微分方程数值解试卷
数值分析试题集
..数值分析试题集(试卷一)一( 10 分)已知 x 1* 1.3409 ,x 2* 1.0125 都是由四舍五入产生的近似值, 判断 x 1*x 2* 及 x 1* x 2*有几位有效数字。
二( 10 分)由下表求插值多项式x 01 2 y2 34 y1- 1三( 15 分)设 f ( x)C 4 [a,b] , H ( x )是满足下列条件的三次多项式H (a) f (a) , H (b) f (b) , H (c)f (c) , H (c) f (c)( a c b )求 f (x)H ( x) ,并证明之。
12四( 15 分)计算13 dx ,10 2。
x五( 15 分)在 [0,2]上取 x 0 0 , x 1 1 , x 22 ,用二种方法构造求积公式,并给出其公式的代数精度。
六( 10 分)证明改进的尢拉法的精度是 2 阶的。
七( 10 分)对模型 yy , 0 ,讨论改进的尢拉法的稳定性。
八( 15分)求方程 x 34x 2 7x 1 0 在 -1.2 附近的近似值,10 3。
-----------------------------------------------------------------------------------------------------------------------------(试卷二)一填空( 4*2 分)1 {k ( x) } k 0 是区间 [0, 1]上的权函数为( x) x 2 的最高项系数为 1 的正交多项式族,其中10 (x)1,则x0 ( x) dx ------------------- , 1 ( x) ------------------。
2 12 A,则 A1 4----------- ,( A) ----------------- 。
a 1 2 时, A 可作 LU 分解。
3 设 A,当 a 满足条件 ---------------- 14..4 设非线性方程 f ( x) (x33x23x1)( x 3) 0 ,其根 x1* 3 , x2*1,则求 x1* 的近似值时,二阶局部收敛的牛顿迭代公式是--------------------------- 。
数学课程微分方程求解练习题及答案
数学课程微分方程求解练习题及答案微分方程是数学中非常重要的一门课程,它在许多科学领域中有着广泛的应用。
为了更好地掌握微分方程的解题技巧,下面将给出一些微分方程求解的练习题及其答案。
练习一:一阶线性微分方程1. 求解微分方程:dy/dx + y = 2x解答:首先将该微分方程转化为标准形式:dy/dx = 2x - y然后可以使用分离变量的方法进行求解,将变量分离得到:dy/(2x - y) = dx对等式两边同时积分,得到:∫(1/(2x - y))dy = ∫dx通过对右边的积分,得到:ln|2x - y| = x + C1 (其中C1是常数)将等式两边取e的指数,得到:2x - y = Ce^x其中C = e^C1是一个任意常数,所以方程的通解为:y = 2x - Ce^x (其中C为常数)2. 求解微分方程:dy/dx + 2y = e^x解答:将该微分方程转化为标准形式:dy/dx = e^x - 2y然后使用分离变量的方法进行求解,得到:dy/(e^x - 2y) = dx对等式两边同时积分,得到:∫(1/(e^x - 2y))dy = ∫dx通过对右边的积分,得到:(1/2)ln|e^x - 2y| = x + C2 (其中C2是常数)再次将等式两边取e的指数,得到:e^x - 2y = Ce^2x其中C = e^C2是一个任意常数,所以方程的通解为:y = (1/2)e^x - (C/2)e^2x (其中C为常数)练习二:二阶微分方程1. 求解微分方程:d^2y/dx^2 + 4dy/dx + 4y = 0解答:首先将该微分方程的特征方程写出来:r^2 + 4r + 4 = 0解特征方程,得到特征根为:r = -2由于特征根为重根,所以方程的通解形式为:y = (C1 + C2x)e^(-2x) (其中C1和C2为常数)2. 求解微分方程:d^2y/dx^2 + dy/dx - 2y = 0解答:首先将该微分方程的特征方程写出来:r^2 + r - 2 = 0解特征方程,得到特征根为:r1 = 1,r2 = -2所以方程的通解形式为:y = C1e^x + C2e^(-2x) (其中C1和C2为常数)这里给出了一些微分方程求解的练习题及其答案,通过练习这些题目,相信可以增强对微分方程的理解和掌握。
微分方程数值解习题(李立康)
常微分方程习题 《李立康》习题1.用Euler 方法求初值问题⎩⎨⎧=-='0)0(21u tuu 在1=t 时的近似解(取41=h )。
2.初值问题1300u u u()⎧⎪'=⎨⎪=⎩ 有解3223/u(t )t ⎛⎫= ⎪⎝⎭。
但若用Euler 方法求解,对一切N T ,和HTh =,都只能得到N t u t , (2)1,0==,试解释此现象产生的原因。
3.用Euler 方法计算⎩⎨⎧=='1)0(u uu 在1=t 处的值,取161和41=h ,将计算结果与精确值e =)1(u 相比较。
4.设),(u t f 满足定理2.1的条件,对改进Euler 法(2.10)式证明: (1)其局部截断误差为)()(1243h O t u h -'''-;(2)当1<hL 时,其整体截断误差满足:)1(22--≤Lt n lT m e hLRe εε (3)方法具有二阶收敛速度且稳定。
5.导出用改进Euler 法求解⎩⎨⎧=='1)0(u uu 计算公式mmh h u ⎪⎪⎭⎫ ⎝⎛-+=22 取41=h 计算)1(u 的近似值,并与习题3的结果比较。
6.就初值问题⎩⎨⎧=+='0)0(u bat u 分别导出用Euler 方法和改进Euler 法求近似解的表达式,并与真解bt t au +=22相比较。
7.证明改进Euler 法的绝对稳定区域是整个左半平面0)Re(<h 。
8.对初值问题⎩⎨⎧=-='1)0(2u u u 用41=h 的Euler 方法求解,求出实际计算值t u 与真解tu +=11在)1(u 处的误差,并将它与定理2.3的估计式(2.22)式相比较。
9.证明:Runge-Kutta 方法中);,(h u t ϕ关于u 或t 满足Lipschitz 条件的充分条件是),(u t f 关于t 或u 满足Lipschitz 条件。
(完整版)微分方程试题及部分应用题答案整理版
第十章微分方程习题一.填空题:(33)1-1-40、微分方程4233''4''')'(x y x y y 的阶数是 . 1-2-41、微分方程0'2'2xy yy xy 的阶数是 . 1-3-42、微分方程0d d d d 22sxs x s的阶数是 .1-4-43、x y y y y sin 5''10'''4)()4(的阶数是 .1-5-44、微分方程xyxy2d d 满足条件1|'0xy 的特解是 .1-6-45、微分方程0d d yxy的通解是 .1-7-46、方程y e y x'的通解是 . 1-8-47、方程y y y ln '的通解是 .1-9-48、方程04'4''y y y 的通解是 . 1-10-49、方程04'4''y y y 的通解是 . 1-11-50、方程013'4''yy y 的通解是 .1-12-51、已知特征方程的两个特征根,3,221r r 则二阶常系数齐次微分方程为1-13-52、微分方程xe y ''的通解为 . 1-14-53、微分方程x e y xsin ''2的通解为 .1-15-54、若0d ),(dx ),(yy x Q y x P 是全微分方程, 则Q P,应满足 .1-16-55、与积分方程xy x f yx x d ),(0等价的微分方程初值问题是 .1-17-56、方程0d )2(d )(22yxy xx y xy 化为齐次方程是 .1-18-57、通解为21221,(C C e C eC yxx 为任意常数)的微分方程为 .1-19-58、方程yx e y 2'满足条件0xy 的特解是 .1-19-59、方程0dy1dx2x xy 化为可分离变量方程是1-20-60、方程xy y 2'的通解是1-21-61、方程x yxyxy xyd d d d 22化为齐次方程是1-22-62、若t ycos 是微分方程09''yy 的解, 则.1-23-63、若ktCe Q 满足Qdt dQ03.0, 则k.1-24-64、y y 2'的解是1-25-65、某城市现有人口50(万), 设人口的增长率与当时的人口数x (万)和x 1000的积成正比, 则该城市人口)(t x 所满足的微分方程为1-26-66、圆222r yx 满足的微分方程是1-27-67、ax ae y满足的微分方程是1-28-68、一阶线性微分方程)()(d dyx Q yx P x的通解是 .1-29-69、已知特征方程的两个根3,221r r , 则二阶常系数线性齐次微分方程为 .1-30-70、方程25x y是微分方程y xy 2'的解.1-31-71、二阶常系数非齐次微分方程的结构为其一个特解与之和.1-32-72、二阶常系数齐次线性微分方程0'''qypy y 对应的特征方程有两个不等实根,则其通解为 .1-33-73、将微分方程0)2()(22dyxy xdxy xy写成齐次微分方程的标准形式为二.选择题:(29)2-1-56、微分方程yx2dxdy 的通解是 ( )A.2x yB.25x y C.2Cx yD.Cxy 2-2-57、微分方程0dy 1dx 2x xy 的通解是 ( ) A.21x eyB.21x CeyC.x C yarcsin D.21xC y 2-3-58、下列方程中是全微分方程的是 ( )A.0dy dx )(2x y xB. 0dy dx x yC.0dy)(1dx)1(xy y xy D.dydx)(22xy y x2-4-59、下列函数组中,线性无关的是 ( ) A.xxe e 32, B.x x 2sin ,2cos C. x x x sin cos ,2sin D.2ln ,ln xx 2-5-60、方程03'2''y y y 的通解是 ( )A.xxe C eC y 321 B. xxeC eC y 321 C.xx eC eC y 321 D.xxeC e C y3212-6-61、方程0''y y 的通解是 ( ) A.x C ysin B.x C ycos C.x C xycos sin D.xC xC ycos sin 212-7-62、下列方程中是可分离变量的方程是( )A.xyyx 33dxdy B.dy 2dx)3(2xy y exC.234dxdy xyyx D.yx xyy321dxdy 2-8-63、微分方程0cot 'x y y 的通解是 ( ) A.x C ycos B.x C ysin C.x C ytan D.xC ycsc2-9-64、已知微分方程0''pyy 的通解为)(212x C C e yx,则p 的值是 ( )A.1B.0C.21D.412-10-65、微分方程02'yy 的通解是 ( )A.C x y2sin B.C eyx24 C.xCe y2 D.xCey 2-11-66、方程xy2dx dy的通解是 ( )A.C ex2B.Cxe2C.2CxeD.2)(C x e2-12-67、xe y ''的通解为y( )A.xe B.xe C.21C xC exD.21C x C ex2-13-68、微分方程xe21dxdy满足1xy 的特解为 ( )A.1221xeyB.3221x ey C.C ey x212 D.212121xey2-14-69、微分方程0ydy-dx 3x 的通解是 ( ) A.Cyx2422B.Cyx2422C.2422yxD.12422yx2-15-70、微分方程0ydy-dx 3x 的通解是 ( )A.222yxB.933yxC.133yxD.13333yx2-16-71、过点,0()2的曲线,使其上每一点的切线斜率都比这点纵坐标大5的曲线方程是( )A.32xyB.52xy C.53xey D.5xCe y 2-17-72、齐次方程x yxy tandx dy化为可分离变量的方程, 应作变换 ( )A.2ux yB.22x u yC.ux yD.33xu y2-18-73、设方程)()('x Q y x P y 有两个不同的解21,y y ,若21y y 也是方程的解,则( ) A.B.0 C. 1 D.,为任意常数2-19-74、方程dx 2dx dy y x x 的通解是 ( ) A.x Cxy2B. x xC y2sin C.C xy 2cos D.Cxy 22-20-75、下面各微分方程中为一阶线性方程的是 ( )A.xyxy 2'B .xxyy sin 'C .xyy' D.xyy 2'2-21-76、曲线上任一点P 的切线均与OP 垂直的曲线方程是 ( )A.y xy' B.y xy'C.x yy' D.xy y'2-22-77、方程2)3(,0'y yy 的解是 ( )A.xey 32 B.xey 32 C.32x ey D.32x ey 2-23-78、微分方程x y y ln '的通解是 ( ) A.xx eyln B. xx Ceyln C.xx x ey ln D.xx x Cey ln 2-24-79、下列哪个不是方程y y 4''的解 ( )A. xey22 B.xe y2 C.xey 2 D.xey 22-25-80、方程0sin '''653)4(yy y y x xyy的阶是 ( )A. 6B. 5C. 4D. 32-26-81、如果一条曲线在它任意一点的切线斜率等于y x2,则这条曲线是( )A.