概率统计课件第七章练习册答案

合集下载

概率论第七章习题解答

概率论第七章习题解答

概率论第七章习题解答1、随机地取8只活塞,测得它们的直径为(以mm 计)74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002 试求总体均值μ及方差2σ的矩估计值,并求样本方差2s 。

解 1()E X μμ==22222()()[()]E X D X E X μσμ==+=+解得 1μμ=,2221σμμ=-又 81118i i A X X ===∑令 1A X μ== (一阶矩估计量)2222A X σμ==-(二阶矩估计量)代入样本值,1(74.00174.00574.00374.0018x =+++74.00073.99874.00674.002)++++74.002=ˆ74.002μ=,(一阶矩估计值) 82211ˆ()8i i x x σ==-∑ 22222221[(0.001)0.0030.001(0.001)0.002(0.004)(0.004)0]8=-+++-++-++ 即 26648ˆ106108σ--=⨯=⨯ (二阶矩估计值) 因为样本方差22211()1n i i S X X n ==--∑ 当8n =时,822211()7ii S X X ==-∑ 所以 22661148ˆ()10 6.861077n i i sx x --==-=⨯=⨯∑ 2、设12,,,n X X X 为总体的样本,12,,,n x x x 为一相应的样本值,求下列总体的概率密度或分布律中的未知参数的矩估计量和矩估计值。

(1)(1),()0,c x x cf x θθθ-+⎧>=⎨⎩其它,其中0c >为已知,θ为未知参数。

(2)1,01()0,x f x ≤≤=⎪⎩其它,其中0θ>,θ为未知参数。

(3){}(1)x x m xm P X x C p p -==-,0,1,2,,x m =,其中01p <<,p 为未知参数。

概率统计课件第七章练习册答案

概率统计课件第七章练习册答案

所以S=
4
2、由对称性:r
2 sin (圆)及r 2 cos 2 (双纽线)的交点的
6
所求的面积 S 分为左右两部分;而右边部分的面积又分为两部分计算:S1 S2 ,
S1由
0,
6
和r
2
sin
围成,所以
S1
6 0
1 2
(
2 sin )2d 12
3 8
S2由
,
6
和r2
4
cos
2围成,所以 S2
3
令x2
2
sin t ,所以 S1
2
4 3
所以下方面积: S2
8
(2
4) 3
6
4 3
.
2、如图: y 1 与 y x的交点的横坐标 x 1
x
则阴影部分面积为
2
1
(
x
1 x
)d
2
3、解围成图形面积为
1(ex 0
ex
)dx
e
1 e
2

| 4、S lnb (ey 0)dy ey lnb b a。
第七章
习题答案
7.1 微元分析法
7.2 平面图形的面积 7.3 体积 7.4 平面曲线的弧长 7.5 经济应用
ppt课件
1
习题 7.1
一、1:如图示:抛物线 y 1 x2与园 x2 y2 8
2
的图形,设阴影部分面积为 S1

S1= 2
2
(
0
8 x2 1 x2 )dx 2 2
2
0
8 x2 dx 8 ,
4 6
1 2
cos 2d
1 4

概率论与数理统计第七章习题答案

概率论与数理统计第七章习题答案
假定重复测量所得温度ξ ~ N (µ,σ 2 ),求总体温度真值µ的95%的置信区间: (1)根据以往长期经验,已知测量精度σ = 11; (2)当σ 未知时。
解:(1)已知ξ ~N (µ, σ 2 ),取统计量U = ξ − µ ,则有U ~ N (0,1),于给定的置信概率1−α ,
n
σ/ n
可求出uα
+ (4 − 0.8)2 ×1] = 0.831.
14.设ξ1,ξ2,……,ξn是取自总体ξ的一个样本,n ≥ 2,ξ ~ B(1, p),其中p为未知,0 < p < 1, 求证:
(1)ξ12是p的无偏估计; (2)ξ12不是p2的无偏估计;
(3) ξ1ξ2是p2的无偏估计。
证明:(1)Eξ
2 1
tα /2 (4) = 2.78, S = 11.937, n = 5代入(*),求得µ的置信区间为(1244.185,1273.815).
20.假定到某地旅游的一个游客的消费额ξ~N (µ,σ 2 ),且σ = 500元,今要对 该地每一个游客的平均消费额µ进行估计,为了能以不小于95%的置信概率 确信这估计的绝对误差小于50元,问至少需要随机调查多少个游客?
乐山师范学院化学学院
1.设总体ξ 有分布律
第七章 参数估计部分习题答案
ξ
−1
0
2
p

θ
1-3θ
其中 0 < θ < 1 为待估参数,求θ 的矩估计。 3
解:总体一阶矩为Eξ = (−1) × 2θ + 0×θ + 2× (1− 3θ ) = −8θ + 2.
用样本一阶矩代替总体一阶矩得ξ = -8θˆ + 2,则θˆ = 1 (2 − ξ ). 8

