植物激素受体研究进展

植物激素受体研究进展
植物激素受体研究进展

2009年4月JOURNALOFBIOI。OGYApr,2009doi:lO.3969/j.issn.1008—9632.2009.02.043

植物激素受体研究进展

赵丽1,黄海杰2,田维敏

(1.中国热带农业科学院橡胶研究所热带作物栽培生理学重点实验室,海南儋州571737;

2.中国热带农业科学院热带生物技术研究所,海南海口571101)摘要:植物激素对植物的生长发育以及在植物应对逆境方面具有重要的调节作用,植物激素受体是植物激素信号转导途径中的一个关键环节,倍受关注。近年来,由于生物化学与分子生物学和遗传学结合,使得植物激素受体的研究取得了很大进展。综述了5种经典植物激素受体以及油菜素内酯和茉莉酸受体在生物化学、遗传学和分子生物学三个层面上的研究成果,旨在为进一步研究植物激素作用机制提供参考资料。

关键词:植物激素;受体;突变体

中图分类号:Q946.885文献标识码:A文章编号:1008—9632(2009)02—0043—05

植物激素受体是植物激素信号传导途径中的一个至关重要的环节。近年来,采用生物化学、遗传学和分子生物学相结合的研究手段,主要以拟南芥、番茄和烟草等为材料,在植物激素受体的分离鉴定和作用机理方面的研究取得了很大进展。本文综述这方面的研究成果,旨在为迸一步研究植物激素作用机制提供参考资料。

1生长素受体研究进展

虽然早就认识到生长素及其对植物生长发育的调节作用,但直到最近才证明TIRl(Transportinhibitorre-spensel)是生长素的受体。TIRl蛋白是由TIRl基因编码的一种F.box蛋白,含有594个氨基酸残基,由N端的一个F.box模式、一段短的约40个氨基酸残基的间隔区域(spacerregion)、16个简并的LRRs(1eucine—richrepeats)和一个C端约70氨基酸残基的尾巴构成。其中N端的75个氨基酸(包括F—box序列)是TIRl同IAA结合所必需的,推测这段序列直接控制TIRl同IAA和Aux/IAA蛋白的结合。

在模式植物拟南芥中,对TIRl的作用机制做了深入研究。r11IRl与AtCULl(cullinhomologue1)、RBXl(RING—boxprotein1)及类似SKPl的ASKI(Arabidop-sisSkpl—likel)一起形成一个SCFllm复合体,催化激活状态的泛素分子从泛素连接酶E3转移到底物分子。AUX/IAA蛋白作为TIRl识别的底物,经泛素化修饰后进入26S蛋白酶体途径降解。生长素能够促进TIRl与AUX/IAA的相互作用,在低浓度生长素环境中,Aux/IAA蛋白相对稳定并与生长素响应因子ARF(auxin.responsefactor)蛋白结合形成异二聚体,负调控ARF的功能。当细胞内生长素浓度升高时,生长素结合TIRl,促进AUX/IAA蛋白降解,解除对ARF转录因子的抑制,转录因子ARF形成自身二聚体,并通过其N端的DNA结合结构域DBD(DNAbindingdomain)结合生长素早期应答基因启动子区的生长素响应元件(auxin—responseelement,AuxRE),从而触发下游信号转导和基因表达。

最近,Tan等人研究认为拟南芥TIRl.ASKI复合体的可单独存在或与生长素及Aux/IAA底物形成复合体。TIRl中富含亮氨酸重复序列结合有肌醇六磷酸辅因子,该结构域通过一个单一的表面口袋识别生长素和Aux/IAA底物。生长素锚定在rI'IRl口袋的底部,占据结合生长素及其类似物的位点。底物Aux/IAA肽段停泊在生长素的顶端,占领了TIRl口袋的其余空间而完全封闭了激素结合位点。生长素作为一种“分子胶水”通过填充蛋白质内表面的疏水空穴而增强TIRI与底物Aux/IAA的相互作用…。

此外在拟南芥中存在3个与TIRl同源的AFB(auxin—signalingF-boxprotein)蛋白,该蛋白属于F—box蛋白家族,含有LRRs,与TIRl高度同源性。用突变体

收稿日期:2008—04—29;修回日期:2008—10—23

作者简介:赵丽(1980一),女,汉族,硕士研究生,专业方向:植物分子生物学,E—mail:yifanever2007@163.eom;

通讯作者:田维敏,博士,研究员,博士生导师,主要从事植物发育生物学的研究,E—mail:wratian@163.corn。

基金项目:国家重点基础研究发展计划(2006CB08205)资助

43万方数据

2009年4月JOURNALOFBIOI.OGYApr,2009

实验证明,拟南芥TIRl及其同源基因AFB突变后均影响植株表型,说明TIRl和AFB类蛋白是生长素结合所必需的,推测AFB家族也可能是生长素的受体,与TIRl共同感受生长素信号。

2细胞分裂素受体研究进展

细胞分裂素是利用了一种类似于细菌中双元组分系统的途径将信号传递至下游元件的。在拟南芥中,作为细胞分裂素受体的组氨酸激酶(Arabidopsishisti—dinekinases,AHKs)与细胞分裂素结合后自身磷酸化,并将磷酸基团由激酶区的组氨酸转移至信号接收区的天冬氨酸。天冬氨酸上的磷酸基团进一步被转移到胞质中的磷酸转运蛋白(Arabidopsishistidine-phospho—transferproteins,AHPs)。磷酸化的AHPs进入细胞核并将磷酸基团转移到A型和B型反应调节因子ARRs(ArabidopsisResponseRegulators)上,进而调节下游的细胞分裂素应答反应旧。。

在拟南芥中,已证明3个组氨酸激酶是细胞分裂素的受体,它们是AHK2、AHK3和CREI(CytokininRe—sponsel),又名AHK4或WOODENLEG,WOL。CREl蛋白是一种膜结合蛋白,在细胞分裂素信号转导中起正调控作用。AHK2和AHK3也被陆续证明能在体外和体内特异地结合细胞分裂素。AHK2、AHK3和CREl分别编码AHK2、AHK3和CREI蛋白,与细菌二元组分的组氨酸蛋白激酶序列相似,胞外区均具有保守的CHASE结构域,被认为是细胞分裂素的结合区。

分子生物学和遗传学研究表明,3个作为细胞分裂素受体的AHK在序列上有着很高的同源性,既存在高度的功能冗余现象,又具有一定的功能特异性。CREl是一个双功能的酶,它不仅具有组氨酸激酶活性,也具有可以将AHP去磷酸化的磷酸酶活性,细胞分裂素介导的磷酸基团传递是双向的可逆的过程。但是AHK2和AHK3均只表现出磷酸激酶的活性,不具备磷酸酶活性∞。,这表明功能高度冗余的3个受体在功能及作用机制等方面存在着一定特异性。用突变体实验证明,细胞分裂素在根中的作用可能主要是通过CREl行使的,在植物地上部分的作用可能主要是通过AHK2和AHK3行使的。此外,在细胞分裂素调节叶片衰老的过程中,AHK3起主要作用∞]。

组氨酸激酶AHKI在拟南芥生长中起重要的作用,是干旱,盐压应答和ABA信号途径的正调控因子。Ahkl突变体的分析表明AHKI下行调控许多与压力相关的和/或ABA诱导的基因,包括AREBI,ANAC,和DREB2A转录因子和他们的下游基因。与AHKl不同的是,allIc2,ahl【3。和eret的功能缺失分析表明AHK2,44AHK3,和CREI在ABA信号途径中起负调控子的作用。在拟南芥中由于许多与压力有关的和/或ABA诱导的基因的上行调控作用,AHK2,AHK3也可负调控渗透压应答,ahk2,ahk3的单突变体和ahk2ahk3的双突变体对于旱和盐压表现冉强的不耐受性一1。

此外,A型ARRs是细胞分裂素的信号途径的负调控因子,可迅速地应答于细胞分裂素的转录上游调控。ARRs蛋白含有一个保守氨基酸的磷酸化位点,受体结构域的磷酸化作用是A型ARRs功能所必须的:5|。

3赤霉素受体研究进展

GA是一种疏水羧酸,作为羧化阴离子可在植物细胞的胞间和细胞内溶解,并可作为质子化酸通过被动运输穿过细胞质膜。由此推断,植物体含有与质膜结合的可溶性受体。

2005年,Ueguchi.Tanaka等在水稻中鉴定了一种赤霉素不敏感的矮化突变体gidl(gibberellin—insensitivedwa矿1),并分离出四个突变体基因,并证明GIDI是赤霉素的受体旧1。Iuchi等也从拟南芥中鉴定出三种赤霉素的受体基因,AtGIDla,AtGIDlb和AtGIDlc¨1。

