七年级下册数学三角形测试题

合集下载

(完整版)七年级数学三角形测试题(附答案)

(完整版)七年级数学三角形测试题(附答案)

第七章 三角形班级: 姓名: 座号: 评分:一. 选择题。

(每题3分,共24分)1. 若三角形两边长分别是4、5,则周长c 的范围是( )A. 19cB. 914cC. 1018cD. 无法确定2. 一个三角形的三个内角中( )A. 至少有一个等于90°B. 至少有一个大于90°C. 不可能有两个大于89°D. 不可能都小于60°3. 从n 边形的一个顶点作对角线,把这个n 边形分成三角形的个数是( )A. n 个B. (n-1)个C. (n-2)个D. (n-3)个4. n 边形所有对角线的条数有( )A. ()12n n -条 B. ()22n n -条 C. ()32n n -条 D. ()42n n -条 5. 装饰大世界出售下列形状的地砖:○1正方形;○2长方形;○3正五边形;○4正六边形。

若只选购其中某一种地砖镶嵌地面,可供选用的地砖共有( )A. 1种B. 2种C. 3种D. 4种6. 下列图形中有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形7. 如图1,点O 是△ABC 内一点,∠A=80°,∠1=15°, ∠2=40°,则∠BOC 等于( )A. 95°B. 120°C. 135°D. 无法确定 8. 若一个三角形的三边长是三个连续的自然数,其周 长m 满足1022m ,则这样的三角形有( ) A. 2个 B. 3个 C. 4个 D. 5个二. 填空题。

(每空2分,共38分)1. 锐角三角形的三条高都在 ,钝角三角形有 条高在三角形外,直角三角形有两条高恰是它的 。

2. 若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 。

3. 要使六边形木架不变形,至少要再钉上 根木条。

4. 在△ABC 中,若∠A=∠C=13∠B ,则∠A= ,∠B= ,这个三角形是 。

2020最新北师大版数学七下第三章《三角形》单元测试卷及答案(5套)

2020最新北师大版数学七下第三章《三角形》单元测试卷及答案(5套)

北师大版七年级数学下册第三章三角形单元测试卷(一)班级姓名学号得分一、选择题1.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.下列说法中,正确的是()A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有() A.4对 B.5对 C.6对 D.7对(注意考虑完全,不要漏掉某些情况)4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定5.下列各题中给出的三条线段不能组成三角形的是()A.a+1,a+2,a+3(a>0) B.三条线段的比为4∶6∶10C.3cm,8cm,10cm D.3a,5a,2a+1(a>0)6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()A.18 B.15 C.18或15 D.无法确定7.两根木棒分别为5cm和7cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有()种A.3 B.4 C.5 D.68.△ABC的三边a、b、c都是正整数,且满足a≤b≤c,如果b=4,那么这样的三角形共有()个 A.4 B.6 C.8 D.109.各边长均为整数的不等边三角形的周长小于13,这样的三角形有()A.1个 B.2个 C.3个 D.4个10.三角形所有外角的和是()A.180° B.360° C.720° D.540°11.锐角三角形中,最大角α的取值范围是()A.0°<α<90°; B.60°<α<180°; C.60°<α<90°; D.60°≤α<90°12.如果三角形的一个外角不大于和它相邻的内角,那么这个三角形为()A.锐角或直角三角形; B.钝角或锐角三角形;C.直角三角形; D.钝角或直角三角形13.已知△ABC中,∠ABC与∠ACB的平分线交于点O,则∠BOC一定()A .小于直角;B .等于直角;C .大于直角;D .大于或等于直角 二、填空题1.如图:(1)AD ⊥BC ,垂足为D ,则AD 是________的高,∠________=∠________=90°;(2)AE 平分∠BAC ,交BC 于点E ,则AE 叫________,∠________=∠________=21∠________,AH 叫________;(3)若AF =FC ,则△ABC 的中线是________;(4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线. 2.如图,∠ABC =∠ADC =∠FEC =90°. (1)在△ABC 中,BC 边上的高是________; (2)在△AEC 中,AE 边上的高是________; (3)在△FEC 中,EC 边上的高是________; (4)若AB =CD =3,AE =5,则△AEC 的面积为________. 3.在等腰△ABC 中,如果两边长分别为6cm 、10cm ,则这个等腰三角形的周长为________. 4.五段线段长分别为1cm 、2cm 、3cm 、4cm 、5cm ,以其中三条线段为边长共可以组成________个三角形. 5.已知三角形的两边长分别为3和10,周长恰好是6的倍数,那么第三边长为________. 6.一个等腰三角形的周长为5cm ,如果它的三边长都是整数,那么它的腰长为________cm . 7.在△ABC 中,若∠A ∶∠B ∶∠C =5∶2∶3,则∠A =______;∠B =______;∠C =______. 8.如图,△ABC 中,∠ABC 、∠ACB 的平分线相交于点I . (1)若∠ABC =70°,∠ACB =50°,则∠BIC =________; (2)若∠ABC +∠ACB =120°,则∠BIC =________; (3)若∠A =60°,则∠BIC =________; (4)若∠A =100°,则∠BIC =________; (5)若∠A =n °,则∠BIC =________. 三、解答题1.在△ABC 中,∠BAC 是钝角. 画出:(1)∠ABC 的平分线; (2)边AC 上的中线; (3)边AC 上的高.2.△ABC 的周长为16cm ,AB =AC ,BC 边上的中线AD 把△ABC 分成周长相等的两个三角形.若BD =3cm ,求AB 的长.3.如图,AB ∥CD ,BC ⊥AB ,若AB =4cm ,212cm =∆ABC S ,求△ABD 中AB 边上的高.4.学校有一块菜地,如下图.现计划从点D 表示的位置(BD ∶DC =2∶1)开始挖一条小水沟,希望小水沟两边的菜地面积相等.有人说:如果D 是BC 的中点的话,由此点D 笔直地挖至点A 就可以了.现在D 不是BC 的中点,问题就无法解决了.但有人认为如果认真研究的话一定能办到.你认为上面两种意见哪一种正确,为什么?5.在直角△ABC 中,∠BAC =90°,如下图所示.作BC 边上的高,图中出现三个直角三角形(3=2×1+1);又作△ABD 中AB 边上的高1DD ,这时图中便出现五个不同的直角三角形(5=2×2+1);按照同样的方法作21D D 、32D D 、……、k k D D 1-.当作出k k D D 1-时,图中共有多少个不同的直角三角形?6.一块三角形优良品种试验田,现引进四个良种进行对比实验,需将这块土地分成面积相等的四块.请你制订出两种以上的划分方案.7.一个三角形的周长为36cm,三边之比为a∶b∶c=2∶3∶4,求a、b、c.8.已知△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求△ABC各边的长.9.已知三角形三边的长分别为:5、10、a-2,求a的取值范围.10.已知等腰三角形中,AB=AC,一腰上的中线BD把这个三角形的周长分成15cm和6cm 两部分,求这个等腰三角形的底边的长.11.如图,已知△ABC中,AB=AC,D在AC的延长线上.求证:BD-BC<AD-AB.12.如图,△ABC中,D是AB上一点.求证:(1)AB+BC+CA>2CD;(2)AB+2CD>AC+BC.13.如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G,(1)完成下面的证明:∵ MG平分∠BMN(),1∠BMN(),∴∠GMN=21∠DNM.同理∠GNM=2∵ AB∥CD(),∴∠BMN+∠DNM=________().∴∠GMN+∠GNM=________.∵∠GMN+∠GNM+∠G=________(),∴∠G= ________.∴ MG与NG的位置关系是________.(2)把上面的题设和结论,用文字语言概括为一个命题:_______________________________________________________________.14.已知,如图D是△ABC中BC边延长线上一点,DF⊥AB交AB于F,交AC于E,∠A=46°,∠D=50°.求∠ACB的度数.15.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC=60°,求∠BOC的度数.16.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线.求∠DAE的度数.17.已知,如图CE是△ABC的外角∠ACD的平分线,BE是∠ABC内任一射线,交CE于E.求证:∠EBC<∠ACE.18.画出图形,并完成证明:已知:AD 是△ABC 的外角∠EAC 的平分线,且AD ∥BC . 求证:∠B =∠C .单元测试卷(一)参考答案:一、1.A ; 2.D ; 3.A ; 4.C ;5.B ; 6.C ; 7.B ; 8.D ; 9.C (提示:边长分别为3、4、5;2、4、5;2、3、4.)10.C ; 11.D ; 12.D ; 13.C ; 二、1.(1)BC 边上,ADB ,ADC ;(2)∠BAC 的角平分线,BAE ,CAE ,BAC ,∠BAF 的角平分线; (3)BF ;(4)△ABH ,△AGF ; 2.(1)AB ; (2)CD ; (3)EF ; (4)7.5; 3.22cm 或26cm ; 4.3; 5.11; 6.2;7.90°,36°,54°;8.(1)120°; (2)120°; (3)120°; (4)140°; (5)290︒+︒n ;三、21.略;2.解法1:AB +BD +DA =DA +AC +CD ,∴ BD =CD ,∵ BD =3cm ,∴ CD =3cm ,BC =6cm ,∵ AB =AC ,∴ AB =5cm . 解法2:△ABD 与△ACD 的周长相等,而AB =AC ,∴ BD =CD , ∴ BC =2BD =6cm ,∴ AB =(16-6)÷2=5cm . 3.212cm =∆ABC S ,∴ 21AB ·BC =12,AB =4,∴ BC =6,∵ AB ∥CD ,∴ △ABD 中AB 边上的高=BC =6cm .4.后一种意见正确.5.不作垂线,一个直角三角形,即:1=2×0+1,作一条垂线,三个直角三角形,即:3=2×1+1,同理,5=2×2+1,找出相应的规律,当作出k k D D 1 时,图中共有2×k +1,即2k +1个直角三角形.6.第一种方案:在BC 上取E 、D 、F ,使BE =ED =DF =FC ,连结AE 、AD 、AF ,则△ABE 、△AED 、△ADF 、△AFC 面积相等;第二种方案:取AB 、BC 、CA 的中点D 、E 、F ,连结DE 、EF 、FD ,则△ADF 、△BDE 、△CEF 、△DEF 面积相等.7.设三边长a =2k ,b =3k ,c =4k ,∵ 三角形周长为36,∴ 2k +3k +4k =36,k =4, ∴ a =8cm ,b =12cm ,c =16cm .8.设三角形中最大边为a ,最小边为c ,由已知,a -c =14,b +c =25,a +b +c =48, ∴ a =23cm ,b =16cm ,c =9cm .9.10-5<a -2<10+5,∴ 7<a <17. 10.设AB =AC =2x ,则AD =CD =x ,(1)当AB +AD =15,BC +CD =6时,2x +x =15,∴ x =5,2x =10,∴ BC =6-5=1cm ;(2)当AB +AD =6,BC +CD =15时,2x +x =6,∴ x =2,2x =4,∴ BC =13cm ;经检验,第二种情况不符合三角形的条件,故舍去. 11.AD -AB =AC +CD -AB =CD ,∵ BD -BC <CD , ∴ BD -BC <AD -AB . 12.(1)AC +AD >CD ,BC +BD >CD , 两式相加:AB +BC +CA >2CD . (2)AD +CD >AC ,BD +CD >BC , 两式相加:AB +2CD >AC +BC . 13.(1)已知,角平分线定义,已知,180°,两直线平行同旁内角互补,90°,180°,三角形内角和定理,90°,互相垂直.(2)两平行直线被第三条直线所截,它们的同旁内角的角平分线互相垂直. 14.94°; 35.120°; 36.10°;17.∠EBC <∠DCE ,而∠DCE =∠ACE ,∴ ∠EBC <∠ACE . 18.略.北师大版七年级数学下册第三章三角形单元测试卷(二)班级姓名学号得分一、选择题1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为 ( ) A.10 B.12 C.14 D.162.在△ABC中,AB=4a,BC=14,AC=3a.则a的取值范围是 ( )A.a>2 B.2<a<14 C.7<a<14 D.a<143.一个三角形的三个内角中,锐角的个数最少为 ( )[A.0 B.1 C.2 D.34.下面说法错误的是 ( )A.三角形的三条角平分线交于一点 B.三角形的三条中线交于一点C.三角形的三条高交于一点 D.三角形的三条高所在的直线交于一点5.能将一个三角形分成面积相等的两个三角形的一条线段是 ( )A.中线B.角平分线 C.高线D.三角形的角平分线6.如图5—12,已知∠ACB=90°,CD⊥AB,垂足是D,则图中与∠A相等的角是 ( )A.∠ 1 B.∠ 2 C.∠ B D.∠ 1、∠ 2和∠ B 7.点P是△ABC内任意一点,则∠APC与∠B的大小关系是( ) A.∠APC>∠B B.∠APC=∠B C.∠APC<∠B D.不能确定8.已知:a 、b 、c 是△ABC 三边长,且M =(a +b +c)(a +b -c)(a -b -c),那么 ( ) A .M >0 B . M =0 C .M <0 D .不能确定9.周长为P 的三角形中,最长边m 的取值范围是 ( )A .23P m P <≤B .23P m P <<C .23P m P ≤<D .23P m P ≤≤10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有( )A .5个B .4个C .3个D .2个 二、填空题1.五条线段的长分别为1,2,3,4,5,以其中任意三条线段为边长可以________个三角形.2.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是________,周长的取值范围是___________.3.一个三角形的三个内角的度数的比是2:2:1,这个三角形是_________三角形. 4.一个等腰三角形两边的长分别是15cm 和7cm 则它的周长是__________.5.在△ABC 中,三边长分别为正整数a 、b 、c ,且c ≥b ≥a >0,如果b =4,则这样的三角形共有_________个.6.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________. 7.在△ABC 中,∠A -∠B =30°、∠C =4∠B ,则∠C =________.8.如图5—13,在△ABC 中,AD ⊥BC ,GC ⊥BC ,CF ⊥AB ,BE ⊥AC ,垂足分别为D 、C 、F 、E ,则_______是△ABC 中BC 边上的高,_________是△ABC 中AB 边上的高,_________是 △ABC 中AC 边上的高,CF 是△ABC 的高,也是△_______、△_______、△_______、△_________的高.[来9.如图5—14,△ABC 的两个外角的平分线相交于点D ,如果∠A =50°,那么∠D =_____. 10.如图5—15,△ABC 中,∠A =60°,∠ABC 、∠ACB 的平分线BD 、CD 交于点D ,则∠BDC =_____.11.如图5—16,该五角星中,∠A +∠B +∠C +∠D +∠E =________度. 12.等腰三角形的周长为24cm ,腰长为xcm ,则x 的取值范围是________. 三、解答题1.如图5—17,点B 、C 、D 、E 共线,试问图中A 、B 、C 、D 、E 五点可确定多少个三角形?说明理由.2.如图5—18,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.3.一个飞机零件的形状如图5—19所示,按规定∠A应等于90°,∠B,∠D应分别是20°和30°,康师傅量得∠BCD=143°,就能断定这个零件不合格,你能说出其中的道理吗?4.如图5—20,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.5.如图5—21,△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高,AE是∠BAC 的平分线,求∠DAE的度数.6.如图5—22,在△ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求:(1)△ABC的面积;(2)CD的长.7.已知:如图5—23,P是△ABC内任一点,求证:∠BPC>∠A.8.△ABC中,三个内角的度数均为整数,且∠A<∠B<∠C,4∠C=7∠A,求∠A的度数.9.已知:如图5—24,P 是△ABC 内任一点,求证:AB +AC >BP +PC .10.如图5—25,豫东有四个村庄A 、B 、C 、D .现在要建造一个水塔P .请回答水塔P 应建在何位置,才能使它到4村的距离之和最小,说明最节约材料的办法和理由.单元测试卷(二)参考答案:一、1.C 2.B 3.C 4.C 5.A 6.B 7.A 8.C 9.A 10.C 二、1.3; 2.32周长20,164<<<<BC ; 3.锐角(等腰锐角); 4.cm 37;5.10; 6.︒65和︒25; 7.︒100;8.GAC FAC FGC BFC BE CF AD ∆∆∆∆,,,,,,;9.︒65; 10.︒120; 11.︒180; 12.126<<x . 三、1.可以确定6个三角形.理由:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,所以图中可以确定6个三角形.2.错误.因为AD 虽然是线段,但不符合三角形角平分线定义,这里射线AD 是BAC ∠的平分线3.假设此零件合格,连接BD ,则︒=︒-︒=∠+∠37143180CBD CDB ;可知()︒=︒+︒-︒=∠+∠40203090CBD CDB .这与上面的结果不一致,从而知这个零件不合格.4.∵ AD 是BC 边上的中线,∴ D 为BC 的中点,BD CD =.∵ ADC ∆的周长-ABD ∆的周长=5cm ∴ cm AB AC 5=-. 又∵ cm AB AC 11=+, ∴ cm AC 8=.5.由三角形内角和定理,得︒=∠+∠+∠180BAC ACB B .∴ ︒=︒-︒-︒=∠4210434180BAC . 又∵ AE 平分∠BAC . ∴ ︒=︒⨯=∠=∠21422121BAC BAE .∴ ︒=︒+︒=∠+∠=∠552134BAE B AED . 又∵ ︒=∠+∠90DAE AED ,∴ ︒=︒-︒=∠-︒=∠35559090AED DAE . 6.(1)∵ 在△ABC 中,︒=∠90ACB ,cm AC 5=,cm BC 12=,().3012521212cm BCAC S ABC =⨯⨯=⋅=∴∆[ (2)∵ CD 是AB 边上的高, ∴ CD AB S ABC ⋅=∆21.即CD ⨯⨯=132130.∴ ()cm CD 1360=.7.如图,延长BP 交AC 于D ,∵ A PDC PDC BPC ∠>∠∠>∠,, ∴ A BPC ∠>∠ 8.∵ A C ∠=∠74,∴ C A ∠=∠74,∴ C B C ∠<∠<∠74.又∵ ︒=∠+∠+∠180C B A ,∴ ︒=∠+∠+∠18074C B C .∴ C B ∠-︒=∠711180,∵ C C C ∠<∠-︒<∠71118074,∴ ︒<∠<︒8470C .又∵ C A ∠=∠74为整数,∴ ∠C 的度数为7的倍数.∴ ︒=∠77C ,∴ ︒=∠=∠4474C A .9.如图,延长BP 交AC 于点D .在△BAD 中,BD AD AB >+, 即:PD BP AD AB +>+. 在△PDC 中,PC DC PD >+. ①+②得PC PD BP DC PD AD AB ++>+++, 即PC BP AC AB +>+10.如图,水塔P 应建在线段AC 和线段BD 的交点处.这样的设计将最节省材料.理由:我们不妨任意取一点P ',连结P A '、P B '、P C '、P D '、AB 、BC 、CD 、DA , ∵ 在C P A '∆中,CP AP AC P C P A +=>'+', ① 在D P B '∆中,DP BP BD P D P B +=>'+', ② ①+②得DP CP BP AP P D P C P B P A +++>'+'+'+'. ∵ 点P '是任意的,代表一般性,∴ 线段AC 和BD 的交点处P 到4个村的距离之和最小.北师大版七年级数学下册第三章 三角形 单元测试卷(三)班级 姓名 学号 得分一、选择题(每小题3分,共30分)1. 有下列长度的三条线段,能组成三角形的是( )A 2,3,4B 1,4,2C 1,2,3D 6,2,3 2. 在下列各组图形中,是全等的图形是( )3. 下列条件中,能判断两个直角三角形全等的是( )AB C DE图4图2 图 3 A 、一个锐角对应相等 B 、两个锐角对应相等C 、一条边对应相等D 、两条边对应相等4.已知:如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于O 点, ∠1=∠2.图中全等的三角形共有 ( ) A .4对 B ..3对 C 2对 D .1对5.如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去B. 带②去C. 带③去D. 带①和②去6.右图中三角形的个数是( )A .6 B .7 C .8 D .97.如果两个三角形全等,那么下列结论不正确的是( ) A .这两个三角形的对应边相等 B .这两个三角形都是锐角三角形C .这两个三角形的面积相等D .这两个三角形的周长相等8.在下列四组条件中,能判定△ABC ≌△A /B /C /的是( )A.AB=A /B /,BC= B /C /,∠A=∠A /B.∠A=∠A /,∠C=∠C /,AC= B /C /C.∠A=∠B /,∠B=∠C /,AB= B /C /D.AB=A /B /,BC= B /C /,△ABC 的周长等于△A /B /C /的周长9.下列图中,与左图中的图案完全一致的是( )10. 下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为500和200的三角形一定是钝角三角形,④直角三角形中两锐角的和为900,其中判断正确的有( )A.1个B.2个C.3个D.4个 二、填空题:(每题4分共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是 。

北师大版数学七年级下册第4章《三角形》单元测试试题 附答案解析

北师大版数学七年级下册第4章《三角形》单元测试试题  附答案解析

北师大版七年级下册第4章《三角形》单元测试题(满分120分)班级:________姓名:________座位:________成绩:________一.选择题(共10小题,满分30分)1.一个三角形的两边长分别是2和4,则第三边的长可能是()A.1B.2C.4D.72.在△ABC中,作BC边上的高,以下作图正确的是()A.B.C.D.3.如图,已知BD=CD,则AD一定是△ABC的()A.角平分线B.高线C.中线D.无法确定4.如图,在△ABC中,点D在BC的延长线上,若∠A=60°,∠B=40°,则∠ACD的度数是()A.140°B.120°C.110°D.100°5.如图,在△ABC中,CD平分∠ACB,DE∥BC.已知∠A=74°,∠B=46°,则∠BDC 的度数为()A.104°B.106°C.134°D.136°6.如图,AB=AC,若要使△ABE≌△ACD.则添加的一个条件不能是()A.∠B=∠C B.∠ADC=∠AEB C.BD=CE D.BE=CD7.如图,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,如图所示的这种方法,是利用了三角形全等中的()A.SSS B.ASA C.AAS D.SAS8.小明学习了全等三角形后总结了以下结论:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形是全等图形;④全等三角形的周长相等.其中正确的结论个数是()A.1B.2C.3D.49.如图,AD是△ABC的高,BE是△ABC的角平分线,BE,AD相交于点F,已知∠BAD =42°,则∠BFD=()A.45°B.54°C.56°D.66°10.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则BC长的可能值有()个.A.4B.5C.6D.7二.填空题(共6小题,满分24分)11.下列4个图形中,属于全等的2个图形是.(填序号)12.如图,某人将一块三角形玻璃打碎成两块,带块(填序号)能到玻璃店配一块完全一样的玻璃,用到的数学道理是.13.如图,Rt△ABC中,∠C=90°,∠B=25°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD 的度数是.14.如图,在△ABC中,AC=BC,过点A,B分别作过点C的直线的垂线AE,BF.若AE =CF=3,BF=4.5,则EF=.15.边长为整数、周长为20的三角形的个数为.16.如图,Rt△ABC中,∠BAC=90°,AB=6,AC=3,G是△ABC重心,则S△AGC=.三.解答题(共8小题,满分66分)17.如图,在一个三角形的一条边上取四个点,把这些点与这条边所对的顶点连接起来.问图中共有多少个三角形.请你通过与数线段或数角的问题进行类比来思考.18.如图,AB=DE,AC=DF,BE=CF,求证:△ABC≌△DEF.19.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.20.如图,已知B,D在线段AC上,且AD=CB,BF=DE,∠AED=∠CFB=90°求证:(1)△AED≌△CFB;(2)BE∥DF.21.如图,已知锐角△ABC,AB>BC.(1)尺规作图:求作△ABC的角平分线BD;(保留作图痕迹,不写作法)(2)点E在AB边上,当BE满足什么条件时?∠BED=∠C.并说明理由.22.如图,△ABC中,∠ACB=90°,D为AB上一点,过D点作AB垂线,交AC于E,交BC的延长线于F.(1)∠1与∠B有什么关系?说明理由.(2)若BC=BD,请你探索AB与FB的数量关系,并且说明理由.23.如图1,点A、B分别在射线OM、ON上运动(不与点O重合),AC、BC分别是∠BAO 和∠ABO的角平分线,BC延长线交OM于点G.(1)若∠MON=60°,则∠ACG=°;若∠MON=90°,则∠ACG=°;(2)若∠MON=n°.请求出∠ACG的度数;(用含n的代数式表示)(3)如图2,若∠MON=n°,过C作直线与AB交F.若CF∥OA时,求∠BGO﹣∠ACF的度数.(用含n的代数式表示)24.如图1所示,在Rt△ABC中,∠C=90°,点D是线段CA延长线上一点,且AD=AB,点F是线段AB上一点,连接DF,以DF为斜边作等腰Rt△DFE,连接EA,EA满足条件EA⊥AB.(1)若∠AEF=20°,∠ADE=50°,BC=2,求AB的长度;(2)求证:AE=AF+BC;(3)如图2,点F是线段BA延长线上一点,探究AE、AF、BC之间的数量关系,并证明你的结论.参考答案一.选择题(共10小题)1.【解答】解:设第三边的长为x,由题意得:4﹣2<x<4+2,2<x<6,故选:C.2.【解答】解:BC边上的高应从点A向BC引垂线,只有选项D符合条件,故选:D.3.【解答】解:由于BD=CD,则点D是边BC的中点,所以AD一定是△ABC的一条中线.故选:C.4.【解答】解:∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=100°,故选:D.5.【解答】解:∵∠A=74°,∠B=46°,∴∠ACB=60°,CD平分∠ACB,∴∠BCD=∠ACD=∠ACB=×60°=30°,∴∠BDC=180°﹣∠B﹣∠BCD=104°,故选:A.6.【解答】解:A、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此选项不合题意;B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;C、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;D、添加BE=CD不能判定△ABE≌△ACD,故此选项符合题意;故选:D.7.【解答】解:观察图形发现:AC=DC,BC=BC,∠ACB=∠DCB,所以利用了三角形全等中的SAS,故选:D.8.【解答】解:①全等三角形的形状相同、大小相等,正确;②全等三角形的对应边相等、对应角相等,正确;③面积相等的两个三角形是全等图形,错误;④全等三角形的周长相等,正确.故选:C.9.【解答】解:∵AD是△ABC的高,∴∠ADB=90°,∵∠BAD=42°,∴∠ABD=180°﹣∠ADB﹣∠BAD=48°,∵BE是△ABC的角平分线,∴∠ABF=∠ABD=24°,∴∠BFD=∠BAD+∠ABF=42°+24°=66°,故选:D.10.【解答】解:∵△ABC的周长为22,△ABM的周长比△ACM的周长大2,∴2<BC<22﹣BC,解得2<BC<11,又∵△ABC的三边长均为整数,△ABM的周长比△ACM的周长大2,∴AC=为整数,∴BC边长为偶数,∴BC=4,6,8,10,故选:A.二.填空题(共6小题)11.【解答】解:根据全等三角形的判定(SAS)可知属于全等的2个图形是①③,故答案为:①③.12.【解答】解:第①块只保留了原三角形的一个角和部分边,根据这两块中的任一块不能配一块与原来完全一样的;第②块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带②去.故答案为:②,ASA.13.【解答】解:∵Rt△ABC中,∠C=90°,∠B=25°,∴∠CAB=90°﹣∠B=90°﹣25°=65°,由作图过程可知:MN是AB的垂直平分线,∴DA=DB,∴∠DAB=∠B=25°,∴∠CAD=∠CAB﹣∠DAB=65°﹣25°=40°.答:∠CAD的度数是40°.故答案为:40°.14.【解答】解:∵过点A,B分别作过点C的直线的垂线AE,BF,∴∠AEC=∠CFB=90°,在Rt△AEC和Rt△CFB中,,∴Rt△AEC≌Rt△CFB(HL),∴EC=BF=4.5,∴EF=EC+CF=4.5+3=7.5,故答案为:7.5.15.【解答】解:边长为整数、周长为20的三角形分别是:(9,9,2)(8,8,4)(7,7,6)(6,6,8)(9,6,5)(9,7,4)(9,8,3)(8,7,5),共8个.故答案为:8.16.【解答】解:延长AG交BC于E.∵∠BAC=90°,AB=6,AC=3,∴S△ABC=•AB•AC=9,∵G是△ABC的重心,∴AG=2GE,BE=EC,∴S△AEC=×9=4.5,∴S△AGC=×S△AEC=3,故答案为3三.解答题(共8小题)17.【解答】解:如图所示,图中三角形的个数有△ABC,△ACD,△ADE,△AEF,△AFG,△ABD,△ABE,△ABF,△ABG,△ACE,△ACF,△ACG,△ADF,△ADG,△AEG.18.【解答】解:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,∵,∴△ABC≌△DEF(SSS).19.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC和△CEB中,∴△ADC≌△CEB(AAS);(2)解:由题意得:AD=2×3=6cm,BE=7×2=14cm,∵△ADC≌△CEB,∴EC=AD=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.20.【解答】证明(1)∵∠AED=∠CFB=90°,在Rt△AED和Rt△CFB中,∴Rt△AED≌Rt△CFB(HL).(2)∵△AED≌△CFB,∴∠BDE=∠DBF,在△DBE和△BDF中,∴△DBE≌△BDF(SAS),∴∠DBE=∠BDF,∴BE∥DF.21.【解答】解:(1)如图,线段BD即为所求.(2)结论:BE=BC.理由:∵BD平分∠ABC,∵BE=BC,BD=BD,∴△BDE≌△BDC(SAS),∴∠BED=∠C.22.【解答】解:(1))∠1与∠B相等,理由:∵,△ABC中,∠ACB=90°,∴∠1+∠F=90°,∵FD⊥AB,∴∠B+∠F=90°,∴∠1=∠B;(2)若BC=BD,AB与FB相等,理由:∵△ABC中,∠ACB=90°,DF⊥AB,∴∠ACB=∠FDB=90°,在△ACB和△FDB中,,∴△ACB≌△FDB(AAS),∴AB=FB.23.【解答】解:(1)∵∠MON=60°,∴∠OBA+∠OAB=120°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=×120°=60°,∴∠ACB=180°﹣60°=120°,∴∠ACG=60°;∵∠MON=90°,∴∠OBA+∠OAB=90°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=×90°=45°,∴∠ACB=180°﹣45°=135°;故答案为:60,45;(2)在△AOB中,∠OBA+∠OAB=180°﹣∠AOB=180°﹣n°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=(∠OBA+∠OAB)=(180°﹣n°),即∠ABC+∠BAC=90°﹣n°,∴∠ACB=180°﹣(∠ABC+∠BAC)=180°﹣(90°﹣n°)=90°+n°,∴∠ACG=180°﹣(90°+n°)=90°﹣n°;(3)∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠ABC=ABO,∠BAC=∠OAC=,∵CF∥AO,∴∠ACF=∠CAG,∵∠BGO=∠BAG+∠ABG,∴∠BGO﹣∠ACF=∠BAG+∠ABG﹣∠ACF=2∠BAC+∠ABG﹣∠BAC=∠ABG+∠BAC=90°﹣n°.24.【解答】解:(1)在等腰直角三角形DEF中,∠DEF=90°,∵∠1=20°,∴∠2=∠DEF﹣∠1=70°,∵∠EDA+∠2+∠3=180°,∴∠3=60°,∵EA⊥AB,∴∠EAB=90°,∵∠3+∠EAB+∠A=180°,∴∠4=30°,∵∠C=90°,∴AB=2BC=4;(2)如图1,过D作DM⊥AE于M,在△DEM中,∠2+∠5=90°,∵∠2+∠1=90°,∵DE=FE,在△DEM与△EF A中,,∴△DEM≌△EF A,∴AF=EM,∵∠4+∠B=90°,∵∠3+∠EAB+∠4=180°,∴∠3+∠4=90°,∴∠3=∠B,在△DAM与△ABC中,,∴△DAM≌△ABC,∴BC=AM,∴AE=EM+AM=AF+BC;(3)如图2,过D作DM⊥AE交AE的延长线于M,∵∠C=90°,∴∠1+∠B=90°,∵∠2+∠MAB+∠1=180°,∠MAB=90°,∴∠2+∠1=90°,∠2=∠B,在△ADM与△BAC中,,∴△ADM≌△BAC,∵EF=DE,∠DEF=90°,∵∠3+∠DEF+∠4=180°,∴∠3+∠4=90°,∵∠3+∠5=90°,∴∠4=∠5,在△MED与△AFE中,,∴△MED≌△AFE,∴ME=AF,∴AE+AF=AE+ME=AM=BC,即AE+AF=BC.。

