焊接变形原因及预防措施

合集下载

焊接应力与变形及其预防和校正措施

焊接应力与变形及其预防和校正措施

焊接应力与变形及其预防和校正措施焊件不均匀局部加热和冷却是导致焊接应力和变形产生的根本原因。

1.焊接变形的基本形式a)收缩(纵向、横向)变形 b)角变形 c)弯曲变形 d)波浪变形 e)扭曲变形 f)错边(长度方向、厚度方向)变形σ>σs时,产生变形σ>σb时,产生裂纹,甚至断裂2.预防和减小焊接应力及变形的措施1)合理设计焊接结构(减少焊缝长度和截面积、尽量采用对称焊缝、避免交叉焊缝);2)焊前预热(焊后冷却时,加热区与焊缝同时收缩。

此法称为加热减应区法:如图a)焊前b)焊后);3)反变形法4)刚性固定法5)选择合理焊接顺序a)焊接顺序应能使焊件自由收缩 b)对称焊接法 c)长焊缝的分段焊法 d)工字梁的焊接方法6)锤击焊缝法3.焊接变形的校正1)机械矫正法a)压力矫正 b)锤击矫正变形的步骤2)火焰矫正法a)T形梁的火焰矫正 b)薄板波浪变形的火焰矫正4.焊接接头设计1)焊接结构应尽量选用型材成冲压件a)用四块钢板焊成 b)用两根槽钢焊成 c)用两根钢板弯曲后焊成 d)容器上的铸钢件法兰2)合理布置焊缝①焊缝布置应尽量分散a)、b)、c)不合理 d)、e)、f)合理②焊缝和位置应尽量对称布置a)、b)不合理 c)、d)、e)合理③尽量减少构件成焊件接头部位的应力集中a)不合理 b)合理④焊缝应避开最大应力和应力集中部位a)、b)、c)、d)不合理 e)、f)、g)、h)合理⑤对不同厚度钢板的受力对接接头,要采用工艺措施⑥在满足使用要求的前提下,应尽量减少焊缝对结构附加应力的影响a)次要焊缝影响主要受力构件 b)附加元件(卡箍)代替次要焊缝。

铁路机车铝合金制件焊接变形原因及控制预防

铁路机车铝合金制件焊接变形原因及控制预防

铁路机车铝合金制件焊接变形原因及控制预防铁路机车铝合金制件焊接变形是指在焊接过程中,由于热影响区域温度的变化和热应力的累积导致工件表面形状或尺寸发生变化的现象。

主要原因有以下几点:1. 焊接热源:焊接热源的热量会使焊接区域温度升高,这会对铝合金构件造成热应力。

焊接过程中,热应力会导致构件产生变形。

2. 焊接方式:不同的焊接方式会产生不同的热输入。

手工电弧焊接通常具有较高的热输入,而激光和电子束焊接具有较低的热输入。

高热输入会导致更大的热应力和变形。

3. 材料选择和设计:铝合金的选择和设计也会对焊接的变形产生影响。

不同合金的物理性质和热膨胀系数不同,因此对焊接变形的影响也不同。

构件的设计结构也会影响焊接变形。

如果构件在焊接过程中没有足够的固定支撑,就会容易产生变形。

控制预防焊接变形的方法有以下几种:1. 合理的焊接工艺参数控制:通过调整焊接速度、焊接电流和焊接温度等参数,可以控制焊接过程中的热输入和热应力,从而减少焊接变形的发生。

2. 采用预热和中间冷却措施:在焊接前进行预热可以降低焊接过程中的温度梯度,减轻焊接变形的影响。

在焊接过程中适当的中间冷却可以控制焊缝局部的热应力。

4. 加强固定支撑:在焊接前设计合适的固定支撑结构,以防止构件在焊接过程中发生不必要的变形。

5. 优化材料选择和设计:选择合适的铝合金材料和优化设计结构,可以减少焊接变形的发生。

控制预防铁路机车铝合金制件焊接变形需要综合考虑焊接工艺参数、材料选择和设计等因素,合理调整焊接过程中的热输入和热应力,以减少变形的发生。

在焊接前进行预热、采用多次焊接和加强固定支撑等措施也可以有效地控制焊接变形。

焊接应力及焊接变形预防措施

焊接应力及焊接变形预防措施

钢结构工程焊接应力与变形差生的危害及采取的措施随着“绿色建筑”理念的推广,以钢结构件为主体框架结构结合复合砌筑体结构已成为一种必然趋势,因为以钢结构为主的框架结构的回收利用性有效避免钢筋混凝土结构建筑垃圾的产生,具有可持续性。

由于钢结构工程的特有型,焊接作业时钢结构工程最重要的工序之一,而焊接应力及焊接变形产生是影响钢结构安全性及可靠性的重要因素。

本文着重对焊接应力及焊接变形的危害及所采取的对应措施进行分析。

一、焊接应力与变形产生机理焊接热输入引起材料不均匀局部加热,使焊缝区熔化,而熔池毗邻的高温区材料的热膨胀则受到周围材料的限制,产生不均匀的压缩塑性变形。

在冷却过程中,已发生压缩塑性变形的这部分材料又受到周围材料的制约,不能自由收缩,在不同程度上又被拉伸而卸载,与此同时,熔池凝固,金属冷却收缩也产生了相应的收缩拉应力和变形。

这种随焊接热过程而变化的内应力场和构件变形,称为瞬态应力与变形。

而焊后,在室温条件下,残留于构件中的内应力场和宏观变形称为焊接残余应力与焊接残余变形。

焊接残余应力和变形,严重影响焊接构件的承载力和构件的加工精度,应从设计、焊接工艺、焊接方法、装配工艺着手降低焊接残余应力和减小焊接残余变形。

二、焊接残余应力的危害及降低焊接应力的措施1.焊接残余应力的危害影响构件承受静载能力;影响结构脆性断裂;影响结构的疲劳强度;影响结构的刚度和稳定性;易产生应力腐蚀开裂;影响构件精度和尺寸的稳定性。

2.降低焊接应力的措施(1)设计措施尽量减少焊缝的数量和尺寸,在减小变形量的同时降低焊接应力;防止焊缝过于集中,从而避免焊接应力峰值叠加;要求较高的容器接管口,宜将插入式改为翻边式。