椭圆 B.抛物线 C.双曲线 D. 圆2-27-82、下列可分离变量的方程是 ( )A.xyy x dxdy33B.2)3(2xydy dxy exC. xy yx dxdy D.yx xyy dxdy 3212-28-83、微分方程0cot 'xy y 的通解是 ( )A.x C ycos B.x C ysin C.x C ytan D.xC y csc 2-29-84、已知微分方程0''pyy 的通解为)(212x C C e yx ,则p 的值( )A. 1B. 0C.21D.41三.计算题:(59)3-1-52、0d tan sec d tan sec 22y x y x y x 3-2-53、0ln 'yy xy 3-3-54、0d sec )2(d tan 32yy e x y e x x3-4-55、yx y y x xy22222')1(3-5-56、yx eye x dxdy3-6-57、0)1()1(xdy y ydxx3-7-58、x x y yy x d sin cos d sin cos ,4|0xy 3-8-59、0)0(,02')1(22y xy y x3-9-60、1)(,ln 2'e y x y y 3-10-61、x x y y y x d sin cos d sin cos ,4|0xy 3-11-62、0y)dx -(x dy)(y x3-12-63、)ln (ln dx d x y y y x 3-13-64、0)2(22dyx dx xy y3-14-65、xy x y xy tan'3-15-66、xyx y x y xy ln)('3-16-67、dxdy xydxdy xy223-17-68、x y yx y', 2|1x y 3-18-69、x y xy y', ey ex|3-19-70、2|,'122xy y xyxy3-20-71、xx yxy sin 1', 1|xy 3-21-72、xex y xy 43'3-22-73、342'xxyy 3-23-74、xyxy ln 11'3-24-75、xeyxxy x21'3-25-76、x xy y sec tan ', 0|0xy 3-26-77、xx yxy sin 1', 1|xy 3-27-78、22112'xy xx y ,|0xy 3-28-79、x x yxy ln ', ey ex|3-29-80、22d dyx xexy x3-30-81、)sin (cos d dy2x xy yx3-31-82、5d dyxyy x3-32-83、02d dy4xyxy x3-33-84、4)21(3131d dy yx yx3-34-85、xyxy x 2d dy23-35-86、xy y '''3-36-87、01)'(''2y yy 3-37-88、01''3y y 3-38-89、y y 3'', 1|0xy , 2|'0xy 3-39-90、223''yy ,1|3xy ,1|'3xy 3-40-91、02''yy 3-41-92、013'4''y y y 3-42-93、0'2''y y y 3-43-94、04'5''y y y 3-44-95、04'3''y y y , 0|0xy , 5|'0xy 3-45-96、029'4''y y y , 0|0x y ,15|'0xy 3-46-97、0'4''4y y y , 2|0x y , 0|'0x y 3-47-98、0'4''4y y y , 2|0xy , 0|'0xy 3-48-99、013'4''y y y , 0|0x y , 3|'0x y 3-49-100、04'4''y y y , 0|0x y , 1|'0xy 3-50-101、xey y y 2'''23-51-102、x eyy xcos ''3-52-103、xex y y y 3)1(9'6''3-53-104、'''22xy y ye3-54-105、123'2''x y y y 3-55-106、''sin 20y yx, 1|xy , 1|xy 3-56-107、52'3''yy y , 1|0xy , 2|'0xy 3-57-108、xe y y y 29'10'',76|0x y ,733|'0x y 3-58-109、xxe yy 4'', 0|0xy , 1|'0xy 3-59-110、xxeyy y 26'5''四.应用解答题:(14)4-1-9、一曲线通过点)3,2(, 它在两坐标轴间的任一切线段均被切点所平分, 求这曲线方程.4-2-10、已知xxxy t t y tt 03231d )(12, 求函数)(x y 4-3-13、求一曲线, 这曲线通过原点, 并且它在点),(y x 处的切线斜率等于y x2.4-4-14、试求x y ''的经过点)1;0(M 且在此点与直线12x y相切的积分曲线.4-5-15、设某曲线,它上面的任一点的切线与两坐标轴所围成的三角形面积总等于2,求这条曲线的方程所满足的微分方程. 4-6-16、已知某曲线经过点)1,1(, 它的切线在纵轴上的截距等于切点的横坐标,求它的方程.4-7-17、设可导函数)(x 满足xx t t t x x 01d sin )(2cos )(, 求)(x .4-8-10、已知某商品需求量Q 对价格p 的弹性为22pEpEQ, 最大需求量为1000Q, 求需求函数)(p f Q.4-9-11、设质量为m 的物体在高空中静止下落, 空气对物体运动的阻力与速度成正比. 求物体下落的数率v 与时间t 的关系, 再求物体下落距离与时间t 的关系4-10-12、在串联电路中, 设有电阻R, 电感L 和交流电动势tE Esin 0, 在时刻0t时接通电路, 求电流i 与时间t 的关系(0E ,为常数).4-11-13、如图, 位于坐标原点的我舰向位于x 轴上)0,1(A 点处的敌舰发射制导鱼雷, 鱼雷始终对准敌舰, 设敌舰以常数0v 沿平行与y 轴的直线行驰, 又设鱼雷的速度为02v , 求鱼雷的航行曲线方程.4-12-14、根据经验可知, 某产品的纯利润L 与广告支出x 有如下关系)(d dL L Ak x,(其中0,0Ak), 若不做广告, 即0x时纯利润为0L , 且A L 0, 试求纯利润L 与广告费x 之间的函数关系.4-13-15、在宏观经济研究中, 知道某地区的国民收入y , 国民储蓄S 和投资I均是时间t 的函数, 且在任一时刻t , 储蓄)(t S 为国民收入)(t y 的101,投资额)(t I 是国民收入增长率t d dy的31. 设0t时国民收入为5(亿元), 假定在时刻t 的储蓄全部用于投资,试求国民收入函数.4-14-16、试建立描述市场价格形成的动态过程的数学模型.五.证明题:(2)5-1-18、设),(1x y )(2x y 是二阶齐次线性方程0)(')(''y x q y x p y 的两个解,令)()(')(')()(')(')()()(21212121x y x y x y x y x y x y x y x y x w 证明: )(x w 满足方程0)('wx p w5-2-19、设1y , 2y , 3y 是线性方程)()(d dyx Q y x P x的3个相异特解,证明1213y y y y 为一常数.部分应用题答案487.在串联电路中, 设有电阻R, 电感L 和交流电动势tE Esin 0, 在时刻0t时接通电路, 求电流i 与时间t 的关系(0E ,为常数).解. 设)(t i i, 由回路电压定律tE dtdi LRisin 0, 即tLE LR dtdisin 0]sin [)(0C dt teLE et i t dtLRLR =]sin [0C dt te LE et t LR LR =)cos sin (2220t L t R LRE CetLR将0|0ti 代入通解得222LRLE C)cos sin ()(2220t L t R LeLRE t i t LR488.设质量为m 的物体在高空中静止下落, 空气对物体运动的阻力与速度成正比. 求物体下落的数率v 与时间t 的关系, 再求物体下落距离与时间t 的关系解:.物体重力为mg w, 阻力为kv R , 其中g 是重力加速度, k 是比例系数.由牛顿第二定律得kvmg dtdv m ,从而得线性方程gv mk dtdv ,|0tv tmkdtdtCeg km C dt gee v km m k ][, 将0|0tv 代入通解得gkm C)1(t mk eg km v, 再积分得122C gekm gtkm Stmk,将0|0t S 代入求得gkm C 221)1(22t mkeg km gtkm S 489. 如图, 位于坐标原点的我舰向位于x 轴上)0,1(A 点处的敌舰发射制导鱼雷, 鱼雷始终对准敌舰, 设敌舰以常数0v 沿平行与y 轴的直线行驰, 又设鱼雷的速度为2v , 求鱼雷的航行曲线方程.解:设鱼雷的航行曲线方程为)(x y y, 在时刻t , 鱼雷的坐标巍巍),(y x P , 敌舰的坐标为),1(0t v Q .因鱼雷始终对准敌舰, 故x yt v y 1'0, 又弧OP 的长度为x tv dxy 0022'1,从以上两式消去t v 0得''121''')1(2y y y y x , 即2'121'')1(y y x 根据题意, 初始条件为0)0(y , 0)0('y 令p y', 原方程化为2121')1(pp x , 它是可分离变量得方程,解得21)1(112x C pp , 即21)1('1'12x C y y 将0)0('y 代入上式得11C , 故21)1('1'2x y y 而21)1(''1'1'122x y y y y , 得2121)1()1(21'x x y 积分得22321)1(31)1(C x x y, 将0)0(y 代入上式得322C ,所以鱼雷的航行曲线为32)1(31)1(2321x x y490.根据经验可知, 某产品的纯利润L 与广告支出x 有如下关系)(d dLL A k x ,(其中0,0Ak ), 若不做广告, 即0x时纯利润为0L , 且AL 0, 试求纯利润L 与广告费x 之间的函数关系.解:依题意得)(L A k dx dL,|L L x, 解可分离变量得微分方程, 得通解kxCeAL , 将00|L L x 代入通解, 得AL C 0, 所以纯利润L 与广告费x 之间的函数关系为kxeA LAx L )()(.491.在宏观经济研究中, 知道某地区的国民收入y , 国民储蓄S 和投资I 均是时间t 的函数, 且在任一时刻t , 储蓄)(t S 为国民收入)(t y 的101, 投资额)(t I 是国民收入增长率t d dy的31.设0t时国民收入为5(亿元), 假定在时刻t 的储蓄全部用于投资,试求国民收入函数.解:依题意:yS101,dt dyI31, 解之得通解tCe y103, 将5|0ty 代入通解得5C, 所以国民收入函数为tey 1035492.试建立描述市场价格形成的动态过程的数学模型.解:设在某一时刻t , 商品的价格为)(t p , 因供需差价, 促使价格变动. 对新的价格,又有新的供需差, 如此不断地调节价格, 就构成了市场价格形成的动态过程.假设价格)(t p 的变化率dt dp与需求和供给之差成正比. 记需求函数为),(r p f , 供给函数为)(p g , 其中r 为参数. 于是得微分方程)](),([p g r p f k dtdp,)0(p p , 其中0p 为0t时商品的价格, k 为正常数.若需求供给函数均为线性函数, b kpr p f ),(, d cpp g )(, 则方程为)()(d b k p c k k dtdp ,)0(p p , 其中d c b k ,,,均为正常数, 其解为ckd b eckd b p t p tc k k )(0)()(下面对所得结果进行讨论:(1) 设p 为静态均衡价格, 则应满足0)(),(p g r p f , 即dpc bpk ,则c kdb p, 从而价格函数pep p t p c k k )(0)()(,取极限:pt p t)(lim .它表明: 市场价格逐步趋于均衡价格. 若初始价格p p 0, 则动态价格就维持在均衡价格p 上, 整个动态过程就变为静态过程.(2) 由于tc k k ec kk p pdtdp)(0)()(, 所以当p p 0时, 0dtdp,)(t p 单调下降向p 靠拢, 这说明: 初始价格高于均衡价格时,动态价格会逐渐降低, 逐渐接近均衡价格; 而当初始价格低于均衡价格时, 动态价格会逐渐增高, 逐渐接近均衡价格.。
