x + y = 8. 100 36
(1)a=10,b=6,c=8, 焦点在 轴, , , , 焦点在x轴 (1) 焦点(-8 焦点 ,0),(8,0); , ;
x2 y2 (2)先化为标准方程 (2)先化为标准方程 + =1 4 8 a= 22 ,b=4,c=2, 焦点在y轴 , , 焦点在 轴, 焦点(0 焦点 ,-2),(0,2). , .
椭圆的简单几何性质 课件
据椭圆定义得|BF1|+|BF2|=2a,
即 c+ 3c=所2以a,
c= 3-1. a
所以椭圆的离心率为 e= 3-1.
【方法技巧】求椭圆离心率及范围的两种方法 (1)直接法:若已知a,c可直接利用 e 求c解.若已知a,b或b,c
a
可借助于a2=b2+c2求出c或a,再代入公式e c 求解.
的距离为 1 |OF1|,则椭圆的离心率为( )
2
A. 1
B. 3 1
C. 2
D. 2 1
3
2
(3)已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直
线交椭圆于A,B两点,若△ABF2是正三角形,求该椭圆的离心
率.
【解题探究】1.题(1)由条件 3DF1 DA能得2D到F2什么结 论? 2.题(2)求解离心率的关键是什么? 3.题(3)当椭圆中涉及其他平面几何图形时,一般要注意什 么?
所以|AF1|= 3c,
所以2a=|AF1|+|AF2|= 3 1 c,
所以 e 3 1.
(3)不妨设椭圆的焦点在x轴上,因为 AB⊥F1F2,且△ABF2为正三角形,所以 在Rt△AF1F2中,∠AF2F1=30°,令|AF1| =x,则|AF2|=2x, 所以 F1F2 AF2 2 AF1 2 3x 2c, 再由椭圆的定义,可知|AF1|+|AF2|=2a=3x, 所以 e 2c 3x 3 .
【探究提示】1.将向量的等量关系转化为坐标间的关系,取
D(0,b)得3(-c,-b)=(-a,-b)+2(c,-b). 2.由题意求a,c的值或构造a,c的关系式,求 的c 值.
a
3.当椭圆中涉及其他平面几何图形时,注意利用平面图形的几
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型例题
例1、求椭圆16x2+25y2=400的长轴 和短轴的长,离心率、焦点和顶点坐 标。
y
o
x
强化训练
1.求椭圆 4x2 9y2 36
的长轴长和短轴长,离心率,焦点坐标, 顶点坐标.
强化训练
2、求下列椭圆的标准方程:
(1)焦点在x轴上, a 6, e 1
x2 y2 1
3
36 32
(2)焦点在y轴上,c
B2(0,b)
①a和b分别叫做椭圆的 长半轴长和短半轴长;
②a2=b2+c2,|B2F2|=a; ③焦点必在长轴上.
A1 (-a, 0) F1
b
a
A2 (a, 0)
o c F2
x
B1(0,-b)
根据前面所学有关知识画出下列图形
(1) x2 y2 1 25 16
(2) x2 y2 1 25 4
故若点(2,0)为长轴顶点,则 a=2,b=1, 椭圆的标准方程为x42+y2=1; 若点(2,0)为短轴顶点,则 b=2,a=4,椭圆的标准方程为x42 +1y62 =1.
课堂小结
一、椭圆的几何性质
①范围 ③顶点
②对称性 ④离心率
二、体会分类讨论思想在求 椭圆的标准方程中的应用
标准方程
图象
范围 对称性 顶点坐标 焦点坐标 半轴长 焦距 a,b,c关系 离心率
三、顶点 x2 y2 1(ab0) a2 b2
令 y=0,得 x=?说明椭圆与 x轴的交点?
令 x=0,得 y=?说明椭圆与 y轴的交点? y
B2 (0,b)
A1
(-a,0) F1
b
oc
a A2(a,0) F2
B1 (0,-b)
a2=b2+c2
椭圆与它的对称轴的四个 交点——椭圆的顶点. 椭圆顶点坐标为: A1(-a,0),A2(a,0), B1(0,-b),B2(0,b).
y2
2
b
=1
x2 y2 a2 b2 1(ab0)
Y
关于y轴对称
P2(-x,y)
P(x,y)
关于原点对称
O P3(-x,-y)
X
P1(x,-y)
关于x轴对称
结论:
椭圆关于x轴、y轴都是对称的, _X__轴__,__y_轴__是椭圆的对称轴, __原__点__是椭圆的对称中心, 椭圆的对称中心叫做_椭__圆__的__中__心___.
叫做椭圆的离心率。
a
因为a>c>0, 所以0 < e <1.
当e c 1, c a, a
b a2 c2 0, 椭圆 扁 当e c 0, c 0,
a
b a2 c2 a,椭圆 圆
a2=b2+c2
e c a
y
b
x
●c
O
a
离心率越大,椭圆越扁 离心率越小,椭圆越圆
y
b
x
●c
a
O
如果a=b,则c=0,两个焦点重合,图形变为_____, 它的标 准方程为:
x2 y2 a2
问 : 对 于 椭 圆 C 1:9 x2y23 6 与 椭 圆 C 2 : 1 x6 21 y 2 22 ,
C 更 接 近 于 圆 的 是 2 。
离心率越大,椭圆越扁 离心率越小,椭圆越圆
x2 a2
by22
1(ab0)
y2 a2
bx22
1(ab0)
|x|≤ a,|y|≤ b
|x|≤ b,|y|≤ a
关于x轴、y轴成轴对称;关于原点成中心对称。
长半轴长为a,短半轴长为b.
焦距为2c;
a2=b2+c2
e c a
ec a2b2 1b2
a
a2
a2
谢谢大家
感谢各位领导和老师们的 指导,请多提宝贵意见!
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
x2 a2
y2 b2
=(1 a>b>0)
y
B2(0,b)
A1(-a, 0)
o
A2 (a, 0)
x
回顾:
焦点坐标: F 1(c,0)F ,2(c,0)
B1(0,-b)
长轴:线段A1A2; 长轴长 |A1A2|=2a.
短轴:线段B1B2; 短轴长 |B1B2|=2b.
注意
焦 距 |F1F2|=2c.
y
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
椭圆的几何性质课件
椭圆的简单几何性质
一、椭圆的范围 y
o
x
x2 + a2
y2
2
=1
b
由
二、椭圆的对称性 y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
=1
b
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2y22来自b=1y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
3,
e
3
y2 x2 1
5
25 16
强化训练
3、求下列椭圆的标准方程:
(1)经过点P(-3,0),Q(0,-2)
x2 y2 1
94
3
(2)长轴长等于20,离心率等于 5
x2 y2 1或
y2 x2 1
100 64
100 64
探究点 2 利用几何性质求椭圆的标准方程 求适合下列条件的椭圆的标准方程.
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
(2)依题意可设椭圆方程为xa22+by22=1(a>b>0). 如图所示,△A1FA2 为一等腰直角三角形,OF 为斜边 A1A2 的中线(高),且|OF|=c,|A1A2|=2b,