(2)工艺措施采用较小的焊接线能量,减小焊缝热塑变的范围,从而降低焊接应力;合理安排装配焊接顺序,使焊缝有自由收缩的余地,降低焊接中的残余应力;层间进行锤击,使焊缝得到延展,从而降低焊接应力;焊接高强钢时,选用塑性较好的焊条;预热拉伸补偿焊缝收缩(机械拉伸或加热拉伸);采用整体预热;降低焊缝中的含氢量及焊后进行消氢处理,减小氢致集中应力。

焊接的六大缺陷及其产生原因、危害、预防措施

焊接的六大缺陷及其产生原因、危害、预防措施

焊接的六大缺陷及其产生原因、危害、预防措施一、外观缺陷外观缺陷(表面缺陷)是指不用借助于仪器,从工件表面可以发现的缺陷。

常见的外观缺陷有咬边、焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。

单面焊的根部未焊透等。

A、咬边是指沿着焊趾,在母材部份形成的凹陷或者沟槽,它是由于电弧将焊缝边缘的母材熔化后没有得到熔敷金属的充分补充所留下的缺口。

产生咬边的主要原因:是电弧热量太高,即电流太大,运条速度太小所造成的。

焊条与工件间角度不正确,摆动不合理,电弧过长,焊接次序不合理等都会造成咬边。

直流焊时电弧的磁偏吹也是产生咬边的一个原因。

某些焊接位置( 立、横、仰 )会加剧咬边。

咬边减小了母材的有效截面积,降低构造的承载能力,同时还会造成应力集中,发展为裂纹源。

咬边的预防:矫正操作姿式,选用合理的规范,采用良好的运条方式都会有利于消除咬边。

焊角焊缝时,用交流焊代替直流焊也能有效地防止咬边。

B、焊瘤焊缝中的液态金属流到加热缺陷未熔化的母材上或者从焊缝根部溢出,冷却后形成的未与母材熔合的金属瘤即为焊瘤。

焊接规范过强、焊条熔化过快、焊条质量欠佳(如偏芯),焊接电源特性不稳定及操作姿式不当等都容易带来焊瘤。

在横、立、仰位置更易形成焊瘤。

焊瘤常伴有未熔合、夹渣缺陷,易导致裂纹。

同时,焊瘤改变了焊缝的实际尺寸,会带来应力集中。

管子内部的焊瘤减小了它的内径,可能造成流动物阻塞。

防止焊瘤的措施:使焊缝处于平焊位置,正确选用规范,选用无偏芯焊条,合理操作。

C、凹坑凹坑指焊缝表面或者反面局部的低于母材的部份。

凹坑多是由于收弧时焊条(焊丝)未作短期停留造成的(此时的凹坑称为弧坑),仰立、横焊时,常在焊缝反面根部产生内凹。

凹坑减小了焊缝的有效截面积,弧坑常带有弧坑裂纹和弧坑缩孔。

防止凹坑的措施:选用有电流衰减系统的焊机,尽量选用平焊位置,选用合适的焊接规范,收弧时让焊条在熔池内短期停留或者环形摆动,填满弧坑。

D、未焊满未焊满是指焊缝表面上连续的或者断续的沟槽。

预防焊接变形的措施

预防焊接变形的措施

焊接变形是焊接过程中常见的问题,它会影响焊接件的尺寸精度和外观质量。

以下是一些预防焊接变形的措施:
1. 预留反变形量:在设计焊接结构时,可以根据焊接变形的趋势和大小,预留一定的反变形量。

这样在焊接过程中,即使产生了变形,也可以通过预留的反变形量来抵消,从而达到防止或减少焊接变形的目的。

2. 选择合适的焊接顺序:焊接顺序对焊接变形的影响很大。

一般来说,应先焊短焊缝,后焊长焊缝;先焊薄板,后焊厚板;先焊中心,后焊边缘。

3. 采用合理的焊接方法:不同的焊接方法对焊接变形的影响也不同。

例如,电弧焊的变形较小,而气焊和氩弧焊的变形较大。

因此,在选择焊接方法时,应尽量选择变形小的方法。

4. 控制焊接参数:焊接参数(如电流、电压、焊接速度等)对焊接变形的影响也很大。

一般来说,应选择较小的焊接电流和较快的焊接速度,以减少焊接热输入,从而减小焊接变形。

5. 采用预热和后热处理:预热可以减小焊接热输入,从而减小焊接变形;后热处理可以通过改变焊缝和母材的金相组织,来减小焊接变形。

6. 采用工装夹具:通过使用工装夹具,可以固定焊接件的位置和形状,防止焊接过程中的位移和变形。

7. 采用多点对称焊接:通过在焊接件的多个位置同时进行焊接,可以分散焊接应力,从而减小焊接变形。

以上就是预防焊接变形的一些措施,希望对你有所帮助。

焊接变形及预防措施

焊接变形及预防措施

什么是焊接变形?(一)基本类型1. 纵向收缩变形:构件焊后在平行焊缝的方向上尺寸缩短。

2. 横向收缩变形:构件焊后在垂直焊缝的方向上尺寸缩短。

3. 弯曲变形:由于焊缝的布置偏离焊件的形心轴。

4. 角变形:焊后构件的平面围绕焊缝产生的角位移。

5.波浪变形:焊后构件呈波浪形,在焊薄板中出现。

6.错边变形:两焊接热膨胀不一致,所引起的长度或厚度方向上的错边。

(二) 设计措施1. 合理选择焊件尺寸。

焊件的长度、宽度和厚度等尺寸对焊接变形有明显的影响。

例如,板的厚度对于角焊缝的角变形影响较大,当厚度达到某一数值(钢约9mm)时角变形最大。

在制造T形或工形焊接梁时,由于焊件细长,以致于焊接区收缩变形引起焊件弯曲变形是一个突出问题。

解决这一问题的最好办法就是要精心设计结构尺寸参数(如板厚、板宽、板长和肋板间距等)和焊接参数(如单位线能量等)。

2. 合理选择焊缝尺寸和坡口形式。

焊缝尺寸的大小,不仅关系到焊接工作量,而且还对焊接变形产生较大的影响。

焊缝尺寸大,焊接量也大,填充金属消耗量多,造成焊接变形大。

因此在设计焊缝尺寸时,在保证结构承载能力的条件下,应采用较小的焊缝尺寸。

片面加大焊缝尺寸对减小焊接变形极其不利。

所以对并不承受很大工作应力的焊缝,不必采用大尺寸焊角,只要能满足其强度要求就好。

另外,还要合理设计坡口型式。

例如对接接头要采用角变形为零的最佳X 形坡口尺寸。

对于受力较大的T形接头和十字接头,在保证相同强度的条件下,采用开坡口的焊缝比不开坡口焊缝动载强度高,焊缝金属量少,而且对减小焊接变形也是有利的,尤其对厚板而言,更有意义。