偏微分方程数值解期末试题及参考答案
《偏微分方程数值解》试卷参考答案与评分标准专业班级信息与计算科学开课系室考试日期 2006.4.14命题教师王子亭偏微分方程数值解试题(06A)参考答案与评分标准信息与计算科学专业一(10分)、设矩阵A 对称正定,定义)(),(),(21)(n R x x b x Ax x J ∈-=,证明下列两个问题等价:(1)求n R x ∈0使 )(min )(0x J x J nRx ∈=;(2)求下列方程组的解:b Ax =解: 设n R x ∈0是)(x J 的最小值点,对于任意的n R x ∈,令),(2),()()()(2000x Ax x b Ax x J x x J λλλλϕ+-+=+=, (3分)因此0=λ是)(λϕ的极小值点,0)0('=ϕ,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若nR x ∈0满足bAx =0,则对于任意的x ,)(),(21)0()1()(00x J x Ax x x J >+==+ϕϕ,因此0x 是)(x J 的最小值点. (4分)评分标准:)(λϕ的表示式3分, 每问3分,推理逻辑性1分二(10分)、 对于两点边值问题:⎪⎩⎪⎨⎧==∈=+-=0)(,0)(),()(b u a u b a x f qu dxdu p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。
解: 设}0)()(),,(|{110==∈=b u a u b a H u u H 为求解函数空间,检验函数空间.取),(10b a H v ∈,乘方程两端,积分应用分部积分得到 (3分))().(),(v f fvdx dx quv dxdv dx du pv u a b a ba ==+=⎰⎰,),(10b a H v ∈∀ 即变分问题的Galerkin 形式. (3分)令⎰-+=-=b a dx fu qu dxdup u f u u a u J ])([21),(),(21)(22,则变分问题的Ritz 形式为求),(10*b a H u ∈,使)(min )(1*u J u J H u ∈= (4分)评分标准:空间描述与积分步骤3分,变分方程3分,极小函数及其变分问题4分,三(20分)、对于边值问题⎪⎩⎪⎨⎧=⨯=∈-=∂∂+∂∂∂0|)1,0()1,0(),(,12222G u G y x yux u (1)建立该边值问题的五点差分格式(五点棱形格式又称正五点格式),推导截断误差的阶。
微分方程数值解法答案
微分⽅程数值解法答案包括基本概念,差分格式的构造、截断误差和稳定性,这些内容是贯穿整个教材的主线。
解答问题关键在过程,能够显⽰出你已经掌握了书上的内容,知道了解题⽅法。
这次考试题⽬的类型:20分的选择题,主要是基本概念的理解,后⾯有五个⼤题,包括差分格式的构造、截断误差和稳定性。
习题⼀1.略2. y y x f -=),(,梯形公式:n n n n n n y hh y y y h y y )121(),(2111+-+=+-=+++,所以0122)1(01])121[()121()121(y hh y h h y h h y hhn h h n n n +--+--+-+=+-+==+-+= ,当0→h 时,x n e y -→。
同理可以证明预报-校正法收敛到微分⽅程的解.3.局部截断误差的推导同欧拉公式;整体截断误差:++++++-++≤1),())(,(11111n nx x n n n n n n n dx y x f x y x f R εε11)(++-++≤n n n y x y Lh R ε,这⾥R R n ≤ ⽽111)(+++-=n n n y x y ε,所以 R Lh n n +=-+εε1)1(,不妨设1()]11111[1111101---++-+-+-≤≤-+-=n n n n Lh Lh Lh R Lh Lh R Lh εεε ]1[2)(02)(00-+≤--x X L x X L eLh R eε4.中点公式的局部截断误差: dx x y x f hx y h x f x y x f yx y n n x x n n n n n n))](,(2)(,2())(,([)(11*1?+++-=-++dx x y x f hx y h x f h x y h x f h x y x y dxx y x f hx y h x f hx y h x f h x y h x f x y x f n n n n x x n n n n n n n x x n n n n n n n n))](,(2)(,2())2(,2([)]2()([))](,(2)(,2())2(,2())2(,2())(,([11++-++++'-'=++-+++++-=??++所以上式为+--+''=?++dx hx x x y e n nx x n n n )2()(11θdx x y x f h x y h x f h x y h x f n n n n x x n n n n))](,(2)(,2())2(,2([1++-++?+ 3218)(LMh h x y Lh e n n ≤+''≤+?中点公式的整体截断误差:dx y x f hy h x f x y x f y x y y x y n n x x n n n n n n n n)],(2,2())(,([)()(111?+++-+-=-++dxy x f hy h x f x y x f h x y h x f x y x f hx y h x f x y x f y x y n n n n n n n n x x n n n n n n n n))],(2,2()))(,(2)(,2()))(,(2)(,2())(,([)(1++-+++++-+-=?+因⽽n n n L h Lh R εεε)21(1+++≤+,R L h Lh n n +++≤-122)21(εε≤≤])21()21(1[2)21(1222222022-+++++++--+++n nL h Lh L h Lh Lh Lh RL h Lh ε )1(00-+≤--x X L x X L e LhR eε 5.略 6.略 7.略8.(1)欧拉法:2.0≤h ;四阶Runge-Kutta ⽅法:278.0≤h (2)欧拉法:3 54≤h ;四阶Runge-Kutta ⽅法:3556.5≤h(3)欧拉法:1≤h ;四阶Runge-Kutta ⽅法:278.0≤h 9.略 10.略习题21.略 2.略 3.略4.差分格式写成矩阵形式为:n n M n M n n n M n M n n e u u u u r t r r r t r r r t r r r t u u u u +?--------= --+-+-++12211221121212121 αβαααβαααβαααβ矩阵的特征值为:)cos(221Mj r r t j πααβλ+-?-=,要使格式稳定,则特征值须满⾜t c j ?+≤1λ,即21≤r α5.利⽤泰勒展式可以得到古典隐式差分格式的截断误差为)(2h t O +?。
(完整版)微分方程试题及部分应用题答案整理版
第十章 微分方程习题一.填空题:(33)1-1-40、 微分方程4233''4''')'(x y x y y =++的阶数是 . 1-2-41、 微分方程0'2'2=+-xy yy xy 的阶数是 . 1-3-42、 微分方程0d d d d 22=++s x sx s 的阶数是 .1-4-43、x y y y y sin 5''10'''4)()4(=-+-的阶数是 . 1-5-44、微分方程xy x y2d d =满足条件1|'0==x y 的特解是 . 1-6-45、微分方程0d d =+y x y的通解是 .1-7-46、方程y e y x='的通解是 . 1-8-47、 方程y y y ln '=的通解是 . 1-9-48、方程04'4''=+-y y y 的通解是 . 1-10-49、方程04'4''=+-y y y 的通解是 . 1-11-50、方程013'4''=+-y y y 的通解是 .1-12-51、已知特征方程的两个特征根,3,221-==r r 则二阶常系数齐次微分方程为1-13-52、微分方程xe y =''的通解为 . 1-14-53、微分方程x e y x sin ''2-=的通解为 . 1-15-54、若0d ),(dx ),(=+y y x Q y x P 是全微分方程, 则Q P ,应满足 . 1-16-55、与积分方程xy x f y x x d ),(0⎰=等价的微分方程初值问题是 .1-17-56、方程0d )2(d )(22=-++y xy x x y xy 化为齐次方程是 . 1-18-57、通解为21221,(C C e C e C y xx +=为任意常数)的微分方程为 .1-19-58、方程yx e y -=2'满足条件00==x y 的特解是 .1-19-59、方程0dy 1dx 2=-+x xy 化为可分离变量方程是1-20-60、方程xy y 2'=的通解是1-21-61、 方程x y xy x y x y d d d d 22=+化为齐次方程是1-22-62、 若t y ωcos =是微分方程09''=+y y 的解, 则=ω .1-23-63、若ktCe Q =满足Qdt dQ03.0-=, 则=k .1-24-64、y y 2'=的解是1-25-65、某城市现有人口50(万), 设人口的增长率与当时的人口数x (万)和x -1000的积成正比, 则该城市人口)(t x 所满足的微分方程为1-26-66、 圆222r y x =+满足的微分方程是1-27-67、 axae y =满足的微分方程是1-28-68、一阶线性微分方程)()(d dyx Q y x P x =+的通解是 .1-29-69、已知特征方程的两个根3,221-==r r , 则二阶常系数线性齐次微分方程为 .1-30-70、方程25x y =是微分方程y xy 2'=的 解.1-31-71、二阶常系数非齐次微分方程的结构为其一个特解与 之和. 1-32-72、二阶常系数齐次线性微分方程0'''=++qy py y 对应的特征方程有两个不等实根,则其通解为 .1-33-73、将微分方程0)2()(22=---dy xy x dx y xy 写成齐次微分方程的标准形式为二.