(典型题)初中数学七年级数学下册第四单元《三角形》测试题(有答案解析)(1)

(典型题)初中数学七年级数学下册第四单元《三角形》测试题(有答案解析)(1)

一、选择题1.MAB ∠为锐角,AB a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC x =,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是( )A .x d =或x a ≥B .x a ≥C .x d =D .x d =或x a > 2.已知如图,AB=AE ,只需再加一个条件就能证明△ABC ≌△AED ,下列选项是所加条件,请判断哪一个不能判断△ABC ≌△AED ( )A .∠B=∠EB .AC=ADC .∠ADE=∠ACBD .BC=DE 3.有下列长度的三条线段,能组成三角形的是( ) A .2cm ,3cm ,4cmB .1cm ,4cm ,2cmC .1cm ,2cm ,3cmD .6cm ,2cm ,3cm 4.如图,已知AB =AD ,AC =AE ,若要判定△ABC ≌△ADE ,则下列添加的条件中正确的是( )A .∠1=∠DACB .∠B =∠DC .∠1=∠2D .∠C =∠E 5.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连接BF ,CE ,下列说法:①ABD △和ACD △面积相等;②BAD CAD ∠=∠; ③BDF ≌CDE △;④//BF CE ;⑤CE AE =.其中正确的是( )A .①②B .①③C .①③④D .①④⑤6.如图,在ABC 和AEF 中,EAC BAF ∠=∠,EA BA =,添加下面的条件:①EAF BAC ∠=∠;②E B ∠=∠;③AF AC =;④EF BC =,其中可以得到ABC AEF ≌△△的有( )个.A .1B .2C .3D .47.下列四个图形中,线段BE 表示△ABC 的高的是( )A .B .C .D .8.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒ 9.如图,给出下列四组条件:①AB=DE ,BC=EF ,AC=DF ;②AB=DE ,∠B=∠E ,BC=EF ;③∠B=∠E ,BC=EF ,∠C=∠F ;④AB=DE ,AC=DF ,∠B=∠E .其中,能使△ABC ≌△DEF 的条件共有( )A .1组B .2组C .3组D .4组10.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF 其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ 11.下列四个图形中,有两个全等的图形,它们是( )A .①和②B .①和③C .②和④D .③和④ 12.如图,已知ABC ADE △≌△,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .80︒B .70︒C .40︒D .30二、填空题13.如图,将一副直角三角尺按图③放置,使三角尺①的长直角边与三角尺②的某直角边在同一条直线上,则图③中的∠1=______°.14.如图,在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别为D ,E ,AD ,CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.添加的条件是:____.(写出一个即可)15.如图,在ABC 中,D ,E 分别是BC ,AD 的中点,24ABC Scm =,则ABE S 的值是_______.16.如图,直线AB 、CD 相交于点O ,OE 平分∠AOC ,OF ⊥OE 于点O ,若∠AOD =70°,则∠AOF =______度.17.连接正方形网格中的格点,得到如图所示的图形,则1234∠+∠+∠+∠=________º.18.等腰三角形一边长是10cm ,一边长是6cm ,则它的周长是_______________cm . 19.已知三角形ABC 的三边长分别是,,a b c ,化简a b c b a c +----的结果是_________________;20.如图,90C D ∠=∠=︒,请添加一个条件,使Rt ABC ∆与Rt ABD ∆全等.你添加的条件是________(写出一个符合要求的条件即可).三、解答题21.如图,已知点C 是AB 的中点,CD ∥BE ,且CD BE =.(1)求证:△ACD ≌△CBE .(2)若87,32A D ∠=︒∠=︒,求∠B 的度数.22.如图,在△ABC 中,∠ACB =70 °,∠B =65°,AD ⊥BC ,CE ⊥AB ,垂足分别为D ,E . (1)求证:AE =CE .(2)求证:△AEF ≌△CEB .23.如图,AB AC =,AE AD =,CAB EAD α∠=∠=.(1)求证:AEC ADB ≅△△;(2)若90α=︒,试判断BD 与CE 的数量及位置关系并证明;(3)若CAB EAD α∠=∠=,求CFA ∠的度数.24.如图,点A ,D ,B ,E 依次在同一条直线上,BC DF =,AD BE =,ABC EDF ∠=∠,求证:A E ∠=∠.25.如图,,AD BF 相交于点,//,O AB DF AB DF =,点E 与点C 在BF 上,且BE CF =.(1)求证:ABC DFE ∆≅∆;(2)求证:点О为BF 的中点.26.已知:D ,A ,E 三点都在直线m 上,在直线m 的同一侧作ABC ,使AB AC =,连接BD ,CE .(1)如图①,若90BAC ∠=︒,BD m ⊥,CE m ⊥,求证ABD ACE ≅;(2)如图②,若BDA AEC BAC ∠=∠=∠,请判断BD ,CE ,DE 三条线段之间的数量关系,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】当x=d时,BC⊥AM,C点唯一;当x≥a时,能构成△ABC的C点唯一,可确定取值范围.【详解】解:若△ABC的形状、大小是唯一确定的,则C点唯一即可,当x=d时,BC⊥AM,C点唯一;当x>a时,以B为圆心,BC为半径的作弧,与射线AM只有一个交点,x=a时,以B为圆心,BC为半径的作弧,与射线AM只有两个交点,一个与A重合,所以,当x≥a时,能构成△ABC的C点唯一,故选为:A.【点睛】本题考查了三角形的画法,根据题意准确作图并且能够分类讨论是解题关键.2.D解析:D【分析】根据全等三角形的判定条件结合AE=AB、∠A=∠A逐项判定即可.【详解】解:∵AE=AB、∠A=∠A∴A、补充∠B=∠E,根据ASA可证明△ABC≌△AED,不符合题意;B、补充AC=AD,根据SAS可证明△ABC≌△AED,不符合题意;C、补充∠ADE=∠ACB,根据AAS可证明△ABC≌△AED,不符合题意;D、补充BC=DE,为SSA不能证明△ABC≌△AED,符合题意.故答案为D.【点睛】本题考查了三角形全等的证明,掌握AAA 、SSA 不能判定普通三角形全等是解答本题的关键.3.A解析:A【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的之差一定小于第三边;进行解答即可.【详解】A 、2+3>4,能围成三角形;B 、1+2<4,所以不能围成三角形;C 、1+2=3,不能围成三角形;D 、2+3<6,所以不能围成三角形;故选:A .【点睛】本题主要考查了三角形的三边关系的应用,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.4.C解析:C【分析】根据题目中给出的条件AB AD =,AC AE =,根据全等三角形的判定定理判定即可.【详解】解:AB AD =,AC AE =,则可通过12∠=∠,得到BAC DAE ∠=∠,利用SAS 证明△ABC ≌△ADE ,故选:C .【点睛】 此题主要考查了全等三角形的判定,关键是要熟记判定定理:SSS ,SAS ,AAS ,ASA .5.C解析:C【分析】根据三角形中线的定义可得BD=CD ,根据等底等高的三角形的面积相等判断出①正确,然后利用“边角边”证明△BDF 和△CDE 全等,根据全等三角形对应边相等可得CE=BF ,全等三角形对应角相等可得∠F=∠CED ,再根据内错角相等,两直线平行可得BF ∥CE .【详解】解:∵AD 是△ABC 的中线,∴BD=CD ,∴△ABD 和△ACD 面积相等,故①正确;∵AD 为△ABC 的中线,∴BD=CD ,∠BAD 和∠CAD 不一定相等,故②错误;在△BDF 和△CDE 中,BD CD BDF CDE DF DE =⎧⎪∠=∠⎨⎪=⎩,∴△BDF ≌△CDE (SAS ),故③正确;∴∠F=∠DEC ,∴BF ∥CE ,故④正确;∵△BDF ≌△CDE ,∴CE=BF ,故⑤错误,正确的结论为:①③④,故选:C .【点睛】本题考查了全等三角形的判定与性质,等底等高的三角形的面积相等,熟练掌握三角形全等的判定方法并准确识图是解题的关键.6.B解析:B【分析】根据EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠,经推到得EAF BAC ∠=∠;再结合全等三角形判定的性质分析,即可得到答案.【详解】∵EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠ ∴EAF BAC ∠=∠E B ∠=∠,即E B EAF BAC EA BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()ASA ,故②符合题意;AF AC =,即AF AC EAF BAC EA BA =⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()SAS ,故③符合题意; ①和④不构成三角形全等的条件,故错误;故选:B .【点睛】本题考查了全等三角形的知识;解题的关键是熟练掌握全等三角形的性质,从而完成求解.7.C解析:C【分析】根据三角形高的画法知,过点B 作AC 边上的高,垂足为E ,其中线段BE 是△ABC 的高,再结合图形进行判断.【详解】解:线段BE 是△ABC 的高的图是选项C .故选:C .【点睛】本题考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.8.C解析:C【分析】先判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠B=∠C=35︒,由三角形外角的性质即可得到答案.【详解】在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠B=∠C ,∵∠C=35︒,∴∠B=35︒,∴∠OEC=∠B+∠A=355590︒+︒=︒,∴∠DOE=∠C+∠OEC=3590125︒+︒=︒,故选:C .【点睛】本题考察全等三角形的判定与性质、三角形外角的性质,熟练掌握全等三角形的判定与性质是解题关键.9.C解析:C【分析】要使△ABC ≌△DEF 的条件必须满足SSS 、SAS 、ASA 、AAS ,可据此进行判断.【详解】解:第①组满足SSS ,能证明△ABC ≌△DEF .第②组满足SAS ,能证明△ABC ≌△DEF .第③组满足ASA ,能证明△ABC ≌△DEF .第④组只是SSA ,不能证明△ABC ≌△DEF .所以有3组能证明△ABC ≌△DEF .故符合条件的有3组.故选:C .【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.10.D解析:D【分析】易证ABD EBC ∆∆≌,可得BCE BDA ∠=∠,AD=EC 可得①②正确;再根据角平分线的性质可求得DAE DCE ∠=∠ ,即③正确,根据③可判断④正确;【详解】∵ BD 为∠ABC 的角平分线,∴ ∠ABD=∠CBD ,∴在△ABD 和△EBD 中,BD=BC ,∠ABD=∠CDB ,BE=BA ,∴△ABD EBC ∆∆≌(SAS),故①正确;∵ BD 平分∠ABC ,BD=BC ,BE=BA ,∴ ∠BCD=∠BDC=∠BAE=∠BEA ,∵△ABD ≌△EBC ,∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,故②正确;∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA ,∴∠DCE=∠DAE ,∴△ACE 是等腰三角形,∴AE=EC ,∵△ABD ≌△EBC ,∴AD=EC ,∴AD=AE=EC ,故③正确;作EG ⊥BC ,垂足为G ,如图所示:∵ E 是BD 上的点,∴EF=EG ,在△BEG 和△BEF 中BE BE EF EG =⎧⎨=⎩∴ △BEG ≌△BEF ,∴BG=BF,在△CEG和△AFE中EF EG AE CE=⎧⎨=⎩∴△CEG≌△AFE,∴ AF=CG,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF,故④正确;故选:D.【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键;11.B解析:B【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.【详解】解:①和③可以完全重合,因此全等的图形是①和③.故选:B.【点睛】此题主要考查了全等图形,关键是掌握全等图形的概念.12.A解析:A【分析】由全等三角形的性质可得到∠BAC=∠EAD,在△ADE中可求得∠EAD,则可求得∠BAC.【详解】解:∵∠E=70°,∠D=30°,∴∠EAD=180°-∠E-∠D=180°-70°-30°=80°,∵△ABC≌△ADE,∴∠BAC=∠EAD=80°,故选:A.【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.二、填空题13.105【分析】利用三角形外角性质求解【详解】如图∵∠2=∠3=∴∠4=∠2+∠3=∴∠1=故答案为:105【点睛】此题考查三角板的角度计算三角形外角的性质观察图形掌握各角度之间的位置关系是解题的关键解析:105【分析】利用三角形外角性质求解.【详解】如图,∵∠2=30,∠3=45︒,∴∠4=∠2+∠3=75︒,︒-∠=︒,∴∠1=1804105故答案为:105..【点睛】此题考查三角板的角度计算,三角形外角的性质,观察图形掌握各角度之间的位置关系是解题的关键.14.AF=CB或EF=EB或AE=CE【分析】根据垂直关系可以判断△AEF与△CEB有两对对应角相等就只需要找它们的一对对应边相等就可以了【详解】∵AD⊥BCCE⊥AB垂足分别为DE∴∠BEC=∠AEC解析:AF=CB或EF=EB或AE=CE【分析】根据垂直关系,可以判断△AEF与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【详解】∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=∠ADB=∠ADC=90°,∵∠B+∠BAD=90°,∠B+∠BCE =90°,∴∠BAD=∠BCE,所以根据AAS添加AF=CB或EF=EB;根据ASA添加AE=CE.可证△AEF≌△CEB.故答案为:AF=CB 或EF=EB 或AE=CE .【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.15.【分析】中线AD 把△ABC 分成面积相等的两个三角形中线BE 又把△ABD 分成面积相等的两个三角形所以△ABE 的面积是△ABC 的面积的【详解】解:∵DE 分别是BCAD 的中点∴△ABD 是△ABC 面积的△A解析:21cm【分析】中线AD 把△ABC 分成面积相等的两个三角形,中线BE 又把△ABD 分成面积相等的两个三角形,所以△ABE 的面积是△ABC 的面积的14. 【详解】解:∵D 、E 分别是BC ,AD 的中点,∴△ABD 是△ABC 面积的12,△ABE 是△ABD 面积的12, ∴△ABE 的面积=4×12×12=21cm . 故答案为:21cm .【点睛】本题考查了三角形的面积计算,解题的关键是熟悉三角形的中线把三角形分成面积相等的两个小三角形.16.145【分析】由已知角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小从而得到∠AOF 的值【详解】解:∵∵OE 平分∠AOC ∴∵OF ⊥OE 于点O ∴∠EOF =90°∴∠AOF =∠AOE+∠EOF =55解析:145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵70180110AOD AOC AOD ∠=︒∴∠=︒-∠=︒,,∵OE 平分∠AOC ,∴1552AOE AOC ∠=∠=︒, ∵OF ⊥OE 于点O ,∴∠EOF =90°,∴∠AOF =∠AOE+∠EOF =55°+90°=145°,故答案为145.【点睛】本题考查邻补角、角平分线和垂直以及角度的运算等知识,根据有关性质和定义灵活计算是解题关键.17.180°【分析】利用网格的特征可分别证明和从而可证得和故可得结论【详解】如图设正方形网格每一格长1个单位∴又故答案为:【点睛】此题主要考查了全等三角形的判定与性质构造直角三角形并证明全等是解答本题的 解析:180°【分析】利用网格的特征可分别证明ABF ADG ≅和AHC CDE ≅,从而可证得1290∠+∠=︒和3490∠+∠=°,故可得结论【详解】如图,设正方形网格每一格长1个单位,∴3AF =,1BF =,3AG =,1GD =,2AH =,2CE =,1HC =,1DE =,又90AFB AGD ∠=∠=︒,90AHC CED ∠=∠=︒ABF ADG ∴≅,AHC CDE ≅2BAF ∴∠=∠,ADG ABF ∠=∠,3DCE ∠=∠,4ACH ∠=∠290ADG ∠︒∠+=,390ACH ∠+∠=︒2190∴∠+∠=︒,3490∠+∠=°12349090180∴∠+∠+∠+∠==︒+︒︒故答案为:180︒【点睛】此题主要考查了全等三角形的判定与性质,构造直角三角形并证明全等是解答本题的关键. 18.26或22【分析】因为等腰三角形的底边和腰不确定6cm 可以为底边也可以为腰长故分两种情况:当6cm 为腰时底边为10cm 先判断三边能否构成三角形若能求出此时的周长;当6cm 为底边时10cm 为腰长先判断解析:26或22【分析】因为等腰三角形的底边和腰不确定,6cm 可以为底边也可以为腰长,故分两种情况:当6cm 为腰时,底边为10cm ,先判断三边能否构成三角形,若能,求出此时的周长;当6cm 为底边时,10cm 为腰长,先判断三边能否构成三角形,若能,求出此时的周长.【详解】解:若6cm 为等腰三角形的腰长,则10cm 为底边的长,6cm ,6cm ,10cm 可以构成三角形,此时等腰三角形的周长=6+6+10=22(cm );若10cm 为等腰三角形的腰长,则6cm 为底边的长,10cm ,10cm ,6cm 可以构成三角形,此时等腰三角形的周长=10+6+10=26(cm );则等腰三角形的周长为26cm 或22cm .故答案为:26或22.【点睛】本题考查了等腰三角形的定义和三角形的三边关系.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.19.【分析】先根据三角形的三边关系定理可得再根据绝对值运算整式的加减即可得【详解】由三角形的三边关系定理得:则故答案为:【点睛】本题考查了三角形的三边关系定理绝对值运算整式的加减熟练掌握三角形的三边关系 解析:22b c -【分析】先根据三角形的三边关系定理可得,a b c a c b +>+>,再根据绝对值运算、整式的加减即可得.【详解】由三角形的三边关系定理得:,a b c a c b +>+>,0,0a b c b a c ∴+->--<, 则()a b c b a c a b c a c b +----=+--+-,a b c a c b =+---+,22b c =-,故答案为:22b c -.【点睛】本题考查了三角形的三边关系定理、绝对值运算、整式的加减,熟练掌握三角形的三边关系定理是解题关键.20.AC=AD 或BC=BD 或∠BAC=∠BAD 或∠ABC=∠ABD (只要写出其中一个即可)【分析】现有条件:公共边AB ∠C=∠D=90°可以考虑添加对应边相等(因为是直角三角形全等的问题可以考虑用HL 判解析:AC=AD 或BC=BD 或∠BAC=∠BAD 或∠ABC=∠ABD (只要写出其中一个即可)现有条件:公共边AB ,∠C=∠D=90°,可以考虑添加对应边相等(因为是直角三角形全等的问题,可以考虑用HL 判定全等),也可以考虑添加角对应相等.【详解】在Rt △ABC 和Rt △ABD 中,已知∠C=∠D=90°,AB=AB ;根据HL 添加AC=AD 或BC=BD ;根据AAS 添加∠BAC=∠BAD 或∠ABC=∠ABD .故答案为:AC=AD 或BC=BD 或∠BAC=∠BAD 或∠ABC=∠ABD .【点睛】本题考查了直角三角形全等的判定,主要看学生对全等三角形几种判断方法的掌握情况,特别是直角三角形的全等,既可以用一般方法,又可以用直角三角形全等的特殊方法,选择面就更广一些.三、解答题21.(1)见解析;(2)61【分析】(1)根据SAS 证明△ACD ≌△CBE ;(2)根据三角形内角和定理求得∠ACD ,再根据三角形全等的性质得到∠B=∠ACD .【详解】(1)∵C 是AB 的中点,∴AC =CB ,∵CD//BE ,∴ACD CBE ∠=∠,在△ACD 和△CBE 中,AC CB ACD CBE CD BE =⎧⎪∠=∠⎨⎪=⎩,∴ACD CBE ∆≅∆;(2)∵8732A D ︒︒∠=∠=,,∴180180873261ACD A D ︒︒︒︒︒∠=-∠-∠=--=,又∵ACD CBE ∆≅∆,∴61B ACD ︒∠=∠=.【点睛】考查了全等三角形的判定和性质,解题关键是根据SAS 证明△ACD ≌△CBE .22.(1)见解析;(2)见解析【分析】(1)根据已知条件得到∠EAC =45 °,再根据等腰三角形的性质和垂直即可得解; (2)由于AD ⊥BC ,CE ⊥AB ,所以∠BAD =∠ECB =90°- ∠B ,根据已知条件证明即可;(1)∠ACB =70 °,∠B =65°,得∠EAC =45 °,又CE ⊥AB ,得∠ECA =45 °,所以AE =CE ;(2)由于AD ⊥BC ,CE ⊥AB ,所以∠BAD =∠ECB =90°- ∠B ,在△AEF 和△CEB 中,AEC BEC AE ECBAD ECB ∠=∠⎧⎪=⎨⎪∠=∠⎩, 所以△AEF ≌△CEB .【点睛】本题主要考查了全等三角形的判定与性质,结合等腰三角形的性质分析证明是解题的关键.23.(1)见详解;(2)BD=CE ,BD ⊥CE ;(3)902α︒-【分析】(1)根据三角形全等的证明方法SAS 证明两三角形全等即可;(2)由(1)△AEC ≌△ADB 可知CE=BD 且CE ⊥BD ;利用角度的等量代换证明即可; (3)过A 分别做AM ⊥CE ,AN ⊥BD ,易知AF 平分∠DFC ,进而可知∠CFA【详解】(1)∵∠CAB=∠EAD∴∠CAB+∠BAE=∠EAD+∠BAE ,∴ ∠CAE=∠BAD ,∵AB=AC ,AE=AD在△AEC 和△ADB 中 AB AC CAE BAD AE AD =⎧⎪⎨⎪⎩∠=∠= ∴ △AEC ≌△ADB (SAS )(2)CE=BD 且CE ⊥BD ,证明如下:将直线CE 与AB 的交点记为点O ,由(1)可知△AEC ≌△ADB ,∴ CE=BD , ∠ACE=∠ABD ,∵∠BOF=∠AOC ,∠α=90°,∴ ∠BFO=∠CAB=∠α=90°,∴ CE ⊥BD .(3)过A 分别做AM ⊥CE ,AN ⊥BD由(1)知△AEC ≌△ADB ,∴两个三角形面积相等故AM·CE=AN·BD ∴AM=AN∴AF 平分∠DFC由(2)可知∠BFC=∠BAC=α∴∠DFC=180°-α∴∠CFA=12∠DFC=902α︒-【点睛】本题考查了全等三角形的证明,以及全等三角形性质的应用,正确掌握全等三角形的性质是解题的关键;24.证明见解析.【分析】先根据已知条件得出AB ED =,再利用SAS 证明ABC EDF △≌△,最后根据全等三角形的性质即可得出答案.【详解】证明:∵AD BE =,∴AD DB BE DB +=+,∴AB ED =.在ABC 和EDF 中,AB ED ABC EDF BC DF =⎧⎪∠=∠⎨⎪=⎩,∴()ABC EDF SAS △≌△,∴A E ∠=∠.【点睛】本题考查了全等三角形的判定及性质,熟练掌握全等三角形的判定方法是解题的关键. 25.(1)见解析;(2)见解析【分析】(1)由已知可证∠B=∠F ,BC=EF ,然后根据SAS 可以得到结论;(2)同(1)有∠B=∠F ,再结合已知条件和对顶角相等可以证得ΔABO ≅ΔDFO ,从而得到OB=OF ,所以点O 为BF 中点 .【详解】证明:(1)∵AB//DF ,∴∠B=∠F ,∵BE=CF ,∴BE+CE=CF+CE ,即BC=EF ,∴在ΔABC 和ΔDFE 中,AB DF B F BC EF =⎧⎪∠=∠⎨⎪=⎩,∴ΔABC ≅ΔDFE (SAS );(2)与(1)同理有∠B=∠F ,∴在ΔABO 和ΔDFO 中,AOB DOF B F AB DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ΔABO ≅ΔDFO (AAS ),∴OB=OF ,∴点O 为BF 中点 .【点睛】本题考查三角形全等的应用,熟练掌握三角形全等的判定与性质并灵活应用是解题关键. 26.(1)见详解;(2)DE =BD +CE .理由见详解【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA =∠CEA =90°,而∠BAC =90°,根据等角的余角相等,得∠CAE =∠ABD ,然后根据“AAS”可判断△ABD ≌△CAE ;(2)由∠BDA =∠AEC =∠BAC ,就可以求出∠BAD =∠ACE ,进而由ASA 就可以得出△ABD ≌△CAE ,就可以得出BD =AE ,DA =CE ,即可得出结论.【详解】(1)证明:如图①,∵D ,A ,E 三点都在直线m 上,∠BAC =90°,∴∠BAD +∠CAE =90°,∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠BAD +∠ABD =90°,∴∠ABD =∠CAE ,在△ABD 和△CAE 中,ADB AEC ABD CAE AB AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CAE (AAS );(2)DE =BD +CE .理由如下:如图②,∵∠BDA =∠AEC =∠BAC ,∴由三角形内角和及平角性质,得:∠BAD +∠ABD =∠BAD +∠CAE =∠CAE +∠ACE ,∴∠ABD =∠CAE ,∠BAD =∠ACE ,在△ABD 和△CAE 中,ABD CAE AB ACBAD ACE ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABD ≌△CAE (ASA ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE .【点睛】本题考查了全等三角形的判定与性质以及三角形内角和定理的综合应用,解题的关键是熟练掌握全等三角形的判定方法,灵活运用所学知识解决问题.。

(必考题)初中数学七年级数学下册第四单元《三角形》测试卷(有答案解析)

(必考题)初中数学七年级数学下册第四单元《三角形》测试卷(有答案解析)