3. 尽量减少不必要的焊缝。

在焊接结构设计中,应该力求使焊缝数量减至最少。

一般在设计中常采用加肋板来提高结构的稳定性和刚度,特别是有时为减轻主体结构重量而采用较薄板,势必增加肋板数量,从而大大增加装配和焊接的工作量,其结果是不但不经济,而且焊缝致使焊接变形过大。

所以实践证明合理选择板厚,适当减少肋板,使焊缝减少,即使结构可能稍重,还是比较经济的。

预防焊接变形装配工艺措施(一)

预防焊接变形装配工艺措施(一)

预防焊接变形装配工艺措施(一)预防焊接变形装配工艺措施介绍焊接变形是焊接过程中常见的问题,它会对工件的装配精度和最终质量产生影响。

为了解决这个问题,需要采取一系列的工艺措施来预防焊接变形。

本文将详细介绍各个措施的具体方法和原理。

控制焊接参数•选择适当的焊接电流和电压:合理选择焊接电流和电压,控制焊接热量的输入量,避免过大或过小的热输入,从而减少焊接变形的发生。

•控制焊接速度:通过控制焊接速度,可以有效控制焊接过程中的热输入量,减少焊接变形的风险。

使用适当的焊接顺序•选择合适的焊接顺序:针对复杂工件的焊接,应选择合适的焊接顺序,先焊接刚性件,再进行焊接薄弱部位,最后再进行整体的焊接。

这样可以减少焊接时的热应力,降低变形的风险。

•分段焊接:对大型工件,可以采用分段焊接的方法。

先将工件切割成若干个小段,分段进行焊接,最后再进行拼接。

这样可以减小焊接变形的幅度。

使用辅助夹具和支撑物•使用合适的夹具:在焊接过程中,可以使用合适的夹具来固定工件,减少变形的风险。

夹具应该能够提供足够的支撑和固定力,同时避免对焊接过程造成不必要的干扰。

•添加支撑物:对于较大的工件,可以在焊接过程中添加适当的支撑物,以增加工件的稳定性。

支撑物可以起到均匀分布焊接应力的作用,减少变形的程度。

采用正确的焊接方法•控制焊接温度:在焊接过程中,要控制焊接温度的上升速度和保持时间,避免焊缝过热或过冷,从而减少焊接变形。

•选择合适的焊接方式:合理选择焊接方式,如点焊、拖焊、弧焊等,根据工件的具体情况,选择最适合的焊接方法,减少变形的风险。

•控制焊接方向:在焊接过程中,要控制焊接方向,避免产生不必要的应力和挤压力,减少变形的发生。

结论通过合理控制焊接参数、采用适当的焊接顺序、使用辅助夹具和支撑物以及正确的焊接方法,可以有效预防焊接变形。

这些措施应根据具体的焊接工艺和工件要求进行综合考虑和选择,从而提高焊接的质量和装配精度。

焊接变形的影响因素与控制措施

焊接变形的影响因素与控制措施

(作者单位:一重集团天津重工有限公司)焊接变形的影响因素与控制措施◎刘春月焊接变形具体指在未受到外力作用的情况下,构件因焊接过程出现的收缩、角度改变以及弯曲等情况,焊接变形会对构件的安装精度产生严重影响,进而阻碍之后的正常使用,为了保证构件的质量,需要对焊接变形做好有效控制。

一、几种常见的焊接变形介绍1.角变形的具体分析。

焊接变形中的角变形通常会出现在搭接、对接、对焊焊接以及丁字接头中,引发以上问题的原因是横向收缩变形不均匀分布在厚度方向。

角变形程度受构件压缩塑性变形的直接影响,板背面的温度会随线能量的提高而升高,在此过程中,板两面的塑性变形量可能存在差异,致使角变形量出现减少的情况,在板厚相同的情况下,单层焊会比多层焊的焊接变形小,角变形程度与焊接层数呈现正相关。

2.横向收缩变形的具体分析。

横向收缩量会随着焊接线能量的升高而变大,但是如果板的厚度值越大,产生的横向收缩量越小,对横向变形来说,板厚以及焊接线能量是重要的影响要素。

在焊接过程中,不同部位存在先后之分,先焊接焊缝会对后焊接焊缝起到横向的挤压作用,进而使得横向的压缩变形变得更大,并且焊缝的横向收缩量变化规律是沿着焊缝方向从收缩量小逐渐变大,在接近一定程度后,逐渐变得平稳,导致焊缝长度方向的横向收缩量存在分布不均匀的情况。

3.纵向收缩变形的具体分析。

对纵向收缩量的大小而言,压缩塑性变形是主要的影响因素。

对压缩塑性变形产生影响的因素有很多,如焊接顺序、焊接参数、焊接材料的物力参量以及焊接方式等,通常情况下,纵向收缩量与焊接线能量呈正相关,如果构建中的焊缝存在不对称现象,会导致相应的应力不均匀,不仅会让构件缩短,还会导致构件发生弯曲,并且出现不同程度的挠曲变形。

二、引发焊接变形的主要原因分析1.焊接应力带来的影响。

焊接时产生变形的根本原因是焊接应力的作用,针对一些外形较大,且结构相对复杂的构件,在焊接时需要复杂的焊缝,不同焊缝产生的应力大小及方向存在差异,整体的情况比较复杂,工作人员无法保证焊缝预测的准确性。