GIDI基因包括一个内含子和两个外显子,编码354个氨基酸的GID蛋白,其保守区与激素敏感的脂肪酶(hormone.sensitivelipase,HSL)家族虬有同源性。GIDl蛋白定位在核内,在水稻中,GIDI作为一种町溶性的受体介导赤霉素信号传导,它在与活性的GAs结合感知赤霉素信号后,将信号传递到DELLA蛋白SLRI(SLENDERRICE),导致SLRl降解从而诱发一系列下游反应№』。对拟南芥中SLRl的结构域分析表明DELLA蛋白SLRI的TVHYNP结构域是GIDl.SLRI相互作用所必需的。91。G|DI感知GA信号后,GA可增强GIDI和DELLA蛋白的相互作用,同时GA.GIDI复合物可促进在RGA(REPRESSOROFgal-3)和F-box蛋白SLYI之间的相互作用‘…。。

在拟南芥萄dl-1的突变株中,单突变体gidla、gidlb和gidlc都能正常发育,无明显缺陷表型。双突变体atgidlaatgidlc表现出矮化表型,双突变体atgidlaatgidlb植株的雄蕊显著比野生型短,易不育。7o。三突变体atgidlaatgidlbatgidlc不能正常萌发,种子仅在浸湿并剥落外壳后才能开始生长,植株表现出严重矮化表型。。,而且花形成的时间长却时间推迟,成仡器官有严重的缺陷,不能应答于外施的GA¨0。。这些结果表明,所有AtGIDls都作为拟南芥中GA的受体共同感知激素信号,但在基因间又存在功能特异性。

4乙烯受体研究进展

万方数据

2009年4月JOURNAT。OFBIOI。OGYApr.2009

迄今在拟南芥中分离鉴定出5个乙烯受体,即ETRI、ETR2、ERSl、ERS2和EIN4。它们在结构上与细菌和真菌中存在的双元组分系统类似。根据结构上的特点可将其分为两类。第一类包括ETRl和ERSl,具有氨基端乙烯结合结构域和非常保守的羧基端组氨酸激酶结构域;第二类包括ETR2、ERS2和EIN4。具有氨基端乙烯结合结构域,但组氨酸激酶结构域是不完整的,缺少催化活性所必需的一个或多个元件。在5个受体中,ETRI、ETR2和EIN4还多出一个接收器结构域,其功能尚不清楚。

遗传学研究表明,5个受体中的任何一个发生功能获得性突变(多数突变影响了受体与乙烯的结合能力)都能导致对乙烯不敏感,表明所有的5个受体都与乙烯信号相关。但单个受体的功能缺失突变体表型与野生型类似,表明不同受体之间存在功能冗余。三重或四重功能缺失突变体具有组成型的乙烯反应表型进一步证实了上述推论,也表明乙烯受体在乙烯信号转导途径中起着负调控作用。在ersl/etrl双重突变体(I类受体全部功能缺失的突变体)中,过量表达任何一个Ⅱ类受体都不能互补其表型,而在etr2/ein4/ers2三重突变体中过量表达I类受体也不能完全互补Ⅱ类受体缺失造成的表型,这说明I类和Ⅱ类受体问虽有功能互补,但各自还有独特的作用。

拟南芥RTEl编码一种膜蛋白且负调控乙烯应答。遗传学和转化研究表明野生型RTEI的功能首先依赖于受体ETRI。由过量表达RTEl导致的乙烯不敏感可被etrl-7突变所遮盖,但是不能被其他受体的突变所遮盖。野生型植株的ETRI的N端是RTEl功能起作用所必需的J’i。最近Dong等人证明,拟南芥乙烯受体ETRl受RTEl的正调控。通过乙烯处理能增强RTEl的转录水平,相反抑制乙烯信号途径则RTEl表达减弱。亚细胞定位实验中表明ETRI不仅定位在内质网中,同时也定位于高尔基体¨“。

Kevany等人证明了在番茄中乙烯受体LeETR4的可特异抑制果实导致早熟,然而果实的大小,产量和同香味相关的成分却是不能改变的,说明乙烯受体可能在调控番茄果实成熟的开端处起生物钟的作用一“。两个家族成员LeETR4或LeETR6水平的下降均可导致果实表型早熟。在乙烯存在时LeETR4或LeETR6快速降解,且降解通过26S蛋白酶体途径进行。将未成熟的果实暴露在乙烯下可导致受体蛋白数量的减少和果实早熟。该结果同通过检测累积的乙烯量受体的水平可调控果实成熟开端的时间这个模型是一致的㈨。

此外,从矮牵牛花中分离鉴定出两种编码乙烯受体的基因PhERSl和PhETR2。PhETR2在调控开花和花粉囊裂开的同步性方面具有重要作用¨“。

5脱落酸受体研究进展

Razem等采用抗-抗ABA抗体(AB2)筛选ABA(脱落酸)处理过的大麦糊粉层eDNA表达文库,获得一全长cDNA(aba33),进而进行体外富集表达和蛋白特性鉴定,得到体外表达的具有潜在ABA受体特征的大麦糊粉蛋白ABAPI蛋白,该蛋白可在体外结合ABA。ABAPl与拟南芥调控植物开花时间的蛋白FCA的氨基酸序列类似。FLC是一种MADS转录因子,是成花过渡过程中的主要抑制因子。FCA是细胞核内一种RNA结合蛋白,通过与FLC的mRNA结合控制开花时间。在RNA3’.末端的加工因子FY参与下FCA通过mRNA前体成熟前剪切和多聚腺苷化自我调控自身的表达。FCA是作为一种ABA受体调控植物开花的时间,但并不参与种子萌发和气孔关闭,推测在植物体内肯定还存在其他类型的ABA受体u6:。

这种推测很快被张大鹏研究组的研究结果所证实。他们在拟南芥中发现ABAR(ABAbindingprotein)是ABA受体u“。编码M矛+螯合酶的H亚基一cHLH是叶绿素的生物合成以及质体向细胞核信号转导过程的关键元件。ABAR/CHLH可特异地结合ABA,在种子萌发、萌发后生长、和气孑L运动的信号通路中起正调控作用。通过转基因上调ABAR的表达后,转基因植株在种子萌发、幼苗生长和气孔运动方面对ABA“超敏感”;而通过转基因下调ABAR的表达后,转基困植株在种子萌发、幼苗生长和气孔运动方面对ABA反应“不敏感”。同时发现ABAR的T.DNA插入敲除突变体由于种子不能正常成熟,是致死突变。此外,通过研究叶绿素合成和质体-核信号转导相关的突变体,发现如果突变不影响ABAR/CHLH的表达,就不影响植物对ABA信号的响应,从而证明了ABAR是一个ABA受体,其介导的ABA信号转导是一个独立于叶绿素合成和质体一核信号转导的不同的细胞信号过程。川。

最近又鉴定出一种与G蛋白相偶联的ABA受体,同G.蛋白的仅亚基GPAI相互作用以介导所有在拟南芥中已知的ABA应答。过量表达该受体使植株表现出ABA超敏感表型。这些受体以一定的生理学浓度结合ABA,且具有预期的动力学曲线和立体专一性。在酵母中ABA结合到受体上导致受体.GPAl复合物分离,表明这种G蛋白偶联的受体是一种ABA质膜受体‘馏J。

6油菜素内酯受体研究进展

45

万方数据

2009年4月JOURNALOFBIOLOGYApr,2009

近年来利用油菜素内酯(brassin—osteroids,BR)不敏感突变体材料,通过分子遗传学和生化等方法研究BR信号转导途径,取得很大进展。br/1(brassinosteroid—insensitivel)是拟南芥中一个对BR不敏感的突变体,其表型与BR生物合成缺失突变体,如cpd((constit以ivephotomorphogenesisanddwa斫sm)、det(de.etolation)和dwf(幽口们等类似,如光下植株矮化、短缩的叶柄及育性下降等。但是外源BR处理不能恢复br/1的野生型表型。

1997年,Li和Chory克隆了BRII基因,该基因编码一个含有1196个氨基酸、分子量约为130kD、富含亮氨酸重复序列的膜受体蛋白激酶。该蛋白定位于细胞膜上,胞外区包括N.端的信号肽、亮氨酸拉链基序(1eucine—zipper)、25个串连的LRRs(1eucine—richre-peats)以及位于其首尾的2个半胱氨酸残基,在第21和22个LRR之间还有一个70个氨基酸残基的区域。Kinoshita等利用生物素标记的油菜素甾酮(biotin—taggedphotoaffinitycastasterone,BPCS)证明这个由70个氨基酸组成的区域及相邻的第22个LRR(共94个氨基酸)组成的区域ID.LRR22是直接结合BPCS的位点,而且这个序列对BR分子的结合也是非常重要的。