一、选择题1.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .1 2.已知三角形的两边长分别为1和4,则第三边长可能是( )A .3B .4C .5D .6 3.已知,D 是ABC ∠的边BC 上一点,//DE BA ,CBE ∠和CDE ∠的平分线交于点F ,若F α∠=,则ABE ∠的大小为( )A .αB .52α C .2α D .32α 4.如图,ABD △与AEC 都是等边三角形,AB AC ≠.下列结论中,①BE CD =;②60BOD ∠=︒;③BDO CEO ∠=∠.其中正确的有( ).A .0个B .1个C .2个D .3个5.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒ 6.已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是( ) A .13cmB .6cmC .5cmD .4cm 7.能把一个三角形的面积平均分成两个面积相等的三角形,这条线一定是这个三角形的一条( )A .角平分线B .高C .中线D .一条边的垂直平分线8.如图,两座建筑物AB ,CD 相距160km ,小月从点B 沿BC 走向点C ,行走ts 后她到达点E ,此时她仰望两座建筑物的顶点A 和D ,两条视线的夹角正好为90︒,且EA ED =.已知建筑物AB 的高为60m ,小月行走的速度为1/m s ,则小月行走的时间t 的值为( )A .100B .80C .60D .509.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连接BF ,CE ,下列说法:①ABD △和ACD △面积相等;②BAD CAD ∠=∠; ③BDF ≌CDE △;④//BF CE ;⑤CE AE =.其中正确的是( )A .①②B .①③C .①③④D .①④⑤10.下列四个图形中,有两个全等的图形,它们是( )A .①和②B .①和③C .②和④D .③和④ 11.如图,已知AC ⊥BD ,垂足为O ,AO = CO ,AB = CD ,则可得到△AOB ≌△COD ,理由是( )A .HLB .SASC .ASAD .SSS 12.如图,已知ABC ADE △≌△,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .80︒B .70︒C .40︒D .30二、填空题13.如图,ACE DBF ≌,//AE DF ,8AD =,2BC =,则AB =______.14.如图,已知AD 、AE 分别为ABC 的角平分线、高线,若40B ∠=︒,60C ∠=°,则DAE ∠的度数为__________.15.如图,在△ABC 中E 是BC 上的一点,BC =3BE ,点D 是AC 的中点,设△ABC ,△ADF ,△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF ﹣S △BEF =____.16.已知ABC 的三边长分别为a ,b ,c ,则a b c b c a c a b --+--+-+=______.17.如图,已知在ABC ∆和ADC ∆中,,ACB ACD ∠=∠请你添加一个条件:_________,使ABC ADC ∆≅∆(只添一个即可).18.如图,点D 在BC 上,DE ⊥AB 于点E ,DF ⊥BC 交AC 于点F ,BD =CF ,BE =CD .若∠AFD =145°,则∠EDF =_____.19.三角形有两条边的长度分别是5和7,则第三边a 的取值范围是_____.20.如图,在ABC 中,D ,E 分别是BC ,AD 的中点,24ABC Scm =,则ABE S 的值是_______.三、解答题21.如图,在△ABC 和△DEF 中,B ,E ,C ,F 在同一条直线上,AB // DE ,AB = DE ,∠A = ∠D .(1)求证:ABC DEF ≌;(2)若BF = 11,EC = 5,求BE 的长.22.如图:已知AD BE =,BC EF =且//BC EF ,求证:ABC DEF ≌△△.23.如图,将两块含45°角的大小不同的直角三角板△COD 和△AOB 如图①摆放,连结AC ,BD .(1)如图①,猜想线段AC 与BD 存在怎样的数量关系和位置关系,请写出结论并证明; (2)将图①中的△COD 绕点O 顺时针旋转一定的角度(如图②),连结AC ,BD ,其他条件不变,线段AC 与BD 还存在(1)中的关系吗?请写出结论并说明理由.(3)将图①中的△COD 绕点O 逆时针旋转一定的角度(如图③),连结AC ,BD ,其他条件不变,线段AC 与BD 存在怎样的关系?请直接写出结论.24.如图,在AOB 和COD △中,OA OB =,OC OD =,若60AOB COD ∠=∠=︒,(1)求证:AC BD =.(2)求APB ∠的度数.25.已知:如图90MON ∠=︒,与点O 不重合的两点A 、B 分别在OM 、ON 上,BE 平分ABN ∠,BE 所在的直线与OAB ∠的平分线所在的直线相交于点C .(1)当点A 、B 分别在射线OM 、ON 上,且45BAO ∠=︒时,求ACB ∠的度数; (2)当点A 、B 分别在射线OM 、ON 上运动时,ACB ∠的大小是否发生变化?若不变,请给出证明;若发生变化,请求出ACB ∠的范围.26.如图,点A ,E ,F ,B 在直线l 上,AE BF =,//AC BD ,且AC BD =,求证:ACF BDE ≅△△.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先根据全等三角形的判定定理得出△ACD ≌△ACB ,△ABO ≌△ADO ,再根据全等三角形的性质即可得出结论.【详解】解:在△ABC 和△ADC 中,∵AB AD BC CD AC AC ⎧⎪⎨⎪⎩===,∴△ABC ≌△ADC (SSS ),∴∠BAC=∠DAC , ∠DCA=∠BCA∴点O 到CB 、CD 的距离相等.故②正确在△ABO 与△ADO 中AB AD BAC DAC OA OA ⎧⎪∠∠⎨⎪⎩===,∴△ABO ≌△ADO (SAS ),∴BO=DO ,∠BOA=∠DOA∵∠BOA+∠DOA=180°∴∠BOA=∠DOA=90°,即BD AC ⊥故①④正确;∵AD≠CD∴BDA BDC ∠≠∠,故③错误所以,正确的结论是①②④,共3个,故选:B .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键. 2.B解析:B【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围.【详解】解:根据三角形的三边关系,设第三边的长为x ,∵三角形两边的长分别是1和4,∴4-1<x <4+1,即3<x <5.故选:B .【点睛】此题考查了三角形的三边关系,关键是正确确定第三边的取值范围.3.C解析:C【分析】先利用角平分线和三角形外角的性质可得2BED α∠=,再根据平行线的性质定理即可得出ABE ∠的大小.【详解】解:如下图所示,∵CBE ∠和CDE ∠的平分线交于点F ,∴21,22C CBE DE ∠∠==∠∠,∵12F ∠+∠=∠,F α∠=,∴21α∠-∠=,∵EBD BED EDC ∠+∠=∠,∴22212ED D C BE EBD α∠∠-∠=∠-==∠,∵//DE BA ,∴2ABE BED α∠==∠,故选:C .【点睛】本题考查三角形外角的性质,平行线的性质定理,与角平分线有关的计算.正确理解三角形外角等于与它不相邻的两个内角之和是解题关键.4.C解析:C【分析】利用SAS 证明△DAC ≌△BAE ,利用三角形内角和定理计算∠BOD 的大小即可.【详解】∵ABD △与AEC 都是等边三角形,∴AD=AB ,AC=AE ,∠DAB=∠EAC=60°,∴∠DAB+∠CAB =∠EAC+∠CAB ,∴∠DAC =∠BAE ,∴△DAC ≌△BAE ,∴BE=CD ,∴结论①正确;∵△DAC ≌△BAE ,∴∠ADC =∠ABE ,∴∠BOD=180°-(∠BDO+∠DBO),∵∠BDO+∠DBO=60°-∠ADC +60°+∠ABE=120°,∴∠BOD=180°-120°=60°,∴结论②正确;无法证明BDO CEO ∠=∠,∴结论③错误;故选C.【点睛】本题考查了等边三角形的性质,全等三角形的证明和性质,三角形内角和定理, 熟练运用等边三角形的性质证明三角形的全等是解题的关键.5.D解析:D【分析】利用构成三角形的条件,以及全等三角形的判定得解.【详解】解:A ,AB BC CA +=,不满足三边关系,不能画出三角形,故选项错误; B ,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;C ,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;D ,可以利用直角三角形全等判定定理HL 证明三角形全等,故选项正确.故选:D【点睛】本题考查三角形全等的判定以及构成三角形的条件,解题的关键是熟练掌握全等三角形的判定方法.6.B解析:B【分析】利用三角形的三边关系即可求解.【详解】解:第三边长x 的范围是:8383x -<<+,即5cm 11cm x <<,故选:B .【点睛】本题考查三角形的三边关系,掌握两边之和大于第三边,两边之差小于第三边是解题的关键.7.C解析:C【分析】根据中线的性质即可求解.【详解】解:三角形的一条中线将三角形的面积平均分成两个面积相等的三角形,故选:C【点睛】本题主要考查的是中线的性质,正确的掌握中线的性质是解题的关键.8.A解析:A【分析】首先证明∠A=∠DEC ,然后可利用AAS 判定△ABE ≌△ECD ,进而可得EC=AB=60m ,再求出BE 的长,然后利用路程除以速度可得时间.【详解】解:∵∠AED=90°,∴∠AEB+∠DEC=90°,∵∠ABE=90°,∴∠A+∠AEB=90°,∴∠A=∠DEC ,在△ABE 和△DCE 中B C A DEC AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ECD (AAS ),∴EC=AB=60m ,∵BC=160m ,∴BE=100m ,∴小华走的时间是100÷1=100(s ),故选:A .【点睛】本题主要考查了全等三角形的应用,关键是正确判定△ABE ≌△ECD .9.C解析:C【分析】根据三角形中线的定义可得BD=CD ,根据等底等高的三角形的面积相等判断出①正确,然后利用“边角边”证明△BDF 和△CDE 全等,根据全等三角形对应边相等可得CE=BF ,全等三角形对应角相等可得∠F=∠CED ,再根据内错角相等,两直线平行可得BF ∥CE .【详解】解:∵AD 是△ABC 的中线,∴BD=CD ,∴△ABD 和△ACD 面积相等,故①正确;∵AD 为△ABC 的中线,∴BD=CD ,∠BAD 和∠CAD 不一定相等,故②错误;在△BDF和△CDE中,BD CDBDF CDE DF DE=⎧⎪∠=∠⎨⎪=⎩,∴△BDF≌△CDE(SAS),故③正确;∴∠F=∠DEC,∴BF∥CE,故④正确;∵△BDF≌△CDE,∴CE=BF,故⑤错误,正确的结论为:①③④,故选:C.【点睛】本题考查了全等三角形的判定与性质,等底等高的三角形的面积相等,熟练掌握三角形全等的判定方法并准确识图是解题的关键.10.B解析:B【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.【详解】解:①和③可以完全重合,因此全等的图形是①和③.故选:B.【点睛】此题主要考查了全等图形,关键是掌握全等图形的概念.11.A解析:A【分析】根据三角形全等的判定定理进行判断.【详解】A. AC⊥BD,垂足为O,AO=CO,AB=CD,所以由HL可得到△AOB≌△COD,所以A正确;B.错误;C.错误;D.错误.【点睛】本题考查了三角形全等的判定定理,熟练掌握定理是本题解题的关键.12.A解析:A【分析】由全等三角形的性质可得到∠BAC=∠EAD,在△ADE中可求得∠EAD,则可求得∠BAC.【详解】解:∵∠E=70°,∠D=30°,∴∠EAD=180°-∠E-∠D=180°-70°-30°=80°,∵△ABC ≌△ADE ,∴∠BAC=∠EAD=80°,故选:A .【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.二、填空题13.3【分析】根据全等三角形对应边相等可得AC=BD 再求出AB=CD 然后代入数据进行计算即可得解【详解】解:∵△ACE ≌△DBF ∴AC=DB ∴AC-BC=BD-BC 即AB=CD ∵AD=8BC=2∴AB=解析:3【分析】根据全等三角形对应边相等可得AC=BD ,再求出AB=CD ,然后代入数据进行计算即可得解.【详解】解:∵△ACE ≌△DBF ,∴AC=DB ,∴AC-BC=BD-BC ,即AB=CD ,∵AD=8,BC=2,∴AB=12(AD-BC )=12×(8-2)=3. 故答案为:3.【点睛】本题考查了全等三角形的性质,根据全等三角形对应顶点的字母写在对应位置上确定出对应边,然后求出AB=CD 是解题的关键.14.【分析】先求出∠BAC 的度数再根据角平分线和高求出∠BAE 和∠BAD 即可【详解】解:∵∴∠BAC=180°-40°-60°=80°∵AD 平分∠BAC ∴∠BAD=∠BAC=40°∵AE ⊥BC ∴∠AEB解析:10︒【分析】先求出∠BAC 的度数,再根据角平分线和高求出∠BAE 和∠BAD 即可.【详解】解:∵40B ∠=︒,60C ∠=°,∴∠BAC=180°-40°-60°=80°,∵AD 平分∠BAC ,∴∠BAD=12∠BAC=40°,∵AE⊥BC,∴∠AEB=90°,∴∠BAE=90°-∠B=50°,∠DAE=∠BAE-∠BAD=10°,故答案为:10°.【点睛】本题考查了三角形内角和,三角形的高和角平分线,解题关键是熟练运用角平分线和高的意义求出角的度数.15.2【分析】S△ADF-S△BEF=S△ABD-S△ABE所以求出三角形ABD的面积和三角形ABE的面积即可因为BC=3BE点D是AC的中点且S△ABC=12就可以求出三角形ABD的面积和三角形ABE解析:2【分析】S△ADF-S△BEF=S△ABD-S△ABE,所以求出三角形ABD的面积和三角形ABE的面积即可,因为BC=3BE,点D是AC的中点,且S△ABC=12,就可以求出三角形ABD的面积和三角形ABE的面积.【详解】解:∵点D是AC的中点,∴AD=12AC,∵S△ABC=12,∴S△ABD=12S△ABC=12×12=6.∵BC=3BE,∴S△ABE=13S△ABC=13×12=4,∵S△ABD-S△ABE=(S△ADF+S△ABF)-(S△ABF+S△BEF)=S△ADF-S△BEF,即S△ADF-S△BEF=S△ABD-S△ABE=6-4=2,故答案为:2.【点睛】本题考查三角形的面积,解题的关键是要能根据已知条件求出三角形的面积并对要求的两个三角形的面积之差进行变化.16.【分析】三角形三边满足的条件是:两边和大于第三边两边的差小于第三边根据此条件来确定绝对值内的式子的正负从而化简计算即可【详解】解:∵△ABC的三边长分别是abc∴必须满足两边之和大于第三边两边的差小解析:3c b a+-【分析】三角形三边满足的条件是:两边和大于第三边,两边的差小于第三边,根据此条件来确定绝对值内的式子的正负,从而化简计算即可.【详解】解:∵△ABC 的三边长分别是a 、b 、c ,∴必须满足两边之和大于第三边,两边的差小于第三边,∴0,0,0a b c b c a c a b --<--<-+>, ∴a b c b c a c a b --+--+-+=()()()a b c b c a c a b ------+-+=++++a b c b c a c a b --+-+=3c b a +-故答案为:3c b a +-.【点睛】此题考查了三角形三边关系,此题的关键是先根据三角形三边的关系来判定绝对值内式子的正负.17.或或【分析】要判定△ABC ≌△ADC 已知AC 是公共边具备了一组边和一组角对应相等故添加CB=CD ∠BAC=∠DAC ∠B=∠D 后可分别根据SASASAAAS 能判定△ABC ≌△ADC 【详解】解:添加CB解析: BC DC =或CAB CAD ∠=∠或B D ∠=∠【分析】要判定△ABC ≌△ADC ,已知ACB ACD ∠=∠,AC 是公共边,具备了一组边和一组角对应相等,故添加CB=CD 、∠BAC=∠DAC 、∠B=∠D 后可分别根据SAS 、ASA 、AAS 能判定△ABC ≌△ADC .【详解】解:添加CB=CD ,结合ACB ACD ∠=∠,AC=AC ,根据SAS ,能判定△ABC ≌△ADC ; 添加∠BAC=∠DAC ,结合ACB ACD ∠=∠,AC=AC ,根据ASA ,能判定△ABC ≌△ADC ; 添加∠B=∠D ,结合ACB ACD ∠=∠,AC=AC ,根据AAS ,能判定△ABC ≌△ADC ; 故添加的条件是 BC DC =或CAB CAD ∠=∠或B D ∠=∠.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.55°【分析】由∠AFD =145°可求得∠CFD=35°证明Rt △BDE ≌△Rt △CFD 根据对应角相等推知∠BDE=∠CFD=35°进而可求出∠EDF 的值【详解】解:∵∠DFC+∠AFD=180°∠解析:55°【分析】由∠AFD =145°可求得∠CFD=35°,证明Rt △BDE ≌△Rt △CFD ,根据对应角相等推知∠BDE=∠CFD=35°,进而可求出∠EDF 的值.【详解】解:∵∠DFC+∠AFD=180°,∠AFD=145°,∴∠CFD=35°.又∵DE ⊥AB ,DF ⊥BC ,∴∠BED=∠CDF=90°,在Rt △BDE 与△Rt △CFD 中,BE CD BD CF =⎧⎨=⎩, ∴Rt △BDE ≌△Rt △CFD (HL ),∴∠BDE=∠CFD=35°,∴∠EDF =180°-90°-35°=55°.故答案是:55°.【点睛】本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件. 19.2<a <12【分析】已知三角形两边的长根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和【详解】解:根据三角形三边关系定理知:第三边a 的取值范围是:(7-5)<a <(解析:2<a <12.【分析】已知三角形两边的长,根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和.【详解】解:根据三角形三边关系定理知:第三边a 的取值范围是:(7-5)<a <(7+5),即2<a <12.【点睛】本题考查了三角形三边关系,两边之和大于第三边,两边之差小于第三边.20.【分析】中线AD 把△ABC 分成面积相等的两个三角形中线BE 又把△ABD 分成面积相等的两个三角形所以△ABE 的面积是△ABC 的面积的【详解】解:∵DE 分别是BCAD 的中点∴△ABD 是△ABC 面积的△A解析:21cm【分析】中线AD 把△ABC 分成面积相等的两个三角形,中线BE 又把△ABD 分成面积相等的两个三角形,所以△ABE 的面积是△ABC 的面积的14. 【详解】解:∵D 、E 分别是BC ,AD 的中点,∴△ABD 是△ABC 面积的12,△ABE 是△ABD 面积的12, ∴△ABE 的面积=4×12×12=21cm . 故答案为:21cm .【点睛】本题考查了三角形的面积计算,解题的关键是熟悉三角形的中线把三角形分成面积相等的两个小三角形.三、解答题21.(1)见解析;(2)BE =3.【分析】(1)根据平行线的性质由AB ∥DE 得到∠ABC =∠DEF ,然后根据“ASA”可判断△ABC ≌△DEF ;(2)根据三角形全等的性质可得BC =EF ,由此可求出BE =CF ,则利用线段的和差关系求出BE .【详解】(1)证明:∵AB ∥DE ,∴∠ABC =∠DEF ,在△ABC 和△DEF 中A D AB DEABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DEF (ASA );(2)解:∵△ABC ≌△DEF ,∴BC =EF ,∴BC -EC =EF -EC ,即BE =CF ,∵BF =11,EC =5,∴BF -EC =6.∴BE +CF =6.∴BE =3.【点睛】本题考查了全等三角形的判定与性质,掌握全等三角形的判定与性质是解答此题的关键. 22.见解析【分析】由AD=BE 可求得AB=DE ,再结合条件可证明△ABC ≌△DEF .【详解】证明:∵AD BE =∴AD BD BE BD +=+∴AB DE =又∵//BC EF∴ABC DEF ∠=∠在ABC 和DEF 中AB DE ABC DEF BC EF =⎧⎪∠=∠⎨⎪=⎩∴ABC DEF △≌△(SAS )【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .23.(1)AC=BD ,AC ⊥BD ,证明见解析;(2)存在,AC=BD ,AC ⊥BD ,证明见解析;(3)AC=BD ,AC ⊥BD【分析】(1)延长BD 交AC 于点E .易证△AOC ≌△BOD (SAS ),可得AC=BD ,∠OAC=∠OBD ,由∠ADE=∠BDO ,可证∠AED=∠BOD=90º即可;(2)延长BD 交AC 于点F ,交AO 于点G .易证△AOC ≌△BOD (SAS ),可得AC=BD ,∠OAC=∠OBD ,由∠AGF=∠BGO ,可得∠AFG=∠BOG=90º即可;(3)BD 交AC 于点H ,AO 于M ,可证△AOC ≌△BOD (SAS ),可得AC=BD ,∠OAC=∠OBD ,由∠AMH=∠BMO ,可得∠AHM=∠BOH=90º即可.【详解】(1)AC=BD ,AC ⊥BD ,证明:延长BD 交AC 于点E .∵△COD 和△AOB 均为等腰直角三角形,∴OC=OD ,OA=OB ,∠COA=∠BOD=90º,∴△AOC ≌△BOD (SAS ),∴AC=BD,∴∠OAC=∠OBD,∵∠ADE=∠BDO,∴∠AED=∠BOD=90º,∴AC⊥BD;(2)存在,证明:延长BD交AC于点F,交AO于点G.∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠DOC=BOA=90º,∵∠AOC=∠DOC-∠DOA,∠BOD=∠BOA-∠DOA,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∵∠AGF=∠BGO,∴∠AFG=∠BOG=90º,∴AC⊥BD;(3)AC=BD,AC⊥BD.证明:BD交AC于点H,AO于M,∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠DOC=BOA=90º,∵∠AOC=∠DOC+∠DOA,∠BOD=∠BOA+∠DOA,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∵∠AMH=∠BMO,∴∠AHM=∠BOH=90º,∴AC⊥BD.【点睛】本题考查三角形旋转变换中对应相等的位置与数量关系,掌握三角形全等的证明方法,及其角度计算是解题关键.24.(1)见解析;(2)60°【分析】(1)利用“SAS”证明AOC BOD ≅,即可得到结论;(2)由AOC BOD ≅得OAC OBD ∠=∠,再根据OAC AOB OBD APB ∠+∠=∠+∠即可求出结论.【详解】解:(1)证明:∵60AOB COD ∠=∠=︒,∴AOB BOC COD BOC ∠+∠=∠+∠,∴AOC BOD ∠=∠,在AOC △和BOD 中,AO BO AOC BOD CO DO =⎧⎪∠=∠⎨⎪=⎩,∴()AOC BOD SAS ≅△△,∴AC BD =;(2)∵AOC BOD ≅,∴OAC OBD ∠=∠,∵OAC AOB OBD APB ∠+∠=∠+∠,∴60OAC OBD APB ∠+︒=∠+∠,∴60APB ∠=︒.【点睛】本题考查全等三角形的性质和判定,解题的关键是掌握全等三角形的性质和判定定理. 25.(1)45°;(2)不变,45°【分析】(1)由题意,先求出135ABN ∠=︒,由角平分线的定义,求出67.5ABE ∠=︒,22.5∠︒=BAC ,由三角形外角的性质,即可求出答案;(2)由三角形的外角性质,得ACB ABE BAC ∠=∠-∠,再根据角平分线的定义即可求出答案.【详解】解:(1)∵90MON ∠=︒,即90AOB ∠=︒,45BAO ∠=︒,∴135ABN AOB BAO ∠=∠+∠=︒,∵BE 平分ABN ∠,AC 平分BAO ∠, ∴167.52ABE ABN ∠=∠=︒,122.52BAC BAO ∠=∠=︒, ∴67.522.545ACB ABE BAC ∠=∠-∠=︒-︒=︒.(2)ACB ∠的大小不会发生变化,理由如下: ∵BE 平分ABN ∠,AC 平分BAO ∠, ∴12ABE ABN ∠=∠,12BAC BAO ∠=∠, ∴ACB ABE BAC ∠=∠-∠1122ABN BAO =∠-∠ ()12ABN BAO =∠-∠12AOB =∠190452=⨯︒=︒. 【点睛】 本题考查了角平分线的定义,三角形的外角性质,解题的关键是熟练掌握所学的知识,正确的得到角的关系.26.见解析【分析】先证明AF BE =,然后根据平行线的性质得到∠CAF=∠DBE ,用SAS 即可证明△ACF ≌△BDE .【详解】证明:AE BF =,AE EF BF EF ∴+=+,即AF BE =; //AC BD ,CAF DBE ∴∠=∠在ACF 与BDE 中,AC BD CAF DBE AF BE =⎧⎪∠=∠⎨⎪=⎩ACF BDE ∴≅.【点睛】本题考查的是全等三角形的SAS 判定、平行线的性质,掌握SAS 判定是解题的关键.。

人教版七年级数学三角形测试试卷及答案解析

人教版七年级数学三角形测试试卷及答案解析

人教版七年级数学三角形测试试卷一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,要测量河两岸相对有两点,的距离,先在的垂线上取两点,,使,再画出的垂线,使,,在一条直线上,可以证明的理由是( ).A. 角角角B. 边边边C. 角边角D. 边角边2、不一定在三角形内部的线段是()A. 三角形的边的垂直平分线B. 三角形的高C. 三角形的中线D. 三角形的角平分线3、已知如图所示、分别是的中线、高,且,,则与的周长之差为 ,与的面积关系为 .A. ,相等B. ,相等C. ,相等D. ,相等4、在和中,已知,直接判定的根据是()A.B.C.D.5、下图中,全等的图形有()A. 对B. 对C. 对D. 对6、如图,用尺规作出了,作图痕迹中,弧是()A. 以为圆心,长为半径的弧B. 以为圆心,长为半径的弧C. 以为圆心,长为半径的弧D. 以为圆心,长为半径的弧7、下列图形中,与已知图形全等的是()A.B.C.D.8、如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的()A. 三边中线的交点B. 三边垂直平分线的交点C. 三条角平分线的交点D. 三边高的交点9、使两个直角三角形全等的条件是()A. 两条边对应相等B. 一条边对应相等C. 两个锐角对应相等D. 一个锐角对应相等10、下列图形中,不具有稳定性的是()A.B.C.D.11、已知图中的两个三角形全等,则度数是()A.B.C.D.12、已知的底边上的高为,当它的底边从变化到时,的面积()A. 从变化到B. 从变化到C. 从变化到D. 从变化到13、如图,在中,,点分别在边上,若,则下列结论正确的是()A. 和互为余角B. 和互为余角C. 和互为补角D. 和互为补角14、如图,已知,,用尺规作图的方法在上取一点,使得,则下列选项正确的是()A.B.C.D.15、已知一个等腰三角形的两边长分别是和,则该等腰三角形的周长为()A. 或B.C.D. 或二、填空题(本大题共有5小题,每小题5分,共25分)16、"利用三角形全等测距离",其实质就是利用三角形全等的方法来说明相等.17、解决难以测量或无法测量的线段(或角)的关键:构建三角形,得到线段相等或角相等.18、如图所示,在中,,,已知,,,则.19、一个三角形的三边为、、,另一个三角形的三边为、、,若这两个三角形全等,则.20、如图,于,那么图中以为高的三角形有个.三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,已知,,求证:.22、如图,在四边形中,,直线与边、分别相交于点、,求的度数.?23、在中,平分,,垂足为,过作,交于,若,求线段的长.参考答案一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,要测量河两岸相对有两点,的距离,先在的垂线上取两点,,使,再画出的垂线,使,,在一条直线上,可以证明的理由是( ).A. 角角角B. 边边边C. 角边角D. 边角边【答案】C【解析】解:,,.,,().故答案应选:角边角.2、不一定在三角形内部的线段是()A. 三角形的边的垂直平分线B. 三角形的高C. 三角形的中线D. 三角形的角平分线【答案】B【解析】解:三角形的角平分线都在三角形的内部,故答案不正确三角形的中线都在三角形的内部,故答案不正确三角形的高有的在形内,有的在形上,有的在形外,故答案正确三角形的边的垂直平分线都在三角形的内部,故答案不正确故正确答案为:三角形的高3、已知如图所示、分别是的中线、高,且,,则与的周长之差为 ,与的面积关系为 .A. ,相等B. ,相等C. ,相等D. ,相等【答案】D【解析】解:、分别是的中线、高,,故答案为:与的周长之差为,的面积等于的面积.4、在和中,已知,直接判定的根据是()A.B.C.D.【答案】B【解析】解:,和分别是、的对边,根据可判定两三角形全等.故正确答案是.5、下图中,全等的图形有()A. 对B. 对C. 对D. 对【答案】C【解析】解:如图,全等图形有对.6、如图,用尺规作出了,作图痕迹中,弧是()A. 以为圆心,长为半径的弧B. 以为圆心,长为半径的弧C. 以为圆心,长为半径的弧D. 以为圆心,长为半径的弧【答案】B【解析】解:以点为圆心,为半径作弧交于,然后以点为圆心,为半径画弧,两弧相交于,则.故正确答案是:以为圆心,长为半径的弧7、下列图形中,与已知图形全等的是()A.B.C.D.【答案】B【解析】解:由已知图形可得:与全等.8、如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的()A. 三边中线的交点B. 三边垂直平分线的交点C. 三条角平分线的交点D. 三边高的交点【答案】A【解析】解:支撑点应是三角形的重心,三角形的重心是三角形三边中线的交点.9、使两个直角三角形全等的条件是()A. 两条边对应相等B. 一条边对应相等C. 两个锐角对应相等D. 一个锐角对应相等【答案】A【解析】解:一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故错误;两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故错误;一条边对应相等,再加一组直角相等,不能得出两三角形全等,故错误;两条边对应相等,若是两条直角边相等,可利用证全等;若一直角边对应相等,一斜边对应相等,也可证全等,故正确.10、下列图形中,不具有稳定性的是()A.B.C.D.【答案】C【解析】解:可以看成一个三角形和一个四边形,而四边形不具有稳定性,则这个图形一定不具有稳定性.其他三个图形都是有三角形组成,一定具有稳定性.11、已知图中的两个三角形全等,则度数是()A.B.C.D.【答案】D【解析】解:两个三角形全等,.12、已知的底边上的高为,当它的底边从变化到时,的面积()A. 从变化到B. 从变化到C. 从变化到D. 从变化到【答案】C【解析】解:当的底边上的高为,底边时,;底边时,.故从变化到.13、如图,在中,,点分别在边上,若,则下列结论正确的是()A. 和互为余角B. 和互为余角C. 和互为补角D. 和互为补角【答案】B【解析】解:,,,,和互为余角.14、如图,已知,,用尺规作图的方法在上取一点,使得,则下列选项正确的是()A.B.C.D.【答案】A【解析】解:,而,,点在的垂直平分线上,即点为的垂直平分线与的交点.15、已知一个等腰三角形的两边长分别是和,则该等腰三角形的周长为()A. 或B.C.D. 或【答案】B【解析】解:当为腰时,因为,所以不能组成三角形,所以为腰,所以等腰三角形的周长.二、填空题(本大题共有5小题,每小题5分,共25分)16、"利用三角形全等测距离",其实质就是利用三角形全等的方法来说明相等.【答案】全等三角形的对应边【解析】解:"利用三角形全等测距离",其实质就是利用三角形全等的方法来说明全等三角形的对应边相等.故答案为:全等三角形的对应边.17、解决难以测量或无法测量的线段(或角)的关键:构建三角形,得到线段相等或角相等.【答案】全等【解析】解:解决难以测量或无法测量的线段(或角)的关键:构建全等三角形,得到线段相等或角相等.故答案为:全等.18、如图所示,在中,,,已知,,,则.【答案】10/3【解析】解:,,.,,,.故正确答案为:.19、一个三角形的三边为、、,另一个三角形的三边为、、,若这两个三角形全等,则.【答案】16【解析】解:这两个三角形全等,两个三角形中都有,两三角形中长度为的边是一组对应边,与是一组对应边,与是一组对应边,,,.故答案是:.20、如图,于,那么图中以为高的三角形有个.【答案】6【解析】解:于,而图中有一边在直线上,且以为顶点的三角形有个,以为高的三角形有个.三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,已知,,求证:.【解析】证明:在和中.,,..22、如图,在四边形中,,直线与边、分别相交于点、,求的度数.?【解析】解:由三角形的内角和定理,得,,,由邻补角的性质,得,,,故答案为:.23、在中,平分,,垂足为,过作,交于,若,求线段的长.【解析】解:平分,,,,,,,,,,,,,.。

(必考题)初中数学七年级数学下册第四单元《三角形》测试(包含答案解析)

(必考题)初中数学七年级数学下册第四单元《三角形》测试(包含答案解析)