焊接质量缺陷原因分析及预防、治理措施

焊接质量缺陷原因分析及预防、治理措施
⑶钝边厚度一般在1㎜左右,如果钝边过厚,采用机械打磨的方式修整,对于单V型坡口,可不留钝边。
⑷根据自己的操作技能,选择合适的线能量、焊接速度和操作手法。
厚度符合标准要求;
⑵加强打底练习,熟练掌握操作手法以及对应的焊接线能量及焊接速度等。
18.管道焊口根部焊瘤、凸出、凹陷
⑷注意周围焊接施工环境,搭设防风设施,管子焊接无穿堂风;
⑸氩弧焊时,氩气纯度不低于%,氩气流量合适;
⑹尽量采用短弧焊接,减少气体进入熔池的机会;
⑺焊工操作手法合理,焊条、焊枪角度合适;
⑻焊接线能量合适,焊接速度不能过快;
⑼按照工艺要求进行焊件预热。
⑴严格按照预防措施执行;
⑵加强焊工练习,提高操作水平和责任心;
⑴严格按照规程和作业指导书的要求准备各种焊接条件;
⑵提高焊接操作技能,熟练掌握使用的焊接方法;
⑶采取合理的焊接顺序等措施,减少焊接应力等。
⑴针对每种产生裂纹的具体原因采取相应的对策;
⑵对已经产生裂纹的焊接接头,采取挖补措施处理。
11.焊缝表面不清理或清理不干净,电弧擦伤焊件
焊缝焊接完毕,焊接接头表面药皮、飞溅物不清理或清理不干净,留有药皮或飞溅物;焊接施工过程中不注意,电弧擦伤管壁等焊件造成弧疤。
⑶发现问题及时采取必要措施。
14.气孔
在焊缝中出现的单个、条状或群体气孔,是焊缝内部最常见的缺陷。
根本原因是焊接过程中,焊接本身产生的气体或外部气体进入熔池,在熔池凝固前没有来得及溢出熔池而残留在焊缝中。
⑴焊条要求进行烘培,装在保温筒内,随用随取;
⑵焊丝清理干净,无油污等杂质;
⑶焊件周围10~15㎜范围内清理干净,直至发出金属光泽;
⑴焊件的坡口角度和装配间隙必须符合图纸设计或所执行标准的要求。

(整理)焊接变形产生的原因及预防措施

(整理)焊接变形产生的原因及预防措施

第一章焊接应力与变形焊接时,由于局部高温加热而造成焊件上温度分布不均匀,最终导致在结构内部产生了焊接应力与变形。

焊接应力是引起脆性断裂、疲劳断裂、应力腐蚀断裂和失稳破坏的主要原因。

另外,焊接变形也使结构的形状和尺寸精度难以达到技术要求,直接影响结构的制造质量和使用性能。

因此,本章主要讨论焊接应力与变形的基本概念及其产生原因;焊接变形的种类,控制焊接变形的工艺措施和焊后如何矫正焊接变形;焊接应力的分布规律,降低焊接应力的工艺措施和焊后如何消除焊接残余应力。

第一节焊接应力与变形的产生一、焊接应力与变形的基本知识1.焊接变形物体在外力或温度等因素的作用下,其形状和尺寸发生变化,这种变化称为物体的变形。

当使物体产生变形的外力或其它因素去除后变形也随之消失,物体可恢复原状,这样的变形称为弹性变形。

当外力或其它因素去除后变形仍然存在,物体不能恢复原状,这样的变形称为塑性变形。

物体的变形还可按拘束条件分为自由变形和非自由变形。

在非自由变形中,有外观变形和内部变形两种。

以一根金属杆的变形为例,当温度为T0时,其长度为L0,均匀加热,温度上升到T时,如果金属杆不受阻,杆的长度会增加至L,其长度的改变ΔL T=L- L0,ΔL T就是自由变形,见图1-la。

如果金属杆件的伸长受阻,则变形量不能完全表现出来,就是非自由变形。

其中,把能表现出来的这部分变形称为外观变形,用ΔLe表示;而未表现出的变形称为内部变形,用ΔL表示。

在数值上,ΔL=ΔL T-ΔLe,见图1-lb。

单位长度的变形量称为变形率,自由变形率用εT表示,其数学表达式为:εT=ΔL T/L0=α(T-T0) (1-1)式中α——金属的线膨胀系数,它的数值随材料及温度而变化。

外观变形率εe,可用下式表示:εe=ΔLe/ L0(1-2)同样,内部变形率ε用下式表示:ε=ΔL/L0(1-3)2.应力存在于物体内部的、对外力作用或其它因素引起物体变形所产生的抵抗力,叫做内力。

焊接变形原因及预防措施资料

焊接变形原因及预防措施资料

第二节
焊接变形
一、焊接变形的种类及其影响因素
焊接变形分为5种基本变形形式:收缩变形、 角变形、弯曲变形、波浪变形和扭曲变形。
焊接变形的基本形式
返回本章首页
1. 收缩变形 焊件尺寸比焊前缩短的现象称为收缩变形。
纵向和横向收缩变形 (1)纵向收缩变形 (2)横向收缩变形 2. 角变形 角变形产生的根本原因是由于焊缝的横向收 缩沿板厚分布不均匀所致。
焊接结构的不足之处大多反映在焊接接头 上的问题,主要有以下几方面:
1)焊接过程是一个不均匀的加热和冷却过程, 焊接结构必然存在焊接残余应力和变形,这不仅 影响焊接结构的外形尺寸和外观质量,同时给焊 后的继续加工带来很多麻烦,甚至直接影响焊接 结构的强度。 2)由于焊接接头要经历冶炼、凝固和热处理 三个阶段。 3)焊接会改变材料的部分性能。
只要允许,多采用型材、冲压件;焊缝 多且密集处,可以采用铸—焊联合结构, 就可以减少焊缝数量。此外,适当增加壁 板厚度,以减少肋板数量,或者采用压型 结构代替肋板结构,都对防止薄板结构的 变形有利。
(3)合理安排焊缝位置 梁、柱等焊接构件、常因焊缝偏心配置而产 生弯曲变形。
箱形结构的焊缝安排
合理安排焊缝位置防止变形 2. 工艺措施 (1) 留余量法 (2) 反变形法
1. 对结构强度的影响 2. 对焊件加工尺寸精度的影响
机械加工引起内应力释放和变形 3. 对受压杆件稳定性的影响
四、控制焊接残余应力的措施
1. 设计措施 1)尽量减少结构上焊缝的数量和焊缝尺寸。
2)避免焊缝过分集中,焊缝间应保持足够 的距离。
容器接管焊接 3)采用刚性较小的接头形式。
减小接头的刚性措施
平板对接焊时的反变形法 (3)刚性固定法 1) 将焊件固定在刚性平台上。