选择题:(29)2-1-56、微分方程yx2dx dy=的通解是 ( )A.2x y = B. 25x y = C. 2Cx y = D.Cx y =2-2-57、 微分方程0dy 1dx 2=-+x xy 的通解是 ( ) A.21x ey -= B.21x Cey -= C.x C y arcsin = D. 21x C y -=2-3-58、下列方程中是全微分方程的是 ( )A.0dy dx )(2=--x y x B. 0dy dx =-x y C. 0dy )(1dx )1(=-++xy y xy D.0dy dx )(22=++xy y x 2-4-59、下列函数组中,线性无关的是 ( )A.x x e e 32,B.x x 2sin ,2cosC. x x x sin cos ,2sinD.2ln ,ln x x2-5-60、方程03'2''=--y y y 的通解是 ( )A.x x e C e C y 321--+=B. x x e C e C y 321+=C. x x e C e C y 321-+=D. x x e C e C y 321+=-2-6-61、方程0''=+y y 的通解是 ( ) A.x C y sin = B.x C y cos = C.x C x y cos sin += D.x C x C y cos sin 21+=2-7-62、 下列方程中是可分离变量的方程是 ( )A. xy y x -=33dx dyB.0dy 2dx )3(2=++xy y e x C. 234dx dy xy y x += D.y x xy y 321dx dy ++= 2-8-63、 微分方程0cot '=-x y y 的通解是 ( ) A. x C y cos = B. x C y sin = C. x C y tan = D. x C y csc =2-9-64、已知微分方程0''=+-p y y 的通解为)(212x C C e y x +=,则p 的值是 ( )A.1B.0C.21D.412-10-65、微分方程02'=-y y 的通解是 ( )A.C x y +=2sinB.C e y x +=24C.x Ce y 2=D. xCe y =2-11-66、方程xy 2dx dy=的通解是 ( )A.C e x +2B.Cxe+2C. 2Cx eD. 2)(C x e +2-12-67、 xe y -=''的通解为=y ( )A.x e --B. xe - C. 21C x C ex++- D. 21C x C e x ++--2-13-68、微分方程xe 21dx dy -=满足10-==x y 的特解为 ( )A.1221+-=-x ey B. 3221-=-x ey C. C ey x +-=-212 D.212121--=-xe y2-14-69、微分方程0ydy -dx 3=x 的通解是 ( )A.C y x =-2422B. C y x =+2422C. 02422=-y xD. 12422=+y x2-15-70、 微分方程0ydy -dx 3=x 的通解是 ( )A.222=+y xB. 933=+y xC. 133=+y x D. 13333=+y x2-16-71、 过点,0()2-的曲线,使其上每一点的切线斜率都比这点纵坐标大5的曲线方程是( )A.32-=x yB. 52+=x yC.53-=x e yD.5-=x Ce y 2-17-72、齐次方程x yxy tandx dy =化为可分离变量的方程, 应作变换 ( ) A. 2ux y = B. 22x u y = C. ux y = D.33x u y =2-18-73、 设方程)()('x Q y x P y =+有两个不同的解21,y y ,若21y y βα+也是方程的解,则( )A.βα=B. 0=+βαC. 1=+βαD. βα,为任意常数2-19-74、 方程dx 2dx dy y x x =+的通解是 ( )A.x Cx y +=2B. x x C y +=2sinC. C x y +=2cosD.C x y +=22-20-75、下面各微分方程中为一阶线性方程的是 ( )A.x y xy =+2' B .x xy y sin '=+ C .x yy =' D .xy y -=2'2-21-76、曲线上任一点P 的切线均与OP 垂直的曲线方程是 ( )A.y x y -=' B. y x y =' C. x y y -=' D. x y y ='2-22-77、方程2)3(,0'==+y y y 的解是 ( )A.x e y -=32B. x e y --=32C. 32-=x e yD. 32--=x e y2-23-78、 微分方程x y y ln '=的通解是 ( )A.x x e y ln =B. x x Ce y ln =C. x x x e y -=lnD. x x x Ce y -=ln2-24-79、下列哪个不是方程y y 4''=的解 ( )A. x e y 22=B. x e y 2=C. x e y 2-=D. x e y 2=2-25-80、方程0sin '''653)4(=-+++y y y y x xy y 的阶是 ( ) A. 6 B. 5 C. 4 D. 32-26-81、如果一条曲线在它任意一点的切线斜率等于y x2-,则这条曲线是( )A. 椭圆B. 抛物线C. 双曲线D. 圆2-27-82、下列可分离变量的方程是 ( )A. xy y x dx dy-=33 B.02)3(2=++xydy dx y e x C. xy yx dx dy += D.y x xy y dx dy 321++= 2-28-83、微分方程0cot '=-x y y 的通解是 ( ) A. x C y cos = B. x C y sin = C. x C y tan = D. x C y csc = 2-29-84、 已知微分方程0''=+-p y y 的通解为)(212x C C e y x +=,则p 的值( )A. 1B. 0C. 21D. 41三.计算题:(59)3-1-52、0d tan sec d tan sec 22=+y x y x y x 3-2-53、 0ln '=-y y xy3-3-54、0d sec )2(d tan 32=-+y y e x y e x x 3-4-55、y x y y x x y 22222')1(=-+- 3-5-56、 y xe y e x dx dy +-=- 3-6-57、 0)1()1(=-++xdy y ydx x3-7-58、 x x y y y x d sin cos d sin cos =,4|0π==x y3-8-59、0)0(,02')1(22==+-y xy y x 3-9-60、 1)(,ln 2'==e y x y y3-10-61、 x x y y y x d sin cos d sin cos =,4|0π==x y3-11-62、 0y)dx -(x dy )(=++y x3-12-63、 )ln (ln dx d x y y yx-=3-13-64、0)2(22=+-dy x dx xy y 3-14-65、x yx y xy tan'=-3-15-66、x yx y x y xy ++=-ln)('3-16-67、dx dy xy dx dy x y =+223-17-68、x y y x y +=', 2|1==x y3-18-69、x y x y y +=', e y e x ==|3-19-70、2|,'122=-=-=x y y x y xy3-20-71、x x y x y sin 1'=+, 1|==πx y 3-21-72、x e x y x y 43'=-3-22-73、 342'x xy y =-3-23-74、x y x y ln 11'=-3-24-75、x e y x x y x 21'=-+ 3-25-76、 x x y y sec tan '=-,|0==x y3-26-77、x x y x y sin 1'=+, 1|==πx y 3-27-78、22112'x y x xy +=+-, 0|0==x y3-28-79、x xy xy ln '=-, e y e x ==|3-29-80、 22d dyxxe xy x -+=3-30-81、)sin (cos d dy2x x y y x -=+ 3-31-82、5d dyxy y x =- 3-32-83、02d dy4=++xy xy x3-33-84、4)21(3131d dy y x y x -=+3-34-85、xy xy x 2d dy 2-= 3-35-86、x y y +='''3-36-87、01)'(''2=++y yy 3-37-88、01''3=+y y3-38-89、y y 3''=, 1|0==x y , 2|'0==x y3-39-90、223''yy =, 1|3==x y , 1|'3==x y3-40-91、02''=+y y 3-41-92、013'4''=++y y y 3-42-93、0'2''=+-y y y 3-43-94、04'5''=+-y y y 3-44-95、04'3''=--y y y ,|0==x y ,5|'0-==x y 3-45-96、029'4''=++y y y , 0|0==x y ,15|'0==x y3-46-97、0'4''4=++y y y , 2|0==x y , 0|'0==x y 3-47-98、0'4''4=++y y y ,2|0==x y ,|'0==x y 3-48-99、013'4''=+-y y y , 0|0==x y , 3|'0==x y3-49-100、04'4''=+-y y y ,|0==x y ,1|'0==x y3-50-101、xe y y y 2'''2=-+3-51-102、x e y y x cos ''+=+ 3-52-103、x e x y y y 3)1(9'6''+=+-3-53-104、'''22xy y y e --=3-54-105、123'2''+=--x y y y 3-55-106、''sin 20y y x ++=, 1|==πx y , 1|==πx y3-56-107、52'3''=+-y y y ,1|0==x y ,2|'0==x y3-57-108、xe y y y 29'10''=+-,76|0==x y ,733|'0==x y 3-58-109、xxe y y 4''=-, 0|0==x y , 1|'0==x y 3-59-110、xxe y y y 26'5''=+-四.应用解答题:(14)4-1-9、一曲线通过点)3,2(, 它在两坐标轴间的任一切线段均被切点所平分, 求这曲线方程.4-2-10、已知⎰--=+xx x y t t y t t 03231d )(12, 求函数)(x y4-3-13、求一曲线, 这曲线通过原点, 并且它在点),(y x 处的切线斜率等于y x =2.4-4-14、试求x y =''的经过点)1;0(M 且在此点与直线12+=xy 相切的积分曲线.4-5-15、设某曲线,它上面的任一点的切线与两坐标轴所围成的三角形面积总等于2,求这条曲线的方程所满足的微分方程. 4-6-16、已知某曲线经过点)1,1(, 它的切线在纵轴上的截距等于切点的横坐标,求它的方程.4-7-17、设可导函数)(x ϕ满足⎰+=+xx t t t x x 01d sin )(2cos )(ϕϕ, 求)(x ϕ.4-8-10、已知某商品需求量Q 对价格p 的弹性为22p Ep EQ-=, 最大需求量为1000=Q , 求需求函数)(p f Q =.4-9-11、设质量为m 的物体在高空中静止下落, 空气对物体运动的阻力与速度成正比. 求物体下落的数率v 与时间t 的关系, 再求物体下落距离与时间t 的关系 4-10-12、在串联电路中, 设有电阻R, 电感L 和交流电动势tE E ωsin 0=, 在时刻0=t 时接通电路, 求电流i 与时间t 的关系(0E , ω为常数).4-11-13、如图, 位于坐标原点的我舰向位于x 轴上)0,1(A 点处的敌舰发射制导鱼雷, 鱼雷始终对准敌舰, 设敌舰以常数0v 沿平行与y 轴的直线行驰,又设鱼雷的速度为2v , 求鱼雷的航行曲线方程.4-12-14、根据经验可知, 某产品的纯利润L 与广告支出x 有如下关系)(ddL L A k x -=,(其中0,0>>A k ), 若不做广告, 即0=x 时纯利润为L , 且AL <<00, 试求纯利润L 与广告费x 之间的函数关系.4-13-15、在宏观经济研究中, 知道某地区的国民收入y , 国民储蓄S 和投资I均是时间t 的函数, 且在任一时刻t , 储蓄)(t S 为国民收入)(t y 的101, 投资额)(t I 是国民收入增长率t d dy 的31. 设0=t 时国民收入为5(亿元), 假定在时刻t 的储蓄全部用于投资,试求国民收入函数.4-14-16、试建立描述市场价格形成的动态过程的数学模型.五.证明题:(2)5-1-18、设),(1x y )(2x y 是二阶齐次线性方程0)(')(''=++y x q y x p y 的两个解,令)()(')(')()(')(')()()(21212121x y x y x y x y x y x y x y x y x w -==证明: )(x w 满足方程0)('=+w x p w5-2-19、设1y , 2y , 3y 是线性方程)()(d dyx Q y x P x =+的3个相异特解,证明 1213y y y y --为一常数.部分应用题答案487.在串联电路中, 设有电阻R, 电感L 和交流电动势tE E ωsin 0=, 在时刻0=t 时接通电路, 求电流i 与时间t 的关系(0E , ω为常数).解. 设)(t i i =, 由回路电压定律tE dt diLRi ωsin 0=+, 即t L E L R dt di ωsin 0=+∴⎰+⎰⎰=-]sin [)(0C dt te L E e t i t dt LR L Rω=⎰+-]sin [0C dt te L E ett L R LR ω=)cos sin (2220t L t R L R E Cet LR ωωωω-++-将|0==t i 代入通解得2220L R LE C ωω+=∴)cos sin ()(2220t L t R Le L R E t i t LR ωωωωω-++=-488. 