一、选择题1.用三角尺画角平分线:如图,先在AOB ∠的两边分别取OM ON =,再分别过点M ,N 作OA ,OB 的垂线,交点为P .得到OP 平分AOB ∠的依据是( )A .HLB .SSSC .SASD .ASA 2.已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是( ) A .13cmB .6cmC .5cmD .4cm 3.有下列长度的三条线段,能组成三角形的是( ) A .2cm ,3cm ,4cmB .1cm ,4cm ,2cmC .1cm ,2cm ,3cmD .6cm ,2cm ,3cm 4.如图,已知AB =AD ,AC =AE ,若要判定△ABC ≌△ADE ,则下列添加的条件中正确的是( )A .∠1=∠DACB .∠B =∠DC .∠1=∠2D .∠C =∠E 5.已知如图,△OAD ≌△OBC ,且∠O=70°,∠C=25°,则∠OAD=( )A .95°B .85°C .75°D .65°6.如图,,AD BC ⊥垂足为,D BF AC ⊥,垂足为,F AD 与BF 交于点,5,2E AD BD DC ===,则AE 的长为( )A.2B.5C.3D.77.如图,△ACB≌△A′C B′,∠ACB=70°,∠ACB′=100°,则∠BCA′度数是()A.40°B.35 C.30°D.45°≌,则点Q可能是图中的()8.图中的小正方形边长都相等,若MNP MFQA.点D B.点C C.点B D.点A9.在自习课上,小红为了检测同学们的学习效果,提出如下四种说法:①三角形有且只有一条中线;②三角形的高一定在三角形内部;③三角形的两边之差大于第三边;④三角形按边分类可分为等腰三角形和不等边三角形.其中错误的说法是()A.①②B.①③C.①②③D.①②③④10.如图所示,某同学将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①②去11.已知三角形的三边长分别是3,8,x,则x的值可以是()A.6 B.5 C.4 D.312.下列四个图形中,有两个全等的图形,它们是()A.①和②B.①和③C.②和④D.③和④二、填空题13.如图,∠A=∠B=90°,AB=100,E,F分别为线段AB和射线BD上的一点,若点E从点B 出发向点A 运动,同时点F 从点B 出发向点D 运动,二者速度之比为2:3,运动到某时刻同时停止,在射线AC 上取一点G ,使△AEG 与△BEF 全等,则AG 的长为_____.14.如图所示,在等腰Rt ABC 中,90ACB ∠=︒,点D 为射线CB 上的动点,AE AD =,且,AE AD BE ⊥与AC 所在的直线交于点P ,若3AC PC =,则BD CD=_______.15.如图,四边形ABCD 中,AC BC =,90ACB ADC ∠=∠=︒,10CD =,则BCD ∆的面积为______.16.如图,ACD ∠是ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1A CD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A ,设=A θ∠,则2=A ∠___________,=n A ∠___________.17.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.18.三角形的三边长分别为5,1+2x ,8,则x 的取值范围是 .19.在平面直角坐标系中,点A (2,0)B (0,4),作△BOC ,使△BOC 和△ABO 全等,则点C 坐标为________20.已知:AD 、AE 分别是ABC 的高,中线,6BE =,4CD =,则DE 的长为_________.三、解答题21.已知ABC 的周长为37cm ,AD 是BC 边上的中线,23AC BC =.(1)如图,当15AB cm =时,求BD 的长.(2)若14AC cm =,能否求出DC 的长?为什么?22.如图:已知AD CB =,CE BD ⊥,AF BD ⊥,垂足分别为点E 、F ,若DE BF =,求证://AD BC .23.如图,90B C ∠=∠=︒,BAE CED ∠=∠,且AB CE =.(1)试说明:ADE 是等腰直角三角形;(2)若2CDE BAE ∠=∠,求CDE ∠的度数.24.如图,在ABC 中,AB AC =,AB BC >,点D 在边BC 上,点E ,F 在线段AD 上,且2DF AF =,12BAC ∠=∠=∠.若BE 的长为5,求AD 的长.25.如图,点B 、E 、C 、F 四点在一条直线上,∠A =∠D ,AB //DE ,老师说:再添加一个条件就可以使△ABC ≌△DEF .下面是课堂上三个同学的发言,甲说:添加AB =DE ;乙说:添加AC //DF ;丙说:添加BE =CF .(1)甲、乙、丙三个同学说法正确的是________;(2)请你从正确的说法中选择一种,给出你的证明.26.已知:AB BD ⊥,ED BD ⊥,AC CE =,BC DE =.(1)试猜想线段AC 与CE 的位置关系,并证明你的结论.(2)若将CD 沿CB 方向平移至图2情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.(3)若将CD 沿CB 方向平移至图3情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】利用垂直得到90PMO PNO ∠=∠=,再由OM ON =,OP OP =即可根据HL 证明()HL ≌PMO PNO △△,由此得到答案.【详解】∵PM OA ⊥,PN OB ⊥,∴90PMO PNO ∠=∠=.∵OM ON =,OP OP =,∴()HL ≌PMO PNO △△, ∴POA POB ∠=∠,故选:A .【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据题中的已知条件确定对应相等的边或角,由此利用以上五种方法中的任意一种证明两个三角形全等.2.B解析:B【分析】利用三角形的三边关系即可求解.【详解】解:第三边长x 的范围是:8383x -<<+,即5cm 11cm x <<,故选:B .【点睛】本题考查三角形的三边关系,掌握两边之和大于第三边,两边之差小于第三边是解题的关键.3.A解析:A【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的之差一定小于第三边;进行解答即可.【详解】A 、2+3>4,能围成三角形;B 、1+2<4,所以不能围成三角形;C 、1+2=3,不能围成三角形;D 、2+3<6,所以不能围成三角形;故选:A .【点睛】本题主要考查了三角形的三边关系的应用,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.4.C解析:C【分析】根据题目中给出的条件AB AD =,AC AE =,根据全等三角形的判定定理判定即可.【详解】解:AB AD =,AC AE =,则可通过12∠=∠,得到BAC DAE ∠=∠,利用SAS 证明△ABC ≌△ADE ,故选:C .【点睛】 此题主要考查了全等三角形的判定,关键是要熟记判定定理:SSS ,SAS ,AAS ,ASA .5.B解析:B【分析】根据△OAD ≌△OBC 得∠OAD=∠OBC ,再根据三角形内角和定理求出∠OBC 的度数即可.【详解】∵△OAD ≌△OBC ,∴∠OAD=∠OBC ,∵∠O=70°,∠C=25°,∴∠OBC=180°-70°-25°=85°,∴∠OAD=85°故选B .考点: 1.全等三角形的性质;2.三角形内角和定理.第II 卷(非选择题)请点击修改第II 卷的文字说明6.C解析:C【分析】先证明△ACD ≌△BED ,得到CD=ED=2,即可求出AE 的长度.【详解】解:∵AD BC ⊥,BF AC ⊥,∴90AFE BDE ADC ∠=∠=∠=︒,∵AEF BED ∠=∠,∴EAF EBD ∠=∠,∵5AD BD ==,∴△ACD ≌△BED ,∴CD=ED=2,∴523AE AD ED =-=-=;故选:C .【点睛】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是掌握全等三角形的判定和性质,从而进行解题.7.A解析:A【分析】 根据已知ACB ≌A′CB′,得到∠A′CB′=∠ACB=70︒,再通过∠ACB′=100︒,继而利用角的和差求得∠BCB′=30︒,进而利用∠BCA′=∠A′CB′-∠BCB′得到结论.【详解】解:∵ACB ≌A′CB′,∴∠A′CB′=∠ACB=70︒,∵∠ACB′=100︒,∴∠BCB′=∠ACB′-∠ACB=30︒,∴∠BCA′=∠A′CB′-∠BCB′=40︒,故选:A .【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键. 8.A解析:A【分析】根据全等三角形的判定即可解决问题.【详解】解:观察图象可知△MNP ≌△MFD .故选:A .【点睛】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型. 9.C解析:C【分析】三角形有三条中线对①进行判断;钝角三角形三条高,有两条在三角形外部,对②进行判断;根据三角形三边的关系对③进行判断;根据三角形的分类对④进行判断.【详解】①三角形有三条中线,故①错误;②钝角三角形三条高,有两条在三角形外部,故②错误;③三角形的任意两边之差小于第三边,故③错误;④三角形按边分类可分为等腰三角形、不等边三角形,故④正确;综上,选项①②③错误,故选:C.【点睛】本题考查了三角形的有关概念,属于基础题型.要注意等腰三角形与等边三角形两个概念的区别.10.C解析:C【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【详解】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.【点睛】此题主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.11.A解析:A【分析】根据三角形三边关系:①任意两边之和大于第三边;②任意两边之差小于第三边,即可得出第三边的取值范围.【详解】解:∵三角形的三边长分别为3,8,x,∴8-3<x<8+3,即5<x<11,故选:A.【点睛】本题考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.12.B解析:B【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.【详解】解:①和③可以完全重合,因此全等的图形是①和③.故选:B.【点睛】此题主要考查了全等图形,关键是掌握全等图形的概念.二、填空题13.40或75【分析】设BE=2t则BF=3t使△AEG与△BEF全等由∠A=∠B=90°可知分两种情况:情况一:当BE=AGBF=AE时列方程解得t可得AG;情况二:当BE=AEBF=AG时列方程解得解析:40或75.【分析】设BE=2t,则BF=3t,,使△AEG 与△BEF全等,由∠A=∠B=90°可知,分两种情况:情况一:当 BE = AG ,BF = AE 时,列方程解得t ,可得 AG;情况二:当 BE = AE ,BF = AG时,列方程解得 t ,可得AG.【详解】设BE=2t,则BF=3t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=100,∴3t=100﹣2t,解得:t=20,∴AG=BE=2t=2×20=40;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=100,∴2t=100﹣2t,解得:t=25,∴AG=BF=3t=3×25=75,综上所述,AG=40或AG=75.故答案为:40或75.【点睛】本题主要考查了全等三角形的性质,利用分类讨论思想是解答此题的关键.14.或2【分析】分两种情况:(1)当点D位于CB延长线上时如图:过点E作AP延长线的垂线于点M可证可得由等腰三角形的性质可得AC=BC根据线段的和差关系可证的结论;(2)当点D位于CB之间时如图过点E作解析:25或2【分析】分两种情况:(1)当点D位于CB延长线上时,如图:过点E作AP延长线的垂线于点M,可证ADC△AEM≌△,EMP△BCP≌△,可得,AM CD PC PM==,由等腰三角形的性质可得AC=BC,根据线段的和差关系可证的结论;(2)当点D位于CB之间时,如图过点E作AP的垂线于点N,可证ADC△AEN≌△,ENP△BCP ≌△,可得,AN CD PC PN==,由等腰三角形的性质可得AC=BC,根据线段的和差关系可证的结论;【详解】(1)当点D位于CB延长线上时,如图:过点E作AP延长线的垂线于点M,ABC为等腰直角三角形AC BC∴=90BCP ACD AME∴∠=∠=∠=︒90ADC DAC∴∠+∠=︒AE AD⊥90DAE∴∠=︒90DAC EAM∴∠+∠=︒ADC EAM∴∠=∠AD AE=∴在ADC和AEM△中ADC EAMACD AMEAD AE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC≌△EAM∴CD MA=,AC EM=EM BC∴=BPC EPM∠=∠∴在BCP 和EMP 中BCP EMP BPC EPM BC EM ∠=∠⎧⎪∠=∠⎨⎪=⎩∴EMP △BCP ≌△PC PM ∴=CD AM =,3AC PC =,AC BC =∴设PC PM x ==3AC BC x ∴==5CD AM x ∴==CD BD BC =+2BD x ∴= 2255BD x CD x ∴== (2)当点D 位于CB 之间时,如图:过点E 作AP 的垂线于点N ,ABC 为等腰直角三角形AC BC ∴=90ACD ANE ∴∠=∠=︒90ADC DAC ∴∠+∠=︒AE AD ⊥90DAE ∴∠=︒90DAC EAN ∴∠+∠=︒ADC EAN ∴∠=∠AD AE =∴在ADC 和AEN △中ADC EAN ACD ANE AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EAN∴CD NA =,AC EN =EN BC ∴=BPC EPN ∠=∠∴在BCP 和ENP 中BCP ENP BPC EPN BC EN ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ENP △BCP ≌△PC PN ∴=CD AN =,3AC PC =,AC BC =∴设PC PN x ==3AC BC x ∴==CD AN x ∴==CD BC BD =-2BD x ∴=22BD x CD x∴== 故答案为:25或2. 【点睛】本题主要考查了全等三角形的判定和性质,解题关键是利用三角形全等和线段的和差得出所求线段之间的关系,同时运用分类讨论的思想.15.50【分析】过点B 作BE ⊥DC 交DC 的延长线于点E 先证明∠CBE=∠ACD 从而证明∆ACD ≅∆CBE 进而即可求解【详解】过点B 作BE ⊥DC 交DC 的延长线于点E ∵BE ⊥CE ∴∠BEC=∠CDA=90°解析:50【分析】过点B 作BE ⊥DC 交DC 的延长线于点E ,先证明∠CBE=∠ACD ,从而证明∆ ACD ≅∆ CBE ,进而即可求解.【详解】过点B 作BE ⊥DC 交DC 的延长线于点E ,∵BE ⊥CE ,∴∠BEC=∠CDA=90°,∴∠CBE+∠BCE=90°,又∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠CBE=∠ACD ,在∆ ACD 与∆ CBE 中,∵CBE ACD CEB ADC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴∆ ACD ≅∆ CBE (AAS ),∴BE=CD=10,∴BCD ∆的面积=12CD∙BE=12×10×10=50, 故答案是50.【点睛】本题主要考查全等三角形的判定和性质,等腰直角三角形的性质,添加辅助线,构造“一线三垂直”模型,是解题的关键. 16.【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC ∠A1CD=∠A1+∠A1BC 根据角平分线的定义可得∠A1BC=∠ABC ∠A1CD=∠ACD 整理得到∠A1=∠A 同理可得∠A2=∠A1从而判断 解析:4θ 2nθ 【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,整理得到∠A 1=12∠A ,同理可得∠A 2=12∠A 1,从而判断出后一个角是前一个角的12,然后表示出∠A n 即可得答案. 【详解】∵ACD ∠是ABC 的外角,∠A 1CD 是△A 1BC 的外角,∴∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,∵ABC ∠的平分线与ACD ∠的平分线交于点1A ,∴∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD , ∴∠A 1=12∠A , 同理可得∠A 2=12∠A 1=14∠A , ∵∠A=θ,∴∠A 2=4θ, 同理:∠A 3=12∠A 2=382θθ=, ∠A 4=12∠A 3=4162θθ= ……∴∠A n =2n θ. 故答案为:4θ,2nθ 【点睛】 本题考查了三角形的外角性质及角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和;熟记性质并准确识图,求出后一个角是前一个角的12是解题的关键. 17.4cm 【分析】由DE ⊥AB 可得∠BFE=90°由直角三角形两锐角互余可得∠ABC+∠DEB=90°由∠ACB=90°由直角三角形两锐角互余可得∠ABC+∠A=90°根据同角的余角相等可得∠A=∠DE解析:4cm .【分析】由DE ⊥AB ,可得∠BFE=90°,由直角三角形两锐角互余,可得∠ABC+∠DEB=90°,由∠ACB=90°,由直角三角形两锐角互余,可得∠ABC+∠A=90°,根据同角的余角相等,可得∠A=∠DEB ,然后根据AAS 判断△ABC ≌△EDB ,根据全等三角形的对应边相等即可得到BD=BC ,AC=BE ,由E 是BC 的中点,得到BE=12BC=12BD=4. 【详解】解:∵DE ⊥AB ,可得∠BFE=90°,∴∠ABC+∠DEB=90°,∵∠ACB=90°,∴∠ABC+∠A=90°,∴∠A=∠DEB ,在△ABC 和△EDB 中,ACB DBC A DEBAB DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△ABC ≌△EDB (AAS ),∴BD=BC ,AC=BE ,∵E 是BC 的中点,BD=8cm ,∴BE=12BC=12BD=4cm , ∴AC=4cm .故答案为:4cm .【点睛】此题考查了全等三角形的判定与性质,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目,找准全等的三角形是解决本题的关键.18.1<x <6【解析】试题分析:根据三角形的三边关系:任意两边之和大于第三边任意两边之差小于第三边解:由题意有8﹣5<1+2x <8+5解得:1<x <6考点:三角形三边关系解析:1<x <6【解析】试题分析:根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.解:由题意,有8﹣5<1+2x <8+5,解得:1<x <6.考点:三角形三边关系.19.(-20)或(24)或(-24)【分析】根据全等三角形的判定和已知点的坐标画出图形即可得出答案【详解】如图所示:有三个点符合∵点A (20)B (04)∴OB=4OA=2∵△BOC 与△AOB 全等∴OB=解析:(-2,0)或(2,4)或(-2,4)【分析】根据全等三角形的判定和已知点的坐标画出图形,即可得出答案.【详解】如图所示:有三个点符合,∵点A (2,0),B (0,4),∴OB=4,OA=2,∵△BOC 与△AOB 全等,∴OB=OB=4,OA=OC=2,∴C 1(-2,0),C 2(-2,4),C 3(2,4).故答案为(2,4)或(-2,0)或(-2,4).【点睛】本题考查了坐标与图形性质,全等三角形的判定与性质,难点在于根据点C 的位置分情况讨论.20.2或10【分析】由已知条件可推导出;再假设D 点所在的不同位置分别计算即可得到答案【详解】∵是的中线且∴假设点D 在CB 的延长线上如下图∵是的中线且∴∵∴和图形不符∴该假设不成立;假设点D 在点E 和点B 之 解析:2或10【分析】由已知条件,可推导出6EC BE ==;再假设D 点所在的不同位置,分别计算DE ,即可得到答案.【详解】∵AE 是ABC 的中线,且6BE =∴6EC BE ==假设点D 在CB 的延长线上,如下图∵AE 是ABC 的中线,且6BE =∴212BC BE ==∵4CD =∴CD BC <,和图形不符∴该假设不成立;假设点D 在点E 和点B 之间,如下图∵4CD =,6EC =∴CD EC <,和图形不符∴该假设不成立;假设点D 在点E 和点C 之间,如下图∴642DE EC CD =-=-=;假设点D 在点BC 延长线上,如下图∴6410DE EC CD =+=+=;故答案为:2或10.【点睛】本题考察了三角形中线和三角形高的知识;求解的关键是熟练掌握三角形中线和三角形高的性质,从而完成求解.三、解答题21.(1)6cm ;(2)不能求出DC 的长,理由见解析【分析】(1)根据23AC AB =,15AB cm =及ABC 的周长为37cm ,可求得BC ,再根据三角形中线的性质解答即可;(2)利用(1)中的方法,求得BC 的长度,然后根据构成三角形的条件,可判断出△ABC不存在,进而可知没法求DC 的长.【详解】解:(1)∵23AC AB =,15AB cm =, ∴215103AC cm =⨯=, 又∵ABC 的周长为37cm ,∴37AB AC BC ++=, ∴()3737151012BC AB AC cm =--=--=,又∵AD 是BC 边上的中线, ∴()1112622BD BC cm ==⨯=; (2)不能,理由如下: ∵23AC AB =,14AC cm =, ∴()314212AB cm =⨯=, 又∵ABC 的周长为37cm ,∴37AB AC BC ++=, ∴()373721142BC AB AC cm =--=--=,∴BC+AC=16<AB=21,∴不能构成三角形,故不能求出DC 的长.【点睛】此题考查三角形的中线、三角形的周长、构成三角形的条件,关键是根据三角形中线的性质解答.22.见解析【分析】利用已知条件证明△ADF ≌△CBE ,由全等三角形的性质即可得到∠B=∠D ,进而得出结论.【详解】证明:∵DE=BF ,∴DE+EF=BF+EF ;∴DF=BE ;在Rt △ADF 和Rt △BCE 中DF BE AD CB =⎧⎨=⎩, ∴Rt △ADF ≌Rt △CBE (HL ),∴∠B=∠D ,∴//AD BC .【点睛】本题考查了直角三角形全等的判定及性质;由DE=BF 通过等量加等量和相等得DF=BE 在三角形全等的证明中经常用到,应注意掌握应用.23.(1)见解析;(2)60°.【分析】(1)利用ASA 证明△BAE ≌△CED ,可证AE=DE ,后利用∠BAE+∠BEA=90°,证明∠BEA+∠CED=90°,问题得证;(2)利用直角三角形的两个锐角互余,求解即可.【详解】(1)∵90B C ∠=∠=︒,BAE CED ∠=∠,且AB CE =,∴△BAE ≌△CED ,∴AE=DE ,∵∠BAE+∠BEA=90°,∴∠BEA+∠CED=90°,∴∠AED=90°,∴△AED 是等腰直角三角形;(2)∵2CDE BAE ∠=∠,BAE CED ∠=∠,∴2CDE CED ∠=∠,∵∠CDE+∠CED=90°,∴∠CDE=60°.【点睛】本题考查了三角形的全等,等腰直角三角形的定义,直角三角形的锐角互余的性质,根据图形,结合条件选择对应判定方法,根据性质构造基本的计算等式是解题的关键. 24.【分析】解:由∠1=∠2=∠BAC ,得到∠BAE=∠ACF ,∠ABE=∠CAF 从而证明△ABE ≌△CAF(ASA).得到AF=BE ,再根据DF=2AF ,BE 的长为5,求得AD 的长.【详解】解:∵12BAC ∠=∠=∠,且1BAE ABE ∠=∠+∠,2CAF ACF ∠=∠+∠, ∠BAC=∠BAE+∠CAF ,∴∠BAE=∠ACF ,∠ABE=∠CAF .在ABE △和CAF 中,BAE ACF AB CA ABE CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ABE CAF ASA ≌△△.∴AF BE =∵2DF AF =,BE 的长为5,∴10DF =,5AF BE ==,∴51015AD AF DF =+=+=.【点睛】本题考查了全等三角形的性质和判定,解题的关键是熟悉掌握全等三角形的性质和证明. 25.(1)甲、丙;(2)见详解【分析】(1)根据平行线的性质,由AB ∥DE 可得∠B =∠DEC ,再加上条件∠A =∠D ,只需要添加一个能得出对应边相等的条件,即可证明两个三角形全等,添加AC //DF 不能证明△ABC ≌△DEF ;(2)添加AB =DE ,再由条件AB ∥DE 可得∠B =∠DEC ,然后再利用ASA 判定△ABC ≌△DEF 即可.【详解】(1)解:∵AB //DE ,∴∠B =∠DEC ,又∵∠A =∠D ,∴添加AB =DE ,可得△ABC ≌△DEF (ASA );添加BE =CF ,可得BC=EF ,可得△ABC ≌△DEF (AAS )∴说法正确的是:甲、丙,故答案为:甲、丙;(2)选“甲”,理由如下:证明:∵AB ∥DE ,∴∠B =∠DEC ,在△ABC 和△DEF 中A DB DEF AB DE ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△ABC ≌△DEF (ASA ).【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.26.(1)AC CE ⊥,见解析;(2)成立,理由见解析;(3)成立,理由见解析【分析】(1)先用HL 判断出Rt Rt ABC CDE ≌△△,得出A DCE ∠=∠,进而判断出90DCE ACB ∠+∠=︒,即可得出结论;(2)同(1)的方法,即可得出结论;(3)同(1)的方法,即可得出结论.【详解】解:(1)AC CE ⊥理由如下:∵AB BD ⊥,ED BD ⊥,∴90B D ∠=∠=︒在Rt ABC △和Rt CDE △中AC CE BC DE =⎧⎨=⎩∴()Rt Rt HL ABC CDE △△≌, ∴A DCE ∠=∠∵90B ∠=︒,∴90A ACB ∠+∠=︒,∴()18090ACE DCE ACB ∠=︒-∠+∠=︒,∴AC CE ⊥;(2)成立,理由如下:∵AB BD ⊥,ED BD ⊥,∴90B D ∠=∠=︒,在1Rt ABC 和2Rt C DE △中121AC C E BC DE =⎧⎨=⎩, ∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D ∠=∠,∵90B ∠=︒,∴190B A AC ∠+∠=︒,∴2190DC E AC B ∠+∠=︒,在12C FC 中,()122118090C FC DC E AC B ∠=︒-∠+∠=︒,∴12AC C E ⊥;(3)成立,理由如下:∵AB BD ⊥,ED BD ⊥,∴190ABC D ∠=∠=︒在1Rt ABC 和2Rt C DE △中121AC C E BC DE =⎧⎨=⎩, ∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D ∠=∠,∵190ABC ∠=︒,∴190B A AC ∠+∠=︒,在12C FC 中,()2112180=90C FC DC E AC B ∠=︒-∠+∠︒,∴12AC C E .【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,直角三角形的性质,判断出12Rt Rt ABC C DE ≌△△是解本题的关键.。

七年级数学下册_第七章《三角形》综合测试题_

七年级数学下册_第七章《三角形》综合测试题_

凤冈县2011–2012学年第二学期七年级数学(人教版下册)第七章三角形目标检测题时间:120分钟 满分150 陆建东供题一、选择题(每题3分,共30分)1.等腰三角形两边长分别为 3,7,则它的周长为 ( ).A 、 13 .B 、 17 .C 、 13或17 .D 、 不能确定. 2.一个多边形内角和是10800,则这个多边形的边数为 ( ).A 、 6 .B 、 7 .C 、 8 .D 、 9. 3.若三角形三个内角的比为1:2:3,则这个三角形是( ).A 、 锐角三角形.B 、 直角三角形.C 、 等腰三角形.D 、 钝角三角形. 4.下图中有一条公共边三角形的个数为( ).A 、 4个.B 、 6个.C 、 8个.D 、 10个.5.如图在△ABC 中,∠ACB=900,CD 是边AB 上的高。

那么图中与∠A 相等的角是( )A 、 ∠B . B 、 ∠ACD .C 、 ∠BCD.D 、 ∠BDC. 6. 能将三角形面积平分的是三角形的( ).第4题ED CBA第5题DCBAA 、 角平分线.B 、 高.C 、 中线.D 、外角平分线. 7. 在平面直角坐标系中,点A (-3,0),B (5,0),C (0,4)所组成的三角形ABC 的面积是( )A 、32.B 、4.C 、16.D 、8.8. 以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )A.1个.B.2个 .C.3个.D.4个.依次观察左边三个图形,并判断照此规律从左向右第四个图形是( ).10. 等腰三角形的底边BC=8 cm ,且|AC -BC|=2 cm ,则腰长AC 为( ) A.10 cm 或6 cm B.10 cm C.6 cm D.8 cm 或6 cm 二、填空(每小题4分,共32分).11.如图,从A 处观测C 处仰角∠CAD=300,从B 处观测C 处的仰角 ∠CBD=450,从C 处观测A、B 两处时视角∠ACB=度.12.已知:如图,CD ∥AB,∠A=400,∠B=600,那么∠1= , ∠2= .13.一个三角形有两条边相等,周长为20㎝,三角形的一边长为5㎝,第(12)题21 DCBA第(11)题DCBA第9题那么其它两边长分别为 .14.填表:用长度相等的火柴棒拼成如图所示的图形:15.如图,∠1=∠2=300,∠3=∠4,∠A=800,则=x ,=y .16.一个多边形的各内角都等于1200,它是 边形。

北师大数学七年级下《第四章三角形》章节检测题含答案

北师大数学七年级下《第四章三角形》章节检测题含答案

北师大版数学七年级下册第四章三角形章节检测题一、选择题1.在下列长度的四根木棒中,能与长为4 cm,9 cm的两根木棒钉成一个三角形的是( )A.4 cm B.5 cm C.9 cm D.13 cm2.在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是( )A.等边三角形 B.锐角三角形 C.直角三角形 D.钝角三角形3.下列说法中正确的是( )A.面积相等的两个图形是全等图形B.周长相等的两个图形是全等图形C.所有正方形都是全等图形D.能够完全重合的两个图形是全等图形4.如图,AB∥FC,DE=EF,AB=15,CF=8,则BD等于( )A.8 B.7 C.6 D.55.如图,为测量B点到河对面的目标A之间的距离,他们在B点同侧选择了一点C,测得∠ABC=70°,∠ACB=40°,然后在M处立了标杆,使∠CBM=70°,∠BCM=40°,那么需要测量________才能测得A,B之间的距离( )A.AB B.AC C.BM D.CM6.如图,∠A=∠B,∠C=α,DE⊥AC,FD⊥AB,则∠EDF等于( )A.α B.90°-12α C.90°-α D.180°-2α7.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为( )A.95° B.85° C.90° D.100°二、填空题8.如图,直线l1∥l2,若∠1=130°,∠2=60°,则∠3=_______.9.如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连接AD,CD.若∠B=65°,则∠ADC的大小为________.10.如图是一副三角板叠放的示意图,则∠α=________.11.如图,在△ABC中,AD是BC边上的高,点E在线段BD上,且AE平分∠BAC,若∠B=40°,∠C=78°,则∠EAD=____°.12.一角为80°的三角形中,另两角的角平分线相交所成的锐角是________.13.如图,在△ABC中,BD是边AC上的中线,E是BC的中点,连接DE.如果△BDE的面积为2,那么△ABC的面积为____.三、解答题14.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)15.(·河北)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB =DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.16.如图,在△ABC中,BE,CF分别是AC,AB两条边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG.求证:AG=AD.17.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20步有一棵树C,继续前行20步到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长就是河宽AB.请你证明他们做法的正确性.18.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.(2)延长AC 至点E ,使CE =AC ,求证:DA =DE.答案:一、1---7 CDDBC BB二、8. 70°9. 65°10. 75°11. 19 °12. 50°13. 8三、14. 解:答案不唯一,如添加AC =DF ,证明:∵BF =EC ,∴BF -CF =EC -CF ,即BC =EF ,在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AC =DF ,∠1=∠2,BC =EF ,∴△ABC ≌△DEF15. 解:(1)∵BF =CE ,∴BF +CF =CE +CF ,即BC =EF ,又∵AB =DE ,AC =DF ,∴△ABC ≌△DEF(SSS) (2)AB ∥DE ,AC ∥DF.理由:∵△ABC ≌△DEF ,∴∠ABC =∠DEF ,∠ACF =∠DFE ,∴AB ∥DE ,AC16. 解:∵BE ,CF 分别是AC ,AB 两条边上的高,∴∠ABD +∠BAC =90°,∠GCA +∠BAC =90°,∴∠GCA =∠ABD ,在△GCA 和△ABD 中,∵GC =AB ,∠GCA =∠ABD ,CA =BD ,∴△GCA ≌△ABD ,∴AG =AD17. 解:做法正确.证明:在△ABC 和△EDC 中,∴△ABC ≌△EDC(ASA),∴AB =DE18. 解:(1)∵在Rt △ABC 中,∠ACB =90°,∠B =30°,∴∠CAB =60°.又∵AD 平分∠CAB ,∴∠CAD =12∠CAB =30° (2)∵∠ACD +∠ECD =180°,且∠ACD =90°,∴∠ECD =90°,∴∠ACD =∠ECD.在△ACD 与△ECD 中,⎩⎪⎨⎪⎧AC =EC ,∠ACD =∠ECD ,CD =CD ,∴△ACD ≌△ECD(SAS),∴DA =DE。