防止和减少焊接残余变形与应力的措施

防止和减少焊接残余变形与应力的措施

防止和减少焊接残余变形与应力的措施随着现代制造业的发展,焊接在各行各业中扮演着至关重要的角色。

无论是航空航天、汽车制造还是建筑工程,在这些领域中,焊接都是不可或缺的连接工艺。

然而,随之而来的焊接残余变形与应力问题也愈加引起人们的关注。

焊接过程中产生的残余变形与应力,不仅会影响工件的外观质量,还可能引发裂纹和变形等问题,严重影响其使用性能和寿命。

如何有效地预防和减少焊接残余变形与应力,成为了焊接工艺中的重要课题。

1.选材:材料的选择对于焊接残余变形和应力的控制至关重要。

在焊接过程中,通常会选择具有较高熔点和较小线膨胀系数的材料,以减少焊接时热影响区的热变形;还应根据实际情况选择合适的填充材料。

2.焊接方式:合理选择焊接方式是减少焊接残余变形和应力的关键。

一般来说,采用低热输入、低变形的焊接方式,例如脉冲焊、激光焊等,能够有效降低焊接工件的残余变形和应力。

3.焊接顺序:合理规划焊接顺序也是减少残余变形和应力的重要手段。

通常情况下,应该首先焊接边缘,然后逐渐向内焊接,以减少焊接区域的热输入,降低残余变形和应力。

4.预热和后热处理:在一些情况下,通过预热和后热处理也能有效减少焊接残余变形和应力。

预热能够降低材料的硬度,减少焊接残余应力;后热处理则能够通过回火或退火处理,消除残余应力,提高焊接接头的韧性和稳定性。

5.夹具和辅助装置:采用合理的夹具和辅助装置也能有效减少焊接残余变形和应力。

夹具的设计应在尽量避免约束工件的能够保证焊接接头的稳固性;而辅助装置则可以提供额外的支撑,减少工件在焊接过程中的变形。

总结回顾:在焊接工艺中,预防和减少焊接残余变形与应力是至关重要的。

通过合理选材、焊接方式、焊接顺序、预热和后热处理、夹具和辅助装置等措施,可以有效控制焊接过程中的残余变形和应力,保证焊接接头的质量和稳定性。

个人观点:作为焊接工艺的重要环节,防止和减少焊接残余变形与应力对于提高焊接接头的质量和稳定性至关重要。

简述焊接时防止金属变形的方法

简述焊接时防止金属变形的方法

简述焊接时防止金属变形的方法焊接过程中,由于高温引起的金属热膨胀和冷却后产生的收缩,很容易造成焊接件的变形。

焊接时防止金属变形的方法有以下几种:1.焊接预热:通过在焊接前将焊接部位预先加热到一定温度,可以减缓焊接引起的温度梯度变化,从而减少焊后的变形。

预热可以提高材料变形的动态可塑性,减缓应力集中和收缩速度。

2.焊接时控制冷却速度:焊接完毕后,适当控制焊件的快速冷却速度,可减小焊接残余应力,降低变形的发生。

这一技术被称为焊后热处理,可以通过空冷、水冷或盐浴冷却等方式进行。

3.适当选用正确的焊接序列:在焊接多个零件的情况下,应该选择合适的焊接顺序,以避免焊接引起的变形。

通常情况下,焊接应从内向外、从下向上进行,这样能够保持整体结构的稳定性,减小变形的可能性。

4.使用焊接夹具:焊接夹具能够提供稳定的工作支撑,阻止焊件在焊接过程中的自由变形。

通过使用夹具,可以保持焊件的几何形状,减少热应力的影响。

5.控制焊接速度和电流:焊接速度和电流的选择直接影响着焊接过程中产生的热输入量。

合理控制焊接速度和电流,使其适应材料的热导率和热膨胀系数,可以减小焊接引起的温度梯度变化,降低变形的风险。

6.使用焊接变形补偿技术:有时候,虽然无法完全避免焊接产生的变形,但可以通过采取相应的措施进行补偿。

这些措施包括刻意设置预弯、局部热处理、残余应力复合等,以达到减小、抵消变形的目的。

7.选择合适的焊接工艺:不同的金属材料和焊接工艺对变形的影响程度不同。

因此,在进行焊接之前,应仔细分析和评估待焊接材料的特性和焊接工艺的适用性,选择最合适的焊接工艺,以减小变形的风险。

8.控制焊接参数和热输入量:焊接参数和热输入量的控制可以直接影响焊接过程中的热影响区大小和局部应力状态。

合理选择焊接参数和热输入量,可以减少焊接过程中的温度梯度变化和残余应力,从而减小变形的可能性。

总之,焊接过程中的金属变形是无法完全避免的,但通过合理的预防措施和技术手段,可以最大程度地减小变形的发生。

焊接施工质量通病及预防措施

焊接施工质量通病及预防措施

焊接施工质量通病及预防措施
引言
焊接是一项重要的工艺,在各个行业和领域都有广泛应用。

然而,由于施工过程中存在一些常见问题,导致焊接施工质量不达标。

本文将介绍焊接施工质量通病及相应的预防措施,以帮助提高焊接
施工质量。

焊接施工质量通病及预防措施
1. 焊缝质量不良
- 问题:焊缝出现气孔、夹渣、裂纹等缺陷。

- 预防措施:确保焊接材料的干燥、清洁,控制焊接参数,加
强操作技能,检测焊缝质量。

2. 焊接变形
- 问题:焊接后工件出现形状变化,影响尺寸和结构。

- 预防措施:在焊接前进行合理的定位和固定,采用适当的焊
接顺序,进行加热或预加热措施。

3. 焊接应力集中
- 问题:焊接过程中生成的应力在结构中集中,导致裂纹和变形。

- 预防措施:进行焊前和焊后的应力分析,采用合适的焊接顺序和方法,减少应力集中的可能性。

4. 焊接材料选择不当
- 问题:使用不合适的焊接材料,导致焊接强度不达标。

- 预防措施:根据焊接部件的材料和要求,选择合适的焊接材料,确保焊接强度和质量。

5. 缺乏焊接工艺控制
- 问题:没有严格的焊接工艺控制,导致施工过程中的质量问题。

- 预防措施:建立完善的焊接工艺控制程序,进行焊接参数的控制和记录,加强施工中的质量监控。

结论
通过理解焊接施工质量通病及相应的预防措施,我们可以提高焊接施工的质量和效率。

合理的材料选择、焊接工艺控制和质量监控将有助于降低焊接缺陷的发生频率,提升焊接结构的耐久性和安全性。

预防和减少焊接变形的措施

预防和减少焊接变形的措施

预防和减少焊接变形的措施展开全文一、焊接结构的合理设计在保证结构有足够强度的前提下,尽量减小焊缝的数量和尺寸;尽可能对称布置焊缝;必要时预先流留出收缩余量;适当采用冲压结构,减少焊接结构;将焊缝布置在最大工作应力之外;留出装焊模夹具的位置等。