设质量为m 的物体在高空中静止下落, 空气对物体运动的阻力与速度成正比. 求物体下落的数率v 与时间t 的关系, 再求物体下落距离与时间t 的关系 解:.物体重力为mg w =, 阻力为kv R -=, 其中g 是重力加速度, k 是比例系数.由牛顿第二定律得kvmg dt dv m-=,从而得线性方程g v m kdt dv =+, 0|0==t v∴ ⎰--+=+⎰⎰=t m kdt dt Ce g k m C dt ge e v km m k ][, 将0|0==t v 代入通解得 g k m C -=∴ )1(tm k e g k m v --=, 再积分得122C ge k m gt k m S t m k++=-,将0|0==t S 代入求得g k m C 221-=∴ )1(22-+=-t m ke g k m gt k m S489. 如图, 位于坐标原点的我舰向位于x 轴上)0,1(A 点处的敌舰发射制导鱼雷, 鱼雷始终对准敌舰, 设敌舰以常数0v 沿平行与y 轴的直线行驰, 又设鱼雷的速度为2v , 求鱼雷的航行曲线方程.解:设鱼雷的航行曲线方程为)(x y y =, 在时刻t , 鱼雷的坐标巍巍),(y x P , 敌舰的坐标为),1(0t v Q .因鱼雷始终对准敌舰, 故x y t v y --=1'0, 又弧OP 的长度为⎰=-xtv dx y 0022'1,从以上两式消去tv 0得''121''')1(2y y y y x -+=--, 即2'121'')1(y y x +=-根据题意, 初始条件为0)0(=y , 0)0('=y令p y =', 原方程化为2121')1(p p x +=-, 它是可分离变量得方程,解得21)1(112--=++x C p p , 即21)1('1'12--=++x C y y 将0)0('=y 代入上式得11=C , 故21)1('1'2--=++x y y而21)1(''1'1'122--=-+=++x y y y y , 得2121)1()1(21'x x y -+-=-积分得22321)1(31)1(C x x y +-+--=, 将0)0(=y 代入上式得322=C , 所以鱼雷的航行曲线为32)1(31)1(2321+-+--=x x y490.根据经验可知, 某产品的纯利润L 与广告支出x 有如下关系 )(ddL L A k x -=,(其中0,0>>A k ), 若不做广告, 即0=x 时纯利润为0L , 且A L <<00, 试求纯利润L 与广告费x 之间的函数关系.解:依题意得)(L A k dx dL-=,00|LL x ==, 解可分离变量得微分方程, 得通解 kx Ce A L -+=, 将00|L L x ==代入通解, 得A L C -=0, 所以纯利润L 与广告费x 之间的函数关系为kxe A L A x L --+=)()(.491.在宏观经济研究中, 知道某地区的国民收入y , 国民储蓄S 和投资I 均是时间t 的函数, 且在任一时刻t , 储蓄)(t S 为国民收入)(t y 的101, 投资额)(t I 是国民收入增长率t d dy 的31.设0=t 时国民收入为5(亿元), 假定在时刻t 的储蓄全部用于投资,试求国民收入函数.解:依题意:y S 101=, dt dy I ⋅=31, 解之得通解t Ce y 103=, 将5|0==t y 代入通解得5=C , 所以国民收入函数为te y 1035=492.试建立描述市场价格形成的动态过程的数学模型. 解:设在某一时刻t , 商品的价格为)(t p , 因供需差价, 促使价格变动. 对新的价格,又有新的供需差, 如此不断地调节价格, 就构成了市场价格形成的动态过程.假设价格)(t p 的变化率dt dp与需求和供给之差成正比. 记需求函数为),(r p f , 供给函数为)(p g , 其中r 为参数. 于是得微分方程)](),([p g r p f k dt dp-=,0)0(pp =, 其中p 为0=t 时商品的价格, k 为正常数.若需求供给函数均为线性函数, b kp r p f +-=),(, d cp p g +=)(, 则方程为)()(d b k p c k k dt dp-++=,0)0(pp =, 其中d c b k ,,,均为正常数, 其解为c k db ec kd b p t p t c k k +-++--=+-)(0)()(下面对所得结果进行讨论:(1) 设p 为静态均衡价格, 则应满足0)(),(=-p g r p f , 即d p c b p k +=+-,则c k db p +-=, 从而价格函数p e p p t p c k k +-=+-)(0)()(,取极限: p t p t =∞→)(lim .它表明: 市场价格逐步趋于均衡价格. 若初始价格p p =0 , 则动态价格就维持在均衡价格p 上, 整个动态过程就变为静态过程.(2) 由于t c k k e c k k p p dt dp )(0)()(+-+-=, 所以当p p >0时, 0<dt dp, )(t p 单调下降向p靠拢, 这说明: 初始价格高于均衡价格时,动态价格会逐渐降低, 逐渐接近均衡价格; 而当初始价格低于均衡价格时, 动态价格会逐渐增高, 逐渐接近均衡价格.。
高数测试题十(微分方程)答案
高等数学测试题(十)微分方程部分(答案)一、选择题(每小题4分,共20分) 1、若 12,y y 是方程 ()()(()y P x y Q x Q x '+=≡0) 的两个特解,要使12y y αβ+ 也是解,则 α 与 β 应满足的关系是( D )A 12αβ+=B 1αβ+=C 0αβ=D 12αβ== 2、下列方程中为全微分方程的是( C ) A 22(22)(1)0xy y dx x y dy ---+-= B 2222()()0x xy dx y x y dy ---= C 22(1)20e d e d θθρρθ--+-= D 22()(2)0x y dx xy x dy +++=3、设 λ 为实常数,方程 220y y y λλ'''++= 的通解是( D )A 12x C e C λ-+B 12cos sinC x C x λλ+ C 12(cos sin )x e C x C x λλλ-+D 12()x C C x e λ-+ 4、方程 22cos x y y y e x '''-+= 的特解 *y 形式为( B ) A cos xaxe x B cos sin xxaxe x bxe x + C 22cos sin xxax e x bx e x + D 2cos xax e x 5、已知 0()xxy e y t dt =+⎰,则函数 ()y x 的表达式为( D )A xy xe C =+ B xy xe = C xxy xe Ce =+ D (1)xy x e =+ 二、填空题(每小题4分,共20分)1、 方程212y dy dx x e=+ 的通解是 2()y x e y C =+ 2、 方程 (1)x y y '-= 的通解是 (ln )y x x C =+3、 以 2212,x x y e y xe == 为特解的二阶常系数线性齐次微分方程为440y y y '''-+=4、 已知方程 0y y ''-= 的积分曲线在点 (0,0)O 处与直线 y x = 相切,则该积分曲线的方程为 1()2x xy e e shx -=-= 5、 方程 0xdy ydx -= 的一个只含有 x 的积分因子为 21xμ= 三、(共60分)1、(8分)求方程 (1)(223)0y x dx y x dy -+--+= 的通解 解:令 1y x u -+=,则 dy du dx =+,代入原方程得(1)(21)u dx u du -+=+ 即 1(2)1du dx u -=-+,两边积分得 12ln(1)u u x C -+=-+,代回原方程,得通解2ln(2)y x y x C ---+=2、(6分)求方程 22(1)(233)x dy xy x dx +=++的通解 解:方程改写为 2231xy y x'-=+,则通解为 22ln(1)ln(1)2[3](1)(3arctan )x x y e e dx C x C x +-+=+=++⎰3、(8分)求微分方程 21(1)()02yy xe dx x e y dy +++= 的通解解:设 21(,)1,(,)2yy P x y xe Q x y x e y =+=+有y P Qxe y x∂∂==∂∂ ,则原方程为全微分方程,于是 2222001111(,)(1)()2222x y y y u x y x dx x e y dy x x x e y =+++=+++⎰⎰故 原方程的通解为 2222y x x x e y C +++=4、(10分)求解 2312,(0)1,(0)2yy y y y y ''''+===解:此方程不含x ,令 y P '=,则 dPy Pdy''=,原方程化为 232212,2dP dP yPP y P P y dy dy y+=+= 此方程为贝努力方程,令 2P z =,上述方程化为21dz z y dy y+= 则 ln 2ln 1[]yy z ey e dy C -=+⎰, 即 24311111()44C y y C y y y'=+=+,由初始条件 1(0)1,(0)2y y '==得 10C =,于是,方程化为 2314y y '=,或3212dy y dx =± 由初始条件应取3212dy y dx =,即 3212y dy dx -=,积分得214x C =-+,再由初始条件(0)1y =得 21C =,所以原方程的特解为114x =- 或 21(1)4y x =-5、(6分)求方程 (4)30yy ''+= 的通解解:特征方程为 4230r r +=,特征根为 123,40,r r r ===方程的通解为 1234y C C x C C =+++ 6、(10分)求方程 223y y x '''+=- 的通解解:对应的齐次方程为 0y y '''+=,其特征方程为 20r r +=特征根为 120,1r r ==-,齐次方程的通解为 12x Y C C e -=+因 0λ= 是特征方程的单根,所以非齐次方程的特解形式为 *2012()y x b x b x b =++ 代入原方程,比较系数得 0122,2,13b b b ==-=,于是得到一个特解 *22(21)3y x x x =-+,所求方程的通解为*2122(21)3xy Y y C C e x x x -=+=++-+7、(12分)求满足条件 (0)1,(0)1f f '=-= 且具有二阶连续导数的函数()f x ,使方程 3()[sin 2()]02f x ydx x f x dy '+-= 是全微分方程。
微分方程数值解法数值计算实验题目
y
x
数 值 解 和 精 确 解 的 误 差 曲 面 (N=8)
0.05
u
0
-0.05 1 4 0.5 1 0 3 2 0
y
xቤተ መጻሕፍቲ ባይዱ
数 值 解 和 精 确 解 的 误 差 曲 面 (N=16)
0.02
0.01
u
0
-0.01
-0.02 1 4 0.5 1 0 3 2 0
y
x
数 值 解 和 精 确 解 的 误 差 曲 面 (N=32)
y
x
Δu -0.0006 -0.0000 0.0006 -0.0009 -0.0000 0.0009 -0.0006 -0.0000 0.0006
程序运行中,请稍等…… =================================================================== i 1.0000 1.0000 1.0000 2.0000 2.0000 2.0000 3.0000 3.0000 3.0000 j xi yj u(精确) u1(数值) ------------------------------------------------------------------1.0000 0.7854 0.2500 -0.0265 -0.0271 2.0000 3.0000 1.0000 2.0000 3.0000 1.0000 2.0000 3.0000 0.7854 0.7854 1.5708 1.5708 1.5708 2.3562 2.3562 2.3562 0.5000 0.7500 0.2500 0.5000 0.7500 0.2500 0.5000 0.7500 -0.0000 0.0265 -0.0375 -0.0000 0.0375 -0.0265 -0.0000 0.0265 -0.0000 0.0271 -0.0384 -0.0000 0.0384 -0.0271 -0.0000 0.0271