BAKl(BRII—associatedreceptorkinase1)是一种富含Leu重复的受体类激酶,可调控油菜素内酯受体BRll,使植物产生对细菌抗原的抗性¨9|。BKKl(BAKl一LIKEI)同BAKl存在功能冗余。组成型防御基因的表达baklbkkl的双突变体表现出植株致死表型、胼胝质沉积、ROS(reactiveoxygenspecies)积累,在贫瘠的生长条件下甚至自发的细胞死亡。表明BAKI和BKKl有双重生理功能,正调控依赖于BR的植物生长途径,负调控独立于BR的细胞凋亡途径闭o。

7茉莉酸受体研究进展

在探索茉莉酸信号转导机理的研究中,不同的研究小组进行了大规模对茉莉酸反应改变的突变体的筛选,但得到的突变体大多是茉莉酸信号转导关键组分COIl基因的等位突变。COIl是一种F—box蛋白,在茉莉酸信号途径中起着关键作用,突变体coil几乎丧失对茉莉酸的所有反应。正如TIRI是生长素的受体一样,COIl很可能是茉莉酸的受体。在拟南芥中,已证明COIl是以SCF∞“形式形成功能复合体,推测茉莉酸激活该复合体,使转录抑制因子泛素化,进而被26S蛋白酶体降解。最近,两个研究组同时报道作为SCF∞“复合体底物的转录抑制因子为一类JAZ蛋白呤L221,从而证实了该推测。但至今仍没有证明COIl就是茉莉酸的受体,也没有分离鉴定出其它的茉莉酸受体蛋白。

468展望

对生长素、赤霉素、细胞分离素、乙烯、脱落酸和油菜素内酯受体的分离鉴定和作用机理的研究成果使人们进一步认识了这些激素对植物生长发育的调节机制,同时也引发出若干有待解决的问题。除了受体下游的不同调控机制和不同信号途径之间的通讯之外,植物激素的多效性可能与受体种类的多样性有关。激素受体的作用机制和分离鉴定新的受体蛋白依然是有待研究的课题。同时,茉莉酸信号传导途径在调节植物对逆境的反应方面起重要作用,但至今还没有分离鉴定出茉莉酸受体。茉莉酸受体是否就是COIl蛋白?转录抑制因子除了JAz蛋白外是否还有其它类型?JAZ蛋白是否与茉莉酸的多效性有关?这些都是亟待解决的问题。

参考文献:

【1]Tanx,Calderon—VillalobosLI,SharonM,etaLMechanismofaUX—inperceptionbytheTIRIubicluitinligase[J].Nature。2007,446:640一645.

[2]MahonenAP,HiguchiM,TorrnakangasK,etaLCytokininsregulateabidirectionalphosphorelaynetworkinArabidopsis[J].CurtBiol,2006,16:1116—1122.

[3]KimHJ。RyuH,HongSH。etatCytokinin—mediatedcontrolofleaflongevitybyAHK3throughphosphorylationofARR2inArabidopsis[J].ProcNailAcadSciUSA,2006.1031814—819.

[4]TranLS,UraoT,QinF。eta1.FunctionalanalysisofAHKI/ATHKlandcytokinin

receptor

histidinekinasesinresponsetoab-scisicacid。drought,andsalt蜘inArabidopsu【J].PineNailAcadSciUSA,2007,i04(51):20623—8.

[5]ToJP,DeruereJ,MaxwellBB,etatCytokininregulatestype?AArabidopsisresponsereguhtoractivityandproteinstabilityviatwo—componentphosphorelay[J].PlantCell,2007,19(12):3901一14.【6]Ueguchi-TanakaM,AshikariM,NakajimaM,etaLGibberellinin-sensitivedwarflencodesasolublereceptorforglbberellin[J].Nature,2005,437:693~698.

【7]luehiS,SuzukiH,KimYC,eta1.Multipleloss-of-functionofArab仁dopsisgibberellinreceptorAtGIDIscompletelyshutsdownagibberel—linsis,Ma【J].PlantJ,2007,50(6):958—966.

[8]Marchler-BauerA,eta1.Aconserveddomaindatebnseforproteinclassification[J].NucleicAcidsRes,2005。33:192~196.

[9]Ueguehi-TanakaM,NakajinmM,KatohE,eta1.Molecularinterac—fionsofasolublegibberellint_eceptor,GIDI,witIIariceDELLApro-tein,SLRI,andgibberellin[J].PlantCell,2007,19(7):2140—2155.

[10]JayneG。KohjiM,lvoR,eta1.Geneticcharacterizationandfunc?tionalanalysisoftheGIDIgibberellinreceptorsinArabidopsis[J].ThePlantCell,2006,18:3399—3414.

[11]ZhouX,LiuQ。XieF,etatRTEIisaGels_i?associatedandETRi—dependentnegativeregulatorofethyleneresponses[J].PlantPhysiol。2007,145(1)175—86

万方数据

2009年4月JOURNALOFBIOLOGYApr。2009

[12]DongCH,RivarolaM,ResnickJS。etaLSubcellularco—iocaliza—tionofArabidopsisRTEIandETRlsupportsaregulatoryroleforRTElinETRIethylenesignaling[J].PlantJ,2008,53(2):275—286.

【13]KevanyBM,TiemanDM,TaylorMG,elaLEthylenereceptorde.g-radationcontrolsthetimingofripeningintomatofruit[J].PlantJ,2007.51(3):458—467.

【14]KevanyBM,TaylorMG,KleeHJ.Fruit—specificsuppressionoftheethylenereceptork嗍resultsinearly-ripeningtomatofruit[J].PlantBiotechnolJ,2008。6(3):295—300.

[15]WangY,KumarPP.CharacterizationoftwoethylenereceptorsP}lERSlandPhETR2frompetunia:PhETR2regulatestimingofan-therdehiscence[J].JournalofExperimentalBotany,2007,58(3):533—544.

[16]RazenlFA,El—KereamyA,AbramsSR,elaLTheRNA—bindingprotein

FCAistlnabseisicacidreceptor[J].Nature,2006。439:290。294.[17]ShenYY,WangXF。WuF,eta1.TheMg—chelataseHsubunitisanabacisicacidreceptor[J].Nature,2006。443:823~826.

[18]uuX,YueY,LiB。etaLAGprotein—coupledreceptorisaplas-mamembranereceptorfortheplanthormoneabscisicacid[J].Science,2007,315(5819):1712—1716.

[19]ChinchillaD,ZipfelC,RobatzekS。elaLAflagellin?inducedcomplexofthereceptorFLS2andBAKIinitiatesplantdefenee[J].Nature,2007,448(7152):497~500.

[20]HeK,Goux。YuanT,eta1.BAKIandBKKIregulatebrassinos-teroid—dependentgrowthandbrassinosteroid.independentcell?deathpathways【J】.CurrBiol,2007,17(13):1109—1115.

[21]BryanT,LeronK,MaeliM,eta1.JAZrepressorproteinsaretar-gets

oftheSCF。伽complexduringjasmonatesignaling[J】.Nature,2007,448:661—665.

[22]ChiniA,FonsecaS,FernandezG,eta1.TheJAZfamilyofre?pressorsisthemissinglinkinjasmonato8i目fIalilIg[J].Nature,2007,4牾:666—671.

‘Progressinplanthormonereceptors

ZHAOLil,HUANGHai-jie2,TIANWei.min

(1.KeyLaboratoryoftheCultivationandPhysiologyofTropicalAgiculturalCrops,RubberResearchInstitute,ChineseAcademyofTropicalAgricuhralSciences,Danzhou571737;2.InstituteofTropicalBioscience

andBioteehnology,CATAS,Haikon571101,China)

Abstract:Planthormonesphyveryimportantrolesinregulatingplantgrowthanddevelopmentaswella8resistancesagainstbioticandabioticstresses.Planthormonereceptorsarethepivotalcomponentsinplanthormonesignalingtransduction.Recently,identificationandcharacterizationofplanthormonereceptorsprogressedrapidlyinriceandtomatowiththecombinationofbiochemistry,molecularbi-ologyandgenetics.Inanattempttoprovidereferencesfortheinvestigationonthemechanismbywhichplant

hormoneswork,themajoradvancesaboutthereceptorsofclassicalplanthormonesandthoseofbrassin-osteroidsandjasmonateweresummarized.Keywords:phytohormone;receptor;mutant

(上接30页)Changesofsoilenzymeactivitiesinthecoppermine

tailingsduringnaturalsuccession

WANGWei,SUNQing—ye

(SchoolofLifeScience,AnhuiUniversity,Hefei230039,China)

Abstract:ThereaIemanywastelandsofcoppermine

tailingsinTongling.Anhuiprovince.Most

ofthema弛inthenaturalecologi-

calrestoration.Thenaturalecologicalrestorationofwastelandsisatypicalprimarysuccession."railingssamplesunderdifferentplantcommunitiesfromthreewastelandswerecollectedanddeterminedtoinvestigatetherelationshipbetweenplantcommunitiesandsoilen-zyme

activitiesintheprocessesofnaturalecologicalrestoration.Theresultsshowedthattheactivitiesofthesoilenzymeinwastelandgradually

increasedwiththenaturalecosystemsuccession.Andafollowingorderwasfound:activitiesofsoilenzymeinwastelandundervascularplantcommunities>activitiesofsoilenzymeinwastelandundercryptogamiecrusts>activitiesofsoilenzymeinwastelandunderbaretailings.Theactivitiesofurea∞,alkalinephosphatase,eatalasedecreasedsignificantlywiththedepth.Impactofsoilen-z”neactivityontypeofplantcommunitieswassignificantly,theactivitiesofsoilenzymeinwastelandundertheHippochaeteramosissmi-

li2"rtcommunitywerehigherthanthatunderlmpretacylindraca

community

andZoysiasinicacommunity.Dataanalysisindicatedthere

w℃佗asignificantlypositivecorrelationbetweentheactivityofsoilenzymeandorganicmatterandtotalnitrogeninwastelands.