(必考题)初中数学七年级数学下册第四单元《三角形》测试(含答案解析)

(必考题)初中数学七年级数学下册第四单元《三角形》测试(含答案解析)

一、选择题1.如图,在△ABC 中,AB=AC ,AB >BC ,点D 在BC 边上,BD=12DC ,∠BED=∠CFD=∠BAC ,若S △ABC =30,则阴影部分的面积为( )A .5B .10C .15D .20 2.若一个三角形的三边长分别为3,7,x ,则x 的值可能是( )A .6B .3C .2D .11 3.如图,在ABC 中,AB AC =,点D ,E 在BC 上,连接AD ,AE ,若只添加一个条件使DAB EAC ∠=∠,则添加的条件不能为( )A .BD CE =B .AD AE =C .BE CD = D .DA DE = 4.如图,AC 与DB 相交于E ,且BE CE =,如果添加一个条件还不能判定ABE △≌DCE ,则添加的这个条件是( ).A .AC DB = B .A D ∠=∠C .B C ∠=∠D .AB DC = 5.如图,△ABC 和△AED 共顶点A ,AD =AC ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,甲说:“一定有△ABC ≌△AED .”乙说:“△ABM ≌△AEN .”那么( )A .甲、乙都对B .甲、乙都不对C .甲对、乙不对D .甲不对、乙对 6.如图,已知∠ABC =∠DEF ,AB =DE ,添加以下条件,不能判定△ABC ≌△DEF 的是( )A .∠A =∠DB .∠ACB =∠DFEC .AC =DFD .BE =CF 7.如图,四边形ABCD 是长方形,点F 是DA 长线上一点,G 是CF 上一点,并且ACG AGC ∠=∠,GAF F ∠=∠.若15ECB ∠=︒,则ACF ∠的度数是( )A .15︒B .20︒C .30D .45︒8.直角ABC 、DEF 如图放置,其中90ACB DFE ∠=∠=︒,AB DE =且AB DE ⊥.若DF a =,BC b =,CF c =.则AE 的长为( )A .a c +B .b c +C .a b c +-D .a b c -+ 9.已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )A .①②B .①②③C .①②④D .①②③④ 10.如图,若DEF ABC ≅,点B 、E 、C 、F 在同一条直线上,9BF =,5EC =,则CF 的长为( )A .1B .2C .2.5D .311.下列条件不能判定两个直角三角形全等的是( )A .两条直角边对应相等B .斜边和一锐角对应相等C .斜边和一直角边对应相等D .两个锐角对应相等12.给出下列四组条件:①AB=DE ,BC=EF ,AC=DF ; ②AB=DE ,∠B=∠E .BC=EF ;③∠B=∠E ,AC =DF ,∠C=∠F ; ④AB=DE ,AC=DF ,∠B=∠E .其中,能使△ABC ≌△DEF 的条件共有( )A .1组B .2组C .3组D .4组 二、填空题13.如图,90MON ∠=︒,点A ,B 分别在射线OM ,ON 上,BE 平分NBA ∠,BE 的反向延长线与BAO ∠的平分线交于点C ,则ACB ∠的度数是_______.14.已知12l l //,一个含45︒角的直角三角板按如图所示放置,230∠=︒,则1∠=_____.15.如图,65A ∠=︒,45B ∠=︒,则ACD ∠=________.16.如图,已知//,AB CD E 是直线AB 上方一点,G 为直线AB 下方一点,F 为直线CD 上一点,148EAF ︒∠=,3BAF BAG ∠=∠,3DCE DCG ∠=∠,则E ∠和G ∠的数量关系为___________.17.如图,AB 与CD 相交于点O ,OC =OD .若要得到△AOC ≌△BOD ,则应添加的条件是__________.(写出一种情况即可)18.等腰三角形一边长是10cm ,一边长是6cm ,则它的周长是_______________cm . 19.如图,在△ABC 中,点D 在边BC 上,已知点E ,F 分别是AD ,CE 边上的中点,且△BEF 的面积为6,则△ABC 的面积等于_____.20.用12根等长的火柴棒拼成一个等腰三角形,火柴棒不允许剩余、重叠、折断,则能摆出不同的等腰三角形的个数为________个.三、解答题21.如图,点A 、F 、C 、D 在一条直线上,,,AB DE BC EF AF CD ===.(1)求证:ABC DEF △≌△;(2)求证://AB DE .22.如图所示,△ABC 中,∠ACB=90°,AC=BC ,直线EF 经过点C ,BF ⊥EF 于点F ,AE ⊥EF 于点E .(1)求证:△ACE ≌△CBF ;(2)如果AE 长12cm ,BF 长5cm ,求EF 的长.23.如图,点A ,D ,B ,E 依次在同一条直线上,BC DF =,AD BE =,ABC EDF ∠=∠,求证:A E ∠=∠.24.已知:MON α∠=,点P 是MON ∠平分线上一点,点A 在射线OM 上,作180APB α∠=︒-,交直线ON 于点B ,作PC ON ⊥于点C .(1)观察猜想:如图1,当90MON ∠=︒时,PA 和PB 的数量关系是______.(2)探究证明:如图2,当60MON ∠=︒时,(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请直接写出PA ,PB 之间另外的数量关系.(3)拓展延伸:如图3,当60MON ∠=︒,点B 在射线ON 的反向延长线上时,请直接写出线段OC ,OA 及BC 之间的数量关系:______.25.如图,Rt ABC 与Rt DEF △的顶点A ,F ,C ,D 共线,AB 与EF 交于点G ,BC 与DE 相交于点H ,90B E ∠=∠=︒,AF CD =,AB DE =.(1)求证:Rt ABC Rt DEF ≌;(2)若1GF =,求线段HC 的长.26.如图,P 为等边ABC 的边BC 延长线上的一动点,以AP 为边向上作等边APD △,连接CD .(1)求证:ABP ACD ≌△△;(2)当PC AC =时,求PDC ∠的度数;(3)PDC ∠与PAC ∠有怎样的数量关系?随着点P 位置的变化,PDC ∠与PAC ∠的数量关系是否会发生变化?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据△ABE ≌△CAF 得出△ACF 与△ABE 的面积相等,可得S △ABE +S △CDF =S △ACD ,即可得出答案.【详解】∵∠BED=∠CFD=∠BAC ,∠BED=∠BAE+∠ABE ,∠BAC=∠BAE+∠CAF ,∠CFD=∠FCA+∠CAF ,∴∠ABE=∠CAF ,∠BAE=∠FCA ,在△ABE和△CAF中,ABE CAFAB ACBAE FCA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE≌△CAF(ASA),∴S△ABE=S△ACF,∴阴影部分的面积为S△ABE+S△CDF=S△ACD,∵S△ABC=30,BD=12DC,∴S△ACD=20,故选:D.【点睛】本题考查了全等三角形的性质和判定,三角形的面积,三角形的外角性质等知识点,解题的关键是正确寻找全等三角形解决问题.2.A解析:A【分析】根据三角形的三边关系列出不等式,即可求出x的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x,∴7-3<x<7+3,即4<x<10,四个选项中,A中,4<6<10,符合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.3.D解析:D【分析】根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.【详解】解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项不符合题意;B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项不符合题意;C、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠BAE=∠CAD,可得∠DAB=∠EAC,故本选项不符合题意;D、添加DA=DE无法求出∠DAB=∠EAC,故本选项符合题意.故选:D.【点睛】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.4.D解析:D【分析】根据全等三角形的判定定理,对每个选项分别分析、解答出即可.【详解】根据题意:BE=CE ,∠AEB=∠DEC ,∴只需要添加对顶角的邻边,即AE=DE (由AC=BD 也可以得到),或任意一组对应角,即∠A=∠D ,∠B=∠C ,∴选项A 、B 、C 可以判定,选项D 不能判定,故选:D .【点睛】此题考查全等三角形的判定定理,熟记判定定理并熟练应用是解题的关键.5.A解析:A【分析】利用AAS 判定△ABC ≌△AED ,则可得到AB=AE ,再利用ASA 判定△ABM ≌△AEN .【详解】∵∠1=∠2,∴∠1+∠MAC =∠2+∠MAC ,∴∠BAC =∠EAD ,在△BAC 和△EAD 中,B E BAC EAD AC AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△EAD ,∴甲说的正确;∵△BAC ≌△EAD (AAS ),∴AB=AE ,在△BAM 和△EAN 中,12B E AB AE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BAM ≌△EAN (ASA ),∴乙说的正确;故选A .【点睛】本题考查了三角形全等的判定方法,根据题目的特点,补充适当条件,活用判定定理是解题的关键.6.C解析:C【分析】根据全等三角形的判定方法一一判断即可;【详解】A 、根据ASA ,可以推出△ABC ≌△DEF ,本选项不符合题意.B 、根据AAS ,可以推出△ABC ≌△DEF ,本选项不符合题意.C 、SSA ,不能判定三角形全等,本选项符合题意.D 、根据SAS ,可以推出△ABC ≌△DEF ,本选项不符合题意.故选:C .【点睛】本题考查了全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法; 7.C解析:C【分析】根据矩形的性质得到AD ∥BC ,∠DCB =90°,根据平行线的性质得到∠F =∠ECB =15°,根据三角形的外角的性质得到∠ACF =∠AGC =∠GAF +∠F =2∠F ,于是得到结论.【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∠DCB =90°,∴∠F =∠ECB =15°,∴∠GAF =∠F =15°,∴∠ACF =∠AGC =∠GAF +∠F =2∠F =30°,故选C .【点睛】本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和.8.C解析:C【分析】先利用AAS 证明ABC DEF ≅,再根据全等三角形的性质进行线段和差计算即可.【详解】解:90ACB ∠=︒,DE AB ⊥,90A B ∴∠+∠=︒,90A E ∠+∠=︒,B E ∴∠=∠,在ABC 与DEF 中90B E ACB DFE AB DE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()ABC DEF AAS ∴≅△△;AC DF =∴,BC EF =,∵DF a =,BC b =,CF c =,AE AC EF CF =+-,∴AE a b c =+-故选C .【点睛】本题主要考查了全等三角形的判定与全等三角形的性质,确定用AAS 定理进行证明是关键.9.C解析:C【分析】直接利用当A ,B ,C 在一条直线上,以及当A ,B ,C 不在一条直线上,分别分析得出答案.【详解】解:∵线段AB =8cm ,AC =6cm ,∴如图1,A ,B ,C 在一条直线上,∴BC =AB−AC =8−6=2(cm ),故①正确;如图2,当A ,B ,C 在一条直线上,∴BC =AB +AC =8+6=14(cm ),故②正确;如图3,当A ,B ,C 不在一条直线上,8−6<BC <8+6,故线段BC可能为5或9,故③错误,④正确.故选:C.【点睛】此题主要考查了三角形三边关系,正确分类讨论是解题关键.10.B解析:B【分析】根据全等三角形的对应边相等得到BE=CF,计算即可.【详解】解:∵△DEF≌△ABC,∴BC=EF,∴BE+EC=CF+EC,∴BE=CF,又∵BF=BE+EC+CF=9,EC=5∵CF=12(BF-EC)=12(9-5)=2.故选:B.【点睛】本题考查了全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.11.D解析:D【分析】根据三角形全等的判定对各选项分析判断后利用排除法求解.【详解】解:A、可以利用边角边判定两三角形全等,故本选项不合题意;B、可以利用角角边判定两三角形全等,故本选项不合题意;C、根据斜边直角边定理判定两三角形全等,故本选项不合题意;D、三个角对应相等不能证明两三角形全等,故本选项符合题意;故选:D.【点睛】本题考查了直角三角形全等的判定方法;本题主要利用三角形全等的判定,运用好有一对相等的直角这一隐含条件是解题的关键.12.C解析:C【分析】根据全等三角形的判定方法逐一判断即得答案.【详解】解:①若AB=DE,BC=EF,AC=DF,则根据SSS能使△ABC≌△DEF;②若AB=DE ,∠B=∠E ,BC=EF ,则根据SAS 能使△ABC ≌△DEF ;③若∠B=∠E ,AC =DF ,∠C=∠F ,则根据AAS 能使△ABC ≌△DEF ;④若AB=DE ,AC=DF ,∠B=∠E ,满足有两边及其一边的对角对应相等,不能使△ABC ≌△DEF ;综上,能使△ABC ≌△DEF 的条件共有3组.故选:C .【点睛】本题考查了全等三角形的判定,属于基础题型,熟练掌握判定三角形全等的方法是解题的关键.二、填空题13.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式求出再根据角平分线的定义求出和然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解【详解】解:根据三角形的外角性质可得平分 解析:45︒【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,列式求出ABN ∠,再根据角平分线的定义求出ABE ∠和BAC ∠,然后根据三角形的一个外角等于与它不相邻的两个内角的和,列式计算即可得解.【详解】解:根据三角形的外角性质,可得ABN AOB BAO ∠=∠+∠, BE 平分NBA ∠,AC 平分BAO ∠, 12ABE ABN ∴∠=∠,12BAC BAO ∠=∠,C ABE BAC ∴∠=∠-∠,1)2ABN BAO =∠-∠, ()1122AOB BAO BAO =∠+∠-∠,12AOB =∠, 90MON ∠=︒,90AOB ∠=︒∴,190452C ∴∠=⨯︒=︒. 故答案为:45°.【点睛】本题考查了三角形外角的性质,以及角平分线的定义,解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.14.75°【分析】利用外角求∠5再根据平行线的性质求∠1【详解】解:由题意可知∠4=45°∠2=∠3=30°∠5=∠2+∠3=75°∵∴∠1=∠5=75°故答案为:75°【点睛】本题考查了三角形外角的性解析:75°.【分析】利用外角求∠5,再根据平行线的性质求∠1.【详解】解:由题意可知∠4=45°,∠2=∠3=30°,∠5=∠2+∠3=75°,∵12l l //,∴∠1=∠5=75°,故答案为:75°.【点睛】本题考查了三角形外角的性质和平行线的性质,解题关键是熟练运用相关知识进行推理计算.15.【分析】根据三角形外角性质计算即可【详解】∵∠ACD 是△ABC 的外角∴∠ACD=∠A+∠B ∵∴∠ACD=故应填【点睛】本题考查了三角形外角的性质熟记三角形外角的性质并准确计算是解题的关键解析:110︒.【分析】根据三角形外角性质计算即可.【详解】∵∠ACD 是△ABC 的外角,∴∠ACD=∠A+∠B ,∵65A ∠=︒,45B ∠=︒,∴∠ACD=110︒.故应填110︒.【点睛】本题考查了三角形外角的性质,熟记三角形外角的性质,并准确计算是解题的关键. 16.【分析】延长线段BA 交CE 于点M 过点G 作AB 的平行线GN 交CE 于点N 根据平行的性质得由得再根据三角形的外角的性质得即可求出和的数量关系【详解】解:如图延长线段BA 交CE 于点M 过点G 作AB 的平行线GN 解析:1483E G ∠=︒-∠【分析】延长线段BA 交CE 于点M ,过点G 作AB 的平行线GN 交CE 于点N ,根据平行的性质得G BAG GCD ∠=∠+∠,由3BAF BAG ∠=∠,3DCE DCG ∠=∠,得333G BAG DCG ∠=∠+∠,再根据三角形的外角的性质得E EMA EAF BAF ∠+∠=∠-∠,即可求出E ∠和G ∠的数量关系.【详解】解:如图,延长线段BA 交CE 于点M ,过点G 作AB 的平行线GN 交CE 于点N ,∵//AB CD ,∴////BH GN CD ,∴BAG AGN ∠=∠,NGC GCD ∠=∠,EMA ECD ∠=∠,∵G AGN NGC ∠=∠+∠,∴G BAG GCD ∠=∠+∠,∵3BAF BAG ∠=∠,3DCE DCG ∠=∠,∴333G BAG DCG ∠=∠+∠,∵EAB E EMA ∠=∠+∠,EAB EAF BAF ∠=∠-∠,∴E EMA EAF BAF ∠+∠=∠-∠,∴E ECD EAF BAF ∠+∠=∠-∠,∴31483E DCG BAG ∠+∠=︒-∠,∴()14833E BAG DCG ∠=︒-∠+∠,∴1483E G ∠=︒-∠.故答案是:1483E G ∠=︒-∠.【点睛】本题考查平行线的性质和三角形外角的性质,解题的关键是通过平行线的性质和三角形外角的性质找到角与角之间的数量关系.17.OA=OB (答案不唯一)【分析】全等三角形的判定方法有SASASAAASSSS 只要添加一个符合的条件即可【详解】解:OA=OB 理由是:在△AOC 和△BOD 中∴△AOC ≌△BOD (SAS )故答案为:O解析:OA=OB .(答案不唯一)【分析】全等三角形的判定方法有SAS ,ASA ,AAS ,SSS ,只要添加一个符合的条件即可.【详解】解:OA=OB ,理由是:在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD (SAS ).故答案为:OA=OB .(答案不唯一)【点睛】本题考查了全等三角形的判定的应用,通过做此题培养了学生的发散思维能力和对全等三角形的判定方法的灵活运用能力,题目答案不唯一,是一道比较好的题目.18.26或22【分析】因为等腰三角形的底边和腰不确定6cm 可以为底边也可以为腰长故分两种情况:当6cm 为腰时底边为10cm 先判断三边能否构成三角形若能求出此时的周长;当6cm 为底边时10cm 为腰长先判断解析:26或22【分析】因为等腰三角形的底边和腰不确定,6cm 可以为底边也可以为腰长,故分两种情况:当6cm为腰时,底边为10cm,先判断三边能否构成三角形,若能,求出此时的周长;当6cm 为底边时,10cm为腰长,先判断三边能否构成三角形,若能,求出此时的周长.【详解】解:若6cm为等腰三角形的腰长,则10cm为底边的长,6cm,6cm,10cm可以构成三角形,此时等腰三角形的周长=6+6+10=22(cm);若10cm为等腰三角形的腰长,则6cm为底边的长,10cm,10cm,6cm可以构成三角形,此时等腰三角形的周长=10+6+10=26(cm);则等腰三角形的周长为26cm或22cm.故答案为:26或22.【点睛】本题考查了等腰三角形的定义和三角形的三边关系.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.19.24【分析】由EF分别为ADCE的中点可得BECEBF分别为△ABD△ACD△BEC的中线根据中线的性质可知将相应三角形分成面积相等的两部分据此即可解答【详解】解:∵由于EF分别为ADCE的中点∴S解析:24【分析】由E、F分别为AD、CE的中点可得BE、CE、BF分别为△ABD、△ACD、△BEC的中线,根据中线的性质可知将相应三角形分成面积相等的两部分,据此即可解答.【详解】解:∵由于E、F分别为AD、CE的中点,∴S△ABE=S△DBE,S△DCE=S△AEC,S△BEF=S△BCF,∴S△BEC=2S△BEF=12,∴S△ABC=2S△BEC=24.故答案为:24.【点睛】本题考查了三角形中线的性质,属于常考题型,熟知三角形的中线将相应的三角形分成面积相等的两部分是解题的关键.20.2【分析】本题根据三角形的三边关系定理得到不等式组从而求出三边满足的条件再根据三边长是整数进而求解【详解】设摆出的三角形中相等的两边是x根则第三边是()根根据三角形的三边关系定理得到:则又因为是整数解析:2【分析】本题根据三角形的三边关系定理,得到不等式组,从而求出三边满足的条件,再根据三边长是整数,进而求解.【详解】设摆出的三角形中相等的两边是x 根,则第三边是(122x -)根,根据三角形的三边关系定理得到:122122x x x x x x +>-⎧⎨-+>⎩, 则3x >, 6x <,又因为x 是整数,∴x 可以取4或5,因而三边的值可能是:4,4,4或5,5,2;共二种情况,则能摆出不同的等腰三角形的个数为2.故答案为:2.【点睛】本题考查了三角形的三边关系:在组合三角形的时候,注意较小的两边之和应大于最大的边,三角形三边之和等于12. 三、解答题21.(1)证明见解析;(2)证明见解析.【分析】(1)利用SSS 即可判断△ABC ≌△DEF ;(2)利用全等三角形的性质即可证明.【详解】证明:(1)∵点A 、F 、C 、D 在一条直线上,AF CD =,∴AC DF =.在ACE △与BDF 中,,.AB DF BC EF AC DF =⎧⎪=⎨⎪=⎩∴ABC DEF △≌△,()SSS(2)∵△ABC ≌△DEF ,∴∠BCA =∠EFD ,∴A D ∠=∠,∴//AB DE .【点睛】本题考查全等三角形的判定和性质,平行线的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(1)证明见解析;(2)EF=17cm .【分析】(1)根据垂直的定义可得∠AEC=∠CFB=90°,然后求出∠EAC=∠FCB ,再利用“角角边”证明即可;(2)由全等三角形的性质可得:AE=CF ,CE=BF ,再根据线段的和差求解即可.【详解】(1)证明:在Rt △ACB 中,∵∠ACB=90°,∴∠ACE+∠BCF=90°∵AE ⊥EF ,BF ⊥EF∴∠ACE+∠EAC=90°∴∠CAE=∠BCF又∵ AC=CB∴△ACE ≌△CBF(ASA)(2)由△ACE ≌△CBF 可得:AE=CF=12cm , EC=BF=5cm ,∴EF=EC+CF=12+5=17cm .【点睛】本题考查了全等三角形的判定与性质,同角的余角相等的性质,熟练掌握三角形全等的判断方法并找出全等的条件是解题的关键.23.证明见解析.【分析】先根据已知条件得出AB ED =,再利用SAS 证明ABC EDF △≌△,最后根据全等三角形的性质即可得出答案.【详解】证明:∵AD BE =,∴AD DB BE DB +=+,∴AB ED =.在ABC 和EDF 中,AB ED ABC EDF BC DF =⎧⎪∠=∠⎨⎪=⎩,∴()ABC EDF SAS △≌△,∴A E ∠=∠.【点睛】本题考查了全等三角形的判定及性质,熟练掌握全等三角形的判定方法是解题的关键. 24.(1)PA=PB ;(2)成立证明见解析;(3)OA=BC+OC【分析】(1)作PD ⊥OM 于点D ,根据角平分线的性质得到PC=PD ,证明△APD ≌△BPC ,根据全等三角形的性质定理证明;(2)作PD ⊥OM 于点D ,根据角平分线的性质得到PC=PD ,证明△APD ≌△BPC ,根据全等三角形的性质定理证明;(3)仿照(2)的解法得出△APD ≌△BPC ,从而得出AD=BC ,再根据HL 得出Rt △OPD ≌△RtOPC ,得出OC=OD ,继而得出结论.【详解】(1)作PD ⊥OM 于点D ,∵点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,∵∠MON=90°,∴∠APB=90°,∠CPD=90°,∴∠APD+∠BPD=90°,∠BPC+∠BPD=90°∴∠APD=∠BPC ,∵∠PDA=∠PCB=90°,在△APD 和△BPC 中,APD BPC PD PCADP BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△APD ≌△BPC (ASA ),∴AP=BP .(2)(1)中的结论还成立理由如下:如图2,作PD ⊥OM 于点D ,∵点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,∵∠MON=60°,∴∠APB=120°,在四边形OCPD 中,∠CPD=360°-90°-90°-60°=120°,∴∠APD+∠BPD=120°,∠BPC+∠BPD=120°∴∠APD=∠BPC ,∵∠PDA=∠PCB=90°,在△APD 和△BPC 中,APD BPC PD PCADP BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△APD ≌△BPC (ASA ),∴AP=BP .(3)OA=2BC-OB .理由如下:如图3,作PD ⊥OM 于点D ,同(2),可证△APD ≌△BPC ,∴AD=BC ,点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,在Rt △OPD 和RtOPC 中,PC PD OP OP=⎧⎨=⎩ ∴Rt △OPD ≌△RtOPC ,∴OC=OD ,∴OA-AD=OD=OC ,∴OA-BC=OC ,∴OA=BC+OC .【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理、灵活运用类比思想是解题的关键.25.(1)见详解;(2)1【分析】(1)先证明AC=DF ,再根据HL 证明Rt ABC Rt DEF ≌;(2)先证明∠AFG=∠DCH ,从而证明∆AFG ≅∆DCH ,进而即可求解.【详解】(1)∵AF CD =,∴AF+CF=CD+CF ,即AC=DF ,在Rt ABC 与Rt DEF △中,∵AC DF AB DE =⎧⎨=⎩, ∴Rt ABC ≅Rt DEF △(HL );(2)∵Rt ABC ≅Rt DEF △,∴∠A=∠D ,∠EFD=∠BCA ,∵∠AFG=180°-∠EFD ,∠DCH=180°-∠BCA ,∴∠AFG=∠DCH ,又∵AF CD =,∴∆AFG ≅∆DCH ,∴HC=GF =1.【点睛】本题主要考查全等三角形的判定和性质,熟练掌握HL 和ASA 证明三角形全等,是解题的关键.26.1)证明见解析;(2)30PDC ∠=︒;(3)PDC PAC ∠=∠;数量关系不变;理由见解析【分析】(1)先根据等边三角形的性质得出∠BAC =∠PAQ =60°,AB =AC ,AP =AQ ,再由SAS 定理即可得出结论;(2)由∠APC=∠CAP ,∠B=∠BAC ,∠B+∠BAC+∠APC+∠CAP=180°,得∠BAP=90°,再结合ABP ACD ≌△△,进而即可求解;(3)设CD 与AP 交于点O ,由ABP ACD ≌△△,得∠ACD=∠APD ,结合∠AOC=∠DOP ,三角形内角和定理,即可得到结论.【详解】(1)证明:∵△ABC 与△APD 是等边三角形,∴∠BAC =∠PAD =60°,AB =AC ,AP =AD ,∴∠BAP =∠DAC ,在△ABP 与△ACD 中,AB AC BAP CAD AP AD ⎧⎪∠∠⎨⎪⎩===,∴ABP ACD ≌△△(SAS );(2)∵PC AC =,∴∠APC=∠CAP ,∵△ABC 是等边三角形,∴∠B=∠BAC=60°,又∵∠B+∠BAC+∠APC+∠CAP=180°,∴∠BAC+∠CAP=12×180°=90°,即:∠BAP=90°, ∴∠APB=90°-60°=30°,∴∠ADC=∠APB=30°,∵△APD 是等边三角形,∴PDC ∠=60°-∠ADC=60°-30°=30°;(3)PDC ∠=PAC ∠,随着点P 位置的变化,PDC ∠与PAC ∠的数量关系不会发生变化,理由如下:设CD 与AP 交于点O ,∵ABP ACD ≌△△,∴∠ACD=∠ABP=60°,∵∠APD=60°,∴∠ACD=∠APD ,又∵∠AOC=∠DOP ,∠AOC+∠ACD+∠PAC=180°,∠DOP+∠APD+∠PDC=180°, ∴PDC ∠=PAC ∠.【点睛】本题主要考查全等三角形的判定和性质,等边三角形的性质,直角三角形的判定,熟练掌握全等三角形的判定和性质,是解题的关键.。

【新】人教版七年级下册数学 三角形章节测试卷 ( 含答案)

【新】人教版七年级下册数学 三角形章节测试卷 ( 含答案)