(完整版)微分方程试题及部分应用题答案整理版
第十章微分方程习题一.填空题:(33)1-1-40、微分方程4233''4''')'(x y x y y 的阶数是 . 1-2-41、微分方程0'2'2xy yy xy 的阶数是 . 1-3-42、微分方程0d d d d 22sxs x s的阶数是 .1-4-43、x y y y y sin 5''10'''4)()4(的阶数是 .1-5-44、微分方程xyxy2d d 满足条件1|'0xy 的特解是 .1-6-45、微分方程0d d yxy的通解是 .1-7-46、方程y e y x'的通解是 . 1-8-47、方程y y y ln '的通解是 .1-9-48、方程04'4''y y y 的通解是 . 1-10-49、方程04'4''y y y 的通解是 . 1-11-50、方程013'4''yy y 的通解是 .1-12-51、已知特征方程的两个特征根,3,221r r 则二阶常系数齐次微分方程为1-13-52、微分方程xe y ''的通解为 . 1-14-53、微分方程x e y xsin ''2的通解为 .1-15-54、若0d ),(dx ),(yy x Q y x P 是全微分方程, 则Q P,应满足 .1-16-55、与积分方程xy x f yx x d ),(0等价的微分方程初值问题是 .1-17-56、方程0d )2(d )(22yxy xx y xy 化为齐次方程是 .1-18-57、通解为21221,(C C e C eC yxx 为任意常数)的微分方程为 .1-19-58、方程yx e y 2'满足条件0xy 的特解是 .1-19-59、方程0dy1dx2x xy 化为可分离变量方程是1-20-60、方程xy y 2'的通解是1-21-61、方程x yxyxy xyd d d d 22化为齐次方程是1-22-62、若t ycos 是微分方程09''yy 的解, 则.1-23-63、若ktCe Q 满足Qdt dQ03.0, 则k.1-24-64、y y 2'的解是1-25-65、某城市现有人口50(万), 设人口的增长率与当时的人口数x (万)和x 1000的积成正比, 则该城市人口)(t x 所满足的微分方程为1-26-66、圆222r yx 满足的微分方程是1-27-67、ax ae y满足的微分方程是1-28-68、一阶线性微分方程)()(d dyx Q yx P x的通解是 .1-29-69、已知特征方程的两个根3,221r r , 则二阶常系数线性齐次微分方程为 .1-30-70、方程25x y是微分方程y xy 2'的解.1-31-71、二阶常系数非齐次微分方程的结构为其一个特解与之和.1-32-72、二阶常系数齐次线性微分方程0'''qypy y 对应的特征方程有两个不等实根,则其通解为 .1-33-73、将微分方程0)2()(22dyxy xdxy xy写成齐次微分方程的标准形式为二.选择题:(29)2-1-56、微分方程yx2dxdy 的通解是 ( )A.2x yB.25x y C.2Cx yD.Cxy 2-2-57、微分方程0dy 1dx 2x xy 的通解是 ( ) A.21x eyB.21x CeyC.x C yarcsin D.21xC y 2-3-58、下列方程中是全微分方程的是 ( )A.0dy dx )(2x y xB. 0dy dx x yC.0dy)(1dx)1(xy y xy D.dydx)(22xy y x2-4-59、下列函数组中,线性无关的是 ( ) A.xxe e 32, B.x x 2sin ,2cos C. x x x sin cos ,2sin D.2ln ,ln xx 2-5-60、方程03'2''y y y 的通解是 ( )A.xxe C eC y 321 B. xxeC eC y 321 C.xx eC eC y 321 D.xxeC e C y3212-6-61、方程0''y y 的通解是 ( ) A.x C ysin B.x C ycos C.x C xycos sin D.xC xC ycos sin 212-7-62、下列方程中是可分离变量的方程是( )A.xyyx 33dxdy B.dy 2dx)3(2xy y exC.234dxdy xyyx D.yx xyy321dxdy 2-8-63、微分方程0cot 'x y y 的通解是 ( ) A.x C ycos B.x C ysin C.x C ytan D.xC ycsc2-9-64、已知微分方程0''pyy 的通解为)(212x C C e yx,则p 的值是 ( )A.1B.0C.21D.412-10-65、微分方程02'yy 的通解是 ( )A.C x y2sin B.C eyx24 C.xCe y2 D.xCey 2-11-66、方程xy2dx dy的通解是 ( )A.C ex2B.Cxe2C.2CxeD.2)(C x e2-12-67、xe y ''的通解为y( )A.xe B.xe C.21C xC exD.21C x C ex2-13-68、微分方程xe21dxdy满足1xy 的特解为 ( )A.1221xeyB.3221x ey C.C ey x212 D.212121xey2-14-69、微分方程0ydy-dx 3x 的通解是 ( ) A.Cyx2422B.Cyx2422C.2422yxD.12422yx2-15-70、微分方程0ydy-dx 3x 的通解是 ( )A.222yxB.933yxC.133yxD.13333yx2-16-71、过点,0()2的曲线,使其上每一点的切线斜率都比这点纵坐标大5的曲线方程是( )A.32xyB.52xy C.53xey D.5xCe y 2-17-72、齐次方程x yxy tandx dy化为可分离变量的方程, 应作变换 ( )A.2ux yB.22x u yC.ux yD.33xu y2-18-73、设方程)()('x Q y x P y 有两个不同的解21,y y ,若21y y 也是方程的解,则( ) A.B.0 C. 1 D.,为任意常数2-19-74、方程dx 2dx dy y x x 的通解是 ( ) A.x Cxy2B. x xC y2sin C.C xy 2cos D.Cxy 22-20-75、下面各微分方程中为一阶线性方程的是 ( )A.xyxy 2'B .xxyy sin 'C .xyy' D.xyy 2'2-21-76、曲线上任一点P 的切线均与OP 垂直的曲线方程是 ( )A.y xy' B.y xy'C.x yy' D.xy y'2-22-77、方程2)3(,0'y yy 的解是 ( )A.xey 32 B.xey 32 C.32x ey D.32x ey 2-23-78、微分方程x y y ln '的通解是 ( ) A.xx eyln B. xx Ceyln C.xx x ey ln D.xx x Cey ln 2-24-79、下列哪个不是方程y y 4''的解 ( )A. xey22 B.xe y2 C.xey 2 D.xey 22-25-80、方程0sin '''653)4(yy y y x xyy的阶是 ( )A. 6B. 5C. 4D. 32-26-81、如果一条曲线在它任意一点的切线斜率等于y x2,则这条曲线是( )A.椭圆 B.抛物线 C.双曲线 D. 圆2-27-82、下列可分离变量的方程是 ( )A.xyy x dxdy33B.2)3(2xydy dxy exC. xy yx dxdy D.yx xyy dxdy 3212-28-83、微分方程0cot 'xy y 的通解是 ( )A.x C ycos B.x C ysin C.x C ytan D.xC y csc 2-29-84、已知微分方程0''pyy 的通解为)(212x C C e yx ,则p 的值( )A. 1B. 0C.21D.41三.计算题:(59)3-1-52、0d tan sec d tan sec 22y x y x y x 3-2-53、0ln 'yy xy 3-3-54、0d sec )2(d tan 32yy e x y e x x3-4-55、yx y y x xy22222')1(3-5-56、yx eye x dxdy3-6-57、0)1()1(xdy y ydxx3-7-58、x x y yy x d sin cos d sin cos ,4|0xy 3-8-59、0)0(,02')1(22y xy y x3-9-60、1)(,ln 2'e y x y y 3-10-61、x x y y y x d sin cos d sin cos ,4|0xy 3-11-62、0y)dx -(x dy)(y x3-12-63、)ln (ln dx d x y y y x 3-13-64、0)2(22dyx dx xy y3-14-65、xy x y xy tan'3-15-66、xyx y x y xy ln)('3-16-67、dxdy xydxdy xy223-17-68、x y yx y', 2|1x y 3-18-69、x y xy y', ey ex|3-19-70、2|,'122xy y xyxy3-20-71、xx yxy sin 1', 1|xy 3-21-72、xex y xy 43'3-22-73、342'xxyy 3-23-74、xyxy ln 11'3-24-75、xeyxxy x21'3-25-76、x xy y sec tan ', 0|0xy 3-26-77、xx yxy sin 1', 1|xy 3-27-78、22112'xy xx y ,|0xy 3-28-79、x x yxy ln ', ey ex|3-29-80、22d dyx xexy x3-30-81、)sin (cos d dy2x xy yx3-31-82、5d dyxyy x3-32-83、02d dy4xyxy x3-33-84、4)21(3131d dy yx yx3-34-85、xyxy x 2d dy23-35-86、xy y '''3-36-87、01)'(''2y yy 3-37-88、01''3y y 3-38-89、y y 3'', 1|0xy , 2|'0xy 3-39-90、223''yy ,1|3xy ,1|'3xy 3-40-91、02''yy 3-41-92、013'4''y y y 3-42-93、0'2''y y y 3-43-94、04'5''y y y 3-44-95、04'3''y y y , 0|0xy , 5|'0xy 3-45-96、029'4''y y y , 0|0x y ,15|'0xy 3-46-97、0'4''4y y y , 2|0x y , 0|'0x y 3-47-98、0'4''4y y y , 2|0xy , 0|'0xy 3-48-99、013'4''y y y , 0|0x y , 3|'0x y 3-49-100、04'4''y y y , 0|0x y , 1|'0xy 3-50-101、xey y y 2'''23-51-102、x eyy xcos ''3-52-103、xex y y y 3)1(9'6''3-53-104、'''22xy y ye3-54-105、123'2''x y y y 3-55-106、''sin 20y yx, 1|xy , 1|xy 3-56-107、52'3''yy y , 1|0xy , 2|'0xy 3-57-108、xe y y y 29'10'',76|0x y ,733|'0x y 3-58-109、xxe yy 4'', 0|0xy , 1|'0xy 3-59-110、xxeyy y 26'5''四.应用解答题:(14)4-1-9、一曲线通过点)3,2(, 它在两坐标轴间的任一切线段均被切点所平分, 求这曲线方程.4-2-10、已知xxxy t t y tt 03231d )(12, 求函数)(x y 4-3-13、求一曲线, 这曲线通过原点, 并且它在点),(y x 处的切线斜率等于y x2.4-4-14、试求x y ''的经过点)1;0(M 且在此点与直线12x y相切的积分曲线.4-5-15、设某曲线,它上面的任一点的切线与两坐标轴所围成的三角形面积总等于2,求这条曲线的方程所满足的微分方程. 