Keywords:copperminetailings;soilenzyme

activities;primarysuccession;plantcommunity;Tong,ling

47

万方数据

植物细胞产酶的研究进展

植物细胞培养产酶的研究进展 王鑫 (吉林师范大学生命科学学院四平136000) 指导教师: 杨丽萍 摘要:随着植物细胞培养技术的迅速发展,利用植物细胞培养技术生产天然产物的 技术也取得了新的进展。其中,酶是植物细胞培养产生次生代谢产物中的主要产物 之一。本文重点介绍了植物细胞培养产酶的方法和提高酶产量的有效措施,包括植 物培养细胞的技术方法、生产过程中的条件控制、提高酶产量的措施、产生酶的种 类、以及该技术未来的应用和前景。 关键词:植物;细胞培养;酶 Research progress of enzyme production obtained by plant cell culture Wang Xin (College of life science,Jilin Normal University,S iping 136000, China) Instructor: Y ang Liping Abstract:The natural production obtained by using of plant cell culture is progressing steadily along with the rapid development of plant cell culture technology. We can get many secondary metabolites by plant cell culture,including enzymes production. This article focuses on plant cell culture methods to get enzyme production and the effective measures to improve the enzyme production, including the plant cultured cells technology and methods, the conditions of control in the production process, the measures to improve enzyme production, as well as applications and prospects of the technology in the future. Keywords:plant; cell culture; Enzyme 植物细胞培养技术起源于本世纪初,从80年代起就迅速发展起来,并且拥有非常广阔的前景。目前,植物细胞培养主要有两种类型,包括单倍体细胞培养,原生质体培养[1]。植物细胞培养具有很多优越性,它不受环境,以及气候条件的限制,节约了生产空间,增值速度也要比整体植株栽培快很多[2]。植物细胞培养技术主要应用在三个领域,其中就包括有用物质的生产,因为在植物细胞生长过程中会产生丰富的代

常见五种内源激素的生理效应

常见五种内源激素的生理效应 一、生长素:代号为IAA。 生长素使最早被发现的植物激素,是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素,包括吲哚乙酸(IAA)、4-氯-IAA、5-羟-IAA、萘乙酸等,习惯上常把吲哚乙酸作为生长素的同义词。 生长素具体的生理效应表现为: 第一、促进生长。生长素在较低的浓度下可促进生长,而高浓度时则抑制生长,甚至使植物死亡,这种抑制作用与其能否诱导乙烯的形成有关。另外,不同器官对生长素的敏感性不同。 第二、促进插条不定根的形成。用生长素类物质促进插条形成不定根的方法已在苗木的无性繁殖上广泛应用。 第三、对养分的调运作用。生长素具有很强的吸引与调运养分的效应,利用这一特性,用生长素处理,可促使子房及其周围组织膨大而获得无子果实。 第四、生长素的其他效应。例如促进菠萝开花、引起顶端优势(即顶芽对侧芽生长的抑制)、诱导雌花分化(但效果不如乙烯)、促进形成层细胞向木质部细胞分化、促进光合产物的运输、叶片的扩大和气孔的开放等。此外,生长素还可抑制花朵脱落、叶片老化和块根形成等。 二、赤霉素:代号为GA。 赤霉素(gibberellin)一类主要促进节间生长的植物激素,因发现其作用及分离提纯时所用的材料来自赤霉菌而得名。 赤霉素的生理效应为: 第一、促进茎的伸长生长。这主要是能促进细胞的伸长。用赤霉素处理,能显著促

进植株茎的伸长生长,特别是对矮生突变品种的效果特别明显;还能促进节间的伸长。 第二、诱导开花。某些高等植物花芽的分化是受日照长度和温度影响的。若对这些未经春化的植物施用赤霉素,则不经低温过程也能诱导开花,且效果很明显。对花芽已经分化的植物,赤霉素对其花的开放具有显著的促进效应。 第三、打破休眠。对于需光和需低温才能萌发的种子,赤霉素可代替光照和低温打破休眠。 第四、促进雄花分化。对于雌雄异花的植物,用赤霉素处理后,雄花的比例增加;对于雌雄异株植物的雌株,如用赤霉素处理,也会开出雄花。 第五、其他生理效应。赤霉素还可以加强生长素对养分的动员效应,促进某些植物坐果和单性结实、延缓叶片衰老等。 三、细胞分裂素:其代号为CTK。 细胞分裂素是一类具有腺嘌呤环结构的植物激素。它们的生理功能突出地表现在促进细胞分裂和诱导芽形成。 细胞分裂素有多种生理效应。其生理效应表现为: 第一、促进细胞分裂。细胞分裂素的主要生理功能就是促进细胞的分裂。细胞分裂素主要是对细胞质的分裂起作用。 第二、促进芽的分化。促进芽的分化是细胞分裂素重要的生理效应之一,有些离体叶细胞分裂素处理后主脉基部和叶缘都能产生芽。 第三、促进细胞扩大。这种扩大主要是因为促进了细胞的横向增粗。 第四、促进侧芽发育,消除顶端优势。细胞能解除由生长素所引起的顶端优势,促进侧芽生长发育。 第五、延缓叶片衰老。如果在离体叶片上局部涂以细胞分裂素,则叶片其余部位变

五种植物激素的比较

五种植物激素的比较 名称产生部位生理作用 对应的生长 调节剂 应用 生长素 幼根、幼芽及发 育的种子 促进生长,促进果 实发育 萘乙酸、2, 4-D ①促进扦插枝条的生根; ②促进果实发育,防止落 花落果;③农业除草剂赤霉素 幼芽、幼根、未 成熟的种子等幼 嫩的组织和器官 ①促进细胞伸长, 引起植株长高;② 促进种子萌发和 果实发育 ①促进植物茎秆伸长;② 解除种子和其他部位休 眠,提早用来播种 细胞分裂素 正在进行细胞分 裂的器官(如幼 嫩根尖) ①促进细胞分裂 和组织分化;②延 缓衰老 青鲜素 蔬菜贮藏中,常用它来保 持蔬菜鲜绿,延长贮存时 间乙烯 植物各部位,成 熟的果实中更多 促进果实成熟乙烯利 处理瓜类幼苗,能增加雌 花形成率,增产 脱落酸 根冠、萎蔫的叶 片等 抑制细胞分裂,促 进叶和果实衰老 与脱落 落叶与棉铃在未成熟前的 大量脱落 多种激素的共同调节:在植物生长发育的过程中,任何一种生理活动都不是受单一激素控制的,而是多种激素相互作用的结果。这些激素之间,有的是相互促进的;有的是相互拮抗的。举例分析如下: (1)相互促进方面的有 ①促进果实成熟:乙烯、脱落酸。 ②促进种子发芽:细胞分裂素、赤霉素。 ③促进植物生长:细胞分裂素、生长素。 ④诱导愈伤组织分化成根或芽:生长素、细胞分裂素。 ⑤延缓叶片衰老:生长素、细胞分裂素。 ⑥促进果实坐果和生长:生长素、细胞分裂素、赤霉素。 (2)相互拮抗方面的有 ①顶端优势:生长素促进顶芽生长,细胞分裂素和赤霉素都促进侧芽生长。 ②防止器官脱落:生长素抑制花朵脱落,脱落酸促进叶、花、果的脱落。 ③种子发芽:赤霉素、细胞分裂素促进,脱落酸抑制。 ④叶子衰老:生长素、细胞分裂素抑制,脱落酸促进。 例1、从某植物长势一致的黄化苗上切取等长幼茎段(无叶和侧芽),将茎段自顶端向下对称纵切至约 3 4 处后,浸没在不同浓度的生长素溶液中。一段时间后,茎段的半边茎会向切面侧弯曲生长形成如图甲所示的弯曲角度(α),且α与生长浓度的关系如图乙所示。请回答问题。 (1)从图乙可知,在两个不同浓度的生长素溶液中,茎段半边茎生长产生的弯曲角度可以相