二控制焊接残余变形的工艺措施1.选择合理的装焊顺序采用不同的装配、焊接顺序,焊后会产生不同的变形效果。

如工字梁的焊接,采用两种不同的装焊顺序,产生的变形效果不同。

第一种先装配、焊接成丁字形,然后再装配另一块翼板,最后焊成工字梁。

采用这种装焊顺序时,焊接丁字形结构时,由于焊缝分布在中性轴的下方,焊后将产生较大的上拱弯曲变形,即使另一块翼板焊后会产生的反向弯曲变形,也难以抵消原来产生的变形,最后工字梁将形成上拱弯曲变形。

第二种先整体装配成工字梁,然后再进行焊接,此时梁的刚性增加,再采用对称、分段的焊接顺序,焊后上拱弯曲变形就小得多。

这是一项先总装后焊接的控制结构焊后变形的工艺措施。

2.采取合理的焊接顺序(1)对称焊接如果焊接结构的焊缝是对称布置的,应该采用对称焊接。

这时应注意焊接顺序,采用分段、跳焊的对称焊接,通过先后焊缝的熔敷量来控制变形量,效果很好。

(2)不对称焊缝先焊焊缝少的一侧如果焊接结构的焊缝是不对称布置的,采用先焊焊缝少的一侧,后焊焊缝多的一侧,使后焊的焊缝产生的变形足以抵消先前的变形,以使总的变形减小。

(3)采用不同的焊接顺序结构中若是长焊缝,采用连续的直通焊,将会造成较大的变形,在实践中常采用分段退焊法、分中段退焊法、跳焊法和交替焊法不同的焊接顺序来控制变形。

3.反变形法为了抵消焊接残余变形,焊前预先使焊件向焊接变形相反的方向变形,这种方法叫反变形法。

V 形坡口对接焊中,均采用了反变形法来控制焊后的残余角变形。

例如工字梁焊后产生的角变形,可在焊前预先将翼板制成反变形,然后焊接以抵消焊后变形。

4.刚性固定法焊前对焊件采取外加刚性约束,使焊件在焊接时不能自由变形,这种防止变形的方法叫刚性固定法。

常见焊接缺陷类型产生原因与防止措施

常见焊接缺陷类型产生原因与防止措施

常见焊接缺陷类型产生原因与防止措施1)焊缝尺寸不符合要求角焊缝的K值不等一一般发生在角平焊,也称偏下。

偏下或焊缝没有圆滑过渡会引起应力集中,容易产生焊接裂纹。

焊条角度问题,应该考虑铁水瘦重力影响问题。

许多教授在编写教材注重理论性而忽略实用性。

焊条角度适当上抬,48/42度合适。

另外,在K值要求较大时,尽量采用斜圆圈型运条方法。

焊缝宽窄不一致:一是运条速度不均匀,忽快忽慢所致;二是坡口宽度不均匀,焊接时没有进行调整。

三是在熔池边缘停留时间不均匀。

所以焊接时焊接速度均匀、考虑坡口宽度、熔池边缘停留时间合适。

焊缝高低不一致:与焊接速度不均匀有关外,与弧长变化有关。

所以采用均匀的焊接速度、保持一定的弧长,是防止焊缝高低不一致的有效措施。

弧坑:息弧时过快。

与焊接电流过大、收弧方法不当有关。

平焊缝可以采用多种收弧方法,例如回焊法、画圈法、反复息弧法。

立对接、立角焊采用反复息弧法,减小焊接电流法。

焊缝尺寸不符合要求,在凸起时应力集中,产生裂纹;在焊缝尺寸不足时,降低承载能力;所以在焊接前尽量预防,在焊接中尽量防止,在焊接以后及时修补,保证焊缝尺寸符合施工图纸要求。

2)夹渣夹渣是非金届化合物在焊接熔池冷却没有及时上浮而被封闭在焊缝内,所以与活渣不够、打底层、填充层的成型太差、焊条角度没有进行调整而及时对准坡口两个死角,焊接速度过快、焊接电流过小、非正规的运条方法,没有分活铁水与熔渣,保持熔池的净化余围。