4-6-16、已知某曲线经过点)1,1(, 它的切线在纵轴上的截距等于切点的横坐标,求它的方程.4-7-17、设可导函数)(x 满足xx t t t x x 01d sin )(2cos )(, 求)(x .4-8-10、已知某商品需求量Q 对价格p 的弹性为22pEpEQ, 最大需求量为1000Q, 求需求函数)(p f Q.4-9-11、设质量为m 的物体在高空中静止下落, 空气对物体运动的阻力与速度成正比. 求物体下落的数率v 与时间t 的关系, 再求物体下落距离与时间t 的关系4-10-12、在串联电路中, 设有电阻R, 电感L 和交流电动势tE Esin 0, 在时刻0t时接通电路, 求电流i 与时间t 的关系(0E ,为常数).4-11-13、如图, 位于坐标原点的我舰向位于x 轴上)0,1(A 点处的敌舰发射制导鱼雷, 鱼雷始终对准敌舰, 设敌舰以常数0v 沿平行与y 轴的直线行驰, 又设鱼雷的速度为02v , 求鱼雷的航行曲线方程.4-12-14、根据经验可知, 某产品的纯利润L 与广告支出x 有如下关系)(d dL L Ak x,(其中0,0Ak), 若不做广告, 即0x时纯利润为0L , 且A L 0, 试求纯利润L 与广告费x 之间的函数关系.4-13-15、在宏观经济研究中, 知道某地区的国民收入y , 国民储蓄S 和投资I均是时间t 的函数, 且在任一时刻t , 储蓄)(t S 为国民收入)(t y 的101,投资额)(t I 是国民收入增长率t d dy的31. 设0t时国民收入为5(亿元), 假定在时刻t 的储蓄全部用于投资,试求国民收入函数.4-14-16、试建立描述市场价格形成的动态过程的数学模型.五.证明题:(2)5-1-18、设),(1x y )(2x y 是二阶齐次线性方程0)(')(''y x q y x p y 的两个解,令)()(')(')()(')(')()()(21212121x y x y x y x y x y x y x y x y x w 证明: )(x w 满足方程0)('wx p w5-2-19、设1y , 2y , 3y 是线性方程)()(d dyx Q y x P x的3个相异特解,证明1213y y y y 为一常数.部分应用题答案487.在串联电路中, 设有电阻R, 电感L 和交流电动势tE Esin 0, 在时刻0t时接通电路, 求电流i 与时间t 的关系(0E ,为常数).解. 设)(t i i, 由回路电压定律tE dtdi LRisin 0, 即tLE LR dtdisin 0]sin [)(0C dt teLE et i t dtLRLR =]sin [0C dt te LE et t LR LR =)cos sin (2220t L t R LRE CetLR将0|0ti 代入通解得222LRLE C)cos sin ()(2220t L t R LeLRE t i t LR488.设质量为m 的物体在高空中静止下落, 空气对物体运动的阻力与速度成正比. 求物体下落的数率v 与时间t 的关系, 再求物体下落距离与时间t 的关系解:.物体重力为mg w, 阻力为kv R , 其中g 是重力加速度, k 是比例系数.由牛顿第二定律得kvmg dtdv m ,从而得线性方程gv mk dtdv ,|0tv tmkdtdtCeg km C dt gee v km m k ][, 将0|0tv 代入通解得gkm C)1(t mk eg km v, 再积分得122C gekm gtkm Stmk,将0|0t S 代入求得gkm C 221)1(22t mkeg km gtkm S 489. 如图, 位于坐标原点的我舰向位于x 轴上)0,1(A 点处的敌舰发射制导鱼雷, 鱼雷始终对准敌舰, 设敌舰以常数0v 沿平行与y 轴的直线行驰, 又设鱼雷的速度为2v , 求鱼雷的航行曲线方程.解:设鱼雷的航行曲线方程为)(x y y, 在时刻t , 鱼雷的坐标巍巍),(y x P , 敌舰的坐标为),1(0t v Q .因鱼雷始终对准敌舰, 故x yt v y 1'0, 又弧OP 的长度为x tv dxy 0022'1,从以上两式消去t v 0得''121''')1(2y y y y x , 即2'121'')1(y y x 根据题意, 初始条件为0)0(y , 0)0('y 令p y', 原方程化为2121')1(pp x , 它是可分离变量得方程,解得21)1(112x C pp , 即21)1('1'12x C y y 将0)0('y 代入上式得11C , 故21)1('1'2x y y 而21)1(''1'1'122x y y y y , 得2121)1()1(21'x x y 积分得22321)1(31)1(C x x y, 将0)0(y 代入上式得322C ,所以鱼雷的航行曲线为32)1(31)1(2321x x y490.根据经验可知, 某产品的纯利润L 与广告支出x 有如下关系)(d dLL A k x ,(其中0,0Ak ), 若不做广告, 即0x时纯利润为0L , 且AL 0, 试求纯利润L 与广告费x 之间的函数关系.解:依题意得)(L A k dx dL,|L L x, 解可分离变量得微分方程, 得通解kxCeAL , 将00|L L x 代入通解, 得AL C 0, 所以纯利润L 与广告费x 之间的函数关系为kxeA LAx L )()(.491.在宏观经济研究中, 知道某地区的国民收入y , 国民储蓄S 和投资I 均是时间t 的函数, 且在任一时刻t , 储蓄)(t S 为国民收入)(t y 的101, 投资额)(t I 是国民收入增长率t d dy的31.设0t时国民收入为5(亿元), 假定在时刻t 的储蓄全部用于投资,试求国民收入函数.解:依题意:yS101,dt dyI31, 解之得通解tCe y103, 将5|0ty 代入通解得5C, 所以国民收入函数为tey 1035492.试建立描述市场价格形成的动态过程的数学模型.解:设在某一时刻t , 商品的价格为)(t p , 因供需差价, 促使价格变动. 对新的价格,又有新的供需差, 如此不断地调节价格, 就构成了市场价格形成的动态过程.假设价格)(t p 的变化率dt dp与需求和供给之差成正比. 记需求函数为),(r p f , 供给函数为)(p g , 其中r 为参数. 于是得微分方程)](),([p g r p f k dtdp,)0(p p , 其中0p 为0t时商品的价格, k 为正常数.若需求供给函数均为线性函数, b kpr p f ),(, d cpp g )(, 则方程为)()(d b k p c k k dtdp ,)0(p p , 其中d c b k ,,,均为正常数, 其解为ckd b eckd b p t p tc k k )(0)()(下面对所得结果进行讨论:(1) 设p 为静态均衡价格, 则应满足0)(),(p g r p f , 即dpc bpk ,则c kdb p, 从而价格函数pep p t p c k k )(0)()(,取极限:pt p t)(lim .它表明: 市场价格逐步趋于均衡价格. 若初始价格p p 0, 则动态价格就维持在均衡价格p 上, 整个动态过程就变为静态过程.(2) 由于tc k k ec kk p pdtdp)(0)()(, 所以当p p 0时, 0dtdp,)(t p 单调下降向p 靠拢, 这说明: 初始价格高于均衡价格时,动态价格会逐渐降低, 逐渐接近均衡价格; 而当初始价格低于均衡价格时, 动态价格会逐渐增高, 逐渐接近均衡价格.。
微分方程考试大题.doc
《微分方程》考试大题(以下知识点都很重要)(上次发的考试复习上有几处错误或考题有变化(下面已更改):P1的①、P5的5、P6中PMECME 模式的M: C = O w-C ]要作相应的修改(见下面%5 + 740相应的题目)) (考试会有多选题)①方法的相容阶、收敛阶、绝对稳定性、零稳定性及它们的相互关系'单步方法:相容阶=收敛阶初值至少P 阶收敛计算得到'多步方法:、方法是P 阶相容的> 卩阶收敛的多步方法满足根条件「5级4阶⑤ ode45, R-K-F 方法构造原理• ~ ~ (见十张讲义中的第5面)16级5阶(可能以填空题形式出现)ode45的主要思想是R-K-F 方法构造原理 ------------ 以5级4阶方法 作预估,以6级5阶方法进行校正。
⑥ Richardson 外推法(提髙阶的方法)(见十张讲义屮的第5面)Richardson 外推法用来提高精度阶大题:1. 构造方法(见复印的复习资料)求出以下方法的各个系数Adams 外插:Adams 内插:Gear 方法:三步方法:三步Adams 夕卜插“,心丄其中Mr 啗/=()/=07=0 JZQ A _; = /Z /W 其中 C U =/=0(-l/Ooi(k=2); 三步Gear方法(k=3);二步方法:二步 Adams 外插(k=l); 二步 Gear 方法(k=2);(下而的叙述多以二步四阶Milne 方法为例进行说明)2. 误差常数(P27表中误差常数和一些特殊方法误差常数的推导过程,不过一般方程表达式 会给出)3. 相容阶14 1二步四阶方法(Milne 方法):“,,+2 = + /z(3 又+2 + ■又+1 +-/J 1 4 1其中,a o =-i ,汉i =o,汉2=1,A )=-,為=了,=q +1 = 0, c*| — 6^ + 2—(Ao+A + 爲)=0从而知二步四阶方法(Milne 方法)的误差为L\u(t)Ji\ = -+o(h 6) = <?(/?) = o(h 4+1)则该方法是4阶相容的。
最新偏微分方程数值解试题参考答案
偏微分方程数值解一(10分)、设矩阵A 对称正定,定义)(),(),(21)(n R x x b x Ax x J ∈-=,证明下列两个问题等价:(1)求n R x ∈0使)(min )(0x J x J n Rx ∈=;(2)求下列方程组的解:b Ax = 解: 设n R x ∈0是)(x J 的最小值点,对于任意的n R x ∈,令),(2),()()()(2000x Ax x b Ax x J x x J λλλλϕ+-+=+=, (3分)因此0=λ是)(λϕ的极小值点,0)0('=ϕ,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若nR x ∈0满足bAx =0,则对于任意的x ,)(),(21)0()1()(00x J x Ax x x J >+==+ϕϕ,因此0x 是)(x J 的最小值点. (4分)评分标准:)(λϕ的表示式3分, 每问3分,推理逻辑性1分二(10分)、对于两点边值问题:⎪⎩⎪⎨⎧==∈=+-=0)(,0)(),()(b u a u b a x f qu dxdu p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。
解: 设}0)()(),,(|{11==∈=b u a u b a H u u H 为求解函数空间,检验函数空间.取),(10b a H v ∈,乘方程两端,积分应用分部积分得到 (3分))().(),(v f fvdx dx quv dxdv dx du p v u a b a ba ==+=⎰⎰,),(1b a H v ∈∀ 即变分问题的Galerkin 形式. (3分)令⎰-+=-=b a dx fu qu dxdup u f u u a u J ])([21),(),(21)(22,则变分问题的Ritz 形式为求),(1*b a H u ∈,使)(m in )(10*u J u J H u ∈= (4分) 评分标准:空间描述与积分步骤3分,变分方程3分,极小函数及其变分问题4分,三(20分)、对于边值问题⎪⎩⎪⎨⎧=⨯=∈-=∂∂+∂∂∂0|)1,0()1,0(),(,12222G u G y x yux u (1)建立该边值问题的五点差分格式(五点棱形格式又称正五点格式),推导截断误差的阶。
微分方程数值解试卷
中国矿业大学2008~2009学年第 1 学期 《微分方程数值解法》试卷(B )卷考试时间:100 分钟 考试方式:半开卷学院 班级 姓名 序号1、下面关于Euler 公式的结论哪些是正确的(打√)?哪些是错误的(打×)? (1)二阶方法;(2)一阶方法;(3)显式公式;(4)隐式公式;(5)是数值稳定的。
2、如果微分方程为,(0)1u tu u '==,则用Taylor 级数法求()u h 时,它的前两项为: 。
3、二阶差商1122i i i u u u h +--+近似二阶导数()i u x ''局部截断误差为 。
4、算术平均112i i u u +-+近似函数值()i u x 的局部截断误差为 。
5、在课本P98差分方程(3.10)中,第二个方程的局部误差是什么? 。
6、函数空间0()C I ∞中函数满足什么性质? 。