植物糖生物学研究进展_尹恒

植物学报 Chinese Bulletin of Botany 2010, 45 (5): 521–529, https://www.360docs.net/doc/1d14335227.html, doi: 10.3969/j.issn.1674-3466.2010.05.001 —————————————————— 收稿日期: 2010-01-18; 接受日期: 2010-03-23 基金项目: 863计划(No.2006AA10A213, No.2007AA091601)和中国科学院知识创新工程重要方向项目(No. KSCX2-YW-G-041) * 通讯作者。E-mail: zxm@https://www.360docs.net/doc/1d14335227.html,; dyguang@https://www.360docs.net/doc/1d14335227.html, 植物糖生物学研究进展 尹恒, 王文霞, 赵小明*, 杜昱光* 中国科学院大连化学物理研究所辽宁省碳水化合物重点实验室, 大连 116023 摘要 自1988年糖生物学概念提出以来, 国内外科学家在动物、微生物领域取得了大量的研究成果, 但植物糖生物学的研究进展较慢, 目前少见系统的专著或综述。该文围绕植物正常生长时糖信号、逆境时糖信号、糖蛋白及其糖链、重要糖基转移酶及植物凝集素等植物糖生物学的主要问题, 全面阐述植物糖生物学的各个研究分支, 并介绍各领域的最新研究进展。提出了植物糖生物学的概念, 并将其定义为研究植物与糖类互作机制及植物体内糖(糖链与糖分子)结构及生物学功能的科学。 关键词 糖蛋白, 糖基转移酶, 凝集素, 植物糖生物学, 糖信号 尹恒, 王文霞, 赵小明, 杜昱光 (2010). 植物糖生物学研究进展. 植物学报 45, 521–529. 糖类是生物体的重要组成成分, 在自然界中分布广泛, 含量丰富。但直到20世纪上半叶, 糖类仍被视为是缺乏生物特异性的一类惰性化合物, 只是作为代谢能量来源或充当结构保护材料(如植物细胞壁和昆虫的外壳), 在生物体内功能较少。由于糖类物质结构复杂、糖链分析技术缺乏, 科学家们对其研究关注不多, 使得糖类的研究远远落后于另2种生物大分子 ——核酸和蛋白质。 20世纪70年代以来, 随着糖链解析技术水平的提高以及分子生物学的发展, 尤其是人、拟南芥(Arabidopsis thaliana )等模式生物基因组测序的完成, 围绕糖类物质的研究工作日渐增多。越来越多的证据表明, 糖类物质全面参与了生物的生殖发育、生长、应激等过程, 是很多生理和病理过程中分子识别的决定因素。最初, 这些围绕糖的研究工作被认为是糖化学的一个分支, 但很快其中大量的生物学工作远远超出了糖化学的范畴, 因此科学家们提出了糖生物化学的概念, 而随着研究内容的进一步深入, 糖生物化学也不能完全涵盖糖在生物领域的最新研究进展。1988年, 生化领域的著名杂志《生物化学年评》发表了英国牛津大学Rademacher 等人题为“糖生物学(Glycobiology)”的一篇综述文章(Rademacher et al., 1988), 标志着糖生物学这一学科的正式诞生。此后, 围绕着糖链结构及糖的生物学功能, 科学家们在糖链与疾病的关系、天然产物中糖的分离提纯以及功能糖的制备与应用等方面进行了大量的工作, 取得了一定进展。2001年, Science 杂志汇编了Hurtley 等人的7篇综述和6篇简介, 以《灰姑娘的马车来了》为题编辑了一期“糖和糖生物学”专辑, 对糖生物学最新的研究成果及前景进行了综述和展望, 从而将糖生物学的研究推向了一个新的高度(Hurtley et al., 2001)。2006年, Nature 杂志也推出了糖化学与糖生物学的专辑, 全面介绍了糖生物学领域的研究进展。我国糖生物学的开展与国际接轨较快, 1995年金城等人将糖生物学概念引入中国(金城和张树政, 1995), 此后, 我国科学家在糖生物合成和糖链功能解析等领域取得了一定进展。 广义糖生物学的含义是: 研究自然界中广泛分布的糖(糖链或聚糖)的结构、生物合成和生物学意义。但有关糖类结构和生物合成的研究也是已有学科糖化学和糖生物化学的主要研究内容之一, 所以糖生物学研究和讨论的对象更多地聚焦在一些重要的功能糖、生物体内糖缀合物的生物学功能上。实际上, 糖生物学的研究焦点是糖类和其它分子的关系, 有一种观点认为, 蛋白质和糖类的相互作用是糖生物学的基础(王克夷, 2009)。目前糖生物学的工作多围绕动物、 ·特邀综述·

趋化因子及其受体的研究进展

趋化因子及其受体的研究进展 摘要:趋化因子( chemokine)是一类一级结构相似小分子细胞因子,能够趋化细胞定向移动的,而且在免疫细胞和器官的发育、免疫应答过程、炎症反应、病原体感染、创伤修复及肿瘤形成和转移等方面发挥广泛的生理和病理作用。本文综述了对趋化因子及其受体的结构、分类和生物学功能的研究进展。 关键词: 细胞因子;趋化因子;趋化因子受体;趋化作用 Abstract:chemokine is similar to the primary structure of a class of small molecule cytokine, chemokine cell directional movement, but also in the development of immune cells and organs, immune response, inflammatory response, pathogen infection, wound healing andplay a wide range of physiological and pathological roles of tumor formation and metastasis. This paper reviews the progress on the study of the structure, classification and biological function of chemokines and their receptors. Keywords: cell factor; chemokines; chemokine receptor; chemotactic effect 免疫细胞的定向迁移是集体免疫应答发生和完成的必须条件。趋化因子是一类控制细胞定向迁移的细胞因子。其功能行使由趋化因子受体介导。趋化因子与其受体的相互作用控制着各种免疫细胞在循环系统和组织器官间定向迁移,使之到达感染、创伤和异常增殖部位,执行清除感染源、促进创伤愈合和消灭异常增殖细胞,维持组织细胞的平衡的功能。因此,趋化因子系统在免疫系统功能行使的各个环节中处于关键地位,并由此在病原体的清除、炎症反应、病原体感染、细胞及器官的发育、创伤的修复、肿瘤的形成及其转移、移植免疫排斥等方面都起着重要的作用。以趋化因子及其受体为控制靶点,通过激活或拮抗趋化因子受体的信号传导来调控趋化因子系统的功能,可