平对接采用合适推渣动作,分活铁水与熔池,焊条角度特别重要。

最容易产生夹渣的部位是:平对接各层、填充层与打底层结合部的两个死角,横对接打底层、填充层的最上部的夹角,仰对接的坡口边缘。

实际就是焊缝成型没有实现略凹、或平,而特别容易形成过凸的成型所致。

夹渣降低焊缝有效截面使用性能,容易产生裂纹等其他缺陷,影响焊缝的致密性。

3)未焊透与未熔合未焊透一般产生在坡口根部,与埋弧焊偏丝、焊接电流过小、焊接速度快、坡口角度过小、反面活根不彻底。

焊接变形原因分析及其防止措施

焊接变形原因分析及其防止措施

焊接变形原因分析及其防止措施摘要:本文重点对常见焊接变形的原因进行分析,并根据原因分别从设计和工艺两个方面论述防止变形的措施。

关键词:焊接变形原因分析防止措施随着新材料、新结构和新焊接工艺的不断发展,有越来越多的焊接应力变形和强度问题需要研究。

焊接变形在焊接结构生产中经常出现,如果构件上出现了变形,不但影响结构尺寸的准确性和外观美观,而且有可能降低结构的承载能力,引起事故。

同时校正焊接变形需要花费许多工时,有的变形很大,甚至无法校正,造成废品,给企业带来损失。

因此掌握焊接变形的规律和控制焊接变形具有十分重要的现实意义。

一、焊接变形种类生产中常见的焊接变形主要有纵向收缩变形、横向收缩变形、挠曲变形、角变形、波浪变形、错边变形、螺旋变形。

这几种变形在焊接结构中往往并不是单独出现,而是同时出现,相互影响。

在这里重点对生产中经常出现的纵向收缩变形、横向收缩变形、角变形、错边变形进行分析。

二、焊接变形原因分析1.纵向收缩变形。

焊接时,焊缝及其附近的金属由于在高温下自由变形受到阻碍,产生的压缩性变形,在平行于焊缝的变形称之为纵向收缩性变形。

焊缝纵向收缩变形量可近似的用塑性变形区面积S来衡量,变形区面积S于焊接线能量有直接关系,焊接线能量越小,S越小,反之S越大。

同样截面的焊缝可以一次焊成,也可以分几层焊成,多层焊每次所用的线能量比单层焊时小得多,因此每层焊缝产生的塑性变形区的面积S比单层焊时小,但多层焊所引起的总变形量并不等于各层焊缝的总和。

因为各层所产生的塑性变形区面积和是相互重叠的。

从上述分析可以看出多层焊所引起的纵向收缩比单层焊小,所以分的层数越多,每层所用的线能量就越小,变形也越小。

2.横向收缩变形。

横向收缩变形是指垂直于焊缝方向的变形,焊缝不但发生纵向收缩变形,同时也发生横向收缩变形,其变形产生的过程比较复杂,下面分几种焊缝情况来分析。

2.1堆焊和角焊缝。

首先研究在平板全长上对焊一条焊缝的情况。

当板很窄,可以把焊缝当作沿全长同时加热,采用分析纵向收缩的方法加以处理。

焊接变形原因分析及其防止措施

焊接变形原因分析及其防止措施

3 i 2 对 接接头 时角变 形 。对 接接头 的坡 口角度 以及焊缝 截 面形状 对 于对 接接 头的 角变 形影 响很 大 ,坡 口角度 越 大 ,焊 接 接头 上部 及下 部 横 向收缩量 的差 别就 越 大 。可 以用 对称坡 口 x型 代替 Y型坡 口 ,这 样 有利 于减 小角变 形 。所 以焊 接 角变形 ,不 但 与坡 口形 势和焊 缝截 面 形 状有 关 ,而且还 和焊 接方 式 有关 。对 于 同样 的板厚 和坡 口形 式 ,多层 焊 比单层 焊角变 形 大 ,焊 接 层数 越多 ,角 变形 越大 ,多 道焊 比 多层焊 角变 形大 。 3 . 3角焊缝 时 角变形 。 角焊 缝对 于丁 字接 头 的焊缝 最 为明显 ,这 里 以丁字 接头焊 缝来 分析 。丁字 接头 的角 变形 包括 两个 内容 ,筋 板与 主板 的角度变 化和主 板本 身的角变 形 。前者相 当于对 接接头 的 角变形 。 对于不 开坡 口的角焊 缝来说 ,它 的变形相 当于坡 口为 9 O 度 时 的对 接焊 缝的 角变形 ,而 对主 板来 说 ,它就 相 当于 在平板 上 进行 堆焊 时 引起 的 角变形 。这 两种 变形 的综 合结 果 ,使 丁字形 接头 两板 间的 角度发 生变 化 ,破坏 了垂 直度 ,也破坏 了平板 的平直 度 。