二、(10分)求解常系数齐次差分方程21120,1,2,1,1i i i u u u i u u ++-+==⎧⎨=-=⎩的解。
三、(25分)已知数值解公式21132(2)m m m m m u u u h f f +++-+=- (1)写出与它们对应的特征多项式。
(2)这个多步法相容吗?(3)利用课本P47公式(2.66)求公式的局部截断误差的主项。
(4)讨论这个算法的零稳定性。
(5)求这个算法的绝对稳定区间。
四、(10分)试利用初值问题的数值解公式1111(,)(,)n n n n n n n n u u hf x u u u hf x u ++++=+⎧⎨=+⎩ (1)构造一个PECE 预测校正系统;(2)如果用它来求解初值问题 01(0)1u t u t u '=+≤≤⎧⎨=⎩,当步长0.1h =时求出()u h 的近似值。
五、(15分)给定一个两点边值问题如下,01(0)0,(1)2(1)1u u x x u u u ''-+=<<⎧⎨'=+=⎩(1)试求它所对应的变分问题(,)()a u v f v =,要指明所使用的函数空间。
偏微分方程数值解期末试题及参考答案
偏微分方程数值解期末试题及参考答案A卷2005—2006学年第2学期《偏微分方程数值解》试卷参考答案与评分标准专业班级信息与计算科学开课系室考试日期命题教师王子亭题号一二三四五六七八总分得分阅卷人偏微分方程数值解试题(06A) 参考答案与评分标准信息与计算科学专业1一、设矩阵A对称正定,定义J(x)?(Ax,x)?(b,x)(x?Rn),证明下2J(x);(2)求下列方程组的解:列两个问题等价:(1)求x0?Rn使J(x0)?minnx?RAx?b 解: 设x0?Rn 是J(x)的最小值点,对于任意的x?Rn,令?(?)?J(x0??x)?J(x0)??(Ax0?b,x)?? 22(Ax,x),(3分) 因此??0是?(?)的极小值点,?’(0)?0,即对于任意的x?Rn,(Ax0?b,x)?0,特别取x?Ax0?b,则有(Ax0?b,Ax0?b)?||Ax0?b||2?0,得到Ax0?b. (3分)反之,若x0?Rn满足Ax0?b,则对于任意的1x,J(x0?x)??(1)??(0)?(Ax,x)?J(x0),因此x0是J(x)的最小值点. (4分) 2评分标准:?(?)的表示式3分, 每问3分,推理逻辑性1分ddu??Lu??(p)?qu?fx?(a,b)二、对于两点边值问题:? dxdx??u(a)?0,u(b)?0其中p?C1([a,b]),p(x)?minp(x)?pmin?0,q?C([a, b]),q?0,f?H0([a,b]) x?[a,b]建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz形式和Galerkin形式的变分方程。
1解: 设H0?{u|u?H1(a,b),u(a)?u(b)?0}为求解函数空间,检验函数空间.取1v?H0(a,b),乘方程两端,积分应用分部积分得到(3分) bdudv1.?quv)dx??fvdx?f(v),?v?H0(a,b) aadxdx即变分问题的Galerkin形式. (3分) 11bdu 令J(u)?a(u,u)?(f,u)??[p()2?qu2?fu]dx,则变分问题的Ritz形式22adx a(u,v)??(pb1J(u)(4分) 为求u*?H0(a,b),使J(u*)?min1u?H0评分标准:空间描述与积分步骤3分,变分方程3分,极小函数及其变分问题4分, 三、对于边值问题??2u?2u?2?2??1,(x,y)?G?(0,1)?(0 ,1) ??x?y??u|?G?0建立该边值问题的五点差分格式,推导截断误差的阶。
《微分方程数值解法》复习、练习题
《微分方程数值解法》复习、练习题第一章复习题1、建立差分格式的三个主要步骤(三个离散化)。
2、差分格式的相容性、收敛性概念。
3、Poisson 方程的5点菱形差分格式,矩形、非矩形区域情形边界条件的处理(离散化)。
4、对长方形区域作正方形网格剖分,求解Poisson方程边值问题的五点菱形差分格式,按什么顺序对节点编号,可使差分方程带宽更窄?(按短方向排)5、差分方程有哪些共同特性,求解选用哪类方法?(大型稀疏,带状,主对角占优等,一般采用迭代法)多重网格等略。
6、极值原理。
7、5点菱形差分格式求解Poisson 方程第一边值问题的收敛性。
第一章练习题1、设有边值问题取h=0.1的正方形网格。
(1)用5点菱形格式在内点建立差分格式;(2)用截断误差为的方法离散化第三边界条件(有两种方式);(3)写出整理后的差分方程的矩阵形式2、定义方形算子如下:试讨论5点方形差分方程逼近微分方程的截断误差是几阶?3、设有,取h=1/3,列出5点方形差分格式所得的差分方程。
第二章复习题1、差分格式稳定性与收敛性的定义。
2、有关求特征值的几个结论。
3、判断稳定性的矩阵法和Fourier分析法(Von-Neumann条件)的应用。
4、显隐格式在一般情况下的优缺点。
5、熟悉古典显、隐格式,六点对称隐格式(C-N格式)。
6、叙述Lax等价定理。
7、高维抛物型方程的ADI格式的优点。
8、了解非线性方程差分格式的建立,讨论稳定性的冻结系数法。
第二章练习题1、设有求解抛物型方程组的初值问题的差分格式试写出用Fourier分析法讨论稳定性时的增长矩阵。
2、对上题考虑另一个差分格式试讨论该格式的稳定性。
3、对抛物型方程,考虑著名的Du Fort-Frankel(1953)格式(1)推导该格式是否满足稳定性的Von-Neumann条件?(2)该格式与Richardson格式有什么关系?4、讨论求解的古典显格式的稳定性。
5、写出逼近的古典显格式。
微分方程数值解(学生复习题)
一.填空1.Euler 法的一般递推公式为,整体误差为 ,局部截断误差为:.,改进Euler 的一般递推公式 整体误差为,局部截断误差为:。
2.线性多步法绝对稳定的充要条件是。
3.当,则单步法1(,,)0,1,2,,n n n n Tu u h t u h n hϕ+=+=,稳定。
4. 一个相容,稳定的多步法若绝对稳定,则绝对稳定域在。
5. 若,则多步法是相容的。
6.所有内点,界点的差分方程组成一个封闭的线性代数方程组,其系数矩阵是。
7.刚性方程是:8.Runge-Kutta 法的特征值为 ,相容的充要条件为:8.二阶常微分方程边值问题:22,(), ()d uLu qu f a x bdxu a u b αβ⎧=-+=<<⎪⎨⎪==⎩ 的中心差分格式为:P i 的四个相邻点均属于h G ,则称P i 为。
10.逼近泊松方程的五点差分格式的截断误差的阶为。
逼近泊松方程的九点差分格式的截断误差的阶为。
12.SOR 收敛当且仅当松弛因子0,2ω∈(),且Jacobi 迭代收敛。
最佳松弛因子是。
二.判断τ和空间步长h 无限缩小时,差分格式的解是否逼近到微分方程问题的解,这就是差分格式的收敛性问题。
2.单参数的PR 迭代格式的收敛速度与SOR 最佳超松弛法的收敛速度同阶。
3、对称矩阵的普条件数与条件数相同。
4、一级Runge-Kutta 法的绝对稳定域(-2,0)5、若差分方程满足相容条件,且按右端稳定,则差分解收敛至波动方程的解。
6、Euler 法非A 稳定。
7.对任意网比0r >,六点对称格式的解有收敛阶22()O h τ+ 8.对任意网比12r ≤,向前差分格式的解有收敛阶2()O h τ+。
9、相容,稳定的多步法一定绝对稳定。
三.选择1.抛物型方程的加权隐式差分格式的稳定性为()A 绝对稳定B 无条件稳定C 条件稳定D 非条件稳定 2.von Neumann 条件是差分格式稳定的()A 充分条件B 必要条件C 充要条件D 既非充分也非必要条件 3.实系数二次方程20b c λλ--=的根按模小于或者等于1的充要条件是() A 12b c ≤-≤ B 1+2b c ≤≤ C 12c b ≤-≤ D 12c b ≤+≤ 4.若线性多步法A 稳定,则有( ),其中1,2,,i i k λ=()为()()0h ρλσλ-=的根。
09-10-1 微分方程数值解法试题A答案
河北科技大学2007——2008学年第一学期《微分方程数值解法》期末考试答案及评分标准学院 理学院 班级 04级信科 班 姓名 学号一、 选择题(每小题4分,共4×5=20分)1. 求解对流方程0=∂∂+∂∂xu at u 的差分方程011=-+-++hu u au u njn j njn jτ是( A ).(A) 两层显式格式 (B) 两层隐式格式 (C) 三层显式格式 (D) 三层隐式格式 2. 设n n A u u =+1为求解扩散方程的差分格式的矩阵表示形式,则以下关于稳定性条件的叙述正确的是( C ).(A) 0≠A 是必要条件 (B)τρM A +≤1)(为充要条件 (C) τρM A +≤1)(为必要条件(D) τρM A +≤1)(为充分条件3. 求解扩散方程的Richardson 格式02221111=+----+-+hu u u au u nj n j n j n j n jτ是( B ).(A) 三层条件稳定格式 (B) 三层绝对不稳定格式 (C) 三层隐式格式(D) 三层绝对稳定格式4. Poisson 方程(,)u f x y -∆=的五点差分格式1,,1,,1,,1221222i j i j i j i j i j i j ij u u u u u u f h h +-+--+-+⎡⎤-+=⎢⎥⎣⎦的局部截断误差为( D ). 其中221212()h h h =+。
(A) O (h )(B) O (1)(C) O (h 3)(D) O (h 2)5. 以下关于],[2b a L 中函数的广义导数的叙述正确的是( D ).(A) 所有函数均存在属于],[2b a L 的广义导数 (B) 广义导数是唯一的(C) 广义导数可能异于常义导数 (D) 在几乎处处的意义下广义导数是唯一的二、填空题(每空4分,共4×5=20分)1. 设有1-J 阶方阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=0110110110S ,则S 的特征值为=k λh k πcos 2Jk or πcos 2其中1,,2,1-=J k 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国矿业大学2008~2009学年第 1 学期 《微分方程数值解法》试卷(B )卷
考试时间:100 分钟 考试方式:半开卷
学院 班级 姓名 序号
1、下面关于Euler 公式的结论哪些是正确的(打√)?哪些是错误的(打×)? (1)二阶方法;(2)一阶方法;(3)显式公式;(4)隐式公式;(5)是数值稳定的。
2、如果微分方程为,(0)1u tu u '==,则用Taylor 级数法求()u h 时,它的前两项为: 。
3、二阶差商
11
2
2i i i u u u h +--+近似二阶导数()i u x ''局部截断误差为 。
4、算术平均11
2
i i u u +-+近似函数值()i u x 的局部截断误差为 。
5、在课本P98差分方程(3.10)中,第二个方程的局部误差是什么? 。
6、函数空间0()C I ∞
中函数满足什么性质? 。
二、(10分)求解常系数齐次差分方程21120,1,2,
1,1
i i i u u u i u u ++-+==⎧⎨
=-=⎩的解。
三、(25分)已知数值解公式21132(2)m m m m m u u u h f f +++-+=- (1)写出与它们对应的特征多项式。
(2)这个多步法相容吗?
(3)利用课本P47公式(2.66)求公式的局部截断误差的主项。
(4)讨论这个算法的零稳定性。
(5)求这个算法的绝对稳定区间。
四、(10分)试利用初值问题的数值解公式
11
11(,)
(,)n n n n n n n n u u hf x u u u hf x u ++++=+⎧⎨
=+⎩ (1)构造一个PECE 预测校正系统;
(2)如果用它来求解初值问题 01
(0)1
u t u t u '=+≤≤⎧⎨
=⎩,当步长0.1h =时求出()u h 的近似值。
五、(15分)给定一个两点边值问题如下,
01
(0)0,(1)2(1)1u u x x u u u ''-+=<<⎧⎨
'=+=⎩
(1)试求它所对应的变分问题(,)()a u v f v =,要指明所使用的函数空间。
(2)证明(,)a u v 是
对称正定的。
(3)求用基函数(),1,2,
i
i x x i ϕ==生成的子空间{}212,V span ϕϕ=中的近似解。
六、(10分)证明课本P387式(7.128)的完全二次多项式可以表示成面积坐标的二次齐次式(7.130).。