七年级下册数学三角形全章测试一、选择题:1.已知△ABC 的一个内角是40°,∠A =∠B ,那么∠C 的外角的大小是( ). (A)140°(B)80°或100° (C)100°或140° (D)80°或140°2.如图,在四边形ABCD 中,点E 在BC 上,AB ∥DE ,∠B =78°,∠C =60°,则∠EDC 的度数为( ).(A)42° (B)60° (C)78°(D)80°3.如图,是赛车跑道的一段示意图,其中AB ∥DE ,测得∠B =140°,∠D =120°,则∠C 的度数为( ).(A)120° (B)100° (C)140°(D)90°4.上午9时,一艘船从A 处出发以20海里/时的速度向正北航行,11时到达B 处,若在A 处测得灯塔C 在北偏西34°,且,23BAC ACB ∠=∠则灯塔C 应在B 处的( ). (A)北偏西68° (B)南偏西85° (C)北偏西85°(D)南偏西68°5.在△ABC 中,若AB =3,BC =1-2x ,CA =8,则x 的取值范围是( ). (A)0<x <2 (B)-5<x <-2 (C)-2<x <5(D)x <-5或x >26.在△ABC 中,若∠A ∶∠B =5∶7,∠C -∠A =10°,则∠C 等于( ). (A)75°(B)60°(C)50°(D)40°7.在△ABC 中,若AB =AC ,其周长为12,则AB 的取值范围是( ).(A)AB>6 (B)AB<3(C)4<AB<7 (D)3<AB<68.若一个多边形的内角和是其外角和的二倍,则它的边数是( ).(A)四(B)五(C)六(D)七9.若一个正多边形的每个内角与它相邻的外角的差为100°,则这个正多边形的边数是( )(A)七(B)八(C)九(D)十10.下列命题中,结论正确的是( ).①外角和大于内角和的多边形只有三角形.②一个三角形的内角中,至少有一个不小于60°.③三角形的一个外角大于它的任何一个内角.④多边形的边数增加时,其内角和随着增加,外角和不变.(A)①②③④(B)①②④(C)①③④(D)①④11.在下面四种正多边形中,用同一种图形不能平面镶嵌的是( ).12.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( ).(A)∠A=∠1+∠2 (B)2∠A=∠1+∠2(C)3∠A=2∠1+∠2 (D)3∠A=2(∠1+∠2)二、填空题:13.如图,AB∥CD,直线PQ分别交AB、CD于点E、F,EG是∠FED的平分线,交AB于点G.若∠QED=40°,那么∠EGB等于______.14.若一个多边形的每一个外角都等于45°,则这个多边形共有______条对角线.15.把“同角的补角相等”改写成“如果…那么…”的形式是______________________________________________________________________. 16.把一幅三角板按如图方式放置,则两条斜边所形成的钝角=______度.17.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=______.18.下列各命题中:①对顶角一定相等;②两条直线被第三条直线所截,内错角相等;③若∠A=∠B,∠B=∠C,则∠A=∠C,④同角的补角相等;⑤若∠AOB+∠BOC=180°;则∠AOB与∠BOC互为邻补角.其中错误的命题是______(填序号)19.如图,长方形的长和宽分别为2cm和1cm,则图中由弧AB、弧CD和AC、BD围成的阴影部分的面积为_______.20.一个广场面的一部分如图所示,地面的中央是一块正六边形的地砖,周围用正三角形和正方形的大理石地砖拼成.从里往外共12层(不包括中央的正六边形地砖),每一层的外界都围成一个多边形.若中央正六边形地砖的边长是0.5米,则第12层的外边界所围成的多边形的周长是______米.三、解答题:21.已知:钝角△ABC.分别画出AC边上的高BD、BC边上的中线AE及△ABC中∠ACB的平分线CF.22.已知:如图,AB∥DE,∠1=∠2,AC平分∠BAD,求证:AD∥BC.23.已知:在△ABC中,BE平分∠ABC交AC于E,CD⊥AC交AB于D,∠BCD=∠A,求∠BEA的度数.24.已知:如图,点E在AC上,点F在AB上,BE,CF交于点O,且∠C-∠B=20°,∠EOF -∠A=70°,求∠C的度数.25.三角形的一条中线把其面积等分,试用这条规律完成下面问题.(1)把一个三角形分成面积相等的4块(至少给出两种方法);(2)在一块均匀的三角形草地上,恰好可放养84只羊,如图,现被两条中线分成4块,则四边形的一块(阴影部分)恰好可放养几只羊?四、探究题26.已知△ABC中,∠ABC的n等分线与∠ACB的n等分线相交于G1、G2、G3,…、G n-1,试猜想:∠BG n-1C与∠A的关系.(其中n≥2的整数)首先得到:当n=2时,如图1,∠BG1C=______,当n=3时,如图2,∠BG2C=______,…………猜想∠BG n-1C=______.图1 图2 图n。

初一数学下册《三角形》单元测试题

初一数学下册《三角形》单元测试题

初一数学下册《三角形》单元测试题AD B C A B C123456一.选择题(10小题,共30分)1.以下列各组线段为边,能组成三角形的是( )A .3cm ,4cm ,5cmB .4cm ,6cm ,10cmC .1cm ,1cm ,3cmD .3cm ,4cm ,9cm2.等腰三角形的一边长等于4,一边长等于9,则它的周长是( )A .17B .13C .17或22D .223、一个三角形的两边分别为3和8,第三边长是一个偶数,则第三边的长不能为( )A 、6B 、8C 、10D 、124、在下图中,正确画出AC 边上高的是( ).A B C D 5、如图,线段AD 把△ABC 分为面积相等的两部分,则线段AD 是( ). A 、三角形的角平分线 B 、三角形的中线C 、三角形的高D 、以上都不对6、适合条件C B A ∠=∠=∠21的三角形是( ) A 、锐角三角形 B 、等边三角形 C 、钝角三角形 D 、直角三角形三、解答题1、 如图,在△ABC 中,∠BAC 是钝角,完成下列画图. (6分)(1)∠BAC 的平分线AD ;(2)AC 边上的中线BE ;(3)AC 边上的高BF ;2、(6分)如图,在△ABC 中,AB =AC 。

(1)在图上分别画出AB ,AC 边上的高CD 和BE ;(2)ABC S △=12AC ×_______,ABC S △=12AB ×_______。

(3)BE_______CD (填=、>或<) 3. (9分)(1)下列图中具有稳定性是(2) 对不具稳定性的图形,请适当地添加线段,使之具有稳定性。

4、已知等腰三角形的一边等于8cm ,另一边等于6cm ,求此三角形的周长;C B A3、已知等腰三角形的周长是16cm .(9分)(1)若其中一边长为4cm ,求另外两边的长;(2)若其中一边长为6cm ,求另外两边长;(3)若三边长都是整数,求三角形各边的长.5、如图,在△ABC 中,AD ,AE 分别是△ABC 的高和角平分线.(12分)(1)若∠B =30°,∠C =50°,求∠DAE 的度数.(2)试问∠DAE 与∠C -∠B 有怎样的数量关系?说明理由.一、选择题(每小题3分,共30分,把正确答案的代号填在括号内)1.一个三角形的三个内角中( )A 、至少有两个锐角B 、至多有一个锐角C 、至少有一个直角D 、至少有一个钝角4.等腰三角形两边长分别为 3、7,则它的周长为( )A 、13B 、17C 、13 或17D 、不能确定11.长为11,8,6,4的四根木条,选其中三根组成三角形有 种选法,它们分别是 。

(必考题)初中数学七年级数学下册第四单元《三角形》测试卷(含答案解析)

(必考题)初中数学七年级数学下册第四单元《三角形》测试卷(含答案解析)

一、选择题1.如图,△ABC 的面积为9cm 2,BP 平分∠ABC ,AP ⊥BP 于P ,连接PC ,则△PBC 的面积为( )A .3cm 2B .4.5cm 2C .5cm 2D .6cm 22.如图,AB 与CD 相交于点E ,AD=CB ,要使△ADE ≌△CBE ,需添加一个条件,则添加的条件以及相应的判定定理正确的是( )A .AE=CE ;SASB .DE=BE ;SASC .∠D=∠B ;AASD .∠A=∠C ;ASA3.如图,CD AB ⊥,BE AC ⊥,垂足分别为点D ,点E ,BE 、CD 相交于点O ,12∠=∠,则图中全等三角形共有( )A .2对B .3对C .4对D .5对4.已知如图,AB=AE ,只需再加一个条件就能证明△ABC ≌△AED ,下列选项是所加条件,请判断哪一个不能判断△ABC ≌△AED ( )A .∠B=∠EB .AC=ADC .∠ADE=∠ACBD .BC=DE 5.如图,已知∠ABC =∠DEF ,AB =DE ,添加以下条件,不能判定△ABC ≌△DEF 的是( )A .∠A =∠DB .∠ACB =∠DFEC .AC =DFD .BE =CF 6.下列长度的三条线段中,有组成三角形的是( ) A .3cm,4cm,9cm B .8cm,7cm,15cmC .12cm,13cm,24cmD .2cm,2cm,6cm 7.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒8.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF 其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ 9.已知三角形的三边长分别是3,8,x ,则x 的值可以是( )A .6B .5C .4D .3 10.如图,已知AE=CF ,∠AFD=∠CEB ,那么添加下列一个条件后,仍无法判定△ADF ≌△CBE 的是( )A .∠B=∠DB .BE=DFC .AD=CBD .AD ∥BC 11.若a ,b ,c 为△ABC 的三边长,且满足|a ﹣5|+(b ﹣3)2=0,则c 的值可以为( )A .7B .8C .9D .1012.如图,点D ,E 在△ABC 的边BC 上,△ABD ≌△ACE ,其中B ,C 为对应顶点,D ,E 为对应顶点,下列结论不.一定成立的是( )A .AC=CDB .BE=CDC .∠ADE=∠AED D .∠BAE=∠CAD二、填空题13.如图,已知AC DB =,添加一个条件________,可以得到ABC DCB △≌△.14.如图,已知∠A =47°,∠B =38°,∠C =25°,则∠BDC 的度数是______.15.如图,在ABC 中,D ,E 分别是BC ,AD 的中点,24ABC Scm =,则ABE S 的值是_______.16.如图10,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配,这样做的数学依据是是_______________________________.17.三角形的三边长分别为5,1+2x ,8,则x 的取值范围是 .18.已知:如图,ACB DBC ∠∠=,要使△ABC ≌△DCB ,只需增加的一个条件是_____(只需填写一个你认为适合的条件).19.用12根等长的火柴棒拼成一个等腰三角形,火柴棒不允许剩余、重叠、折断,则能摆出不同的等腰三角形的个数为________个.20.如图,点E ,F 在线段AD 上,且AE DF =,//AB DC ,AB DC =,连接BE ,BF ,CE ,CF ,则图中共有_____对全等三角形.三、解答题21.我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;(2)如图,在ABC 中,点D E ,分别在AB AC ,上,设CD BE ,相交于点O ,若60A ∠=︒,12DCB EBC A ∠=∠=∠.请你写出图中一个与A ∠相等的角,并猜想图中哪个四边形是等对边四边形;(3)在ABC 中,如果A ∠是不等于60︒的锐角,点D E ,分别在AB AC ,上,且12DCB EBC A ∠=∠=∠.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.22.(问题情境)(1)如图1,在四边形ABCD 中,AB AD =,90B D ︒∠=∠=,120BAD ︒∠=.点E ,F 分别是BC 和CD 上的点,且60EAF ︒∠=,试探究线段BE ,EF ,DF 之间的关系.小明同学探究此问题的方法是:延长FD 到点G ,使DG BE =,连接AG .先证明ADG ABE ≅△△,再证明AEF AGF ≅△△,进而得出EF BE DF =+.你认为他的做法 ;(填“正确”或“错误”).(探索延伸)(2)如图2,在四边形ABCD 中,AB AD =,70B ︒∠=,110D ︒∠=,100BAD ︒∠=,点E ,F 分别是BC 和CD 上的点,且50EAF ︒∠=,上题中的结论依然成立吗?请说明理由.(思维提升)(3)小明通过对前面两题的认真思考后得出:如图3,在四边形ABCD 中,若AB AD =,180B D ︒∠+∠=,12EAF BAD ∠=∠,那么EF BE DF =+.你认为正确吗?请说明理由.23.(1)如图1,已知OAB 中,OA OB =,90AOB ∠=︒,直线l 经过点O ,BC ⊥直线l ,AD ⊥ 直线l ,垂足分别为点C ,D .依题意补全图l ,并写出线段BC ,AD ,CD 之间的数量关系为______;(2)如图2,将(1)中的条件改为:在OAB 中,OA OB =,C ,O ,D 三点都在直线l 上,并且有BCO ODA BOA ∠=∠=∠,请问(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,在ABC 中,AB AC =,90CAB ∠=︒,点A 的坐标为(0,1),点C 的坐标为()3,2,请直接写出点B 的坐标.24.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E , 2.5cm AD =,求1cm BE =,求DE 的长.25.如图,点A 、D 、B 、E 在一条直线上,BC 与DF 交于点G ,AD BE =,//BC EF ,BC EF =.求证:ABC DEF △≌△.26.已知22a m n =+,2b m =,c mn =,且m >n >0.(1)比较a ,b ,c 的大小;(2)请说明以a ,b ,c 为边长的三角形一定存在.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据已知条件证得△ABP ≌△EBP ,根据全等三角形的性质得到AP=PE ,得出S △ABP =S △EBP ,S △ACP =S △ECP ,推出S △PBC=12S △ABC ,代入求出即可. 【详解】解:延长AP 交BC 于E ,∵BP 平分∠ABC ,∴∠ABP=∠EBP ,∵AP ⊥BP ,∴∠APB=∠EPB=90°,在△ABP 和△EBP 中,ABP EBP PB PBAPB EPB ∠∠⎧⎪⎨⎪∠∠⎩===,∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△PBC=12S△ABC=12×9cm2=4.5cm2,故选:B.【点睛】本题考查了全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.2.C解析:C【分析】根据三角形全等的判定方法结合全等的判定方法逐一进行来判断.【详解】解:A.添加AE=CE后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;B.添加DE=BE后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;C.添加∠D=∠B,根据AAS可证明△ADE≌△CBE,故此选项符合题意;D.添加∠A=∠C,根据AAS可证明△ADE≌△CBE,故此选项不符合题意;故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA.关键在于应根据所给的条件判断应证明哪两个三角形全等.3.C解析:C【分析】共有四对.分别为ADO≌AEO,ADC≌AEB,ABO≌ACO,BOD≌COE.做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.【详解】解:∵CD⊥AB,BE⊥AC,∴∠ADO=∠AEO=90°,又∵∠1=∠2,AO=AO,∴ADO≌AEO;(AAS)∴OD=OE,AD=AE,∵∠DOB=∠EOC,∠ODB=∠OEC=90°,OD=OE,∴BOD≌COE;(ASA)∴BD=CE,OB=OC,∠B=∠C,∵AE=AD,∠DAC=∠CAB,∠ADC=∠AEB=90°∵AD=AE,BD=CE,∴AB=AC,∵OB=OC,AO=AO,∴ABO≌ACO.(SSS)所以共有四对全等三角形.故选:C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.D解析:D【分析】根据全等三角形的判定条件结合AE=AB、∠A=∠A逐项判定即可.【详解】解:∵AE=AB、∠A=∠A∴A、补充∠B=∠E,根据ASA可证明△ABC≌△AED,不符合题意;B、补充AC=AD,根据SAS可证明△ABC≌△AED,不符合题意;C、补充∠ADE=∠ACB,根据AAS可证明△ABC≌△AED,不符合题意;D、补充BC=DE,为SSA不能证明△ABC≌△AED,符合题意.故答案为D.【点睛】本题考查了三角形全等的证明,掌握AAA、SSA不能判定普通三角形全等是解答本题的关键.5.C解析:C【分析】根据全等三角形的判定方法一一判断即可;【详解】A、根据ASA,可以推出△ABC≌△DEF,本选项不符合题意.B、根据AAS,可以推出△ABC≌△DEF,本选项不符合题意.C、SSA,不能判定三角形全等,本选项符合题意.D、根据SAS,可以推出△ABC≌△DEF,本选项不符合题意.故选:C.【点睛】本题考查了全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法;6.C解析:C【分析】根据三角形的三边关系对各选项进行逐一分析即可.【详解】解:A 、∵3+4=7<9,∴不能构成三角形,故本选项不符合题意;B 、∵8+7=15,∴不能构成三角形,故本选项不符合题意;C 、∵12+13=25>24,∴能构成三角形,故本选项符合题意;D 、∵2+2=4<6,∴不能构成三角形,故本选项不符合题意.故选:C .【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.7.C解析:C【分析】先判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠B=∠C=35︒,由三角形外角的性质即可得到答案.【详解】在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠B=∠C ,∵∠C=35︒,∴∠B=35︒,∴∠OEC=∠B+∠A=355590︒+︒=︒,∴∠DOE=∠C+∠OEC=3590125︒+︒=︒,故选:C .【点睛】本题考察全等三角形的判定与性质、三角形外角的性质,熟练掌握全等三角形的判定与性质是解题关键.8.D解析:D【分析】易证ABD EBC ∆∆≌,可得BCE BDA ∠=∠,AD=EC 可得①②正确;再根据角平分线的性质可求得DAE DCE ∠=∠ ,即③正确,根据③可判断④正确;【详解】∵ BD 为∠ABC 的角平分线,∴ ∠ABD=∠CBD ,∴在△ABD 和△EBD 中,BD=BC ,∠ABD=∠CDB ,BE=BA ,∴△ABD EBC ∆∆≌(SAS),故①正确;∵ BD 平分∠ABC ,BD=BC ,BE=BA ,∴ ∠BCD=∠BDC=∠BAE=∠BEA ,∵△ABD ≌△EBC ,∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,故②正确;∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA ,∴∠DCE=∠DAE ,∴△ACE 是等腰三角形,∴AE=EC ,∵△ABD ≌△EBC ,∴AD=EC ,∴AD=AE=EC ,故③正确;作EG ⊥BC ,垂足为G ,如图所示:∵ E 是BD 上的点,∴EF=EG ,在△BEG 和△BEF 中BE BE EF EG =⎧⎨=⎩∴ △BEG ≌△BEF ,∴BG=BF ,在△CEG 和△AFE 中EF EG AE CE =⎧⎨=⎩∴△CEG ≌△AFE ,∴ AF=CG ,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF ,故④正确;故选:D .【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键;9.A解析:A【分析】根据三角形三边关系:①任意两边之和大于第三边;②任意两边之差小于第三边,即可得出第三边的取值范围.【详解】解:∵三角形的三边长分别为3,8,x,∴8-3<x<8+3,即5<x<11,故选:A.【点睛】本题考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.10.C解析:C【分析】求出AF=CE,再根据全等三角形的判定定理判断即可.【详解】解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,A、∠B=∠D,∠AFD=∠CEB,AF=CE,满足AAS,能判定△ADF≌△CBE;B、BE=DF,∠AFD=∠CEB,AF=CE,满足SAS,能判定△ADF≌△CBE;C、AD=CB,AF=CE,∠AFD=∠CEB,满足SSA,不能判定△ADF≌△CBE;D、AD∥BC,则∠A=∠C,又AF=CE,∠AFD=∠CEB,满足ASA,能判定△ADF≌△CBE;故选:C.【点睛】本题考查了平行线性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.11.A解析:A【分析】根据非负数的性质列方程求出a、b的值,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出c的取值范围,然后解答即可.【详解】解:∵|a﹣5|+(b﹣3)2=0,∴a﹣5=0,b﹣3=0,解得a=5,b=3,∵5﹣3=2,5+3=8,∴2<c<8,∴c的值可以为7.故选:A.【点睛】本题考查了非负数的性质以及三角形的三边关系.注意:几个非负数的和为0时,这几个非负数都为0.12.A解析:A【详解】∵△ABD≌△ACE,∴∠ADB=∠AEC,∠BAD=∠CAE,BD=CE,∴180°-∠ADB=180°-∠AEC,∠BAD+∠DAE=∠CAE+∠DAE,BD+DE=CE+DE,即∠ADE=∠AED,∠BAE=∠CAD,BE=CD,故B、C、D选项成立,不符合题意;无法证明AC=CD,故A符合题意,故选A.二、填空题13.(答案不唯一)【分析】要使△ABC≌△DCB由于BC是公共边若补充一组边相等则可用SSS判定其全等;【详解】解:添加AB=DC∵AC=BDBC=BCAB=DC∴△ABC≌△DCB(SSS)∴加一个适(答案不唯一)解析:AB DC【分析】要使△ABC≌△DCB,由于BC是公共边,若补充一组边相等,则可用SSS判定其全等;【详解】解:添加AB=DC,∵ AC=BD,BC=BC,AB=DC,∴△ABC≌△DCB(SSS),∴加一个适当的条件是AB=DC,故答案为:AB=DC.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,根据已知图形以及判定方法选择添加的条件是正确解答本题的关键.14.110°【分析】连接AD并延长根据三角殂的外角性质分别表示出∠3和∠4因为∠BDC是∠3和∠4的和从而不难求得∠BDC的度数【详解】解:连接AD 并延长∵∠3=∠1+∠B∠4=∠2+∠C∴∠BDC=∠解析:110°【分析】连接AD,并延长,根据三角殂的外角性质分别表示出∠3和∠4,因为∠BDC是∠3和∠4的和,从而不难求得∠BDC的度数.【详解】解:连接AD,并延长.∵∠3=∠1+∠B,∠4=∠2+∠C.∴∠BDC=∠3+∠4=(∠1+∠B)+(∠2+∠C)=∠B+∠BAC+∠C.∵∠A=47°,∠B=38°,∠C=25°.∴∠BDC=47°+38°+25°=110°,故答案为:110°.【点睛】本题考查了三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.15.【分析】中线AD把△ABC分成面积相等的两个三角形中线BE又把△ABD 分成面积相等的两个三角形所以△ABE的面积是△ABC的面积的【详解】解:∵DE分别是BCAD的中点∴△ABD是△ABC面积的△A解析:21cm【分析】中线AD把△ABC分成面积相等的两个三角形,中线BE又把△ABD分成面积相等的两个三角形,所以△ABE的面积是△ABC的面积的14.【详解】解:∵D、E分别是BC,AD的中点,∴△ABD是△ABC面积的12,△ABE是△ABD面积的12,∴△ABE的面积=4×12×12=21cm.故答案为:21cm.【点睛】本题考查了三角形的面积计算,解题的关键是熟悉三角形的中线把三角形分成面积相等的两个小三角形.16.③两角和它们的夹边分别相等的两个三角形全等【分析】已知三角形破损部分的边角得到原来三角形的边角根据三角形全等的判定方法即可求解【详解】第一块和第二块只保留了原三角形的一个角和部分边根据这两块中的任一解析:③ 两角和它们的夹边分别相等的两个三角形全等【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【详解】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故答案为③;两个角及它们的夹边对应相等的两个三角形全等.【点睛】本题考查了全等三角形的判定,解题的关键是要认真观察图形,根据已知选择判定方法.17.1<x<6【解析】试题分析:根据三角形的三边关系:任意两边之和大于第三边任意两边之差小于第三边解:由题意有8﹣5<1+2x<8+5解得:1<x<6考点:三角形三边关系解析:1<x<6【解析】试题分析:根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.解:由题意,有8﹣5<1+2x<8+5,解得:1<x<6.考点:三角形三边关系.18.∠A=∠D或∠ABC=∠DCB或BD=AC【分析】已知一条公共边和一个角有角边角或角角边定理再补充一组对边相等或一组对角相等即可【详解】解:添加∠A=∠D∠ABC=∠DCBBD=AC后可分别根据AA解析:∠A=∠D或∠ABC=∠DCB或BD=AC【分析】已知一条公共边和一个角,有角边角或角角边定理,再补充一组对边相等或一组对角相等即可.【详解】解:添加∠A=∠D,∠ABC=∠DCB,BD=AC后可分别根据AAS、SAS、SAS判定△ABC≌△ADC.故答案为:∠A=∠D或∠ABC=∠DCB或BD=AC.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.19.2【分析】本题根据三角形的三边关系定理得到不等式组从而求出三边满足的条件再根据三边长是整数进而求解【详解】设摆出的三角形中相等的两边是x根则第三边是()根根据三角形的三边关系定理得到:则又因为是整数解析:2【分析】本题根据三角形的三边关系定理,得到不等式组,从而求出三边满足的条件,再根据三边长是整数,进而求解.【详解】设摆出的三角形中相等的两边是x 根,则第三边是(122x -)根,根据三角形的三边关系定理得到:122122x x x x x x +>-⎧⎨-+>⎩, 则3x >, 6x <,又因为x 是整数,∴x 可以取4或5,因而三边的值可能是:4,4,4或5,5,2;共二种情况,则能摆出不同的等腰三角形的个数为2.故答案为:2.【点睛】本题考查了三角形的三边关系:在组合三角形的时候,注意较小的两边之和应大于最大的边,三角形三边之和等于12.20.3【分析】易证△ABE ≌△DCF 从而可得出△ABF ≌△DCE 进而可得出△BEF ≌△CFE 【详解】∵AB ∥DC ∴∠A=∠D ∵AB=CDAE=DF ∴△ABE ≌△DCF(SAS)∴AE=DFBE=CF ∴A 解析:3【分析】易证△ABE ≌△DCF,从而可得出△ABF ≌△DCE,进而可得出△BEF ≌△CFE .【详解】∵AB ∥DC∴∠A=∠D∵AB=CD,AE=DF∴△ABE ≌△DCF(SAS)∴AE=DF ,BE=CF∴AF=ED∴△ABF ≌△DCE(SAS)∴BF=EC∵EF=EF∴△BEF ≌△CFE(SSS)故答案为:3.【点睛】本题考查三角形全等的证明,需要注意SSA 是不能证明全等的.三、解答题21.(1)平行四边形,等腰梯形,矩形等;(2)与A ∠相等的角是∠DOB (或∠EOC );猜想四边形BDEC 是等对边四边形;(3)存在等对边四边形,是四边形BDEC ,见解析.【分析】(1)本题理解等对边四边形的图形的定义,平行四边形,等腰梯形,矩形就是; (2)与∠A 相等的角是∠BOD (或∠COE ),四边形DBCE 是等对边四边形;(3)作CG ⊥BE 于G 点,作BF ⊥CD 交CD 延长线于F 点,易证△BCF ≌△CBG ,进而证明△BDF ≌△CEG ,所以BD =CE ,所以四边形DBCE 是等对边四边形.【详解】解:(1)如:平行四边形,等腰梯形,矩形等.(2)与A ∠相等的角是∠BOD (或∠COE ),∵∠A =60°,12DCB EBC A ∠=∠=∠, ∴∠OBC =∠OCB =30°,∴∠BOD =∠EOC =∠OBC +∠OCB =60°,∴与∠A 相等的角是∠BOD (或∠EOC ),猜想:四边形BDEC 是等对边四边形,(3)存在等对边四边形,是四边形BDEC ,证明:如图作CG ⊥BE 于G ,BF ⊥CD 交CD 的延长线于F ,在△BCF 和△CBG 中,DCB EBC BFC CGB BC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BCF ≌△CBG (AAS ),∴BF =CG ,∵BDF ABE EBC DCB ∠=∠+∠+∠,BEC ABE A ∠=∠+∠,∴BDF BEC ∠=∠,在△BDF 和△CEG 中,90BDF CEB BFC CGE BF CG ∠∠⎧⎪∠∠=︒⎨⎪⎩=== ∴△BDF ≌△CEG (AAS ),∴BD =CE∴四边形BDEC 是等对边四边形.【点睛】本题考查了全等三角形的性质和判定的应用,解决本题的关键是理解等对边四边形的定义,把证明BD =CE 的问题转化为证明三角形全等的问题.22.(1)正确;(2)成立,理由见解析;(3)正确,理由见解析.【分析】(1)延长FD 到点G ,使DG BE =,连接AG .先证明ADG ABE ≅△△,可得AE=AG ,再证明AEF AGF ≅△△,可得EF=GF ,进而得出EF BE DF =+.即可解题; (2)成立,证明方法同(1):延长FD 到点G ,使DG BE =,连接AG .先证明ADG ABE ≅△△,可得AE=AG ,再证明AEF AGF ≅△△,可得EF=GF ,进而得出EF BE DF =+.即可解题;(3)正确,证明方法同(2):延长FD 到点G ,使DG BE =,连接AG .先证明ADG ABE ≅△△,可得AE=AG ,再证明AEF AGF ≅△△,可得EF=GF ,进而得出EF BE DF =+.即可解题.【详解】解:(1)正确.理由:如图1,延长FD 到点G ,使DG BE =,连接AG .∵90B ADF ︒∠=∠=,∴90ADG ADF B ∠=∠=∠=︒,在△ABE 和△ADG 中,∵DG BE AB AD =⎧⎪=⎨⎪=⎩∠B ∠ADG , ∴△ABE ≌△ADG (SAS ),∴AE=AG ,∠BAE=∠DAG ,∵120BAD ︒∠=,60EAF ︒∠=,∴∠EAF =12∠BAD , ∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF , ∴∠EAF=∠GAF ,在△AEF 和△AGF 中,∵AE AG EAF GAF AF AF =⎧⎪=⎨⎪=⎩∠∠, ∴△AEF ≌△AGF (SAS ),∴EF=GF ,∵GF=DG+DF=BE+DF ,∴EF BE DF =+;(2)(1)题中的结论依然成立;理由:如图2,延长FD 到点G ,使DG BE =,连接AG .∵110ADF ︒∠=,70B ︒∠=,∴18011070ADG B ∠=︒-︒=︒=∠,在△ABE 和△ADG 中,∵DG BE AB AD =⎧⎪=⎨⎪=⎩∠B ∠ADG , ∴△ABE ≌△ADG (SAS ),∴AE=AG ,∠BAE=∠DAG ,∵100BAD ∠=︒,50EAF ∠=︒,∴∠EAF =12∠BAD , ∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF , ∴∠EAF=∠GAF ,在△AEF 和△AGF 中,∵AE AG EAF GAF AF AF =⎧⎪=⎨⎪=⎩∠∠, ∴△AEF ≌△AGF (SAS ),∴EF=GF ,∵GF=DG+DF=BE+DF ,∴EF BE DF =+;(3)正确,理由:如图3,延长FD 到点G ,使DG BE =,连接AG .∵180B ADF ︒∠+∠=,180ADG ADF ∠+∠=︒, ∴ADG B ∠=∠,在△ABE 和△ADG 中,∵DG BE AB AD =⎧⎪=⎨⎪=⎩∠B ∠ADG , ∴△ABE ≌△ADG (SAS ),∴AE=AG ,∠BAE=∠DAG ,∵∠EAF =12∠BAD , ∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF , ∴∠EAF=∠GAF ,在△AEF 和△AGF 中,∵AE AG EAF GAF AF AF =⎧⎪=⎨⎪=⎩∠∠, ∴△AEF ≌△AGF (SAS ),∴EF=GF ,∵GF=DG+DF=BE+DF ,∴EF BE DF =+.【点睛】本题是三角形的综合题,考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.23.(1)补全如图所示见解析;CD BC AD =+;(2)成立,证明见解析;(3)点B 的坐标为()1,2-.【分析】(1)依题意补全图,易证△AOD ≌△OBC ,则有AD =CO ,OD =BC ,从而可得CD BC AD =+;(2)利用三角形内角和易证23∠∠=,再证明BCO ODA ≌,同(1)即可证明结论;(3)过B 、C 两点作y 轴垂线,构造如(1)图形,即可得三角形全等,再将线段关系即可求出点B 坐标.【详解】(1)补全图1如图所示,CD BC AD =+;证明:∵90AOB ∠=︒,BC ⊥直线l ,AD ⊥ 直线l ,∴∠BCO =∠ODA =90°,∴∠BOC +∠OBC =90°,又∵90AOB ∠=︒,∴∠BOC +∠AOD =90°,∴∠OBC =∠AOD ,在△AOD 和△OBC 中BCO ODA OBC AOD BO AO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOD ≌△OBC (AAS )∴AD =CO ,OD =BC ,∵CD OD CO =+,∴CD BC AD =+.(2)成立.证明:如图,∵12180BOA ∠+∠=︒-∠,13180BOA ∠+∠=︒-∠,BOA BCO ∠=∠ ∴23∠∠=在BCO 和ODA 中32BCO ODA BO OA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴BCO ODA ≌(AAS )∴BC OD =,CO AD =∴CD CO OD AD BC =+=+(3)点B 的坐标为()1,2-.过程如下:过B 、C 两点作y 轴垂线,垂足分别为M 、N ,同理(1)可得,CN =AM ,AN =MB ,∵点A 的坐标为(0,1),点C 的坐标为()3,2,∴CN =AM =3,ON =2,OA =1,∴MB =AN =ON -OA =1,OM =AM -OA =2,∵点B 在第四象限,∴点B 坐标为:()1,2-.【点睛】主要考查了等腰直角三角形的性质,全等三角形的判定和性质、图形与坐标变换,构造出全等三角形是解本题的关键.24. 1.5cm DE =.【分析】根据垂直定义求出∠BEC =∠ACB =∠ADC ,根据等式性质求出∠ACD =∠CBE ,根据AAS 证明△BCE ≌△CAD ;根据全等三角形的对应边相等得到AD =CE ,BE =CD ,利用DE =CE−CD ,即可解答.【详解】AD CE ⊥,BE CE ⊥90ADC CEB ∴∠=∠=︒90BCE CBE ∴∠+∠=︒又90ACB ∠=︒90BCE ACD ∴∠+∠=︒CBE ACD ∴=∠在ACD △和CBE △中ADC CEB ACD CBE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ACD CBE ∴△≌△CD BE ∴=,AD CE =又 2.5cm AD =,1cm BE =2.5cm CE ∴=,1cm =CD2.51 1.5cm DE CE CD ∴=-=-=.【点睛】本题考查了全等三角形的性质和判定,垂线的定义等知识点的应用,解此题的关键是推出证明ACD CBE ∴≌的三个条件.25.见解析【分析】由AD BE =,得AB=DE ,由//BC EF ,得ABC E ∠=∠,根据SAS 可证.【详解】证明:∵AD BE =,∴AD BD BE BD +=+,∴AB DE =,∵//BC EF ,∴ABC E ∠=∠,在ABC 和DEF 中,AB DE ABC E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴()ABC DEF SAS ≌.【点睛】本题考查了用“边角边”定理判断两个三角形全等,解题关键是挖掘题目隐含的全等条件,根据判定定理证明.26.(1)a>b>c;(2)见解析【分析】(1)a、b、c两两作差可得出a、b、c之间的大小关系;(2)对于任意一个三角形的三边a,b,c,满足任意两边之和大于第三边,任意两边之差小于第三边.【详解】(1)∵a-b=m2+n2-m2=n2>0;a-c=m2+n2-mn=(m-n)2+mn>0;b-c= m2-mn=m(m-n)>0∴a>b>c;(2)由(1)a>b>c可得,a+b>c∵a-b= m2+n2-m2=n2<mn∴a-b<c∴以a、b、c为边长的三角形一定存在.【点睛】本题主要考查了利用差比法比较代数式的大小和用三角形三边关系证明三角形的存在.。