概率论第七章 习题解答

概率论第七章 习题解答

第七章 假设检验I 教学基本要求1、了解假设检验的相关概念及基本思想,掌握假设检验的基本步骤,知道犯两类错误的概率的含义;2、掌握单正态总体均值和方差的假设检验;3、掌握两个正态总体均值差与方差比的假设检验;4、了解分布的假设检验.II 习题解答A 组1、某企业生产铜丝,而折断力的大小是铜丝的主要质量指标.从过去的资料来看,可认为折断力2(570,8)X N ~(单位:千克力),现更换了一批原材料,测得10个样品的折断力如下:578 572 570 568 572 570 570 572 596 584 从性能上看,折断力的方差不会有什么变化,试问折断力的大小与原先有无差异(0.05)α=?解:若折断力的大小与原先无差异,则总体均值μ应为570,因此,提出假设如下:0H :570μ= vs 1H :570μ≠由0.05α=,查附表得临界值0.975 1.96u =,根据样本观测值求得575.2x =于是,检验统计量U 的值2.055U ==由于0.975||U u ≥,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为折断力与原先有差异.2、某工厂生产的电子元件平均使用寿命2(,)X N μσ~,现抽测15个元件,得到18000x =、5200s =(单位:小时),试问该工厂生产的电子元件的平均使用寿命是否为20000(0.05)α=?解:若该工厂生产的电子元件的平均使用寿命为20000,则总体均值μ应为20000,因此,提出假设如下:0H :20000μ= vs 1H :20000μ≠由0.05α=,查附表得临界值0.975(14) 2.145t =,由已知数据求得检验统计量T 的值0.149T ==-由于0.975||(14)T t <,所以,在显著性水平0.05α=下接受原假设0H ,即认为该工厂生产的电子元件的平均使用寿命是20000小时.3、用热敏电阻测温仪间接测量地热勘探井底温度,重复测量6次,测得温度(C )为:111.0112.4110.2111.0113.5111.9假定测量的温度服从正态分布,且井底温度的真实值为111.6C ,试问用热敏电阻测温仪间接测温是否准确(0.05)α=?解:若用热敏电阻测温仪间接测温是准确的,则总体均值μ应为111.6,因此,提出假设如下:0H :111.6μ= vs 1H :111.6μ≠由0.05α=,查附表得临界值0.975(5) 2.571t =,根据样本观测值求得111.67x =、2 1.399s =于是,检验统计量T 的值0.145T ==由于0.975||(5)T t <,所以,在显著性水平0.05α=下接受原假设0H ,即认为用热敏电阻测温仪间接测温是准确的.4、设考生在某次考试中的成绩服从正态分布,从中随机地抽取36位考生的成绩,得到平均成绩为66.5分、标准差为15分,问是否可以认为这次考试全体考生的平均成绩为70分(0.05)α=?解:若这次考试全体考生的平均成绩为70分,则总体均值μ应为70,因此,提出假设如下:0H :70μ= vs 1H :70μ≠由0.05α=,查附表得临界值0.975(35) 2.0301t =,由已知数据求得检验统计量T 的值1.4T ==-由于0.975||(35)T t <,所以,在显著性水平0.05α=下接受原假设0H ,即认为这次考试全体考生的平均成绩为70分.5、某化肥厂用自动包装机包装化肥,每包质量服从正态分布2(50,)N σ,某日开工后,随机抽取8包化肥,测得质量(单位:kg )如下:49.249.850.350.849.749.650.550.1问该天包装的化肥质量的方差是否为1.3(0.05)α=?解:若该天包装的化肥质量的方差是1.3,则21.3σ=,因此,提出假设如下:0H :2 1.3σ= vs 1H :2 1.3σ≠由0.05α=,查附表得临界值20.025(8) 2.1797χ=、20.975(8)17.5345χ=,根据样本观测值求得21()2.192nii x μ=-=∑于是,检验统计量2χ的值2 2.1921.6861.3χ== 由于220.025(8)χχ≤,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为该天包装的化肥质量的方差不是1.3.6、设某化纤厂生产的维尼纶的纤度在正常情况下服从方差为20.05的正态分布,现随机抽取6根,测得其纤度为1.33 1.351.541.451.371.53问维尼纶纤度的方差是否正常(0.10)α=?解:若维尼纶纤度的方差正常,则220.05σ=,因此,提出假设如下:0H :220.05σ= vs 1H :220.05σ≠由0.10α=,查附表得临界值20.05(5) 1.146χ=、20.95(5)11.07χ=,根据样本观测值求得1.43x =、20.0085s =于是,检验统计量2χ的值22(61)0.00851.70.05χ-⨯==由于2220.050.95(5)(5)χχχ<<,所以,在显著性水平0.10α=下接受原假设0H ,即认为维尼纶纤度的方差是正常的.7、生产某种产品可用两种操作方法.用第一种操作方法生产的产品抗折强度21(,7)X N μ~;用第二种操作方法生产的产品抗折强度22(,9)Y N μ~(单位:千克),现从第一种操作方法生产的产品中随机抽取13件,得到42x =,从第二种操作方法生产的产品中随机抽取17件,测得36y =,问这两种操作方法生产的产品的平均抗折强度是否有显著差异(0.05)α=?解:若这两种操作方法生产的产品的平均抗折强度无显著差异,则12μμ=,因此,提出假设如下:0H :12μμ= vs 1H :12μμ≠由0.05α=,查附表得临界值0.975 1.96u =,由已知数据求得检验统计量U 的值2.054U ==由于0.975||U u ≥,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为这两种操作方法生产的产品的平均抗折强度有显著差异.8、某种物品在处理前与处理后分别抽样分析其含脂率,测得数据如下:假设处理前后的含脂率都服从正态分布,且方差不变,问该物品处理前后含脂率的均值是否有显著差异(0.01)α=?解:若该物品处理前后含脂率的均值无显著差异,则12μμ=,因此,提出假设如下:0H :12μμ= vs 1H :12μμ≠由0.01α=,查附表得临界值0.995(13) 3.012t =,根据样本观测值求得0.23x =、0.18y =、20.0094x s =、20.0045ys =、0.0822w s = 于是,检验统计量T 的值2.273T==由于0.995||(13)T t<,所以,在显著性水平0.01α=下接受原假设H,即认为该物品处理前后含脂率的均值无显著差异.9、有甲、乙两台机床加工同样的产品,现从这两台机床加工的产品中随机地抽取若干产品,测得产品直径(单位:)为:问甲乙两台机床加工的精度是否有显著差异(0.05)α=?解:若甲乙两台机床加工的精度无显著差异,则它们的方差相同,因此,提出假设如下:0H:2212σσ=vs1H:2212σσ≠由0.05α=,查附表得临界值0.0250.97511(7,6)0.1953(6,7) 5.12FF===、0.975(7,6) 5.70F=,根据样本观测值求得19x=、19y=、20.1029xs=、20.3967ys=于是,检验统计量F的值0.10290.25940.3967F==由于0.0250.975(7,6)(7,6)F F F<<,所以,在显著性水平0.05α=下接受原假设H,即认为甲乙两台机床加工的精度无显著差异.10、某车床生产滚珠,现随机抽取了50个产品,测得它们的直径(单位:mm)为:15.0 15.8 15.2 15.1 15.9 14.7 14.8 15.5 15.6 15.315.1 15.3 15.0 15.6 15.7 14.8 14.5 14.2 14.9 14.915.2 15.0 15.3 15.6 15.1 14.9 14.2 14.6 15.8 15.215.9 15.2 15.0 14.9 14.8 14.5 15.1 15.5 15.5 15.115.1 15.0 15.3 14.7 14.5 15.5 15.0 14.7 14.6 14.2问滚珠直径是否服从正态分布(0.05)α=?解:若滚珠直径服从正态分布,则2(,)X Nμσ~,因此,提出假设如下:0H:2(,)X Nμσ~由于μ、2σ未知,因而用它们的最大似然估计值ˆ15.1xμ==、222ˆ0.4325sσ==代替得到分布2(15.1,0.4325)N,为了求统计量2χ的值,取14.05a=、16.15ka=,将0[,]k a a 等分为7个小区间,列表计算得:于是,检验统计量2χ的值221() 3.062ki i i i n np np χ=-==∑再由0.05α=,查附表得临界值20.95(4)9.488χ=,由于220.95(4)χχ<,所以,在显著性水平0.05α=下接受原假设0H ,即认为滚珠直径服从正态分布.B 组1、随机地从一批直径服从正态分布的滚珠中抽取7个,测得其直径(单位:mm )为: 13.70 14.21 13.90 13.91 14.32 14.32 14.10假设滚珠直径总体分布的方差为0.05,问这批滚珠的平均直径是否小于等于14.25(0.05)α=?解:若这批滚珠的平均直径是小于等于14.25,则14.25μ≤,因此,提出假设如下:0H :14.25μ≤ vs 1H :14.25μ>由0.05α=,查附表得临界值0.95 1.65u =,根据样本观测值求得14.07x =于是,检验统计量U 的值2.118U ==-由于0.95U u <,所以,在显著性水平0.05α=下接受原假设0H ,即认为这批滚珠的平均直径小于等于14.25.2、设1x 、2x 、…、n x 是取自正态总体2(,)N μσ的样本,记11ni i x x n ==∑、221()ni i Q x x ==-∑,试在此记号下求检验假设0H :0μ=的检验统计量?解:该问题是单正态总体方差未知时关于期望μ的假设检验问题,检验统计量应选为x T =由于222111()11n ii s x x Q n n ==-=--∑,即s =,从而检验统计量为x T ==3、某种导线要求其电阻的标准差不超过0.004欧姆,现从生产的一批导线中随机抽取8根,得到220.006s =,若该导线的电阻服从正态分布,问能否认为这批导线的标准差偏小(0.05)α=?解:若这批导线的标准差偏小,则220.004σ≤,因此,提出假设如下:0H :220.004σ≤ vs 1H :220.004σ>由0.05α=,查附表得临界值20.95(7)14.067χ=,由已知数据求得检验统计量2χ的值222(81)0.00615.750.004χ-⨯== 由于220.95(7)χχ≥,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为这批导线的标准差偏大.4、下面是某两种型号的电器充电后所能使用的时间(单位:小时)的观测值 型号A 5.5 5.6 6.3 4.6 5.3 5.0 6.2 5.8 5.1 5.2 5.9 型号B 3.8 4.3 4.2 4.0 4.9 4.5 5.2 4.8 4.5 3.9 3.7 4.6设两样本独立且抽样的两个正态总体方差相等,试问能否认为型号A 比型号B 平均使用的时间更短(0.01)α=?解:若型号A 比型号B 平均使用的时间更短,则12μμ≤,因此,提出假设如下:0H :12μμ≤ vs 1H :12μμ>由0.01α=,查附表得临界值0.99(21) 2.5176t =,根据样本观测值求得5.5x =、 4.3667y =、20.274x s =、20.2188ys =、0.4951w s =于是,检验统计量T的值5.4837T==由于0.99(21)T t≥,所以,在显著性水平0.01α=下拒绝原假设H,即认为型号A比型号B平均使用的时间更长.5、某药厂生产一种新的止痛片,厂方希望验证服用新药片后到开始起作用的时间间隔较原有止痛片至少缩短一半,因此厂方提出检验假设H:122μμ=vs1H:122μμ>其中1μ、2μ分别是服用原有止痛片和服用新止痛片后到开始起作用的时间间隔的总体均值,若这两个总体均服从正态分布,且方差21σ、22σ已知,现分别从两个总体中抽取两个独立样本1x、2x、…、mx和1y、2y、…、ny,试给出上述假设检验问题的检验统计量及拒绝域?解:设X为服用原有止痛片后到开始起作用的时间间隔,Y为服用新止痛片后到开始起作用的时间间隔,则211(,)X Nμσ~、222(,)Y Nμσ~,于是22121242(2,)x y Nm nσσμμ-~-+()~(0,1)x yU N⇒=当H成立,有~(0,1)x yU N=所以,可选取检验统计量x yU=对于给定的显著性水平α,检验的拒绝域为1{|}W U U uα-=≥.6、有两箱来自不同厂家的功能相同的金属部件,从第一箱中抽取60个,从第二箱中抽取40个,得到部件重量()mg的样本方差分别为215.46xs=、29.66ys=.若两样本相互独立且服从正态分布,试问第一箱重量的总体方差是否比第二箱重量的总体方差小(0.05)α=?解:若第一箱重量的总体方差比第二箱重量的总体方差小,则2212σσ≤,因此,提出假设如下:0H :2212σσ≤ vs 1H :2212σσ> 由0.05α=,查附表得临界值0.95(59,39) 1.64F =,根据已知数据求得检验统计量F 的值15.461.609.66F == 由于0.95(59,39)F F <,所以,在显著性水平0.05α=下接受原假设0H ,即认为第一箱重量的总体方差比第二箱重量的总体方差小.7A B 设两批电子器件的电阻分别服从211(,)N μσ、222(,)N μσ,试问能否认为两个总体服从相同的正态分布(0.05)α=?解:(1) 先检验两个总体方差相同.若两个总体方差相同,则2212σσ=,因此,提出假设如下: 0H :2212σσ= vs 1H :2212σσ≠ 由0.05α=,查附表得临界值0.0250.97511(5,5)0.140(5,5)7.15F F ===、0.975(5,5)7.15F =,根据样本观测值求得0.141x =、0.139y =、20.0000078x s =、20.0000071ys = 于是,检验统计量F 的值0.00000781.10.0000071F ==由于0.0250.975(5,5)(5,5)F F F <<,所以,在显著性水平0.05α=下接受原假设0H ,即认为两个总体方差相同;(2) 在(1)的基础上检验两个总体均值相同.若两个总体均值相同,则12μμ=,因此,提出假设如下:0H :12μμ= vs 1H :12μμ≠由0.05α=,查附表得临界值0.975(10) 2.2281t =,根据样本观测值求得20.0000074w s =于是,检验统计量T 的值1.267T ==由于0.975||(10)T t <,因而在显著性水平0.05α=下接受原假设0H ,即认为两个总体均值相同;所以,可认为两个总体服从相同的正态分布.8、在一批灯泡中抽取300只进行寿命测试,试验结果如下:试检验假设:0H :灯泡寿命服从指数分布0.0050.0050()00te tf t t -⎧>=⎨≤⎩(0.05)α=?解:根据题意提出假设0H :(0.005)X E ~为了求统计量2χ的值,将(0,)+∞分为4个小区间(0,100]、(100,200]、(200,300]、(300,)+∞,列表计算得:于是,检验统计量2χ的值221() 1.8393ki i i in np np χ=-==∑再由0.05α=,查附表得临界值20.95(3)7.8147χ=,由于220.95(3)χχ<,所以,在显著性水平0.05α=下接受原假设0H ,即认为该批灯泡寿命服从参数为0.005的指数分布.。

《概率论与数理统计》习题及答案 第七章

《概率论与数理统计》习题及答案  第七章

《概率论与数理统计》习题及答案第 七 章1.对某一距离进行5次测量,结果如下:2781,2836,2807,2765,2858(米). 已知测量结果服从2(,)N μσ,求参数μ和2σ的矩估计.解 μ的矩估计为ˆX μ=,2σ的矩估计为22*211ˆ()ni i X X S n σ==-=∑ 1(27812836280727652858)2809.05X =++++=,*215854.01170.845S =⨯=所以2ˆ2809,1170.8μσ== 2.设12,,,n X X X 是来自对数级数分布1(),(01,1,2,)(1)kp P X k p k lu p k==-<<=-的一个样本,求p 的矩估计.解 111111ln(1)ln(1)ln(1)1k kk k p p p p p p p μ∞∞==-==-=-⋅----∑∑ (1) 因为p 很难解出来,所以再求总体的二阶原点矩121111ln(1)ln(1)ln(1)kk k x pk k k p p kp kp x p p p μ∞∞∞-===='-⎛⎫==-=- ⎪---⎝⎭∑∑∑ 21ln(1)1ln(1)(1)x pp x p p x p p ='⎡⎤=-=-⋅⎢⎥----⎣⎦ (2) (1)÷(2)得 121p μμ=- 所以 212p μμμ-= 所以得p 的矩估计21221111n i i n i i X X X n p X n α==-==-∑∑3.设总体X 服从参数为N 和p 的二项分布,12,,,n X X X 为取自X 的样本,试求参数N 和p 的矩估计 解 122,(1)()Np Np p Np μμ⎧=⎪⎨=-+⎪⎩ 解之得1/N p μ=, 21(1)p Np μμ-+=, 即1N pμ=,22111p μμμ-=-,所以 N 和p 的矩估计为ˆX N p=,*21S p X =-. 4.设总体X 具有密度11(1)1,,(;)0,.Cx x C f x θθθθ-+⎧>⎪=⎨⎪⎩其他其中参数01,C θ<<为已知常数,且0C >,从中抽得一个样本,12,,,n X X X ,求θ的矩估计解11111111111CCEX C x dx C xθθθθμθθθ+∞--+∞===-⎰111()11C C C C θθθθ-=-⋅=--, 解出θ得11,Cθμ=-92 于是θ的矩估计为 1C Xθ=-. 5.设总体的密度为(1),01,(;)0,.x x f x ααα⎧+<<⎪=⎨⎪⎩其他试用样本12,,,n X X X 求参数α的矩估计和极大似然估计.解 先求矩估计:111210011(1),22EX x dx x ααααμααα++++==+==++⎰解出α得 1112,1μαμ-=- 所以α的矩估计为 121XX α-=-. 再求极大似然估计: 1121(,,;)(1)(1)()nn n i n i L X X x x x x ααααα==+=+∏,1ln ln(1)ln nii L n xαα==++∑,1ln ln 01nii d L nx d αα==++∑,解得α的极大似然估计: 1(1)ln nii nxα==-+∑.6.已知总体X 在12[,]θθ上服从均匀分布,1n X X 是取自X 的样本,求12,θθ的矩估计和极大似然估计.解 先求矩估计: 1212EX θθμ+==,22222211211222()()1243EX θθθθθθθθμ-+++==+=解方程组121221122223θθμθθθθμ⎧+=⎪⎪⎨++⎪=⎪⎩得11θμ=±2123(θμμμ=-注意到12θθ<,得12,θθ的矩估计为*1X θ=-,*2X θ=.再求极大似然估计 1121212111(,,;,)()nn ni L X X θθθθθθ===--∏,1122,,,n x x x θθ≤≤,由极大似然估计的定义知,12,θθ的极大似然估计为11(1)min(,,)n X X X θ==;21()max(,,)n n X X X θ==.7.设总体的密度函数如下,试利用样本12,,,n x x x ,求参数θ的极大似然估计.(1)1(),0,(;)0,.x x e x f x αθαθαθα--⎧>⎪=⎨⎪⎩其它;已知(2)||1(;),,2x f x e x θθθ--=-∞<<+∞-∞<<+∞. 解 (1)111111(,,;)()()ni i i nx x n nn i n i L X X x ex x eααθθααθθαθα=----=∑==∏111ln (;)ln ln (1)ln nnn i i i i L X X n n x x αθθααθ===++--∑∑1ln 0ni i d L nx d αθθ==-∑解似然方程1ni i nx αθ==∑,得θ的极大似然估计94 1.ni i nx αθ==∑(2)1||||1111(;)22ni i i n x x n n i L X X e eθθθ=----=∑==∏由极大似然估计的定义得θ的极大似然估计为样本中位数,即1()2()(1)22,1(),.2n n n X n X X n θ++⎧⎪⎪=⎨⎪+⎪⎩为奇数,为偶数8.设总体X 服从指数分布(),,(;)0,.x ex f x θθθ--⎧≥⎪=⎨⎪⎩其他试利用样本12,,,n X X X 求参数θ的极大似然估计.解 1()11(,,;),,1,2,,.ni i i nx n x n i i L X X eex i n θθθθ=-+--=∑==≥=∏1ln nii L n Xθ==-∑ln 0d Ln d θ=≠ 由极大似然估计的定义,θ的极大似然估计为(1)x θ= 9.设12,,,n X X X 来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,试求未知参数p 的极大似然估计. 解 1111(,,;)(1)(1)ni i i nx nx n n i L x x p p p p p =--=∑=-=-∏,1ln ln ()ln(1),nii L n p Xn p ==+--∑1ln 0,1ni i X nd L n dp p p=-=--∑解似然方程11nii n X n p p=-+=-∑, 得p 的极大似然估计1p X=。