植物激素受体研究进展

2009年4月JOURNALOFBIOI。OGYApr,2009doi:lO.3969/j.issn.1008—9632.2009.02.043 植物激素受体研究进展 赵丽1,黄海杰2,田维敏 (1.中国热带农业科学院橡胶研究所热带作物栽培生理学重点实验室,海南儋州571737; 2.中国热带农业科学院热带生物技术研究所,海南海口571101)摘要:植物激素对植物的生长发育以及在植物应对逆境方面具有重要的调节作用,植物激素受体是植物激素信号转导途径中的一个关键环节,倍受关注。近年来,由于生物化学与分子生物学和遗传学结合,使得植物激素受体的研究取得了很大进展。综述了5种经典植物激素受体以及油菜素内酯和茉莉酸受体在生物化学、遗传学和分子生物学三个层面上的研究成果,旨在为进一步研究植物激素作用机制提供参考资料。 关键词:植物激素;受体;突变体 中图分类号:Q946.885文献标识码:A文章编号:1008—9632(2009)02—0043—05 植物激素受体是植物激素信号传导途径中的一个至关重要的环节。近年来,采用生物化学、遗传学和分子生物学相结合的研究手段,主要以拟南芥、番茄和烟草等为材料,在植物激素受体的分离鉴定和作用机理方面的研究取得了很大进展。本文综述这方面的研究成果,旨在为迸一步研究植物激素作用机制提供参考资料。 1生长素受体研究进展 虽然早就认识到生长素及其对植物生长发育的调节作用,但直到最近才证明TIRl(Transportinhibitorre-spensel)是生长素的受体。TIRl蛋白是由TIRl基因编码的一种F.box蛋白,含有594个氨基酸残基,由N端的一个F.box模式、一段短的约40个氨基酸残基的间隔区域(spacerregion)、16个简并的LRRs(1eucine—richrepeats)和一个C端约70氨基酸残基的尾巴构成。其中N端的75个氨基酸(包括F—box序列)是TIRl同IAA结合所必需的,推测这段序列直接控制TIRl同IAA和Aux/IAA蛋白的结合。 在模式植物拟南芥中,对TIRl的作用机制做了深入研究。r11IRl与AtCULl(cullinhomologue1)、RBXl(RING—boxprotein1)及类似SKPl的ASKI(Arabidop-sisSkpl—likel)一起形成一个SCFllm复合体,催化激活状态的泛素分子从泛素连接酶E3转移到底物分子。AUX/IAA蛋白作为TIRl识别的底物,经泛素化修饰后进入26S蛋白酶体途径降解。生长素能够促进TIRl与AUX/IAA的相互作用,在低浓度生长素环境中,Aux/IAA蛋白相对稳定并与生长素响应因子ARF(auxin.responsefactor)蛋白结合形成异二聚体,负调控ARF的功能。当细胞内生长素浓度升高时,生长素结合TIRl,促进AUX/IAA蛋白降解,解除对ARF转录因子的抑制,转录因子ARF形成自身二聚体,并通过其N端的DNA结合结构域DBD(DNAbindingdomain)结合生长素早期应答基因启动子区的生长素响应元件(auxin—responseelement,AuxRE),从而触发下游信号转导和基因表达。 最近,Tan等人研究认为拟南芥TIRl.ASKI复合体的可单独存在或与生长素及Aux/IAA底物形成复合体。TIRl中富含亮氨酸重复序列结合有肌醇六磷酸辅因子,该结构域通过一个单一的表面口袋识别生长素和Aux/IAA底物。生长素锚定在rI'IRl口袋的底部,占据结合生长素及其类似物的位点。底物Aux/IAA肽段停泊在生长素的顶端,占领了TIRl口袋的其余空间而完全封闭了激素结合位点。生长素作为一种“分子胶水”通过填充蛋白质内表面的疏水空穴而增强TIRI与底物Aux/IAA的相互作用…。 此外在拟南芥中存在3个与TIRl同源的AFB(auxin—signalingF-boxprotein)蛋白,该蛋白属于F—box蛋白家族,含有LRRs,与TIRl高度同源性。用突变体 收稿日期:2008—04—29;修回日期:2008—10—23 作者简介:赵丽(1980一),女,汉族,硕士研究生,专业方向:植物分子生物学,E—mail:yifanever2007@163.eom; 通讯作者:田维敏,博士,研究员,博士生导师,主要从事植物发育生物学的研究,E—mail:wratian@163.corn。 基金项目:国家重点基础研究发展计划(2006CB08205)资助 43万方数据

植物次生细胞壁加厚调控研究进展

植物生理学报 Plant Physiology Journal doi: 10.13592/https://www.360docs.net/doc/1d14335227.html,ki.ppj.2015.0568 2016, 52 (1): 8–188收稿 2015-10-22 修定 2015-12-15 资助 国家自然科学基金(31130012)和国家重点基础研究项目 (2012CB114502)。 * 通讯作者( E -mail: lgli@https://www.360docs.net/doc/1d14335227.html,)。 植物次生细胞壁加厚调控研究进展 黄成, 李来庚* 中国科学院上海生命科学研究院植物生理生态研究所植物分子遗传国家重点实验室, 上海 200032 摘要: 植物细胞壁是植物细胞的特征性结构。植物体中, 所有细胞都会形成初生壁的结构, 而一些特定组织的细胞会在初生细胞壁内侧进一步加厚形成次生壁, 为这些细胞实现正常生理功能和高等植物发育提供必需的结构。本文分别从转录水平调控、激素调控、加厚模式调控及人工调控等方面介绍目前对于次生细胞壁加厚调控的研究进展。关键词: 次生细胞壁; 转录调控; 木质素; 纤维素 细胞壁是植物细胞区别于动物细胞的一种重要细胞结构。植物细胞完成分裂后, 由中间的细胞板区域开始形成初生细胞壁。一些特殊组织的细胞停止扩展后, 在质膜和初生细胞壁之间形成次生细胞壁。次生细胞壁从结构上可分为S1、S2、S3三层, 主要成分为纤维素、半纤维素和木质素。植物次生细胞壁大量存在于维管组织管状细胞和纤维细胞, 提供植物直立生长所需要的机械支撑力, 疏水性木质素的存在加固管状分子以抵抗负压, 使得植物体能够连续高效的运输水分。同时, 在植物生长过程中, 植物积累的大部分光合作用产物储存在次生细胞壁, 构成植物体结构, 是纤维材料和生物质能源原料的重要来源。次生细胞壁是植物细胞特异分化后产生的细胞结构, 其加厚过程受到多种因素的调控。目前的研究发现植物体中存在复杂的多级转录网络作用于纤维素、半纤维素和木质素合成基因, 从而调控次生细胞壁加厚过程, 多种激素等信号因子也可能参与其中, 木质部纤维细胞和导管细胞次生壁加厚模式与皮层微管密切相关。同时, 由于木质纤维生物质是地球上重要的可再生资源, 人们试图通过各种方式调控次生壁加厚以获得可高效利用的木质纤维原料。本文就这几个方面的研究进展进行综述。 1 植物次生细胞壁加厚的转录水平调控 近十几年来关于次生壁转录调控有大量研究, 目前认为次生壁形成主要由一系列NAC 转录因子和MYB 转录因子形成分层次的网络逐级调控下游次生壁中纤维素、半纤维素和木质素的合成, 同时也有很多其他调控因子参与其中。最近一些文章对次生壁加厚转录调控进行了较详细的综述(Wang 和Dixon 2012; Zhong 和Ye 2015a; Nakano 等2015)。 1.1 转录开关因子 拟南芥中有两类NAC (NAM 、ATAF1/2、CUC2)结构域转录因子被发现作为转录开关因子分别调控维管组织导管细胞和纤维细胞次生壁合成。第一类VND (vascular-related NAC domain)基因家族VND1-7被认为参与导管细胞发育。在百日草悬浮细胞系中过表达VDN6和VND7能诱导各种薄壁细胞转分化为具有环纹和螺纹加厚的原生导管细胞以及具有网纹和孔纹加厚的后生导管细胞, 显性抑制这2个基因能抑制拟南芥根中原生导管和后生导管的形成(Kubo 等2005)。随后的研究发现单独抑制VND7的正常功能就能抑制拟南芥根和茎中所有类型导管的形成, 并且可能形成同源或与其他VND 基因形成异源二聚体行使功能(Ya-maguchi 等2008)。VND1-5在拟南芥花序茎中特异表达在木质部, 过表达能激活次生壁合成途径转录因子和酶基因表达, 引起薄壁细胞异常加厚, 显性抑制VND3使花序茎导管次生壁变薄而塌陷, 这些结果表明VND1-5同VND6、VND7一起特异性调控导管细胞次生壁加厚(Zhou 等2014)。第二类包括NST3/SND1 (NAC secondary wall thickening pro-moting factor 3/secondary wall-associated NAC do-main protein 1)、NST1和NST2, 参与开启维管束间纤维细胞和木质部纤维细胞次生壁加厚(Zhong 和Ye 2015a)。拟南芥NST3/SND1特异性表达在维管束间纤维及木质部纤维细胞, 异位过表达SND1能激活非厚壁细胞中的次生壁合成, 显性抑制SND1

植物激素脱落酸ABA受体的研究

植物激素脱落酸ABA受体的研究 摘要脱落酸ABA(abscisic acid, ABA)是一种重要的植物激素,参与高等植物生长发育、抗逆等诸多生理过程。近些年发现的能与ABA结合并发挥受体功能的有FCA(Flowering Control Locus A)、ABAR/CHLH(Mg离子螯合酶H亚基)、GCR2(G蛋白偶联受体)、GTG1/2(GPCR-type G protein 1/2)和PYR/PYL/RCAR(pyrabactinresistant/PYR-like/regulatory component of ABA),其中PYR/PYL/RCAR被普遍认为是真正的ABA受体蛋白。目前ABA受体的研究主要集中在拟南芥和水稻等几个模式植物中。本文概述了以上几种ABA受体的研究进展,重点介绍以PYR/PYL/RCAR为受体在ABA信号传导途径中的作用模式,旨在为ABA受体及其信号转导通路的相关研究提供参考。 关键词脱落酸;ABA受体;信号转导 Research on Abscisic Acid(ABA)Receptor in plants Abstract Abscisic acid (ABA) is a key plant stress hormone,which involved in many important processes of growth and development in higher plants. Recent years, FCA (Flowering Control Locus A), ABAR/CHLH(H subunit of the chloroplast Mg2+-chelatase), GCR2(G-protein Coupled Receptor)、GTG1/2(GPCR-type G protein 1/2),PYR/PYL/RCAR(pyrabactin resistant/PYR-like/regulatory component of ABA) was found cound bond with ABA and function as ABA Receptor.PYR/ PYL/ RCAR is considered to be the most widely studied ABA receptor .Currently, most research focuses on several model plants such as Arabidopsis and rice.This paper describes the research progressof several kind of ABA receptor above, highlighting the PYR / PYL / RCAR as ABA receptors in the mode of action of the ABA signal transduction pathway,To research for the ABA receptor and its signal transduction pathway. Key words abscisic acid, ABA receptor, signal transduction. 1 ABA激素的发现