北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(3)

北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(3)

, 北师大版七年级数学下册第 3 章《三角形》单元测试试卷及答案(3)一、填空题(共 10 小题)1.一个等腰三角形的两边长分别是 3cm 和 7cm ,则它的周长是_________ cm .△2.若∠A=∠B=2∠C ,则 ABC 是 _________ 三角形.(填“钝角”、“锐角”或“直 角”)△3.如图, ABC≌△DEF ,△ABC 的周长为 25cm AB=6cm ,CA=8cm ,则 DE= _________ , DF= _________ ,EF= _________ .4.如图,AB=AD ,BC=DC ,要证∠B=∠D ,则需要连接 _________ ,从而可证 _________和 _________ 全等.5.如图,AD ,AE 分别是△ABC 的角平分线和高线,且∠B=50°,∠C=70°,则∠EAD= _________ .△6.如图,CA⊥BE ,且 ABC≌△ADE ,则 BC 与 DE 的关系是 _________ .7.如图,有一块边长为 4 的正方形塑料模板 ABCD ,将一块足够大的直角三角板的直角顶 点落在 A 点,两条直角边分别与 CD 交于点 F ,与 CB 延长线交于点 E .则四边形 AECF 的 面积是 _________ .8.如图,BA∥CD,∠A=90°,AB=CE,BC=ED,则△CED≌_________,根据是_________.△9.如图,ABC中,AB=AC,BC=8,BD是AC边上的中线,△ABD与△BDC的周长的差是2,则AB=_________.10.如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA,得到A B C,至点A,B,C,使得A B=2AB,B C=2BC,C A=2CA,顺次连接A,B,C△1 11111111111记其面积为S;第二次操作,分别延长A B,B C,C A至点A,B,C,使得A B=2A B,11111112222111,得到A B C,记其面积为S;…;按B C=2B C,C A=2C A,顺次连接A,B,C△221112111222222B C,则其面积S=_________.此规律继续下去,可得到A△5555二、选择题(共8小题)11.在下列四组线段中,能组成三角形的是()A.2,2,5B.3,7,10C.3,5,9D.4,5,7△12.(2011•宿迁)如图,已知∠1=∠2,则不一定能使ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 13.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形B.∠1=∠2C.∠1和∠B都是∠A的余角D.∠2=∠A14.如图,AC⊥BC,CD⊥AB,DE⊥BC,分别交B C,AB,BC于点C,D,E,则下列说法中不正确的是()A.AC是△ABC和△ABE的高B.DE,DC都是△BCD的高C.DE是△DBE和△ABE的高D.AD,CD都是△ACD的高15.角α和β互补,α>β,则β的余角为()A.α﹣βB.180°﹣α﹣βC.D.△16.根据下列已知条件,能唯一画出ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=6△17.下列各组条件中,能判定ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.AB=DE,BC=EF,△ABC的周长=△DEF的周长D.∠A=∠D,∠B=∠E,∠C=∠F△18.如图,DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是()A.3个B.2个C.1个D.0个三、解答题(共7小题)19.如图,在小河的同侧有A,B,C,D四个村庄,图中线段表示道路.邮递员从A村送信到B村,总是走经过C村的道路,不走经过D村的道路,这是为什么呢?请你用所学的数学知识说明其中的道理.20.如图,AB=AD,BC=DC,AC与BD相交于点E,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母.不写推理过程,只要求写出四个你认为正确的结论即可)21.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD 沿着角的两边放正,沿AC画一条射线AE,AE就是角平分线,请说明它的道理.22.如图,A、B两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF,且使BF⊥AB,在BF上截取BC=CD,过D点作DE⊥BF,使E、C、A在一条直线上,则DE的长就是A、B之间的距离,请说明理由..23.如图,公园有一条“Z”字形道路 ABCD ,其中 AB∥CD ,在 E 、M 、F 处各有一个小 石凳,且 BE=CF ,M 为 BC 的中点,请问三个小石凳是否在一条直线上?说出你推断的理 由.△24.如图, ABC 中,AB=BC=CA ,∠A=∠ABC=∠ACB ,在△ABC 的顶点 A ,C 处各有 一只小蚂蚁,它们同时出发,分别以相同速度由 A 向 B 和由 C 向 A 爬行,经过 t (s )后, 它们分别爬行到了 D ,E 处,设 DC 与 BE 的交点为 F .(△1)证明 ACD≌△CBE ;(2)小蚂蚁在爬行过程中,DC 与 BE 所成的∠BFC 的大小有无变化?请说明理由.25.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什 么情况下,它们会全等? (1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略) 对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知: ABC 、 A △1B C 均为锐角三角形,AB=A B ,BC=B C ,∠C=∠C .1 1 1 1 1 l l求证:ABC≌ A △1B C .1 1(请你将下列证明过程补充完整.)证明:分别过点 B ,B 作 BD⊥CA 于 D , 1B D ⊥C A 于D .1 11 11 则∠BDC=∠B D C =90°, 1 1 1∵BC=B C ,∠C=∠C , 1 11∴ BCD≌ B △1C D ,1 1∴BD=B D .1 1(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.参考答案与试题解析一、填空题(共10小题)1.一个等腰三角形的两边长分别是3cm和7cm,则它的周长是17cm.考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.解答:解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17cm.故答案为:17.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.△2.若∠A=∠B=2∠C,则ABC是锐角三角形.(填“钝角”、“锐角”或“直角”)考点:三角形内角和定理.专题:计算题.分析:根据三角形的内角和为180°和已知条件设未知数,列方程求解,再判断形状.解答:解:设三角分别是∠A=a°,∵∠A=2∠B=3∠C,∴∠B=a°,∠B=a°,则a+a+a=180°,解a≈98°.所以三角形是钝角三角形.故答案为钝角.点评:此题主要考查了三角形的内角和定理:三角形的内角和为180°.正确的设出一个角并表示出其他角是解决此题的关键.△3.如图,ABC≌△DEF,△ABC的周长为25cm,AB=6cm,CA=8cm,则DE=6cm,DF=8cm,EF=11cm.考点:全等三角形的性质.分析:根据△ABC的周长求出BC,然后根据全等三角形对应边相等解答即可.解答:解:∵△ABC的周长为25cm,AB=6cm,CA=8cm,∴BC=25﹣6﹣8=11cm,∵△ABC≌△DEF,∴DE=AB=6cm,DF=AC=8cm,EF=BC=11cm.故答案为:6cm;8cm;11cm.点评:本题考查了全等三角形对应边相等的性质,熟记性质并准确找出对应边是解题的关键.4.如图,AB=AD,BC=DC,要证∠B=∠D,则需要连接AC,从而可证△ABC和△ADC全等.考点:全等三角形的判定与性质.分析:连接AC,根据AB=AD,BC=DC,AC=AC即可证明△ABC≌△ADC,于是得到∠B=∠D.解答:解:连接AC,在△ABC和△ADC中,∵,∴△ABC≌△ADC(SSS),∴∠B=∠D.故答案为△AC,ABC,△ADC.点评:本题主要考查全等三角形的判定与性质的知识点,解答本题的关键是熟练掌握其判定定理,此题基础题,比较简单.5.如图,AD,AE分别是△ABC的角平分线和高线,且∠B=50°,∠C=70°,则∠EAD= 10°.考点:三角形内角和定理.分析:根据三角形的内角和等于180°求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠B AE,然后根据∠EAD=∠BAE﹣∠BAD代入数据进行计算即可得解.解答:解:∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵AD是△ABC的角平分线,∴∠BAD=∠BAC=×60°=30°,∵AE是△ABC的高线,∴∠BAE=90°﹣∠B=90°﹣50°=40°,∴∠EAD=∠BAE﹣∠BAD=40°﹣30°=10°.故答案为:10°.点评:本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,是基础题,准确识图找出各角度之间的关系是解题的关键.△6.如图,CA⊥BE,且ABC≌△ADE,则BC与DE的关系是相等且垂直.考点:全等三角形的性质.分析:根据全等三角形对应边相等可得BC=DE,全等三角形对应角相等可得∠C=∠E,根据垂直的定义求出∠BAC=90°,然后求出∠B+∠E=90°,从而得到∠BFE=90°,即BC⊥DE.解答:解:∵△ABC≌△ADE,∴BC=DE,∠C=∠E,∵CA⊥BE,∴∠BAC=90°,∵∠B+∠C=180°﹣∠BAC=180°﹣90°=90°,∴∠B+∠E=90°,∴∠BFE=180°﹣(∠B+∠E)=180°﹣90°=90°,∴BC⊥DE,故BC与DE的关系是相等且垂直.故答案为:相等且垂直.点评:本题考查了全等三角形的性质,主要利用了全等三角形对应边相等,全等三角形对应角相等,垂直的定义,熟记性质是解题的关键.7.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是16.△S AEB =S△=S△ , 考点: 正方形的性质;全等三角形的判定与性质.分析: 由四边形 ABCD 为正方形可以得到∠D=∠B=90°,AD=AB ,又∠ABE=∠D=90°,而∠EAF=90°由此可以推出∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,进一步得到∠DAF=∠BAE ,所以可以证明△AEB≌△AFD ,所以 AFD ,那么它们 都加上四边形 ABCF 的面积,即可四边形 AECF 的面积=正方形的面积,从而求出 其面积.解答: 解:∵四边形 ABCD 为正方形,∴∠D=∠ABC=90°,AD=AB , ∴∠ABE=∠D=90°, ∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°, ∴∠DAF=∠BAE , ∴△AEB≌△AFD ,△∴S AEB AFD∴它们都加上四边形 ABCF 的面积,可得到四边形 AECF 的面积=正方形的面积=16.故答案为:16.点评: 本题需注意:在旋转过程中一定会出现全等三角形,应根据所给条件找到.8.如图,BA∥CD ,∠A=90°,AB=CE ,BC=ED ,则△CED≌ △ABC ,根据是HL .考点: 全等三角形的判定.分析: 根据两直线平行,同旁内角互补求出∠DCE=90°,然后利用“HL”证明△CED 和△ABC 全等.解答: 解:∵BA∥CD ,∠A=90°,∴∠DCE=180°﹣∠A=180°﹣90°=90°, ∵在 Rt△CED 和 Rt△ABC 中,,∴ CED≌ ABC (△HL ). 故答案为: ABC ,△HL .点评: 本题考查了全等三角形的判定,平行线的性质,求出∠DCE=90°是解题的关键.△9.如图, ABC 中,AB=AC ,BC=8,BD 是 AC 边上的中线,△ABD 与△BDC 的周长的 差是 2,则 AB= 10 .考点: 等腰三角形的性质.分析: 根据三角形中线的定义可得 AD=CD ,然后求出△ABD 与△BDC 的周长的差=AB﹣BC ,再代入数据进行计算即可得解.解答: 解:∵BD 是 AC 边上的中线,∴AD=CD ,∴△ABD 与△BDC 的周长的差=(AB+AD+BD )﹣(BC+CD+BD )=AB ﹣BC , ∵△ABD 与△BDC 的周长的差是 2,BC=8, ∴AB ﹣8=2, ∴AB=10.故答案为:10.点评: 本题考查了等腰三角形腰上的中线的定义,求出△ABD 与△BDC 的周长的差=AB﹣BC 是解题的关键,也是本题的难点.10.如图,对面积为 1 的△ABC 逐次进行以下操作:第一次操作,分别延长 AB ,BC ,CA 至点 A ,B ,C ,使得 A B=2AB ,B C=2BC ,C A=2CA ,顺次连接 A ,B ,C △1,得到 A B C ,111111111 1 1记其面积为 S ;第二次操作,分别延长 A B ,B C ,C A 至点 A ,B ,C ,使得 A B =2A B , 11 11 11 12222 1 1 1B C =2B C ,C A =2C A ,顺次连接 A ,B ,C △2,得到 A B C ,记其面积为 S ;…;按 2 11 12 11 1222 2 22此规律继续下去,可得到A △5BC ,则其面积 S = 195 .5 5 5考点: 三角形的面积. 专题: 压轴题;操作型.分析: 根据高的比等于面积比推理出A △1BC 的面积是 A △1BC 面积的 2 倍,则 A △1B B 的11面积是A △1BC 面积的 3 倍…,以此类推,得出 A △2BC 的面积.2 2解答: 解:连接 A C ,根据 A B=2AB ,得到:AB :A A=1:3,111因而若过点 B ,A 作△ABC 与 AA △1C 的 AC 边上的高,则高线的比是 1:3, 1因而面积的比是 1:△3,则 A BC 的面积是△ABC 的面积的 2 倍,1设△ABC 的面积是 △a ,则 A BC 的面积是 2a , 1同理可以得到A △1BC 的面积是 A △1BC 面积的 2 倍,是 4a ,1则 A △1B B 的面积是 6a ,1同理B △1C C 和 A △1C A 的面积都是 6a ,11△A B C 的面积是 19a ,1 1 1即 A △1B C 的面积是△ABC 的面积的 19 倍, 1 1同理A △2BC 的面积是 A △1B C 的面积的 19 倍,2 21 1即 A △1B C 的面积是 △19, A B C 的面积 192,1 12 2 2依此类推,AB C的面积是S=195=2476099.△5555点评:正确判断相邻的两个三角形面积之间的关系是解决本题的关键,本题的难度较大.二、选择题(共8小题)11.在下列四组线段中,能组成三角形的是()A.2,2,5B.3,7,10C.3,5,9D.4,5,7考点:三角形三边关系.分析:根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.解答:解:A、∵2+2=4<5,∴2,2,5不能组成三角形,故本选项错误;B、∵3+7=10,∴3,7,10不能组成三角形,故本选项错误;C、∵3+5=8<9,∴3,5,9不能组成三角形,故本选项错误;D、4,5,7能组成三角形,故本选项正确.故选D.点评:本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解题的关键.△12.(2011•宿迁)如图,已知∠1=∠2,则不一定能使ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 考点:全等三角形的判定.专题:压轴题.分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解答:解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故本选项正确,不合题意.B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故本选项错误,符合题意.C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故本选项正确,不合题意.D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故本选项正确,不合题意.故选B.点评:此题主要考查学生对全等三角形判定定理的理解和掌握,此题难度不大,属于基础题.13.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形C.∠1和∠B都是∠A的余角B.∠1=∠2 D.∠2=∠A考点:直角三角形的性质.专题:证明题.分析:在△ABC中,∠ACB=90°,CD⊥AB,因而△ACD∽△CBD∽△ABC,根据相似三角形的对应角相等,就可以证明各个选项.解答:解:∵∠ACB=90°,CD⊥AB,垂足为D,∴△ACD∽△CBD∽△ABC.A、∴图中有三个直角三角形Rt△ACD、Rt△CBD、Rt△ABC;故本选项正确;B、应为∠1=∠B、∠2=∠A;故本选项错误;C、∴∠1=∠B、∠2=∠A,而∠B是∠A的余角,∴∠1和∠B都是∠A的余角;故本选项正确;D、∴∠2=∠A;故本选项正确.故选B.点评:本题主要考查了直角三角形的性质,直角三角形斜边上的高,把这个三角形分成的两个三角形与原三角形相似.14.如图,AC⊥BC,CD⊥AB,DE⊥BC,分别交B C,AB,BC于点C,D,E,则下列说法中不正确的是()A.AC是△ABC和△ABE的高C.DE是△DBE和△ABE的高B.DE,DC都是△BCD的高D.AD,CD都是△ACD的高考点:三角形的角平分线、中线和高.分析:三角形的高即从三角形的一个顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.解答:解:A、AC是△ABC和△ABE的高,正确;B、DE,DC都是△BCD的高,正确;C、DE不是△ABE的高,错误;D、AD,CD都是△ACD的高,正确.故选C.点评:考查了三角形的高的概念.15.角α和β互补,α>β,则β的余角为()A.α﹣βB.180°﹣α﹣βC.D.考点:余角和补角.分析:根据互为补角的两个角的和等于180°表示出α+β,再根据互为余角的两个角的和等于90°列式整理即可得解.解答:解:∵角α和β互补,∴α+β=180°,∴β的余角为:90°﹣β=(α+β)﹣β=(α﹣β).故选C.点评:本题考查了余角和补角,利用90°和180°的倍数关系消掉常数是解题的关键.△16.根据下列已知条件,能唯一画出ABC的是()A.AB=3,BC=4,AC=8C.∠A=60°,∠B=45°,AB=4B.AB=4,BC=3,∠A=30°D.∠C=90°,AB=6考点:全等三角形的判定.专题:作图题;压轴题.分析:要满足唯一画出△ABC,就要求选项给出的条件符合三角形全等的判定方法,不符合判定方法的画出的图形不一样,也就是三角形不唯一,而各选项中只有C选项符合ASA,是满足题目要求的,于是答案可得.解答:解:A、因为AB+BC<AC,所以这三边不能构成三角形;B、因为∠A不是已知两边的夹角,无法确定其他角的度数与边的长度;C、已知两角可得到第三个角的度数,已知一边,则可以根据ASA来画一个三角形;D、只有一个角和一个边无法根据此作出一个三角形.故选C.点评:此题主要考查了全等三角形的判定及三角形的作图方法等知识点;能画出唯一三角形的条件一定要满足三角形全等的判定方法,不符合判定方法的画出的三角形不确定,当然不唯一.△17.下列各组条件中,能判定ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.AB=DE,BC=EF,△ABC的周长=△DEF的周长D.∠A=∠D,∠B=∠E,∠C=∠F考点:全等三角形的判定.分析:根据全等三角形的判定(三组对应边分别相等的两个三角形全等(简称SSS))可得当AB=DE,BC=EF,AC=DF可判定△ABC≌△DEF,做题时要对选项逐个验证.解答:解:A、满足SSA,不能判定全等;B、AC=EF不是对应边,不能判定全等;C、符合SSS,能判定全等;D、满足AAA,不能判定全等.故选C.点评:本题考查了全等三角形的判定方法,在应用判定方法做题时找准对应关系,对选项逐一验证,而AAA,SSA不能作为全等的判定方法.△18.如图,DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是()A.3个B.2个C.1个D.0个考点:全等三角形的判定与性质;等边三角形的性质.分析:根据等边三角形性质得出AC=CD,BC=CE,∠ACD=∠BCE=60°,求出∠ACE=∠BCD,根据SAS证△ACE≌△BCD,推出∠NDC=∠CAM,求出∠DCE=∠ACD,证△ACM≌△DCN,推出CM=CN,AM=DN,即可判断各个结论.解答:解:∵△DAC和△EBC均是等边三角形,∴AC=CD,BC=CE,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠BCD,在△ACE和△BCD中∴△ACE≌△BCD(SAS);∴①正确;∵∠ACD=∠BCE=60°,∴∠DCE=180°﹣60°﹣60°=60°=∠ACD,∵△ACE≌△BCD,∴∠NDC=∠CAM,在△ACM和△DCN中∴△ACM≌△DCN(ASA),∴CM=CN,AM=DN,∴②正确;∵△ADC是等边三角形,∴AC=AD,∠ADC=∠ACD,∵∠AMC>∠ADC,∴∠AMC>∠ACD,∴AC>AM,即AC>DN,∴③错误;故选B.点评:本题考查了等边三角形的性质和全等三角形的性质和判定的应用,主要考查学生的推理能力和辨析能力.三、解答题(共7小题)19.如图,在小河的同侧有A,B,C,D四个村庄,图中线段表示道路.邮递员从A村送信到B村,总是走经过C村的道路,不走经过D村的道路,这是为什么呢?请你用所学的数学知识说明其中的道理.考点:三角形三边关系.分析:延长AC交BD于E,根据三角形的任意两边之和大于第三边可得AD+DE>AC+CE,CE+BE>BC,然后整理得到AD+BD>AC+BC,从而得解.解答:解:如图,延长AC交BD于E,在△ADE中,AD+DE>AC+CE,在△CBE中,CE+BE>BC,∴AD+DE+CE+BE>AC+CE+BC,∴AD+BD>AC+BC,因此,邮递员由A村到B村送信,经过C村路程近些,所以,他总是走经过C村的道路,不走经过D村的道路.点评:本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解题的关键.20.如图,AB=AD,BC=DC,AC与BD相交于点E,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母.不写推理过程,只要求写出四个你认为正确的结论即可)考点:全等三角形的判定与性质.专题:开放型.分析:由AB=AD,BC=DC知,AC是BD的中垂线,∴DE⊥AC,可由SSS证得△ABC≌△ADC及AC平分∠BAD等.解答:解:由已知得,AC垂直平分BD,即直线AC为四边形ABCD的对称轴,由对称性可知:DE=BE,DE⊥AC于△E,ABC≌ADC,△AC平分∠BAD等.点评:本题考查了三角形全等的判定和性质.做题时要从已知开始思考,结合全等的判定方法进行取舍.21.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD 沿着角的两边放正,沿AC画一条射线AE,AE就是角平分线,请说明它的道理.考点:全等三角形的应用.专题:证明题.分析:AC为公共边,其中AB=AD,BC=DC,利用SSS判断两个三角形全等,根据全等三角形的性质解题.解答:证明:△ABC与△ADC中,∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.即AE平分∠BAD.不论∠DAB是大还是小,始终有AE平分∠BAD.点评:本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.22.如图,A、B两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF,且使BF⊥AB,在BF上截取BC=CD,过D点作DE⊥BF,使E、C、A在一条直线上,则DE的长就是A、B之间的距离,请说明理由.考点:全等三角形的应用.分析:可以沿河岸作射线BF,且使BF⊥AB,在BF上截取BC=CD,过D点作DE⊥BF,使E、C、A在一条直线上,证明出这两个三角形全等,从而可得到结论.解答:解:∵∠ACB=∠DCE,BC=CD,∠B=∠EDC=90°,∴△ACB≌△ECD,∴AB=DE.点评:本题考查全等三角形的应用,关键是证明三角形全等,从而得到线段相等,得到结论.23.如图,公园有一条“Z”字形道路ABCD,其中AB∥CD,在E、M、F处各有一个小石凳,且BE=CF,M为BC的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.考点:全等三角形的应用.分析:首先连接EM、△MF,再证明BEM≌△CFM可得∠BME=∠FMC,再根据∠BME+∠EMC=180°,可得∠FMC+∠EMC=180,进而得到三个小石凳在一条直线上.解答:解:连接EM、MF,∵AB∥CD,∴∠B=∠C,又∵M为BC中点,∴BM=MC.,∴在△BEM和△CFM中∴△BEM≌△CFM(SAS),∴∠BME=∠FMC,∵∠BME+∠EMC=180°,∴∠FMC+∠EMC=180°,∴三个小石凳在一条直线上.点评:此题主要考查了全等三角形的应用,证明△BEM≌△CFM,证明出∠FMC+∠EMC=180°是解决问题的关键.△24.如图,ABC中,AB=BC=CA,∠A=∠ABC=∠ACB,在△ABC的顶点A,C处各有一只小蚂蚁,它们同时出发,分别以相同速度由A向B和由C向A爬行,经过t(s)后,它们分别爬行到了D,E处,设DC与BE的交点为F.(△1)证明ACD≌△CBE;(2)小蚂蚁在爬行过程中,DC与BE所成的∠BFC的大小有无变化?请说明理由.考点:全等三角形的应用.分析:(1)根据小蚂蚁的速度相同求出AD=CE,再利用“边角边”证明△ACD和△CBE 全等即可;(2)根据全等三角形对应角相等可得∠EBC=∠ACD,然后表示出∠BFC,再根据等边三角形的性质求出∠ACB,从而得到∠BFC.解答:(1)证明:∵小蚂蚁同时从A、C出发,速度相同,∴t(s)后两只小蚂蚁爬行的路程AD=CE,∵在△ACD和△CBE中,,∴△ACD≌△CBE(SAS);(△2)解:∵ACD≌△CBE,∴∠EBC=∠ACD,∵∠BFC=180°﹣∠EBC﹣∠BCD,∴∠BFC=180°﹣∠ACD﹣∠BCD,=180°﹣∠ACB,∵∠A=∠ABC=∠ACB,∴∠ACB=60°,∴∠BFC=180°﹣60°=120°,∴∠BFC无变化.点评:本题考查了全等三角形的应用,主要利用了全等三角形对应角相等的性质,等边三角形的性质,根据小蚂蚁的速度相同求出AD=CE是证明三角形全等的关键.25.(2006•绍兴)我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?.△1B △1(1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略) 对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知: ABC 、 A △1B C 均为锐角三角形,AB=A B ,BC=B C ,∠C=∠C .1 1 1 1 1 l l 求证:ABC≌ A △1B C . 1 1 (请你将下列证明过程补充完整.) 证明:分别过点 B ,B 作 BD⊥CA 于 D ,1 B D ⊥C A 于 D . 1 1 1 1 1则∠BDC=∠B D C =90°,1 1 1 ∵BC=B C ,∠C=∠C ,1 1 1 ∴ BCD≌ B △1C D ,1 1 ∴BD=B D . 1 1 (2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.考点: 全等三角形的判定.专题: 压轴题;阅读型.分析: 本题考查的是全等三角形的判定,首先易证得 ADB≌ A △1B C 然后易证出 1 1 ABC≌ A C .1 1解答: 证明:(1)证明:分别过点 B ,B 作 BD⊥CA 于 D ,1 B D ⊥C A 于 D . 1 1 1 1 1 则∠BDC=∠B D C =90°,1 1 1∵BC=B C ,∠C=∠C ,1 1 1 ∴ BCD≌ B △1C D ,1 1 ∴BD=B D . 1 1 补充:∵AB=A B ,∠ADB=∠A D B =90°.1 1 1 1 1 ∴ ADB≌ A △1D B (HL ),1 1 ∴∠A=∠A , 1又∵∠C=∠C ,BC=B C ,1 1 1 在△ABC 与 A △1B C 中,1 1∵,∴ ABC≌ A △1B C (AAS );1 1(△2)解:若两三角形( ABC 、 AB C )均为锐角三角形或均为直角三角形或均 1 1为钝角三角形,则它们全等(AB=A B,BC=B C,∠C=∠C△1,则ABC≌A△1B C).111111点评:命题立意:考查三角形全等的判定,阅读理解能力及分析归纳能力.做题时要认真读题,明白题意,然后按要求答题.。