概率论与数理统计第七章练习题与答案详解

概率论与数理统计第七章练习题与答案详解

概率论与数理统计 第七章 参数估计练习题与答案(答案在最后)1.设总体X 的二阶矩存在,n X X X ,,,21 是来自总体X 的一个样本,则2EX 的矩估计是( ).(A) X (B) ()∑=-n i i X X n 121 (C) ∑=n i i X n 121 (D) 2S2.矩估计必然是( ).(A) 总体矩的函数 (B) 样本矩的函数 (C) 无偏估计 (D) 最大似然估计3.某钢珠直径X 服从()1,μN ,从刚生产出的一批钢珠中随机抽取9个,求得样本均值06.31=X ,样本标准差98.0=S ,则μ的最大似然估计是 .4.设θˆ是未知参数θ的一个估计量,若θθ≠ˆE ,则θˆ是θ的( ) (A) 最大似然估计 (B) 矩估计 (C) 有效估计 (D) 有偏估计5.设21,X X 是()1,μN 的一个样本,下面四个关于μ估计量中,只有( )才是μ的无偏估计.(A) 213432X X + (B) 214241X X + (C)215352X X + (D) 214143X X - 6.设总体X 服从参数为λ的Poisson 分布,n X X X ,,,21 是来自总体X 的一个样本,则下列说法中错误的是( ).(A) X 是EX 的无偏估计量 (B) X 是DX 的无偏估计量 (C) X 是EX 的矩估计量 (D) 2X 是2λ的无偏估计量 7.设321,,X X X 是()1,μN 的一个样本,下面四个关于μ无偏估计量中,根据有效性这个标准来衡量,最好的是( ).(A) 321313131X X X ++ (B) 213132X X + (C)321412141X X X ++ (D) 216561X X + 8.设n X X X ,,,21 是来自总体()2,σμN 的一个样本,其中μ未知,而σ已知,则⎪⎪⎭⎫⎝⎛+-n U X n U X σσ025.0025.0,作为μ的置信区间,其置信水平是( ).(A) 0.9 (B) 0.95 (C) 0.975 (D) 0.05 9.设n X X X ,,,21 是来自总体()2,σμN 的一个样本,其中μ未知,而σ已知,μ的置信水平为α-1的置信区间⎪⎪⎭⎫ ⎝⎛+-n U X n U X σσαα22 ,的长度是α的减函数,对吗?10.总体X 的密度函数为()⎪⎩⎪⎨⎧<<=-其它101x x x f θθ,其中θ是未知参数,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计量和最大似然估计量.11.总体X 的密度函数为()⎪⎩⎪⎨⎧>=-其它002222x ex x f x θθ, 其中θ是未知参数,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计量和最大似然估计量.12.设总体X 服从几何分布:()()11--==x p p x X P ,() ,2,1=x ,n X X X ,,,21 是来自总体X 的一个样本,求参数p 的最大似然估计. 13.设n X X X ,,,21 是来自总体()2,0σN 的一个样本,求参数2σ的最大似然估计.14.设n X X X ,,,21 是来自总体()2,7t a n σμ+N 的一个样本,其中22πμπ<<-,求参数2,σμ的最大似然估计.15.设n X X X ,,,21 是来自总体()2,~σμN X 的一个样本,对给定t ,求()t X P ≤的最大似然估计.16.一个罐子里装有黑球和白球,有放回地抽取一个容量为n 的样本,发现其中有k 个白球,求罐中黑球数和白球数之比R 的最大似然估计. 17.总体X 的分布律是:()()()θθθ312,0,21-=====-=X P X P X P ,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计和最大似然估计. 18.设总体X 服从二项分布()p N B ,,N 为正整数,10<<p ,n X X X ,,,21 是来自总体X 的大样本,求参数p N ,的矩估计量.19.设μ=EX ,n X X X ,,,21 是来自总体X 的一个样本,证明:()∑=-=n i i X n T 121μ是总体方差的无偏估计.20.总体X 服从()θθ2,上均匀分布,n X X X ,,,21 是来自总体X 的一个样本,证明X 32ˆ=θ是参数θ的无偏估计.21.设总体X 服从二项分布()p m B ,,n X X X ,,,21 是来自总体X 的一个样本,证明∑==ni i X n m p 11ˆ是参数θ的无偏估计. 22.设n X X X ,,,21 是来自总体X 的一个样本,且X 服从参数为λ的Poisson 分布,对任意()1,0∈α,证明()21S X αα-+是λ的无偏估计,其中2,S X 分别是样本均值和样本方差.23.设02>=σDX ,n X X X ,,,21 是来自总体X 的一个样本,问2X 是否是()2EX 的无偏估计.24.设321,,X X X 是来自总体()2,σμN 的一个样本,试验证:32112110351ˆX X X ++=μ,32121254131ˆX X X ++=μ,都是参数μ的无偏估计,并指出哪个更有效.25.从总体()1,1μN 抽取一个容量为1n 的样本:1,,,21n X X X ,从总体()4,2μN 抽取一个容量为2n 的样本:2,,,21n Y Y Y ,求21μμα-=的最大似然估计αˆ.假定总的样本容量21n n n +=不变时,求21,n n 使αˆ的方差最小. 26.为了测量一台机床的椭圆度,从全部产品中随机抽取100件进行测量,求得样本均值为mm X 081.0=,样本标准差为mm S 025.0=,求平均椭圆度μ的置信水平为0.95的置信区间.27.自动机床加工的同类零件中,随机抽取9件,测得长度如下:21.1,21.3,21.4,21.5,21.3,21.7,21.4,21.3,21.6,已知零件长度X 服从()2,σμN ,置信水平为0.95,(1) 若15.0=σ,求μ置信区间; (2) 若σ未知,求μ置信区间; (3) 若4.21=μ,求σ置信区间; (4) 若μ未知,求σ置信区间. 28.设总体X 服从()23,μN ,如果希望μ的置信水平为0.9的置信区间长度不超过2,则需要抽取的样本容量至少是多少?29.某厂利用两条自动化流水线灌装面粉,分别从两条流水线上抽取12和17的两个独立样本,其样本均值和样本方差分别为:6.10=X ,4.221=S ,5.9=Y ,7.422=S ,假设两条生产线上灌装面粉的重量都服从正态分布,其均值分别为21,μμ,方差相等,求21μμ-的置信水平为0.9的置信区间. 30.设两位化验员独立对某种聚合物含氯量用相同方法各作10次测定,其测定值的样本方差分别为:5419.021=S ,6065.022=S ,设2221,σσ分别为两位化验员所测定值总体的方差,设两位化验员的测定值都服从正态分布,求方差比2221σσ的置信水平为0.9的置信区间.31.从一批产品中抽取100个产品,发现其中有9个次品,求这批产品的次品率p 的置信水平为0.9的置信区间.答案详解1.C 2.B 3.31.064.D 5.C 6.D 7.A 8.B 9.对10.(1) 矩估计因为()⎰∞+∞-=dx x xf EX 11+==⎰θθθθdx x ,所以21⎪⎭⎫⎝⎛-=EX EX θ,而X EX =∧,由此得参数θ的矩估计量为21ˆ⎪⎪⎭⎫ ⎝⎛-=X X θ (2) 最大似然估计似然函数为:()()∏==ni i x f L 1θ()()121-=θθnnx x x ,两边取对数, ()θL ln ()()nx x x n21ln 1ln 2-+=θθ,令()θθd L d ln ()0ln 21221=+=n x x x n θθ, 得参数θ的最大似然估计为:212ln ˆ⎪⎭⎫⎝⎛=∑=ni i x n θ11.(1) 矩估计因为()⎰∞+∞-=dx x xf EX ⎰∞+-=022222dx exx θθ⎰∞+∞--=dx e xx 2222221θθ⎰∞+∞--=dx exx 2222222θθπθπθπ22=, 所以EX πθ2=,而X EX =∧,由此得参数θ的矩估计量为X πθ2ˆ=。