二 、焊 接变形 原 因分 析
1 . 纵 向收缩 变形 。焊 接 时 ,焊 缝 及 其 附近 的金 属 由于 在 高温 下 自 由变 形受 到阻 碍 ,产生 的压 缩 性变 形 ,在平 行 于焊 缝 的变形 称 之为 纵 向收 缩性 变形 。焊 缝纵 向收 缩变 形 量可 近似 的 用塑性 变 形区 面积 S来 衡 量 ,变形 区 面积 s于焊 接 线能 量 有 直接 关 系 ,焊接 线 能 量越 小 ,s 越 小 ,反之 s越大 。同样截 面 的焊缝 可 以一 次焊 成 ,也 可 以分几 层焊 成 ,多层焊 每 次所 用的 线能 量 比单 层焊 时小 得 多 ,因此 每层 焊缝 产 生 的塑 性变形 区的面 积 S比单 层焊 时 小 ,但多 层焊 所 引起 的总 变形 量并 不 等 于各层 焊缝 的 总和 。 因为各 层所 产 生的 塑性 变形 区 面积 和是 相 互
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 对结构强度的影响 2. 对焊件加工尺寸精度的影响
机械加工引起内应力释放和变形 3. 对受压杆件稳定性的影响
四、控制焊接残余应力的措施
1. 设计措施 1)尽量减少结构上焊缝的数量和焊缝尺寸。
2)避免焊缝过分集中,焊缝间应保持足够 的距离。
容器接管焊接 3)采用刚性较小的接头形式。
减小接头的刚性措施
(1)点状加热
(2)线状加热
(3)三角形加热
工字梁弯曲变形的火焰矫正 火焰加热矫正焊接变形的取决于下列三个因素: (1)加热方式 (2)加热位置 (3)加热温度和加热区的面积
第三节
焊接残余应力
一、焊接残余应力的分类
1. 按产生应力的原因分 (1)热应力 (2)相应应力 (3)塑变应力 2. 按应力存在的时间分 (1)焊接瞬时应力 (2)焊接残余应力
只要允许,多采用型材、冲压件;焊缝 多且密集处,可以采用铸—焊联合结构, 就可以减少焊缝数量。此外,适当增加壁 板厚度,以减少肋板数量,或者采用压型 结构代替肋板结构,都对防止薄板结构的 变形有利。
(3)合理安排焊缝位置 梁、柱等焊接构件、常因焊缝偏心配置而产 生弯曲变形。
箱形结构的焊缝安排
合理安排焊缝位置防止变形 2. 工艺措施 (1) 留余量法 (2) 反变形法
返回本章首页ຫໍສະໝຸດ 二、焊接残余应力的分布1. 纵向残余应力
x 的分布
对接接头
x 在焊
缝横截面上的分布
2. 横向残余应力 y的分布 (1)焊接及其附近塑性变形区的纵向收缩引 起的横向应力 ' y
(2) 横向收缩年引起的机工向应力
y
不同方向焊接时
的分布 y
三、焊接残余应力对焊接结构的影响
圆筒体对接焊缝焊接顺序
5)长焊缝(1m以上)焊接时,可采用下图所示的方向和 顺序进行焊接,以减小其焊后的收缩变形。
(5)合理地选择焊接方法和焊接工艺参数
非对称截面结构的焊接
(6)热平衡法
采用热平衡法防止焊接变形 (7)散热法
散热法示意图
三、矫正焊接变形的方法
1. 手工矫正法 2. 机械矫正法
机械矫正法矫正梁的弯曲变形 3. 火焰加热矫正法 火焰加热的方式有点状加热、线状加热和三角形 加热。
2. 工艺措施 1) 采用合理的装配焊接顺序和方向。 ① 在一个平面上的焊缝,焊接时,应保证焊 缝的纵向和横向收缩均能比较自由。
拼接焊缝合理的装配焊接顺序
② 收缩量最大的焊缝应先焊。
带盖板的双工字梁结构焊接顺序
③ 工作时受力最大的焊缝应先焊。
对接工字梁的焊接顺序
④ 平面交叉焊缝焊接时,在焊缝的交叉点易产生较大的 焊接应力。
第二节
焊接变形
一、焊接变形的种类及其影响因素
焊接变形分为5种基本变形形式:收缩变形、 角变形、弯曲变形、波浪变形和扭曲变形。
焊接变形的基本形式
返回本章首页
1. 收缩变形 焊件尺寸比焊前缩短的现象称为收缩变形。
纵向和横向收缩变形 (1)纵向收缩变形 (2)横向收缩变形 2. 角变形 角变形产生的根本原因是由于焊缝的横向收 缩沿板厚分布不均匀所致。
平板对接焊时的反变形法 (3)刚性固定法 1) 将焊件固定在刚性平台上。
薄板拼接时的刚性固定 2)将焊件组合成刚性更大或对称的结构。
T形梁的刚性固定和反变形 3)利用焊接夹具增加结构的刚性和拘束。
对接拼板时的刚性固定 4)利用临时支撑增加结构的拘束。
防护罩焊接时的临时支撑 (4)选择合理的装配焊接顺序。装配焊接顺序对焊接结构 变形的影响很大。
几种接头的角变形
T形接头的角变形 3. 弯曲变形 弯曲变形是由于焊缝的中心线与结构截面的 中性轴不重合或不对称、焊缝的收缩沿焊件宽度 方向分布不均匀而引起的。
(1)纵向收缩引起的弯曲变形
焊缝的纵向收缩引起的弯曲变形
(2)横向收缩引起的弯曲变形
焊缝的横向收缩引起的弯曲变形 4. 波浪变形 波浪变形常发生于板厚小于6mm的薄板焊接
过程中,又称之为失稳变形。
焊缝角变形引起的波浪变形 5. 扭曲变形 产生扭曲变形的原因主要是焊缝角变形沿焊 缝长度方向分布不均匀。
工字梁的扭曲变形
二、控制焊接变形的措施 1. 设计措施 (1) 选择合理的焊缝形状和尺寸 1)选择最小的焊缝尺寸。
相同承载能力的十字接头 2) 选择合理的坡口形式。
T形接头的坡口 (2)减少焊缝的数量
4. 锤击焊缝 5. 振动法
六、焊接残余应力的测定
1. 机械方法 (1)切条法 (2)钻孔法 2. 物理方法 (1)磁性法 (2)X射线衍射法 (3)超声波法
返回
焊接应力与变形
由于焊接局部高温加热而造成焊件上温度分 布不均匀,导致在焊接结构内部产生了焊接应力 与变形。焊接应力是引起脆性断裂、疲劳断裂、 应力腐蚀断裂和失稳破坏的主要原因,焊接变形 使结构的形状和尺寸精度难以达到技术要求,直 接影响结构的制造质量和使用性能。 第一节 焊接应力与变形的产生 第二节 焊接变形 第三节 焊接残余应力
平面交叉焊缝的焊接顺序
⑤ 对接焊缝与角焊缝交叉的结构。
2)预热法。 3)冷焊法。 4)降低焊缝的拘束度。
降低局部刚度减少内应力
5)加热“减应区”法。
加热“减应区”法示意图
五、消除或减小焊接残余应力的方法
1. 热处理法 (1)整体热处理 (2)局部热处理 2. 机械拉伸法 3. 温差拉伸法
“温差拉伸法”消除残余应力示意图
返回主目录
第一节
焊接应力与变形的产生
一、焊接应力与变形的基本知识
1. 变形 物体在外力或温度等因素的作用下,其形状和 尺寸发生变化 2. 应力 存在于物体内部的、受外力作用或其他因素引 起物体内部之间相互作用力,叫做内力。物体单 位截面积上的内力叫做应力。
返回本章 首页
3.焊接应力与焊接变形 焊接应力是焊接过程中及焊接过程结束后, 存在于焊件中的内应力。由焊接而引起的焊件尺 寸的改变称为焊接变形。
1)大型而复杂的焊接结构,只要条件允许,把它 分成若干个结构简单的部件,单独进行焊接,然后再 总装成整体。 2)正在施焊的焊缝应昼靠近结构截面的中性轴。
主梁装配焊接
3)对于焊缝非对称布置的结构,装配焊接时应先焊焊缝少 的一侧。
压力机压型上模的焊接顺序 4)焊缝对称布置的结构,应由偶数焊工对称地施焊。
焊接结构的不足之处大多反映在焊接接头 上的问题,主要有以下几方面:
1)焊接过程是一个不均匀的加热和冷却过程, 焊接结构必然存在焊接残余应力和变形,这不仅 影响焊接结构的外形尺寸和外观质量,同时给焊 后的继续加工带来很多麻烦,甚至直接影响焊接 结构的强度。 2)由于焊接接头要经历冶炼、凝固和热处理 三个阶段。 3)焊接会改变材料的部分性能。
二、焊接应力与变形产生的原因
1. 焊件的不均匀受热 (1)长板条中心加热(类似于堆焊)引起的 应力与变形
钢板条中心加热和冷却时的应力与变形
(2)长板条一侧加热(相当于板边堆焊)引起 的应力与变形
钢板边缘一侧加热和冷却时的应力与变形 2. 焊缝金属的收缩 3. 金属组织的变化 4. 焊件的刚性和拘束
相关文档
最新文档