植物细胞融合的研究进展_综述_郭学民

河北科技师范学院学报 第19卷第1期,2005年3月 Jo ur nal o f Hebei N or mal U niver sity of Science&T echnolog y Co llege V o l.19 No1.1M arch2005 植物细胞融合的研究进展(综述) 郭学民1,2,徐兴友1,2,王同坤1,王华芳2,尹伟伦2 (1河北科技师范学院生命科学系,河北秦皇岛,066600;2北京林业大学生物科学与技术学院)摘要:概述了原生质体分离和培养的影响因素,介绍了近年来国内外原生质体培养与融合及杂种细胞、筛选和鉴定的动态。 关键词:细胞融合;原生质体;筛选与鉴定 中图分类号:Q321+.2 文献标识码:A 文章编号:1672-7983(2005)01-0065-05 细胞融合(cy to mixis),亦称细胞杂交(cell fusio n),是指亲本的两个细胞在特定的物理和化学因子处理下合并为一个杂种细胞的过程[1]。植物细胞融合可分为体细胞杂交(somatic hybridizatio n)和配子-体细胞杂交(gameto-somatic hy br idizatio n),前者是指不经过有性过程,而直接由体细胞原生质体融合产生杂种细胞,形成愈伤组织,并再生出植株的过程[2],后者是指性细胞(如小孢子四分体、精子、精细胞、幼嫩花粉、成熟花粉、卵细胞、助细胞和中央细胞等)原生质体和二倍体原生质体融合产生三倍体杂种细胞,形成愈伤组织,并再生出植株的过程[3]。植物细胞融合是植物细胞工程的一个重要分支,是一种突破物种生殖隔离、创造远缘杂种的新途径,原生质体技术还可用于细胞突变体的筛选、细胞器移植和外源DNA的导入。 自1960年Cocking[4]用酶法分离出番茄根原生质体后,Natag a和T akebe[5]1970年首次利用烟草叶分离原生质体,经培养获得再生植株;1975年以色列的Vardi等[6]首次从木本植物Sham onti甜橙珠心组织诱导胚性愈伤组织,并从愈伤组织分离原生质体,经培养通过胚状体再生出植株;在禾本科植物中,除在珍珠谷、紫狼尾草用悬浮细胞为材料,较早获得原生质体再生植株外,直到1985年Fujim ur a[7]等率先在水稻原生质体培养中获得了再生植株,才出现了重大突破。现已从许多种内、种间、属间甚至亚科间的体细胞杂交获得杂种细胞系或杂种植株。随着多种植物原生质体的成功培养和融合技术的不断改进,植物细胞融合获得了巨大成功。植物细胞融合包括原生质体的制备、细胞融合的诱导、杂种细胞的筛选和培养,以及植株的再生和鉴定等环节。 1 原生质体的分离和培养 1.1 起始材料 起始材料及其生理状态对原生质体的制备及其活力有很大的影响。在以往的双子叶植物培养中,大多以叶片为分离原生质体的材料,近年来,起始材料的适用范围有了较大扩展。目前,以愈伤组织、悬浮细胞和体细胞胚为材料制备原生质体是最主要的方式;禾本科植物原生质体培养获得成功的试验,几乎都是用从幼胚或成熟胚诱导形成的胚性愈伤组织或胚性细胞系来游离原生质体。采用这些材料制备原生质体方法简便、产量高、不污染、不易破碎。 1.2 基因型 同一植物不同基因型的原生质体脱分化与再分化所要求的条件不同,所以在相同条件下,不同品种的再生能力不同。王光远和夏镇澳[8]在水稻原生质体培养中曾用26个品种进行组织培养,其中仅有3个品种(粳稻农虎6号、国香1号和上农香糯)能成功地用于原生质体培养,获得再生植株。据统计,小麦获得原生质体再生植株的基因型只有大约10个[9]。基因型的选择在植物原生质体培养中起着重要作用,它不仅影响原生质体的产量和活力,而且还影响植株的再生。Cheng和Veillenux证明芙薯(Solanum phureja)从原生质体培养到愈伤组织形成受2个独立位点的显性基因的调控[10]。因此,现有 收稿日期:2004-03-09;修改稿收到日期:2004-12-12

浅析植物蓝光受体的研究

木子南QQ:171866859 植物蓝光受体研究进展综述 摘要:植物蓝光调节的反应主要有向光性、抑制幼茎伸长、叶绿体迁移、刺激气孔张开和调节基因表达等。蓝光反应的有效波长是蓝光和近紫外(320-400nm),故蓝光受体也叫蓝光/近紫外光受体。植物蓝光受体研究近年来取得较大进展。以拟南芥为例,已得到确认的受体至少有隐花色素(CRY1、2)和向光蛋白(phototropin)两大类。CRY1和CRY2共同介导了拟南芥植物的向光性。隐花色素的蛋白与辅基之间以非共价键连接,可以吸收蓝光和近紫外光。向光蛋白目前只发现PHOT1和PHOT2两种。而已发现的蓝光受体突变体有cry1突变体,cry2突变体,向光性反应突变体和蓝光信号传到下游组分突变体。蓝光受体的信号通路则包括:Ca2+ ,蛋白质的可逆磷酸化,阴离子通道和G蛋白介导的信号通路。本文通过回顾植物蓝光受体的研究进展,旨在探讨蓝光受体以后的研究热点及方向。 关键词:蓝光受体;隐花色素;向光蛋白;拟南芥 Progress of blue-light photoreceptors of plant Abstract: Blue and ultraviolet-A regulate a wide range of response in plants, including phototropism, chloroplast migration and stomatal opening. However, the photoreceptors for these light responses have been identified only recently. Crytochrome 1 and Crytochrome w are firstly elucidated. The phototropins{phot1 and phot2} reprent a new class if receptor kinases that appear to be exclusive to plants. The details of how this excitation activates such different responses remain to be elucidated. The main aim of this article is to review the whole process of these photoreceptors and discuss the research focus and directions in the future. Keywords: blue-light receptors; crytochrome; phototropins; Arabidopsis 高等植物的受蓝光调节的反应主要有向光性、抑制幼茎伸长、叶绿体迁移、刺激气孔张开和调节基因表达;并且蓝光反应在400-500nm区域呈现“三指”状。认为植物体内含有蓝光受体的科学家们对于蓝光受体内吸收光的色素基团到底是什么一直存在争议,科学家们认为可能的色素基团有胡萝卜素、核黄素、喋呤以及视黄醛。这个问题一直从20世纪30年代争论到90 年代,直到CRY1首先被分离得到,隐花色素(cryptochrome)这个词被创造出来并被广泛使用。随后以拟南芥为模式生物,筛选了大量突变体,获得了一些光形态建成缺陷的突变体。90年代是蓝光受体研究发展最快的时期,多个重要的基因相继得到克隆,为光形态建成的研究开辟了新的领域。蓝光反应的有效波长是蓝光和近紫外(320-400nm),故蓝光受体也叫蓝光/近紫外光受体。 1 隐花色素CRY1 植物蓝光受体研究近年来又取得较大进展。以拟南芥为例,已得到确认的受体至少有隐花色素和 - 1 -