概率论与数理统计课后习题答案第7章习题详解

概率论与数理统计课后习题答案第7章习题详解

习题七1.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩法估计.【解】1(),(),E X np E X A X ===因此np =X所以p 的矩估计量 ˆXpn= 2.设总体X 的密度函数f (x ,θ)=22(),0,0,.x x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计. 【解】23022022()()d ,233x x E X x x x θθθθθθθ⎛⎫=-=-= ⎪⎝⎭⎰令E (X )=A 1=X ,因此3θ=X 所以θ的矩估计量为 ^3.X θ=3.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极大似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-⎧≥⎨<⎩(2) f (x ,θ)=1,01,0,.x x θθ-⎧<<⎨⎩其他【解】(1) 似然函数111(,)e e eniii n nx x nn ii i L f x θθθθθθ=---==∑===∏∏1ln ln ni i g L n x θθ===-∑由1d d ln 0d d ni i g L n x θθθ===-=∑知 1ˆnii nxθ==∑所以θ的极大似然估计量为1ˆXθ=.(2) 似然函数11,01nni i i L x x θθ-==<<∏,i =1,2,…,n.1ln ln (1)ln ni i L n x θθ==+-∏由1d ln ln 0d ni i L n x θθ==+=∏知11ˆln ln nniii i n nxx θ===-=-∑∏所以θ的极大似然估计量为 1ˆln nii nxθ==-∑求这批股民的收益率的平均收益率及标准差的矩估计值. 【解】0.094x =- 0.101893s = 9n =0.094.EXx ==- 由222221()()[()],()ni i x E X D X E X E X A n==+==∑知222ˆˆ[()]E X A σ+=,即有 ˆσ=于是 ˆ0.101890.0966σ=== 所以这批股民的平均收益率的矩估计值及标准差的矩估计值分别为-0.94和0.966. 5.随机变量X 服从[0,θ]上的均匀分布,今得X 的样本观测值:0.9,0.8,0.2,0.8,0.4,0.4,0.7,0.6,求θ的矩法估计和极大似然估计,它们是否为θ的无偏估计. 【解】(1) ()2E X θ=,令()E X X =,则ˆ2X θ=且ˆ()2()2()E E X E X θθ===, 所以θ的矩估计值为ˆ220.6 1.2x θ==⨯=且ˆ2X θ=是一个无偏估计.(2) 似然函数8811(,)i i L f x θθ=⎛⎫== ⎪⎝⎭∏,i =1,2, (8)显然L =L (θ)↓(θ>0),那么18max{}i i x θ≤≤=时,L =L (θ)最大, 所以θ的极大似然估计值ˆθ=0.9.因为E(ˆθ)=E (18max{}i i x ≤≤)≠θ,所以ˆθ=18max{}i i x ≤≤不是θ的无偏计.6.设X 1,X 2,…,X n 是取自总体X 的样本,E (X )=μ,D (X )=σ2,2ˆσ=k 1211()n i i i XX -+=-∑,问k 为何值时2ˆσ为σ2的无偏估计. 【解】令 1,i i i Y X X +=-i =1,2,…,n -1,则 21()()()0,()2,i i i i E Y E X E X D Y μμσ+=-=-==于是 1222211ˆ[()](1)2(1),n ii E E k Yk n EY n k σσ-===-=-∑那么当22ˆ()E σσ=,即222(1)n k σσ-=时, 有 1.2(1)k n =-7.设X 1,X 2是从正态总体N (μ,σ2)中抽取的样本112212312211311ˆˆˆ;;;334422X X X X X X μμμ=+=+=+ 试证123ˆˆˆ,,μμμ都是μ的无偏估计量,并求出每一估计量的方差. 【证明】(1)11212212121ˆ()()(),333333E E X X E X E X μμμμ⎛⎫=+=+=+= ⎪⎝⎭21213ˆ()()()44E E X E X μμ=+=, 31211ˆ()()(),22E E X E X μμ=+= 所以123ˆˆˆ,,μμμ均是μ的无偏估计量. (2) 22221122145ˆ()()(),3399D D X D X X σμσ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭222212135ˆ()()(),448D D X D X σμ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭()223121ˆ()()(),22D D X D X σμ⎛⎫=+= ⎪⎝⎭8.某车间生产的螺钉,其直径X ~N (μ,σ2),由过去的经验知道σ2=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 试求μ的置信概率为0.95的置信区间. 【解】n =6,σ2=0.06,α=1-0.95=0.05,0.25214.95, 1.96,a x u u ===,μ的置信度为0.95的置信区间为/2(14.950.1 1.96)(14.754,15.146)x u α⎛±=±⨯= ⎝.9.总体X ~N (μ,σ2),σ2已知,问需抽取容量n 多大的样本,才能使μ的置信概率为1-α,且置信区间的长度不大于L ?【解】由σ2已知可知μ的置信度为1-α的置信区间为/2x u α⎛± ⎝,/2u α,/2u α≤L ,得n ≥22/224()u L ασ 10.设某种砖头的抗压强度X ~N (μ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1) 求μ的置信概率为0.95的置信区间. (2) 求σ2的置信概率为0.95的置信区间. 【解】76.6,18.14,10.950.05,20,x s n α===-==/20.025222/20.0250.975(1)(19)2.093,(1)(19)32.852,(19)8.907t n t n ααχχχ-==-===(1) μ的置信度为0.95的置信区间/2(1)76.6 2.093(68.11,85.089)a x n ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭(2)2σ的置信度为0.95的置信区间222222/21/2(1)(1)1919,18.14,18.14(190.33,702.01)(1)(1)32.8528.907n s n s n n ααχχ-⎛⎫--⎛⎫=⨯⨯= ⎪⎪--⎝⎭⎝⎭ 11.设总体X ~f (x )=(1),01;10,.x x θθθ⎧+<<>-⎨⎩其中其他 X 1,X 2,…,X n 是X 的一个样本,求θ的矩估计量及极大似然估计量.【解】(1)1101()()d (1)d ,2E X xf x x x x θθθθ+∞+-∞+==+=+⎰⎰ 又1(),2X E X θθ+==+ 故21ˆ1X Xθ-=- 所以θ的矩估计量 21ˆ.1X Xθ-=- (2) 似然函数11(1) 01(1,2,,)()()0n n ni i i i i x x i n L L f x θθθ==⎧+<<=⎪===⎨⎪⎩∏∏其他. 取对数11ln ln(1)ln (01;1),d ln ln 0,d 1nii i ni i L n x x i n L nx θθθθ===++<<≤≤=+=+∑∑所以θ的极大似然估计量为1ˆ1.ln nii nXθ==--∑12.设总体X ~f (x )= 36(),0;0,.xx x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为总体X 的一个样本 (1) 求θ的矩估计量ˆθ;(2) 求ˆ()D θ.【解】(1) 236()()d ()d ,2x E X xf x x x x θθθθ+∞-∞=-=⎰⎰令 ,2EX X θ==所以θ的矩估计量 ˆ2.X θ= (2)4ˆ()(2)4(),D D X D X DX nθ===, 又322236()63()d ,2010x x E X x θθθθθ-===⎰于是222223()()(),10420D XE X EX θθθ=-=-=,所以2ˆ().5D nθθ=13.设某种电子元件的使用寿命X 的概率密度函数为f (x ,θ)= 2()2,;0,.x x x θθθ--⎧>⎨≤⎩e其中θ(θ>0)为未知参数,又设x 1,x 2,…,x n 是总体X 的一组样本观察值,求θ的极大似然估计值.【解】似然函数12()12e 0;1,2,,;()0ln ln 22(),;1,2,,,ni i x n i n i i i x i n L L L n x x i n θθθθ=--=⎧∑⎪⋅≥===⎨⎪⎩=--≥=∑ 其他.由d ln 20ln (),d Ln L θθ=>↑知 那么当01ˆˆmin{}ln ()max ln ()ii nx L L θθθθ>≤≤==时 所以θ的极大似然估计量1ˆmin{}ii nx θ≤≤=其中θ(0<θ<12)是未知参数,利用总体的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和极大似然估计值. 【解】813ˆ(1)()34,()4 28ii x E X E X x x x θθ=-=-====∑令得又 所以θ的矩估计值31ˆ.44x θ-== (2) 似然函数86241(,)4(1)(12).ii L P x θθθθ===--∏2ln ln 46ln 2ln(1)4ln(1),d ln 628628240,d 112(1)(12)L L θθθθθθθθθθθθ=++-+--+=--==---- 解2628240θθ-+=得1,272θ=. 由于71,122> 所以θ的极大似然估计值为7ˆ2θ-=. 15.设总体X 的分布函数为F (x ,β)=1,,0,.x xx ββααα⎧->⎪⎨⎪≤⎩其中未知参数β>1,α>0,设X 1,X 2,…,X n 为来自总体X 的样本(1) 当α=1时,求β的矩估计量;(2) 当α=1时,求β的极大似然估计量; (3) 当β=2时,求α的极大似然估计量. 【解】当α=1时,11,1;(,)(,1,)0,1.x x f x F x x x ββββ+⎧≥⎪==⎨⎪<⎩当β=2时, 2132,;(,)(,,2)0,.x x f x F x x x ααααα⎧≥⎪==⎨⎪<⎩(1) 111()d 11E X x x x βββββββ+∞-+∞===--⎰令()E X X =,于是ˆ,1XX β=- 所以β的矩估计量ˆ.1XX β=- (2) 似然函数(1)1111,1,(1,2,,);()(,)0,.ln ln (1)ln ,d ln ln 0,d n n ni i i i i ni i ni i x x i n L L f x L n x L n x ββββββββ-+====⎧⎛⎫>=⎪ ⎪===⎨⎝⎭⎪⎩=-+=-=∏∏∑∑ 其他所以β的极大似然估计量1ˆ.ln nii nxβ==∑(3) 似然函数23112,,(1,2,,);(,)0,.n ni nn i i i i x i n L f x x ααα==⎧≥=⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪⎪⎩∏∏ 其他 显然(),L L α=↑那么当1ˆmin{}i i nx α≤≤=时,0ˆ()max ()a L L L αα>== , 所以α的极大似然估计量1ˆmin{}i i nx α≤≤=. 16.从正态总体X ~N (3.4,62)中抽取容量为n 的样本,如果其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问n 至少应取多大?2/2()d zt z t ϕ-=⎰【解】26~3.4,X N n ⎛⎫⎪⎝⎭,则~(0,1),X Z N ={1.4 5.4}33210.95Z P X P PZ ΦΦΦ<<<<=⎧=-<<⎨⎩⎭⎛=-=-≥ ⎝于是0.975Φ≥ 1.96≥, ∴ n ≥35.17. 设总体X 的概率密度为f (x ,θ)=,01,1,12,0,.x x θθ<<⎧⎪-≤<⎨⎪⎩其他 其中θ是未知参数(0<θ<1),X 1,X 2,…,X n 为来自总体X 的简单随机样本,记N 为样本值x 1,x 2,…,x n 中小于1的个数.求: (1) θ的矩估计;(2) θ的最大似然估计. 解 (1) 由于121(;)d d (1)d EX xf x x x x x x θθθ+∞-∞==+⎰⎰⎰-133(1)222θθθ=+-=-. 令32X θ-=,解得32X θ=-, 所以参数θ的矩估计为32X θ=-. (2) 似然函数为1()(;)(1)nN n N i i L f x θθθθ-===-∏,取对数,得ln ()ln ()ln(1),L N n N θθθ=+--两边对θ求导,得d ln ().d 1L N n Nθθθθ-=-- 令 d ln ()0,d L θθ=得 Nnθ=,所以θ的最大似然估计为Nnθ=.。

概率练习册第七章答案

概率练习册第七章答案

7-2 单正态总体的假设检验1.已知某炼铁厂铁水含碳量服从正态分布 N (4.55,0.108 2) , 现在测定了 9炉铁水 ,其平均 含碳量为 4.484, 如果估 计方差没有变化,可否认为现 在生产的铁 水平均含碳量为 4.55 ( 0.05) ?解 提出检验假设H 0 : 4.55, H 1 : 4.55以 H 0成立为前提,确定检验 H 0 的统计量及其分布说明小概率事件没有发生,因此接受 H 0 .即认为 现在生产的铁水平均含碳量为 4.55.2. 机器包装食盐, 每袋净重量 X (单位: g )服从正态分布, 规定每袋净重量为 500g ),标准差不能超过 10( g )。

某天开工后,为检验机器工作是否正常,从包装好的食盐中随机抽取 9 袋,测得其净重量为:497 507 510 475 484 488 524 491 515以显著性水平解.作假设 0.05检验这天包装机工作是否正常?H 0 : 2 102, H 1: 2 102选取统计量2 n 1 2 8 2 22 2 S 2 2 S 2 ~ 2(n 1) 02 102/nX 4.550.108/ 9对给定的显著性水平 =0.05,由上~ N(0,1)分位点可知P{U u }2查标准正态分布表可得 u2即Pu0 .025x 4.55 0.108/ 9X 4.550.108 / 91.96,而 4.484 4.550.108/ 9u 0.0521.83 1.962n 1 2 2S 0对给定的显著性水平 =0.05, 查 2分布表得 : 由已知计算得 s 2 12 (n 1) 228.44 2 n 1 2 2s 0 02.95 (8) 2.733,于是拒绝域为 2 2.733 82 s 2 18.2752 102因此接受 H 0 ,即可以认为 这天包装机工作不正常。

2.733 X: N( , 2),已知64斤,测得折断力(单位:斤)为 578,570,572,570, 572,596,584。

概率论第七章 习题解答

概率论第七章 习题解答

第七章 假设检验I 教学基本要求1、了解假设检验的相关概念及基本思想,掌握假设检验的基本步骤,知道犯两类错误的概率的含义;2、掌握单正态总体均值和方差的假设检验;3、掌握两个正态总体均值差与方差比的假设检验;4、了解分布的假设检验.II 习题解答A 组1、某企业生产铜丝,而折断力的大小是铜丝的主要质量指标.从过去的资料来看,可认为折断力2(570,8)X N ~(单位:千克力),现更换了一批原材料,测得10个样品的折断力如下:578 572 570 568 572 570 570 572 596 584 从性能上看,折断力的方差不会有什么变化,试问折断力的大小与原先有无差异(0.05)α=?解:若折断力的大小与原先无差异,则总体均值μ应为570,因此,提出假设如下:0H :570μ= vs 1H :570μ≠由0.05α=,查附表得临界值0.975 1.96u =,根据样本观测值求得575.2x =于是,检验统计量U 的值2.055U ==由于0.975||U u ≥,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为折断力与原先有差异.2、某工厂生产的电子元件平均使用寿命2(,)X N μσ~,现抽测15个元件,得到18000x =、5200s =(单位:小时),试问该工厂生产的电子元件的平均使用寿命是否为20000(0.05)α=?解:若该工厂生产的电子元件的平均使用寿命为20000,则总体均值μ应为20000,因此,提出假设如下:0H :20000μ= vs 1H :20000μ≠由0.05α=,查附表得临界值0.975(14) 2.145t =,由已知数据求得检验统计量T 的值0.149T ==-由于0.975||(14)T t <,所以,在显著性水平0.05α=下接受原假设0H ,即认为该工厂生产的电子元件的平均使用寿命是20000小时.3、用热敏电阻测温仪间接测量地热勘探井底温度,重复测量6次,测得温度(C )为:111.0112.4110.2111.0113.5111.9假定测量的温度服从正态分布,且井底温度的真实值为111.6C ,试问用热敏电阻测温仪间接测温是否准确(0.05)α=?解:若用热敏电阻测温仪间接测温是准确的,则总体均值μ应为111.6,因此,提出假设如下:0H :111.6μ= vs 1H :111.6μ≠由0.05α=,查附表得临界值0.975(5) 2.571t =,根据样本观测值求得111.67x =、2 1.399s =于是,检验统计量T 的值0.145T ==由于0.975||(5)T t <,所以,在显著性水平0.05α=下接受原假设0H ,即认为用热敏电阻测温仪间接测温是准确的.4、设考生在某次考试中的成绩服从正态分布,从中随机地抽取36位考生的成绩,得到平均成绩为66.5分、标准差为15分,问是否可以认为这次考试全体考生的平均成绩为70分(0.05)α=?解:若这次考试全体考生的平均成绩为70分,则总体均值μ应为70,因此,提出假设如下:0H :70μ= vs 1H :70μ≠由0.05α=,查附表得临界值0.975(35) 2.0301t =,由已知数据求得检验统计量T 的值1.4T ==-由于0.975||(35)T t <,所以,在显著性水平0.05α=下接受原假设0H ,即认为这次考试全体考生的平均成绩为70分.5、某化肥厂用自动包装机包装化肥,每包质量服从正态分布2(50,)N σ,某日开工后,随机抽取8包化肥,测得质量(单位:kg )如下:49.249.850.350.849.749.650.550.1问该天包装的化肥质量的方差是否为1.3(0.05)α=?解:若该天包装的化肥质量的方差是1.3,则21.3σ=,因此,提出假设如下:0H :2 1.3σ= vs 1H :2 1.3σ≠由0.05α=,查附表得临界值20.025(8) 2.1797χ=、20.975(8)17.5345χ=,根据样本观测值求得21()2.192nii x μ=-=∑于是,检验统计量2χ的值2 2.1921.6861.3χ== 由于220.025(8)χχ≤,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为该天包装的化肥质量的方差不是1.3.6、设某化纤厂生产的维尼纶的纤度在正常情况下服从方差为20.05的正态分布,现随机抽取6根,测得其纤度为1.33 1.351.541.451.371.53问维尼纶纤度的方差是否正常(0.10)α=?解:若维尼纶纤度的方差正常,则220.05σ=,因此,提出假设如下:0H :220.05σ= vs 1H :220.05σ≠由0.10α=,查附表得临界值20.05(5) 1.146χ=、20.95(5)11.07χ=,根据样本观测值求得1.43x =、20.0085s =于是,检验统计量2χ的值22(61)0.00851.70.05χ-⨯==由于2220.050.95(5)(5)χχχ<<,所以,在显著性水平0.10α=下接受原假设0H ,即认为维尼纶纤度的方差是正常的.7、生产某种产品可用两种操作方法.用第一种操作方法生产的产品抗折强度21(,7)X N μ~;用第二种操作方法生产的产品抗折强度22(,9)Y N μ~(单位:千克),现从第一种操作方法生产的产品中随机抽取13件,得到42x =,从第二种操作方法生产的产品中随机抽取17件,测得36y =,问这两种操作方法生产的产品的平均抗折强度是否有显著差异(0.05)α=?解:若这两种操作方法生产的产品的平均抗折强度无显著差异,则12μμ=,因此,提出假设如下:0H :12μμ= vs 1H :12μμ≠由0.05α=,查附表得临界值0.975 1.96u =,由已知数据求得检验统计量U 的值2.054U ==由于0.975||U u ≥,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为这两种操作方法生产的产品的平均抗折强度有显著差异.8、某种物品在处理前与处理后分别抽样分析其含脂率,测得数据如下:假设处理前后的含脂率都服从正态分布,且方差不变,问该物品处理前后含脂率的均值是否有显著差异(0.01)α=?解:若该物品处理前后含脂率的均值无显著差异,则12μμ=,因此,提出假设如下:0H :12μμ= vs 1H :12μμ≠由0.01α=,查附表得临界值0.995(13) 3.012t =,根据样本观测值求得0.23x =、0.18y =、20.0094x s =、20.0045ys =、0.0822w s = 于是,检验统计量T 的值2.273T==由于0.995||(13)T t<,所以,在显著性水平0.01α=下接受原假设H,即认为该物品处理前后含脂率的均值无显著差异.9、有甲、乙两台机床加工同样的产品,现从这两台机床加工的产品中随机地抽取若干产品,测得产品直径(单位:)为:问甲乙两台机床加工的精度是否有显著差异(0.05)α=?解:若甲乙两台机床加工的精度无显著差异,则它们的方差相同,因此,提出假设如下:0H:2212σσ=vs1H:2212σσ≠由0.05α=,查附表得临界值0.0250.97511(7,6)0.1953(6,7) 5.12FF===、0.975(7,6) 5.70F=,根据样本观测值求得19x=、19y=、20.1029xs=、20.3967ys=于是,检验统计量F的值0.10290.25940.3967F==由于0.0250.975(7,6)(7,6)F F F<<,所以,在显著性水平0.05α=下接受原假设H,即认为甲乙两台机床加工的精度无显著差异.10、某车床生产滚珠,现随机抽取了50个产品,测得它们的直径(单位:mm)为:15.0 15.8 15.2 15.1 15.9 14.7 14.8 15.5 15.6 15.315.1 15.3 15.0 15.6 15.7 14.8 14.5 14.2 14.9 14.915.2 15.0 15.3 15.6 15.1 14.9 14.2 14.6 15.8 15.215.9 15.2 15.0 14.9 14.8 14.5 15.1 15.5 15.5 15.115.1 15.0 15.3 14.7 14.5 15.5 15.0 14.7 14.6 14.2问滚珠直径是否服从正态分布(0.05)α=?解:若滚珠直径服从正态分布,则2(,)X Nμσ~,因此,提出假设如下:0H:2(,)X Nμσ~由于μ、2σ未知,因而用它们的最大似然估计值ˆ15.1xμ==、222ˆ0.4325sσ==代替得到分布2(15.1,0.4325)N,为了求统计量2χ的值,取14.05a=、16.15ka=,将0[,]k a a 等分为7个小区间,列表计算得:于是,检验统计量2χ的值221() 3.062ki i i i n np np χ=-==∑再由0.05α=,查附表得临界值20.95(4)9.488χ=,由于220.95(4)χχ<,所以,在显著性水平0.05α=下接受原假设0H ,即认为滚珠直径服从正态分布.B 组1、随机地从一批直径服从正态分布的滚珠中抽取7个,测得其直径(单位:mm )为: 13.70 14.21 13.90 13.91 14.32 14.32 14.10假设滚珠直径总体分布的方差为0.05,问这批滚珠的平均直径是否小于等于14.25(0.05)α=?解:若这批滚珠的平均直径是小于等于14.25,则14.25μ≤,因此,提出假设如下:0H :14.25μ≤ vs 1H :14.25μ>由0.05α=,查附表得临界值0.95 1.65u =,根据样本观测值求得14.07x =于是,检验统计量U 的值2.118U ==-由于0.95U u <,所以,在显著性水平0.05α=下接受原假设0H ,即认为这批滚珠的平均直径小于等于14.25.2、设1x 、2x 、…、n x 是取自正态总体2(,)N μσ的样本,记11ni i x x n ==∑、221()ni i Q x x ==-∑,试在此记号下求检验假设0H :0μ=的检验统计量?解:该问题是单正态总体方差未知时关于期望μ的假设检验问题,检验统计量应选为x T =由于222111()11n ii s x x Q n n ==-=--∑,即s =,从而检验统计量为x T ==3、某种导线要求其电阻的标准差不超过0.004欧姆,现从生产的一批导线中随机抽取8根,得到220.006s =,若该导线的电阻服从正态分布,问能否认为这批导线的标准差偏小(0.05)α=?解:若这批导线的标准差偏小,则220.004σ≤,因此,提出假设如下:0H :220.004σ≤ vs 1H :220.004σ>由0.05α=,查附表得临界值20.95(7)14.067χ=,由已知数据求得检验统计量2χ的值222(81)0.00615.750.004χ-⨯== 由于220.95(7)χχ≥,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为这批导线的标准差偏大.4、下面是某两种型号的电器充电后所能使用的时间(单位:小时)的观测值 型号A 5.5 5.6 6.3 4.6 5.3 5.0 6.2 5.8 5.1 5.2 5.9 型号B 3.8 4.3 4.2 4.0 4.9 4.5 5.2 4.8 4.5 3.9 3.7 4.6设两样本独立且抽样的两个正态总体方差相等,试问能否认为型号A 比型号B 平均使用的时间更短(0.01)α=?解:若型号A 比型号B 平均使用的时间更短,则12μμ≤,因此,提出假设如下:0H :12μμ≤ vs 1H :12μμ>由0.01α=,查附表得临界值0.99(21) 2.5176t =,根据样本观测值求得5.5x =、 4.3667y =、20.274x s =、20.2188ys =、0.4951w s =于是,检验统计量T的值5.4837T==由于0.99(21)T t≥,所以,在显著性水平0.01α=下拒绝原假设H,即认为型号A比型号B平均使用的时间更长.5、某药厂生产一种新的止痛片,厂方希望验证服用新药片后到开始起作用的时间间隔较原有止痛片至少缩短一半,因此厂方提出检验假设H:122μμ=vs1H:122μμ>其中1μ、2μ分别是服用原有止痛片和服用新止痛片后到开始起作用的时间间隔的总体均值,若这两个总体均服从正态分布,且方差21σ、22σ已知,现分别从两个总体中抽取两个独立样本1x、2x、…、mx和1y、2y、…、ny,试给出上述假设检验问题的检验统计量及拒绝域?解:设X为服用原有止痛片后到开始起作用的时间间隔,Y为服用新止痛片后到开始起作用的时间间隔,则211(,)X Nμσ~、222(,)Y Nμσ~,于是22121242(2,)x y Nm nσσμμ-~-+()~(0,1)x yU N⇒=当H成立,有~(0,1)x yU N=所以,可选取检验统计量x yU=对于给定的显著性水平α,检验的拒绝域为1{|}W U U uα-=≥.6、有两箱来自不同厂家的功能相同的金属部件,从第一箱中抽取60个,从第二箱中抽取40个,得到部件重量()mg的样本方差分别为215.46xs=、29.66ys=.若两样本相互独立且服从正态分布,试问第一箱重量的总体方差是否比第二箱重量的总体方差小(0.05)α=?解:若第一箱重量的总体方差比第二箱重量的总体方差小,则2212σσ≤,因此,提出假设如下:0H :2212σσ≤ vs 1H :2212σσ> 由0.05α=,查附表得临界值0.95(59,39) 1.64F =,根据已知数据求得检验统计量F 的值15.461.609.66F == 由于0.95(59,39)F F <,所以,在显著性水平0.05α=下接受原假设0H ,即认为第一箱重量的总体方差比第二箱重量的总体方差小.7A B 设两批电子器件的电阻分别服从211(,)N μσ、222(,)N μσ,试问能否认为两个总体服从相同的正态分布(0.05)α=?解:(1) 先检验两个总体方差相同.若两个总体方差相同,则2212σσ=,因此,提出假设如下: 0H :2212σσ= vs 1H :2212σσ≠ 由0.05α=,查附表得临界值0.0250.97511(5,5)0.140(5,5)7.15F F ===、0.975(5,5)7.15F =,根据样本观测值求得0.141x =、0.139y =、20.0000078x s =、20.0000071ys = 于是,检验统计量F 的值0.00000781.10.0000071F ==由于0.0250.975(5,5)(5,5)F F F <<,所以,在显著性水平0.05α=下接受原假设0H ,即认为两个总体方差相同;(2) 在(1)的基础上检验两个总体均值相同.若两个总体均值相同,则12μμ=,因此,提出假设如下:0H :12μμ= vs 1H :12μμ≠由0.05α=,查附表得临界值0.975(10) 2.2281t =,根据样本观测值求得20.0000074w s =于是,检验统计量T 的值1.267T ==由于0.975||(10)T t <,因而在显著性水平0.05α=下接受原假设0H ,即认为两个总体均值相同;所以,可认为两个总体服从相同的正态分布.8、在一批灯泡中抽取300只进行寿命测试,试验结果如下:试检验假设:0H :灯泡寿命服从指数分布0.0050.0050()00te tf t t -⎧>=⎨≤⎩(0.05)α=?解:根据题意提出假设0H :(0.005)X E ~为了求统计量2χ的值,将(0,)+∞分为4个小区间(0,100]、(100,200]、(200,300]、(300,)+∞,列表计算得:于是,检验统计量2χ的值221() 1.8393ki i i in np np χ=-==∑再由0.05α=,查附表得临界值20.95(3)7.8147χ=,由于220.95(3)χχ<,所以,在显著性水平0.05α=下接受原假设0H ,即认为该批灯泡寿命服从参数为0.005的指数分布.。