植物激素的种类及作用特点

植物激素---植物生长调节剂的种类及特点 植物生长调节剂(plant growth regulator)是指人工合成(或从微生物中提取)的,由外部施用于植物,可以调节植物生长发育的非营养的化学物质。 植物生长调节剂的种类很多,但根据其来源、作用方式、应用效果等大体分为以下几类: 1.生长素类 生长素类是农业上应用最早的生长调节剂。最早应用的是吲哚丙酸(indole propionic acid,IPA)和吲哚丁酸(indole butyric acid,IBA),它们和吲哚乙酸(indole-3-acetic acid,IAA)一样都具有吲哚环,只是侧链的长度不同。 以后又发现没有吲哚环而具有萘环的化合物,如α-萘乙酸(α-naphthalene acetic acid,NAA)以及具有苯环的化合物,如2,4-二氯苯氧乙酸(2, 4-dichlorophenoxyacetic acid,2,4-D)也都有与吲哚乙酸相似的生理活性。 另外,萘氧乙酸(naphthoxyacetic acid,NOA)、2,4,5一三氯苯氧乙酸(2,4,5-trichlorophenoxyacetic acid,2,4,5-T)、4-碘苯氧乙酸(4-iodophenoxyacetie acid,商品名增产灵)等及其衍生物(包括盐、酯、酰胺,如萘乙酸钠、2,4-D 丁酯、萘乙酰胺等)都有生理效应。目前生产上应用最多的是IBA、NAA、2,4-D,它们不溶于水,易溶解于醇类、酮类、醚类等有机溶剂。生长素类的主要生理作用为促进植物器官生长、防止器官脱落、促进坐果、诱导花芽分化。在园艺植物上主要用于插枝生根、防止落花落果、促进结实、控制性别分化、改变枝条角度、促进菠萝开花等。 2.赤霉素类 赤霉素种类很多,已发现有121种,都是以赤霉烷(gibberellane)为骨架的衍生物。商品赤霉素主要是通过大规模培养遗传上不同的赤霉菌的无性世代而获得的,其产品有赤霉酸(GA3)及GA4和GA7的混合物。还有些化合物不具有赤霉素的基本结构,但也具有赤霉素的生理活性,如长孺孢醇、贝壳杉酸等。目前市场供应的多为GA3,又称920,难溶于水,易溶于醇类、丙酮、冰醋酸等有机溶剂,在低温和酸性条件下较稳定,遇碱中和而失效,所以配制使用时应加以注意。赤霉素类主要的生理作用是促进细胞伸长、防止离层形成、解除休眠、打破块茎和鳞茎等器官的休眠,也可以诱导开花、增加某些植物坐果和单性结实、增加雄花分化比例等。 3.细胞分裂素类 细胞分裂素类是以促进细胞分裂为主的一类植物生长调节剂,都为腺嘌呤的衍生物。常见的人工合成的细胞分裂素有:激动素(KT)、6-苄基腺嘌呤(6-benzyl adenine,BA.6-BA)和四氢吡喃苄基腺嘌呤(tetrahydropyranyl benzyladenine,又称多氯苯甲酸,简称PBA)等。有的化学物质虽然不具有

植物激素检测技术研究进展

生命科学 Chinese Bulletin of Life Sciences 第22卷 第1期2010年1月 Vol. 22, No. 1 Jan., 2010 文章编号 :1004-0374(2010)01-0036-09 收稿日期:2009-08-03 基金项目:国家自然科学基金项目(90717002; 20805001)*通讯作者: E-mail: yu.bai@https://www.360docs.net/doc/1d14335227.html, 植物激素检测技术研究进展 白 玉,杜甫佑,白 玉*,刘虎威 (北京大学化学与分子工程学院,北京 100871) 摘 要:植物激素是植物体内合成的一系列痕量有机化合物,它们在植物的生长发育和环境应答过程中 具有非常重要的作用,其超微定量及原位测定技术仍是制约植物激素研究的瓶颈问题之一。该文着重介绍了近年来茉莉酸及其甲酯、脱落酸、生长素、赤霉素和多肽激素等植物激素分析检测技术的最新研究进展,并对植物激素超微量、高灵敏检测技术研究中存在的问题和发展前景进行了简要的讨论。关键词:植物激素;分析检测;进展 中图分类号:Q946.855;Q94-334 文献标识码:A Recent development in determination of plant hormones BAI Yu, DU Fu-you, BAI Yu*, LIU Hu-wei (College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China) Abstract: Phytohormones, a series of trace organic compounds synthesized in plants, play important roles in plant growth, development and environmental response. The ultrasensitive and in-situ detection of phytohormones has been a crucial issue in the plant research. This paper mainly presents the recent development in determina-tion of jasmonic acid, methyl jasmonate, abscisic acid, auxin, gibberellin and peptide hormones, and discusses the challenges and prospects in this topic. Key words: phytohormones; determination; progress 植物激素是植物体内合成的一系列痕量有机化合物,它在植物的某一部位产生,运输到另一个或一些部位,在极低的浓度下便可引发生理反应,几乎参与了调控植物从种子休眠、萌发、营养、生长和分化到生殖、成熟和衰老的每个生命过程,既可调控植物自身的生长发育,又通过与植物所生存的外部环境互相作用调节其对环境的适应[1, 2]。通过调控如细胞分裂素、油菜素内酯和生长素等植物激素的代谢可显著地改良作物的株型结构和产量构成,从而大幅度提高作物产量和品质[3,4]。因此,国家自然科学基金委员会按照国家粮食发展需要、中长期科学和技术发展规划以及我国在植物激素研究方面所具有的知识积累和坚实的工作基础,在1997年启动了“植物激素作用的分子机理”重大研究计划,其中“植物激素成分分析、超微定量检测和原位检测”成为该重大研究计划中的六个核 心科学问题之一[5]。 植物激素主要包括生长素(a u x i n )、赤霉素(gibberellin, GA)、细胞分裂素(cytokinin, CTK)、脱落酸(abscisic acid, ABA)、油菜素甾醇类(brassinosteroids,BRs)、茉莉酸(jasmonic acid, JA)及其甲酯(MeJA)、水杨酸类(salicylic acids, SA)、乙烯(ethylene)和多肽激素(peptide hormones)等,它们在植物体内的含量极低(通常在ng/g ,甚至pg/g 水平上),且周围共存的基体成分非常复杂,几乎不可能同时分析所有植物激素[6, 7]。此外,多数植物激素的性质不稳定,对温度等外界条件敏感,在各器官中呈现一定的动态分布。因此,如何精确可靠地对超微量的植物激

植物生长激素5类

【生长素】 名称(缩写)结构略: ●吲哚-3-乙酸(IAA) ●吲哚-3-丁酸(IBA) ●4-氯-3-吲哚乙酸(4-Cl-IAA) ●苯乙酸(PAA) 存在形式: 1.自由生长素:具有活性 2.束缚生长素:没有活性 注:自由生长素和舒束缚生长素可以相互转换. 分布: 1.总体:生长旺盛器官多,衰老器官少. 2.细胞:约有1/3在叶绿体内,余下在细胞质基质. 运输: 1.通过韧皮部运输:运输方向决定于有机物浓度差. 2.仅限于胚芽鞘、幼茎、幼根细胞间的单方向极性运输:只能从植物体形态学上端向下端运输. 合成: 部位: ●主要部位:叶原基、嫩叶和发育中的种子. ●少数部位:成熟叶片和根尖. 途径:依赖和不依赖色氨酸的合成途径,下面是依赖色氨酸的途径. 1.吲哚乙酰胺途径 2.吲哚乙腈途径 3.吲哚丙酮酸途径: 4.色胺途径 生理作用和应用: 1.促进作用: 促进细胞分裂,维管束分化,茎伸长,叶片扩大,顶端优势,种子发芽,侧根和不定根形成,根瘤形成,片上性生长,形成层活性,光合产物分配,雌花增加,单性结实,子房壁生长,乙烯产生,叶片脱落,伤口愈合,种子和果实生长,坐果等. 2.抑制作用 抑制花朵脱落,侧枝生长,块根形成,叶片衰老等. 【赤霉素】 缩写:GA 分类结构略: C20赤霉素:呈酸性. C19赤霉素:种类多,活性高. 存在形式: 1.自由赤霉素:易被有机溶剂提取. 2.结合赤霉素:没有活性. 分布与运输: 1.生长旺盛器官多,衰老器官少. 2.果实、种子含量比营养器官多两个数量级.

3.器官或组织有两种以上赤霉素 4.没有极性运输 合成: 部位: 发育着的果实伸长着的茎端和根部 步骤: 在质体中->内质网中->细胞基质 生理作用和应用: 1.促进作用: 促进种子萌发和茎伸长,两性花的雄花形成,单性结实,某些植物开花,花粉发育,细胞分裂,叶片扩大,抽薹,侧枝生长,胚轴弯钩变直,果实生长,以及某些植物坐果. 2.抑制作用 抑制成熟,侧芽休眠,衰老,块茎形成. 【细胞分裂素】 缩写:CTK 存在形式: 1.游离的细胞分裂素: 2.tRNA中细胞分裂素: ●自由细胞分裂素:具有生理活性 ●束缚细胞分裂素 分布:主要分布在细胞分裂的部位. 运输:主要从根部合成处通过木质部运到递上部,叶片合成部位也能通过韧皮部向下运输. 合成: 部位:在细胞质体合成但细胞分裂素糖苷位于液泡,细胞内运输还有待阐明. 途径: 1.由tRNA水解产生 2.从头合成:主要途径 生理作用和应用: 1.促进作用: 促进细胞分裂,细胞膨大,地上部分分化,侧芽生长,叶片扩大,叶绿体发育,养分移动,气孔张开,偏上性生长,伤口愈合,种子发芽,形成层活动,根瘤形成,果实生长,某些植物坐果. 2.抑制作用 抑制不定根和侧根形成,延缓叶片衰老.

相关文档
最新文档