概率论习题答案 第7章答案

概率论习题答案  第7章答案

θˆ = −1 −
n
n ln xi
i =1
从而θ 的极大似然估计量为
θˆ = −1 − n n
∑ ln X i
i =1
(2) 设 x1, x2 ,", xn 是相应于 X 1, X 2 ,", X n 的样本,则似然函数为
n
∏ L( p) =
n
p(1 −
p) xi −1
=
p n (1 −
∑ xi −n p) i=1
5. (1)
E(X ) = E(eZ ) =
∫ 1
+∞
− ( z−μ )2
e z e 2σ 2 dz
2π σ −∞
∫ =
1

exp{−
1
(z 2 − (2μ + 2σ 2 )z + (μ + σ 2 )2 − 2μσ 2 − σ 4 )}dz
2π σ −∞
2σ 2
∫ = exp{μ + 1 σ 2} 2
=
1 mn
n i =1
xi
=
1 m
x
第 7 章习题答案 总 11 页第 4 页
∑ 所以 p 的极大似然估计量为

=
1 mn
n i =1
Xi
=
1 m
X
4 (1)已知, λ 的极大似然估计值为 λˆ = x ,又 P{X = 0} = e−λ ,所以根据极大似然估计的性
质, P{X = 0}的极大似然估计值为 e−x
∏ L(σ ) =
n i =1
f
(xi ,σ )
=
1σ 2
e ∑ −n
−1 σ
n i =1

概率论与数理统计第七章参数估计习题答案

概率论与数理统计第七章参数估计习题答案

æ çè
x
±
ua
/
2
s n
ö ÷ø
=
(14.95
±
0.1´1.96)
=
(14.754,15.146)
大学数学云课堂
3028709.总体X ~ N (m,s 2 ),s 2已知,问需抽取容量n多大的样本,
才能使m的置信概率为1 -a,且置信区间的长度不大于L?
解:由s
2已知可知m的置信度为1
-
a的置信区间为
64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1)求m的置信概率为0.95的置信区 间.
(2)求s 2的置信概率为0.95的置信区间.
解:x = 76.6, s = 18.14,a = 1- 0.95 = 0.05, n = 20,
大学数学云课堂
3028706.设X1,X 2,L,X n是取自总体X的样本,E(X)= m,D(X)= s 2,
n -1
å sˆ 2 = ( X i+1 - X i )2 ,问k为何值时sˆ 2为s 2的无偏估计. i =1 解:令 Yi = X i+1 - X i , i = 1, 2,¼, n -1, 则E(Yi ) = E( X i+1) - E( X i ) = m - m = 0, D(Yi ) = 2s 2 , n -1 å 于是Esˆ 2 = E[k ( Yi2 )] = k(n -1)EY12 = 2s 2 (n -1)k, i =1 那么当E(sˆ 2 ) = s 2 ,即2s 2 (n -1)k = s 2时, 有k = 1 . 2(n -1)
的密度函数为f
(x,q

概率论与数理统计(茆诗松)第二版课后第七章习题参考答案

概率论与数理统计(茆诗松)第二版课后第七章习题参考答案

β = P{ X < 2.6 | µ = 3} = P ⎨
⎧ X − µ 2.6 − 3 ⎫ < = −0.4 n ⎬ = Φ ( −0.4 n ) → 0 (n → ∞) . 1 n ⎩1 n ⎭
2. 设 X1 , …, X10 是来自 0-1 总体 b (1, p) 的样本,考虑如下检验问题 H0:p = 0.2 vs H1:p = 0.4, 取拒绝域为 W = {x ≥ 0.5} ,求该检验犯两类错误的概率. 解:因 X ~ b (1, p),有 ∑ X i = 10 X ~ b(10, p ) ,
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 p
(2)在 p = 0.05 时犯第二类错误的概率
β = P ⎨∑ X i ∉ W | p = 0.05⎬ = ∑ ⎜ ⎜
⎩ i=1 ⎭
⎧ 20

⎛ 20 ⎞ ⎟ × 0.05k × 0.9520−k = 0.2641 . ⎟ k =2 ⎝ k ⎠
6
β (λ)
β (0.8) = 1 − ∑ β ( 0 .9 ) = 1 − ∑
27 k −27 e ≈1. k =0 k!
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
λ
习题 7.2
说明:本节习题均采用拒绝域的形式完成,在可以计算检验的 p 值时要求计算出 p 值. 1. 有一批枪弹,出厂时,其初速率 v ~ N (950, 1000)(单位:m/s) .经过较长时间储存,取 9 发进行测 试,得样本值(单位:m/s)如下: 914 920 910 934 953 945 912 924 940. 据经验,枪弹经储存后其初速率仍服从正态分布,且标准差保持不变,问是否可认为这批枪弹的初速 率有显著降低(α = 0.05)? 解:设枪弹经储存后其初速率 X ~ N (µ , 1000),假设 H0:µ = 950 vs H1:µ < 950, 已知σ 2,选取统计量 U =

概率论与数理统计课后习题答案第七章金治明 李永乐版

概率论与数理统计课后习题答案第七章金治明 李永乐版

第七章3.设总体X 具有密度函数22(),0(:)0,x x f x θθθθ⎧-<<⎪=⎨⎪⎩其它 12,,,n X X X 是其样本,求θ的矩估计.解 122()2(1)3EX xx dx t t dt θθθθθ=-=-=⎰⎰,由矩法令3X θ=,解得3X θ=. 4.设12~(,),01,,,,n X b N p p X X X << 为其样本.求N 和p 的矩估计. 解 因 ,()(1)EX Np D X Np p ==-,由例7-1,令2,(1)n X N p S N p p ==- 解得 21,n S X p NXp=-= 5.设总体X 的密度函数(或分布律)为12(;),,,,n f x X X X θ 为其样本,求下列情况下θ的极大似然估计.(2)似然函数为1111()()nnn ii i i L XX θθθθθ--====∏∏似然方程为1l n ()ln 0ni i L nX θθθ=∂=+=∂∑ 解得 111(ln )nii Xnθ-==-∑.(4)似然函数为1111()()()(())irnrnnX r r ii ni i L XeX er r θθθθθ----====ΓΓ∏∏似然方程为 l n ()0L n rnX θθθ∂=-=∂解得 r Xθ=.6.设总体X 的密度为(;)(1),01f x x x βββ=+<<其中1β>-未知,12,,,n X X X 为其样本,求β的矩估计和极大似然估计.今得样本观察值0.30,0.80,0.27,0.35,0.62,0.55,求β的矩估计值和极大似然估计值.解101(1)2EX x x dx ββββ+=+=+⎰,由矩法令12X ββ+=+,解得矩估计121MXβ=--,矩估计值为 0.07Mβ=-.似然函数为11()(1)(1)()nnni i i i L X X βββββ===+=+∏∏似然方程为1l n ()ln 01ni i L nX βββ=∂=+=∂+∑ 解得极大似然估计 1111ln nLi i X nβ-=⎡⎤=--⎢⎥⎣⎦∑,极大似然估计值 0.234Lβ=. 9.设总体X 具有密度函数1(;),2xf x ex σσσ-=-∞<<∞其中0σ>未知,12,,,n X X X 为其样本.求σ的极大似然估计.解 似然函数为11111()22nX iii nX nni L eeσσσσσ=--=∑==∏似然方程为21l n ()10ni i L n X σσσσ=∂=-+=∂∑解得 11ni i X nσ==∑.10.设总体X 有密度函数(),(;)0,x e x f x x θθθθ--⎧>=⎨≤⎩其中θ-∞<<∞未知,12,,,n X X X 为其样本.求θ的矩估计和极大似然估计.解 1E X θ=+,令1X θ=+,解得矩估计 1M X θ=-. 似然函数为(1)()()(1)1()(1)(),,i nX n X i n X L eeX eX θθθθθ----=--==>≤>∏故θ的极大似然估计为 (1)L X θ=. 11.设总体212~(,),,,,n X N X X X μσ 为其样本.(1) 求k ,使 122111()n i i i X X kσ-+==-∑为2σ的无偏估计;(2) 求k ,使 11ni i X X kσ==-∑为σ的无偏估计.解 (1) 21(0,2)i i X X N σ+- ,2211()()2i i i i E X X D X X σ++-=-=122221111()2(1)n i i i E E X X n kkσσσ-+==-=-∑故2(1)k n =-.(2) 2111(1)(0,)i i j j in X X X X N nnnσ≠--=--∑2212i n E X X xx dx n σ∞-∞-⎧⎫-=-⎨⎬⎩⎭⎰220122n xx dx n σ∞-⎧⎫=-=⎨⎬⎩⎭⎰111ni i E EX X kkσσ==-===∑所以k =12.设 θ是参数θ的无偏估计,且有 ()0,D θ>证明 2θ不是2θ的无偏估计.解 2222()[]()E D E D θθθθθθ=+=+>. 13.设从均值为μ,方差为20σ>的总体中,分别抽取容量为12,n n 的两个独立样本.1X 和2X 分别是两样本的均值.试证,对于任意,(1),a b a b +=12Y aX bX =+都是μ的无偏估计,并确定常数,a b 使()D Y 达到最小.解 1212()()EY E aX bX aEX bEX a b a b μμμμ=+=+=+=+=2222222121212()()()abD Y D aX bX abn n n n σσσ=+=+=+即在条件1a b +=下,求2212abn n +的最小值.令2212(1)()aa L a n n -=+,求导得12()22(1)0dL a a a da n n -=-解得112n a n n =+,212n b n n =+.14.设分别自总体21(,)N μσ和22(,)N μσ中抽取容量为12,n n 的两个独立样本.其样本方差分别2212,S S .试证,对于任何常数2212,(1),a b a b Z aS bS +==+都是2σ的无偏估计,并确定常数,a b 求求()D Z 达到最小.解 22222212()EZ aES bES a b a b σσσσ=+=+=+=.利用222(1)(1),1,2i ii n S n i χσ--=得422(),1,21ii D S i n σ==-,所以22222241212()()()2()11abD Z a D S b D S n n σ=+=+--即在1a b +=下,求221211abn n +--的最小值,求得11212n a n n -=+-,21212n b n n -=+-.15.设总体X 的密度函数为 16.设总体X 的密度函数为1,0(0)(;)0,x f x θθθθ⎧<<>⎪=⎨⎪⎩其它123,,X X X 为其样本,试证(3)43X 及(1)4X 都是参数θ的无偏估计,问哪个较有效?解 考虑一般情形,设12,,,n X X X 为样本,比较()1n n X n+和(1)(1)n X +.(1)X 的密度为11(),0(;)0,n nn x x f x θθθθ-⎧-<<⎪=⎨⎪⎩其它 ()n X 的密度为1,0(;)0,n n n nx x f x θθθ-⎧<<⎪=⎨⎪⎩其它由此算得(1)()1,11nnE X E Xn n θθ==++(1)()1((1)),()n n E n X E X nθθ++== 又有2222(1)()2,(1)(2)2n nE X E X n n nθθ==+++22222(1)(1)(1)(1)((1))(1)()(1)[()]2nD nX n D X nE X E X n θ+=+=+-=+ 22222()()()()221(1)(1)1()()[()](2)n n n n n n n D X D X EX EX nnnn n θ+++==-=+故()1n n X n+较(1)(1)n X +有效,实际上()1n n X n+是θ的最小方差无偏估计.17.设总体X 服从指数分布,其密密函数为,0(;)0,0x e x f x x λλλ-⎧≥=⎨<⎩ (0)λ>12,,,n X X X 为其样本(2)n ≥.(1) 求λ的极大似然估计 λ; (2) 求k ,使 k λλ*=为λ的无偏估计; (3) 求1θλ=的置信水平为1α-的双侧置信区间.解 (1) 似然函数为1()inX n nXi L eeλλλλλ--===∏似然方程为ln ()0L nnX λλλ∂=-=∂解得 1Xλ=.(2) 22(2)Y nX n λχ=121(1)121111()2()2(1)112()2(1)2(1)y n nyn n nn E yedyY y n n y edy n n n ∞---∞----=ΓΓ-==ΓΓ--⎰⎰1112()2()21n E kE kE k n E nk E kXn XY n λλλλλλλ======-*由此得1n k n-=.(3) 因22(2)nXn χθ,由222212{(2)(2)}1nXP n n ααχχαθ-<<=-得的置信水平为1α-的双侧置信区间为2222122(,)(2)(2)nXnXααχαχα-.18.随机地从一批零件中抽取16个,测得长度(单位:cm)为2.14 2.10 2.13 2.15 2.13 2.12 2.13 2.102.15 2.12 2.14 2.10 2.13 2.11 2.14 2.11设零件长度的分布为正态,试求总体均值μ的90%的置信区间:(1)若0.01σ=;(2)若σ未知.解 设X为零件长度,则2(,)X N μσ .(1) 当0.01σ=已知时,μ的90%的置信区间为2211(,)(2.125 1.65,2.125 1.65)(2.121,2.129)X X αα---+=-+=(2) 当σ未知时,μ的90%的置信区间为2211((15),(15))(2.125 1.7531,2.125 1.753(2.1175,2.1325)X X αα---+=-+=22.随机地从A 批导线中抽取4根,并从B 批导线中抽取5根测得其电阻Ω为设测试数据分别服从正态分布21(,)N μσ和22(,)N μσ,且它们相互独立,又2σ未知,试求12μμ-的0.95置信区间.解 12μμ-的0.95置信区间为A 批导线 0.143 0.142 0.143 0.137B 批导线0.140 0.142 0.136 0.138 0.14022121211()(2)()(2)w wX Y t n n S X Y t n n S αα--⎛--+--++- ⎝经计算得2626121234,5,0.14125,8.2510,0.1392, 5.2102.5510w n n X S Y S S ---====⨯==⨯==⨯查表得 2120.9751(2)(7) 2.3646t n n t α-+-==,最后算得区间是(0.002,0.006)-.。

概率统计课件第七章练习册答案

概率统计课件第七章练习册答案
Vy 2 xf ( x)dx 2 x 2 x 4dx
2 2 4 4
4
256 。 15
四、如图示,在[a,b]内任取一个点 x ,在 x 处给 其一个增量 dx , 则在小区间[ x, x dx]上对应着一 个小矩形, 绕 y 轴旋转, 得到一个薄的空心圆柱 体,将其展开得到一个厚度为 dx ,上表面积为
0
0
故可假设点 ( x0 , e x ) 处的切线方程为: y e x e x ( x x0 ) ;
0 0 0
又因为切线过(0,0) ,所以 x0 1,切线方程为 y ex , 如图阴影部分的面积即为所求:分为左右两部分 左边面积为 e x dx 1,
e 右边面积 0 (e ex)dx 1, 2
S ( x) (5 16 x 2 )2 (5 16 x 2 ) 2 20 16 x 2
体积微元 dv S ( x)dx 20 16 x 2 dx 所以旋转体的体积V 20 16 x 2 dx 160 2 。 4
4
二、建立坐标系,如图 圆的方程为 x 2 y 2 25 选 x 为积分变量 过 x 的截面为等边三角形,边长为 2 25 x 2 , 截面面积为
第七章
习题答案
7.1 7.2 7.3 7.4 7.5 微元分析法 平面图形的面积 体积 平面曲线的弧长 经济应用
习题 7.1
一、1:如图示:抛物线 y 1 x 2 与园 x2 y 2 8
2
的图形,设阴影部分面积为 S1 则 S1= 20 ( 令x 2
2 2 1 8 8 x 2 x 2 )dx 2 8 x 2 dx , 0 2 3
1

概率论与数理统计教程第七章答案

概率论与数理统计教程第七章答案

、 第七章 假设检验7、1 设总体2(,)N ξμσ~,其中参数μ,2σ为未知,试指出下面统计假设中哪些就是简单假设,哪些就是复合假设:(1)0:0,1H μσ==; (2)0:0,1H μσ=>; (3)0:3,1H μσ<=; (4)0:03H μ<<; (5)0:0H μ=、解:(1)就是简单假设,其余位复合假设7、2 设1225,,,ξξξL 取自正态总体(,9)N μ,其中参数μ未知,x 就是子样均值,如对检验问题0010:,:H H μμμμ=≠取检验的拒绝域:12250{(,,,):||}c x x x x c μ=-≥L ,试决定常数c ,使检验的显著性水平为0、05 解:因为(,9)N ξμ~,故9(,)25N ξμ~ 在0H 成立的条件下,00053(||)(||)53521()0.053cP c P c ξμξμ-≥=-≥⎡⎤=-Φ=⎢⎥⎣⎦55()0.975,1.9633c cΦ==,所以c =1、176。

7、3 设子样1225,,,ξξξL 取自正态总体2(,)N μσ,20σ已知,对假设检验0010:,:H H μμμμ=>,取临界域12n 0{(,,,):|}c x x x c ξ=>L ,(1)求此检验犯第一类错误概率为α时,犯第二类错误的概率β,并讨论它们之间的关系;(2)设0μ=0、05,20σ=0、004,α=0、05,n=9,求μ=0、65时不犯第二类错误的概率。

解:(1)在0H 成立的条件下,200(,)nN σξμ~,此时00000()P c P ξαξ=≥=所以10αμ-=,由此式解出010c αμμ-=+在1H 成立的条件下,20(,)nN σξμ~,此时10100010()(P c P αξβξμ-=<==Φ=Φ=Φ-由此可知,当α增加时,1αμ-减小,从而β减小;反之当α减少时,则β增加。

(2)不犯第二类错误的概率为100.9511(0.650.51(3)0.21(0.605)(0.605)0.7274αβμμ--=-Φ-=-Φ-=-Φ-=Φ= 7、6 设一个单一观测的ξ子样取自分布密度函数为()f x 的母体,对()f x 考虑统计假设:0011101201:():()00x x x H f x H f x ≤≤≤≤⎧⎧==⎨⎨⎩⎩其他其他试求一个检验函数使犯第一,二类错误的概率满足2min αβ+=,并求其最小值。

概率论与数理统计(茆诗松)第二版课后第七章习题参考答案

概率论与数理统计(茆诗松)第二版课后第七章习题参考答案

α = P{ X ∈W | H 0 } = P{ X ≥ 2.6 | µ = 2} = P ⎨
犯第二类错误的概率为
⎧ X − µ 2.6 − 2 ⎫ ≥ = 2.68⎬ = 1 − Φ (2.68) = 0.0037 , ⎩ 1 n 1 20 ⎭
β = P{ X ∉W | H1} = P{ X < 2.6 | µ = 3} = P ⎨
4
3. 设 X1 , …, X16 是来自正态总体 N (µ , 4) 的样本,考虑检验问题 H0:µ = 6 vs H1:µ ≠ 6, 拒绝域取为 W = {| x − 6 | ≥ c} ,试求 c 使得检验的显著性水平为 0.05,并求该检验在µ = 6.5 处犯第二 类错误的概率.
1
⎧ ⎫ c ⎪ X −µ ⎪ 解:因 α = P{ X ∈ W | H 0 } = P{| X − 6 | ≥ c | µ = 6} = P ⎨ ≥ = 2c ⎬ = 2[1 − Φ ( 2c)] = 0.05 , ⎪ ⎪ ⎩ 2 16 2 16 ⎭
6
7. 设一个单一观测的样本取自密度函数为 p(x)的总体,对 p(x)考虑统计假设: H0:p0(x) = I 0 < x < 1 vs H1:p1(x) = 2x I 0 < x < 1. 若其拒绝域的形式为 W = {x: x ≥ c},试确定一个 c,使得犯第一类,第二类错误的概率满足α + 2β 为 最小,并求其最小值. 解:当 0 < c < 1 时,α = P{X ∈ W | H0} = P{X ≥ c | X ~ p0(x)} = 1 − c, 且 β = P{ X ∉ W | H1} = P{ X < c | X ~ p1 ( x)} = ∫ 2 xdx = c 2 ,

概率论第七章习题解答(全)

概率论第七章习题解答(全)

概率论第七章习题解答1、随机地取8只活塞,测得它们的直径为(以mm 计)74.00174.00574.00374.00174.00073.99874.00674.002试求总体均值μ及方差2σ的矩估计值,并求样本方差2s 。

解1()E X μμ==22222()()[()]E X D X E X μσμ==+=+解得1μμ=,2221σμμ=-又81118ii A X X ===∑令1A Xμ==(一阶矩估计量)2222A X σμ==-(二阶矩估计量)代入样本值,1(74.00174.00574.00374.0018x =+++74.00073.99874.00674.002)++++74.002=ˆ74.002μ=,(一阶矩估计值)82211ˆ()8i i x x σ==-∑22222221[(0.001)0.0030.001(0.001)0.002(0.004)(0.004)0]8=-+++-++-++即26648ˆ106108σ--=⨯=⨯(二阶矩估计值)因为样本方差22211()1n ii S X X n ==--∑当8n =时,822211()7i i S X X ==-∑所以22661148ˆ()10 6.861077n i i sx x --==-=⨯=⨯∑2、设12,,,n X X X 为总体的样本,12,,,n x x x 为一相应的样本值,求下列总体的概率密度或分布律中的未知参数的矩估计量和矩估计值。

(1)(1),()0,c x x cf x θθθ-+⎧>=⎨⎩其它,其中0c >为已知,θ为未知参数。

(2)1,01()0,xx f x θθ-⎧≤≤⎪=⎨⎪⎩其它,其中0θ>,θ为未知参数。

(3){}(1)x xm xm P X x C p p -==-,0,1,2,,x m = ,其中01p <<,p 为未知参数。

解(1)()()()cE X xf x dx xf x dx∞∞-∞==⎰⎰(1)ccx c x dx c x dxθθθθθθ∞∞-+-==⎰⎰11|111c c c c x c θθθθθθθμθθθ-+∞-+====---,而ˆX μ=故1cX θθ=-,解出θ,得(1)c X θθ=-,()X c X θ-=,ˆ()XX c θ=-。

概率论与数理统计(茆诗松)第二版课后第七章习题参考答案

概率论与数理统计(茆诗松)第二版课后第七章习题参考答案

4
3. 设 X1 , …, X16 是来自正态总体 N (µ , 4) 的样本,考虑检验问题 H0:µ = 6 vs H1:µ ≠ 6, 拒绝域取为 W = {| x − 6 | ≥ c} ,试求 c 使得检验的显著性水平为 0.05,并求该检验在µ = 6.5 处犯第二 类错误的概率.
1
⎧ ⎫ c ⎪ X −µ ⎪ 解:因 α = P{ X ∈ W | H 0 } = P{| X − 6 | ≥ c | µ = 6} = P ⎨ ≥ = 2c ⎬ = 2[1 − Φ ( 2c)] = 0.05 , ⎪ ⎪ ⎩ 2 16 2 16 ⎭
0 c
则 α + 2 β = 1 − c + 2c 2 = 故当 c =
7 ⎛1 1 ⎞ 7 ⎛1 ⎞ + 2⎜ − c + c 2 ⎟ = + 2⎜ − c ⎟ , 8 ⎝ 16 2 ⎠ 8 ⎝4 ⎠
2
1 7 时,α + 2β 为最小,其最小值为 . 4 8 8. 设 X1, X2, …, X30 为取自柏松分布 P(λ)的随机样本. (1)试给出单侧假设检验问题 H0:λ ≤ 0.1 vs H1:λ > 0.1 的显著水平α = 0.05 的检验; (2)求此检验的势函数β (λ)在λ = 0.05, 0.2, 0.3, …, 0.9 时的值,并据此画出β (λ)的图像.
⎧ X − µ 2.6 − 3 ⎫ < = −1.79⎬ = Φ (−1.79) = 0.0367 ; ⎩ 1 n 1 20 ⎭
⎧ X − µ 2 .6 − 3 ⎫ (2)因 β = P{ X < 2.6 | µ = 3} = P ⎨ < = −0.4 n ⎬ = Φ (−0.4 n ) ≤ 0.01 , 1 n ⎩1 n ⎭

概率论与数理统计第七章课后习题及参考答案

概率论与数理统计第七章课后习题及参考答案

5.设总体 X 的概率密度为
f
(x,
)
(
1) x
,0
x
1,
0, 其他.
其中 1是未知参数, X1 , X 2 ,…, X n 是来自 X 的一个样本.试求参数
2
的矩估计和极大似然估计.现有样本观测值 0.1 ,0.2 ,0.9 ,0.8 ,0.7 及 0.7 ,
求参数 的矩估计值和极大似然估计值.
1 2 2 c 2 2 ( 1 c) 2 ,
n
n
取 c 1 即可. n
14.设总体 X 的均值为 ,方差为 2 ,从总体中抽取样本 X1 , X 2 , X 3 ,证明
(
x,
,
2
)
1
1
1
e 2 2
(ln x )2
,
x
0,
2 x
0,
x 0.
其中 , 0 为未知参数, X1 , X 2 ,…, X n 是取自该总体的一
个样本,求参数 , 2 的极大似然估计.
解: xi 时,似然函数为
L(, 2 )
(
1 2 )n
1 x1x2 xn
exp{
dL
d
n exp{
n i 1
( xi
)}
0,
所以 L( ) 是 的单调增函数,从而对满足条件 xi 的任意 ,有
n
n
L( ) exp{ i1 (xi )} exp{ i1 (xi m1iinn{xi})} ,
即 L( ) 在 m1iinn{xi} 时取最大值, 故 的极大似然估计值为ˆ m1iinn{xi} . 7.(1) 设总体 X 具有分布律
ˆ1 X1 ;
ˆ2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

右边面积 1(ex 0
ex)dx
e 2
1,
故总面积为 e 。 2
六、面积S
3
|
x2
2x
|dx
2 2x x2dx
3 x2 2xdx 2
1
1
2
习题 7.2
一、1、解:在 y y轴的[0,1]内任取一个点 y ,过 y 垂直与 y 轴 的平面,这个平面与旋转体的截面是圆环,其面积
S(y) ( y)2 (y2)2 (y y4)
所以旋转体的体积微元dv s( y)dy ( y y4)dy,
所以旋转体的体积V
1
0 ( y
y4 )dy
3
10

2、解在 x轴的区间[-4,4]内任取一点 x,过点 x作垂直与 x轴
的平面,这个平面与旋转体的截面为圆环,其面积
S(x) (5 16 x2 )2 (5 16 x2 )2 20 16 x2
的面积,S1=
1
ydx
0
a
sin
3
td
(a
cos3
t
)
0
2
3a2 2 sin4 t cos2 tdt 3a2 2 sin4 t (1 sin2 t)dt
0
0
y
-a
O
ax
3a2[
2 sin4 tdt
0
2
sin
6
tdt
]
3a2
(
3!!
0
4!! 2
5!! ) 6!! 2
3 32
体积微元dv S(x)dx 20 16 x2 dx
所以旋转体的体积V 4 20 16 x2 dx 160 2。 4
二、建立坐标系,如图
圆的方程为 x2 y2 25 选 x 为积分变量 过 x 的截面为等边三角形,边长为2 25 x2 , 截面面积为
1 2 25 x2 3 2 25 x2 3(25 x2 )
4 2
(2x 4)dx 4
(2)绕 y 轴旋转:利用第四题的结论
4
Vy 2
xf (x)dx 2
2
4
x
2
2x 4dx 256 。
15
四、如图示,在[a,b]内任取一个点 x ,在 x 处给 其一个增量dx,则在小区间[x, x dx]上对应着一 个小矩形,绕 y 轴旋转,得到一个薄的空心圆柱 体,将其展开得到一个厚度为 dx ,上表面积为
面积为
3
3 [2x
2
6
(
x2
4x
3)]dx
9 8
,面积为
99 88
9. 4
三、1 解:如图图形是圆,具有对称性
面积微元:ds 1 r2d 1 4a2 cos2 d 2a2 cos2 d ,
2
2
故面积 S 2 2
1 r2d 2
2
2a2 cos2 d = a2 .
02
0
2、如图示:围成的面积分为四部分,,其中 S1是第一象限部分
五、解:如图:y ex上的点(x0 ,ex0 )处的切线的斜率为ex0 , 故可假设点(x0,ex0 )处的切线方程为: y ex0 ex0 (x x0); 又因为切线过(0,0),所以 x0 1,切线方程为 y ex,
如图阴影部分的面积即为所求:分为左右两部分
左边面积为 0 exdx 1,
2 xf (x)的柱体,其体积dv 2 xf (x)dx
所以旋转体的体积V b 2 xf (x)dx。 a
第七章
习题答案
7.1 微元分析法
7.2 平面图形的面积 7.3 体积 7.4 平面曲线的弧长 7.5 经济应用
习题 7.1
一、1:如图示:抛物线 y 1 x2与园 x2 y2 8
2
的图形,设阴影部分面积为 S1

S1= 2
2
(
0
8 x2 1 x2 )dx 2 2
2
0
8 x2 dx 8 ,
a2
,S=
4S1=
3 8
a2.
3、所围成的面积 S 的面积微元
ds 1 r2d 1 4a2(1 cos )2 d 2a2(1 2cos ccos cos2 )d 6 a2. 0
四解 1、如图示r 3cos (圆)和r 1 cos (心型
线)的交点: ,r 3
A2
32
面积分成两部分:S=2( A1 A2)
A1
2
A1由
0,
3
及r
3cos围成
A 10 31 2(1cos)2d9 16 3 4
A2由
, 3 5
2
和r
1
cos围成 A 2 3 21 2(3cos)2d38 9163
所以S=
4
2、由对称性:r
2 sin (圆)及r 2 cos 2 (双纽线)的交点的
ln a
ln a
5、如图示: y x2与 y x交于点(1,0), y x2与
y 2x交于点(2,0),所围成面积分为:左边+右边
左边部分面积:
1
0
(2
x
x)dx
1 2
右边部分面积:
2
(2x
x2 )dx
2

1
3
所以围成的面积为 1 2 7 。
23 6
二、解:可求得抛物线 y x2 4x 3
在点(0,3)处的切线 y 4x 3,
在(3,0)处的切线 y 2x 6,
两切线的交点横坐标x 3 ,所围成的面积:左边+右边 2
左边由 y x2 4x 3与 y 4x 3, x 3 围成的, 2
面积为
3
2 [4x
3
(x2
4x
3)]dx
9

0
8
右边由 y x2 4x 3与 y 2x 6, x 3 围成的, 2
2
2
所求立体体积为
2 25x2
5 5
3(25 x2 )dx 500 3
3
三、(1)绕 x 轴旋转:在 x 轴的区间[2,4]上任取一点 x,过
点 x 作垂直于 x 轴的平面,这个平面与旋转体的截面是圆,
其面积S(x) y2 (2x 4),
体积微元dv S(x)dx (2x 4)dx,Vx
3
令x2
2
sin t ,所以 S1
2
4 3
所以下方面积: S2
8
(2
4) 3
6
4 3
.
2、如图: y 1 与 y x的交点的横坐标 x 1
x
则阴影部分面积为
2
1
(
x
1 x
)dx
3 2
ln
2
3、解围成图形面积为
1(ex 0
ex
)dx
e
1 e
2

| 4、S lnb (ey 0)dy ey lnb b a。
6
所求的面积 S 分为左右两部分;而右边部分的面积又分为两部分计算:S1 S2 ,
S1由
0,
6
和r
2
sin
围成,所以
S1
6 0
1 2
(
2 sin )2d 12
3 8
S2由
,
6
和r2
4
cos
2围成,所以 S2
4 6
1 2
cos 2d
1 4
3 8
所以
S=2( S1
S2
)=
6
1 2
3。 2
相关文档
最新文档