(典型题)初中数学七年级数学下册第四单元《三角形》检测题(含答案解析)

(典型题)初中数学七年级数学下册第四单元《三角形》检测题(含答案解析)

一、选择题1.下列说法正确的是( )A .两个长方形是全等图形B .形状相同的两个三角形全等C .两个全等图形面积一定相等D .所有的等边三角形都是全等三角形 2.用三角尺画角平分线:如图,先在AOB ∠的两边分别取OM ON =,再分别过点M ,N 作OA ,OB 的垂线,交点为P .得到OP 平分AOB ∠的依据是( )A .HLB .SSSC .SASD .ASA 3.如图,∠ACD 是△ABC 的一个外角,过点D 作直线,分别交AC 和AB 于点E ,H .则下列结论中错误的是( )A .∠HEC >∠BB .∠B +∠ACB =180°-∠AC .∠B +∠ACB <180°D .∠B >∠ACD4.下面四个图形中,线段AD 是ABC ∆的高的是( )A .B .C .D .5.已知图中的两个三角形全等,则∠α等于( )A .50°B .60°C .70°D .80°6.已知如图,AB=AE ,只需再加一个条件就能证明△ABC ≌△AED ,下列选项是所加条件,请判断哪一个不能判断△ABC ≌△AED ( )A .∠B=∠EB .AC=ADC .∠ADE=∠ACBD .BC=DE 7.在ABC ∆中,AD 是BC 边上的中线,点G 是重心,如果6AG =,那么线段DG 的长为( )A .3B .4C .9D .128.根据下列条件能唯一画出ABC 的是( )A .AB =5,BC =6,AC =11B .AB =5,BC =6,∠C =45° C .AB =5,AC =4,∠C =90°D .AB =5,AC =4,∠C =45°9.已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )A .①②B .①②③C .①②④D .①②③④ 10.如图,在ABC 和AEF 中,EAC BAF ∠=∠,EA BA =,添加下面的条件:①EAF BAC ∠=∠;②E B ∠=∠;③AF AC =;④EF BC =,其中可以得到ABC AEF ≌△△的有( )个.A .1B .2C .3D .411.如图,AD 平分∠BAC ,AB=AC ,连接BD ,CD 并延长,分别交AC ,AB 于点F ,E ,则图中全等三角形共有( ) A .2对B .3对C .4对D .5对 12.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( )A .1个B .2个C .3个D .4个二、填空题13.如图,90MON ∠=︒,点A ,B 分别在射线OM ,ON 上,BE 平分NBA ∠,BE 的反向延长线与BAO ∠的平分线交于点C ,则ACB ∠的度数是_______.14.如图,ABC DEF ≅,B 、E 、C 、F 在同一直线上,7BC =,4EC =,则CF 的长为___________.15.如图,在ABC 中,=6AB ,=4AC ,点D ,E 分别在边AB ,AC 上,2BD AE CE ===,//CE AB 交DE 的延长线于点F ,则CF 的长为_____________.16.如图所示,AB AC =,AD AE =,BAC DAE ∠=∠,点D 在线段BE 上.若125∠=︒,230∠=︒,则3∠=______.17.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.18.如图,已知AD ∥BC ,∠B=30°,DB 平分∠ADE ,则∠DEC=______.19.如图,90C D ∠=∠=︒,请添加一个条件,使Rt ABC ∆与Rt ABD ∆全等.你添加的条件是________(写出一个符合要求的条件即可).20.如图,点D 是∠AOB 的平分线OC 上的任意一点,DE ∥OB ,交OA 于点E ,若∠AED =50°,则∠1=_____°.三、解答题21.如图:已知AD BE =,BC EF =且//BC EF ,求证:ABC DEF ≌△△.22.如图(1),已知ABC 中,90BAC ∠=︒,AB AC =;AE 是过A 的一条直线,且B ,C 在AE 的异侧,BD AE ⊥于D ,CE AE ⊥于E .(1)求证:BD DE CE =+;(2)若直线AE 绕A 点旋转到图(2)位置时(BD CE <),其余条件不变,问BD 与DE ,CE 的数量关系如何?请给予证明.(3)若直线AE 绕A 点旋转到图(3)位置时(BD CE >),其余条件不变,问BD 与DE ,CE 的数量关系如何?请直接写出结果,不需证明;(4)根据以上的讨论,请用简洁的语言表达直线AE 在不同位置时BD 与DE ,CE 的位置关系.23.如图1,ABC 是等边三角形,,D E 为AC 上两点,且AD CE =,延长BC 至点F ,使CF CD =,连结BD EF ,.(1)如图2,当,D E 两点重合时,求证:BD DF =.(2)如图3,延长FE 交线段BD 于点G .①求证:BD EF =.②求DGE ∠的度数.24.ABC ,点M 为射线CD 上任意一点(点M 与点C 不重合).连接BM ,将线段BM 绕点B 逆时针旋转得到线段BN ,连接NA 并延长,交直线CD 于点E .(1)如图1,ABC 是等边三角形,将线段BM 绕点B 逆时针旋转60︒得到线段BN ,猜想MEN ∠的度数,并证明.(2)如图2,若50BAC BC ∠=∠=︒,将线段BM 绕点B 逆时针旋转80︒得到线段BN ,猜想MEN ∠的度数,并证明.25.将Rt ABC △的直角顶点C 置于直线l 上,AC BC =,分别过点 A 、B 作直线l 的垂线,垂足分别为点D 、E ,连接AE .若3BE =, 5DE =.求ACE △的面积.26.如图,AB AD =,AC AE =,CAE BAD ∠=∠.求证:B D ∠=∠.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】性质、大小完全相同的两个图形是全等形,根据定义解答.【详解】A 、两个长方形的长或宽不一定相等,故不是全等图形;B 、由于大小不一定相同,故形状相同的两个三角形不一定全等;C 、两个全等图形面积一定相等,故正确;D 、所有的等边三角形大小不一定相同,故不一定是全等三角形;故选:C .【点睛】此题考查全等图形的概念及性质,熟记概念是解题的关键.2.A解析:A【分析】利用垂直得到90PMO PNO ∠=∠=,再由OM ON =,OP OP =即可根据HL 证明()HL ≌PMO PNO △△,由此得到答案.【详解】∵PM OA ⊥,PN OB ⊥,∴90PMO PNO ∠=∠=.∵OM ON =,OP OP =,∴()HL ≌PMO PNO △△, ∴POA POB ∠=∠,故选:A .【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据题中的已知条件确定对应相等的边或角,由此利用以上五种方法中的任意一种证明两个三角形全等.3.D解析:D【分析】三角形的一个外角大于任何一个和它不相邻的一个内角,根据以上定理逐个判断即可.【详解】解:A 、∵∠HEC >∠AHD ,∠AHD >∠B ,∴∠HEC >∠B ,故本选项不符合题意;B 、∵∠B+∠ACB+∠A=180°,∴∠B+∠ACB=180°-∠A ,故本选项不符合题意;C 、∵∠B+∠ACB+∠A=180°,∴∠B+∠ACB <180°,故本选项不符合题意;D 、∠B <∠ACD ,故本选项符合题意;故选:D .【点睛】本题考查了三角形内角和定理和三角形的外角性质的应用,能灵活运用定理进行推理是解题的关键.4.D解析:D【分析】根据三角形高的定义进行判断.【详解】解:线段AD 是△ABC 的高,则过点A 作对边BC 的垂线,则垂线段AD 为△ABC 的高. 选项A 、B 、C 错误,故选:D .【点睛】本题考查了三角形的高:三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.5.C解析:C利用全等三角形的性质及三角形内角和可求得答案.【详解】解:如图,∵两三角形全等,∴∠2=60°,∠1=52°,∴∠α=180°-50°-60°=70°,故选:C.【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.6.D解析:D【分析】根据全等三角形的判定条件结合AE=AB、∠A=∠A逐项判定即可.【详解】解:∵AE=AB、∠A=∠A∴A、补充∠B=∠E,根据ASA可证明△ABC≌△AED,不符合题意;B、补充AC=AD,根据SAS可证明△ABC≌△AED,不符合题意;C、补充∠ADE=∠ACB,根据AAS可证明△ABC≌△AED,不符合题意;D、补充BC=DE,为SSA不能证明△ABC≌△AED,符合题意.故答案为D.【点睛】本题考查了三角形全等的证明,掌握AAA、SSA不能判定普通三角形全等是解答本题的关键.7.A解析:A【分析】根据三角形重心的定义求解即可.【详解】∵AD是BC边上的中线,点G是重心,∴AG:DG=2:1,∵6AG ,∴DG=3.故选A.本题考查了三角形重心的性质,熟记重心的性质,并能灵活运用是解题的关键.8.C解析:C【分析】判断其是否为三角形,即两边之和大于第三边,两边之差小于第三边,两边夹一角,或两角夹一边可确定三角形的形状,否则三角形并不是唯一存在,可能有多种情况存在.【详解】解:A:AC 与 BC两边之和不大于第三边,所以不能作出三角形;B:∠C 不是 AB,BC 的夹角,故不能唯一画出△ABC ;C:AB=5,AC=4,∠C=90°,所以BC=3,故能唯一画出△ABC ;D:∠C 并不是 AB,AC 的夹角,故可画出多个三角形;故选: C .【点睛】本题考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.9.C解析:C【分析】直接利用当A,B,C在一条直线上,以及当A,B,C不在一条直线上,分别分析得出答案.【详解】解:∵线段AB=8cm,AC=6cm,∴如图1,A,B,C在一条直线上,∴BC=AB−AC=8−6=2(cm),故①正确;如图2,当A,B,C在一条直线上,∴BC=AB+AC=8+6=14(cm),故②正确;如图3,当A,B,C不在一条直线上,8−6<BC<8+6,故线段BC可能为5或9,故③错误,④正确.故选:C.【点睛】此题主要考查了三角形三边关系,正确分类讨论是解题关键.10.B解析:B【分析】根据EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠,经推到得EAF BAC ∠=∠;再结合全等三角形判定的性质分析,即可得到答案.【详解】∵EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠ ∴EAF BAC ∠=∠E B ∠=∠,即E B EAF BAC EA BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()ASA ,故②符合题意;AF AC =,即AF AC EAF BAC EA BA =⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()SAS ,故③符合题意;①和④不构成三角形全等的条件,故错误;故选:B .【点睛】本题考查了全等三角形的知识;解题的关键是熟练掌握全等三角形的性质,从而完成求解.11.C解析:C【分析】认真观察图形,确定已知条件在图形上的位置,结合全等三角形的判定方法,由易到难,仔细寻找.【详解】解:AD 平分BAC ∠,BAD CAD ∴∠=∠, 在ABD ∆与ACD ∆中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,()ABD ACD SAS ∴∆≅∆,BD CD ∴=,B C ∠=∠,ADB ADC ∠=∠,又EDB FDC ∠=∠,ADE ADF ∴∠=∠,AED AFD ,BDE CDF ∆≅∆,∆≅∆ABF ACE .AED AFD ,ABD ACD ∆≅∆,BDE CDF ∆≅∆,∆≅∆ABF ACE ,共4对. 故选:C .【点睛】本题考查三角形全等的判定方法和全等三角形的性质,熟悉相关判定定理是解题的关键. 12.C解析:C【分析】根据“SAS ”可证明CDE BDF ∆≅∆,则可对④进行判断;利用全等三角形的性质可对①进行判断;由于AE 与DE 不能确定相等,则根据三角形面积公式可对②进行判断;根据全等三角形的性质得到ECD FBD ∠=∠,则利用平行线的判定方法可对③进行判断.【详解】解:AD 是ABC ∆的中线,CD BD ∴=,DE DF =,CDE BDF ∠=∠, ()CDE BDF SAS ∴∆≅∆,所以④正确;CE BF ∴=,所以①正确;AE ∵与DE 不能确定相等,ACE ∴∆和CDE ∆面积不一定相等,所以②错误;CDE BDF ∆≅∆,ECD FBD ∴∠=∠,//BF CE ∴,所以③正确;故选:C .【点睛】本题考查了全等三角形的判定,熟悉全等三角形的5种判定方法是解题的关键.二、填空题13.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式求出再根据角平分线的定义求出和然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解【详解】解:根据三角形的外角性质可得平分 解析:45︒【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,列式求出ABN ∠,再根据角平分线的定义求出ABE ∠和BAC ∠,然后根据三角形的一个外角等于与它不相邻的两个内角的和,列式计算即可得解.【详解】解:根据三角形的外角性质,可得ABN AOB BAO ∠=∠+∠,BE 平分NBA ∠,AC 平分BAO ∠, 12ABE ABN ∴∠=∠,12BAC BAO ∠=∠,C ABE BAC ∴∠=∠-∠,1)2ABN BAO =∠-∠, ()1122AOB BAO BAO =∠+∠-∠, 12AOB =∠, 90MON ∠=︒,90AOB ∠=︒∴,190452C ∴∠=⨯︒=︒. 故答案为:45°.【点睛】本题考查了三角形外角的性质,以及角平分线的定义,解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.14.3【分析】直接用全等三角形的性质可得CF=EF-CE=BC-CE 然后进行求解即可;【详解】∵△ABC ≌△DEF ∴BC=EF ∵BC=7EC=4∴CF=7-4=3故答案为:3【点睛】本题考查了全等三角形解析:3【分析】直接用全等三角形的性质可得CF=EF-CE=BC-CE ,然后进行求解即可;【详解】∵△ABC ≌△DEF ,∴ BC=EF ,∵ BC=7,EC=4,∴ CF=7-4=3,故答案为:3.【点睛】本题考查了全等三角形的性质以及应用,正确理解全等三角形的性质是解题的关键. 15.4【分析】根据ASA 证明△ADE ≌△CFE 得CF=AD 再求出AD 的长即可【详解】解:∵AB=6BD=2∴AD=AB-BD=6-2=4∵∴∠BAC=∠FCE 在△ADE 和△CFE 中∴△ADE ≌△CFE ∴解析:4【分析】根据ASA 证明△ADE ≌△CFE 得CF=AD ,再求出AD 的长即可.【详解】解:∵AB=6,BD=2∴AD=AB-BD=6-2=4∵//CE AB∴∠BAC=∠FCE ,在△ADE 和△CFE 中BAC FCE AE CEAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△CFE∴CF=AD=4.故答案为:4.【点睛】此题主要考查了全等三角形的判定与性质,证明△ADE ≌△CFE 是解答此题的关键. 16.55°【分析】先证明△ABD ≌△ACE (SAS );再利用全等三角形的性质:对应角相等求得∠2=∠ABE ;最后根据三角形内角与外角的性质即可求出答案【详解】∵∴∠1+∠CAD=∠CAE+∠CAD ∴∠1解析:55°【分析】先证明△ABD ≌△ACE (SAS );再利用全等三角形的性质:对应角相等,求得∠2=∠ABE ;最后根据三角形内角与外角的性质即可求出答案.【详解】∵BAC DAE ∠=∠,∴∠1+∠CAD=∠CAE+∠CAD ,∴∠1=∠CAE ;在△ABD 与△ACE 中,1AD AE CAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS );∴∠2=∠ABE ;∵∠3=∠ABE+∠1=∠1+∠2,∠1=25°,∠2=30°,∴∠3=55°.故答案为:55°.【点睛】本题考查了全等三角形的判定及性质,三角形的外角性质;将所求的角与已知角通过全等及内角、外角之间的关系联系起来是解答此题的关键.17.4cm 【分析】由DE ⊥AB 可得∠BFE=90°由直角三角形两锐角互余可得∠ABC+∠DEB=90°由∠ACB=90°由直角三角形两锐角互余可得∠ABC+∠A=90°根据同角的余角相等可得∠A=∠DE解析:4cm .【分析】由DE ⊥AB ,可得∠BFE=90°,由直角三角形两锐角互余,可得∠ABC+∠DEB=90°,由∠ACB=90°,由直角三角形两锐角互余,可得∠ABC+∠A=90°,根据同角的余角相等,可得∠A=∠DEB ,然后根据AAS 判断△ABC ≌△EDB ,根据全等三角形的对应边相等即可得到BD=BC ,AC=BE ,由E 是BC 的中点,得到BE=12BC=12BD=4. 【详解】解:∵DE ⊥AB ,可得∠BFE=90°,∴∠ABC+∠DEB=90°,∵∠ACB=90°,∴∠ABC+∠A=90°,∴∠A=∠DEB ,在△ABC 和△EDB 中, ACB DBC A DEBAB DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△ABC ≌△EDB (AAS ),∴BD=BC ,AC=BE ,∵E 是BC 的中点,BD=8cm ,∴BE=12BC=12BD=4cm , ∴AC=4cm .故答案为:4cm .【点睛】此题考查了全等三角形的判定与性质,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目,找准全等的三角形是解决本题的关键.18.60°【分析】由AD ∥BC ∠B=30°根据平行线的性质可得∠ADB=30°又由DB 平分∠ADE可求得∠ADE的度数继而求得答案【详解】∵AD∥BC∠B=30°∴∠ADB=∠B=30°∵DB平分∠AD解析:60°【分析】由AD∥BC,∠B=30°,根据平行线的性质,可得∠ADB=30°,又由DB平分∠ADE,可求得∠ADE的度数,继而求得答案.【详解】∵AD∥BC,∠B=30°,∴∠ADB=∠B=30°,∵DB平分∠ADE,∴∠ADE=2∠ADB=60°,∵AD∥BC,∴∠DEC=∠ADE=60°.【点睛】此题考查了平行线的性质以及角平分线的定义.此题难度不大,注意掌握数形结合思想的应用.19.AC=AD或BC=BD或∠BAC=∠BAD或∠ABC=∠ABD(只要写出其中一个即可)【分析】现有条件:公共边AB∠C=∠D=90°可以考虑添加对应边相等(因为是直角三角形全等的问题可以考虑用HL判解析:AC=AD或BC=BD或∠BAC=∠BAD或∠ABC=∠ABD(只要写出其中一个即可)【分析】现有条件:公共边AB,∠C=∠D=90°,可以考虑添加对应边相等(因为是直角三角形全等的问题,可以考虑用HL判定全等),也可以考虑添加角对应相等.【详解】在Rt△ABC和Rt△ABD中,已知∠C=∠D=90°,AB=AB;根据HL添加AC=AD或BC=BD;根据AAS添加∠BAC=∠BAD或∠ABC=∠ABD.故答案为:AC=AD或BC=BD或∠BAC=∠BAD或∠ABC=∠ABD.【点睛】本题考查了直角三角形全等的判定,主要看学生对全等三角形几种判断方法的掌握情况,特别是直角三角形的全等,既可以用一般方法,又可以用直角三角形全等的特殊方法,选择面就更广一些.20.25【分析】直接利用平行线的性质得出∠AED=∠AOB=50°再结合角平分线的定义得出答案【详解】解:∵DE∥OB∴∠AED=∠AOB=50°∵点D是∠AOB 的平分线OC上的任意一点∴∠1=∠AOC解析:25【分析】直接利用平行线的性质得出∠AED=∠AOB=50°,再结合角平分线的定义得出答案.【详解】解:∵DE ∥OB ,∴∠AED =∠AOB =50°,∵点D 是∠AOB 的平分线OC 上的任意一点,∴∠1=∠AOC =12×50°=25°. 故答案为:25.【点睛】本题主要考查的是平行线的性质、角平分线的定义,根据平行线的性质和角平分线的定义求得∠EOD=∠1的度数是解题的关键. 三、解答题21.见解析【分析】由AD=BE 可求得AB=DE ,再结合条件可证明△ABC ≌△DEF .【详解】证明:∵AD BE =∴AD BD BE BD +=+∴AB DE =又∵//BC EF∴ABC DEF ∠=∠在ABC 和DEF 中AB DE ABC DEF BC EF =⎧⎪∠=∠⎨⎪=⎩∴ABC DEF △≌△(SAS )【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .22.(1)见解析;(2)BD DE CE =-,见解析;(3)BD DE CE =-;(4)当B ,C 在AE 的同测时,BD DE CE =-;当B ,C 在AE 的异侧时,若BD CE >,则BD DE CE =+,若BD CE <,则BD CE DE =-【分析】(1)在直角三角形中,由题中条件可得∠ABD=EAC ,又有AB=AC ,则有一个角及斜边相等,则可判定△BAD ≌△AEC ,由三角形全等可得三角形对应边相等,进而通过线段之间的转化,可得出结论;(2)由题中条件同样可得出△BAD ≌△AEC ,得出对应线段相等,进而可得线段之间的关系;(3)同(2)的方法即可得出结论.(4)利用(1)(2)(3)即可得出结论.【详解】解:(1)∵BD ⊥AE ,CE ⊥AE∴∠ADB=∠CEA=90°∴∠ABD+∠BAD=90°又∵∠BAC=90°∴∠EAC+∠BAD=90°∴∠ABD=∠CAE在△ABD 与△ACE 中ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△ACE∴BD=AE ,AD=EC ,∴BD=DE+CE(2)∵BD ⊥AE ,CE ⊥AE∴∠ADB=∠CEA=90°∴∠ABD+∠BAD=90°又∵∠BAC=90°∴∠EAC+∠BAD=90°∴∠ABD=∠CAE在△ABD 与△ACE 中ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△ACE∴BD=AE ,AD=EC∴BD=DE-CE ,(3)∵∠BAC=90°,∴∠BAD+∠EAC=90°,又∵BD ⊥AE ,CE ⊥AE ,∴∠BDA=∠AEC=90°,∠BAD+∠ABD=90°,∴∠ABD=∠EAC ,在△ABD 与△CAE 中,BDA AEC ABD EAC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE ,∴BD=AE ,AD=CE ,∵DE=AD+AE=BD+CE ,∴BD=DE-CE .(4)归纳:由(1)(2)(3)可知:当B ,C 在AE 的同侧时,若BD> CE,则BD= DE +CE,若BD> CE,则BD= DE +CE,若BD< CE,则BD= CE- DE.【点睛】此题是几何变换综合题,主要考查了三角形全等的判定方法,余角的性质,线段的和差,熟练掌握全等三角形的判定和性质是解题的关键.23.(1)见解析;(2)①见解析;②60︒.【分析】(1)由等边三角形的性质可得60ABC ACB BA BC ∠=∠=︒=,,再由AD CE =,CF CD =,当,D E 两点重合时,可知点D 为等边三角形ABC 边AC 的中点,由三线合一性质,得1302DBC ABC F CDF ∠=∠=︒∠=∠,,由此解得30F ∠=︒,最后根据等角对等边解题即可;(2)①作//DH BC 交AB 于H ,连接BE ,由平行线性质解得6060AHD ABC ADH ACB ∠=∠=︒∠=∠=︒,,继而证明AHD 是等边三角形,从而得到AD DH AH CE ===,接着证明(SAS)BDH FEC ≌,最后由全等三角形对应边相等的性质解题即可;②由①中全等三角形对应角相等可得HBD F ∠=∠,结合角的和差解题即可.【详解】证明:(1)ABC 是等边三角形,60ABC ACB BA BC ∴∠=∠=︒=,,AD DC CF ==,1302DBC ABC F CDF ∴∠=∠=︒∠=∠,, 60ACB F CDF ∠=∠+∠=︒,30F ∴∠=︒,DBC F ∴∠=∠,BD DF ∴=;(2)①如图,作//DH BC 交AB 于H ,连接BE ,//DH BC , 6060AHD ABC ADH ACB ∴∠=∠=︒∠=∠=︒,,60A ∠=︒,AHD ∴是等边三角形,AD DH AH CE ∴===,AB AC =,BH CD ∴=,CD CF =,BH CF ∴=,120BHD ECF ∠=∠=︒,(SAS)BDH FEC ∴≌,BD EF ∴= ;②BDH FEC ≌HBD F ∴∠=∠60DGE GBF F GBF HBD ABC ∴∠=∠+∠=∠+∠=∠=︒【点睛】本题考查等边三角形的判定与性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.24.(1)60MEN ∠=︒,证明见解析;(2)80MEN ∠=︒,证明过程见解析;【分析】(1)根据等边三角形的性质证明()△△ABN CBM SAS ≅,设EAC x ∠=,ACE y ∠=,则MEN x y ∠=+,18060120NAB x x ∠=︒-︒-=︒-,60+y MCB ∠=︒,列式计算即可;(2)根据已知条件证明()△△ABN CBMSAS ≅,得到NAB MCB ∠=∠,即可得到结果;【详解】 (1)∵ABC 是等边三角形,∴AB CB =,60ABC ABM MBC ∠=︒=∠+∠,又∵60NBM NBA ABM ∠=︒=∠+∠,∴NBA MBC ∠=∠,在△ABN 和△CBM 中, BN BM NBA MBC AB CB =⎧⎪∠=∠⎨⎪=⎩,∴()△△ABN CBM SAS ≅,∴NAB MCB ∠=∠,设EAC x ∠=,ACE y ∠=,则MEN x y ∠=+,18060120NAB x x ∠=︒-︒-=︒-,60+y MCB ∠=︒,∴12060x y ︒-=︒+,∴1206060x y +=︒-︒=︒,即60MEN ∠=︒; (2)∵50BAC BCA ∠=∠=︒,∴BA BC =,180505080ABC ABM MBC ∠=︒-︒-︒=︒=∠+∠, 又∵80NBM NBA ABM ∠=︒=∠+∠,∴NBA MBC ∠=∠,在△ABN 和△CBM 中,BN BM NBA MBC AB CB =⎧⎪∠=∠⎨⎪=⎩,∴()△△ABN CBM SAS ≅,∴NAB MCB ∠=∠,设EN 与BC 相较于点F ,∴180MEN CFE FCE ∠=︒-∠-∠,()180NFB MBC BNA =︒-∠-∠+∠,()180NFB NBA BNA =︒-∠-∠+∠,ABC =∠,80=︒,即80MEN ∠=︒;【点睛】本题主要考查了全等三角形的判定与性质,结合等边三角形的性质,旋转的性质求解是解题的关键.25.32【分析】根据AAS 即可证明ACD CBE ≌,根据全等三角形的对应边相等,得出3CD BE ==, AD CE =,所而 358CE CD DE =+=+=,从而求出AD 的长,则可得到ACE △的面积.【详解】解:∵ AD CE ⊥, BE CE ⊥,∴90ADC CEB ∠=∠=︒,∵90ACB ∠=︒,∴90ACD CBE ECB ∠=∠=︒-∠,在ACD △与CBE △中,ADCCEB ACDCBE AC BC∴ACD CBE ≌(AAS) ∴ 3CD BE ==, AD CE =,∵ 358CE CD DE =+=+=,∴ 8AD =.ACE 11883222S CE AD △.【点睛】本题考查全等三角形的判定与性质,余角的性质等知识,熟悉相关性质是解题的关键. 26.见解析【分析】先证明BAC DAE ∠=∠,再根据“SAS”证明ABC ADE △≌△即可.【详解】证明:CAE BAD ∠=∠,CAE EMB BAD EAB ∴∠+∠=∠+∠, 即BAC DAE ∠=∠.在ABC 和ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,()ABC ADE SAS ∴≌.B D ∴∠=∠.【点睛】题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.。

【精选】北师大版七年级下册数学第三章《三角形》综合测试卷(含答案)

【精选】北师大版七年级下册数学第三章《三角形》综合测试卷(含答案)

【精选】北师大版七年级下册数学第三章《三角形》综合测试卷(含答案)一、选择题(每题3分,共30分)1.下列用木棒拼成的图形,符合三角形的概念的是( )2.如图,若△ABC≌△ADE,则下列结论中一定成立的是( ) A.AC=DE B.∠BAD=∠CAEC.AB=AE D.∠ABC=∠AED(第2题) (第4题) (第5题)3.【教材P87习题T3变式】【2022·南通】用一根小木棒与两根长分别为3 cm,6 cm的小木棒组成三角形,则这根小木棒的长度可以为( )A.1 cm B.2 cm C.3 cm D.4 cm4.【2021·毕节】将一副三角尺按如图所示的位置摆放在直尺上,则∠1的度数为( )A.70° B.75° C.80° D.85°5.【2022·吉林第二实验中学模拟】如图,AD是△ABC的角平分线,过点D向AB,AC两边作垂线,垂足分别为E,F,那么下列结论中不一定...正确的是( ) A.BD=CD B.DE=DFC.AE=AF D.∠ADE=∠ADF6.如图,AC与BD相交于点O,OA=OB,OC=OD,AD=BC,则图中全等三角形有( )A.1对B.2对C.3对D.4对(第6题) (第7题) (第8题)7.【2021·陕西】如图,点D,E分别在线段BC,AC上,连接AD,BE.若∠A=35°,∠B=25°,∠C=50°,则∠1的大小为( )A.60° B.70° C.75° D.85°8.【教材P111复习题T6改编】如图,这是工人师傅用同一种材料制成的金属框架,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24 cm,CF=3 cm,则制成整个金属框架所需这种材料的总长度为( )A.45 cm B.48 cm C.51 cm D.54 cm9.根据下列已知条件,能画出唯一..一个△ABC的是( )A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=6 10.如图,在△ABC中,AC⊥CB,CD平分∠ACB,点E在AC上,且CE=CB,则下列结论:①DC平分∠BDE;②BD=DE;③∠B=∠CED;④∠A+∠CED=90°.其中正确的有( )A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)11.如图,照相机的底部用三脚架支撑着,请你说说这样做的依据是___________________________________________.(第11题) (第12题) (第14题) (第15题)12.【开放题】【2022·宁夏】如图,AC,BD相交于点O,OB=OD,要使△AOB≌△COD,添加一个条件是____________(只写一个).13.【教材P86随堂练习T2变式】已知三角形的两边长分别为2 和7,第三边长为偶数,则三角形的周长为____________.14.如图,在△ABC中,BC=8 cm,AB>BC,BD是AC边上的中线,△ABD与△BDC 的周长的差是2 cm,则AB=__________.15.如图,D,E,F分别为AB,AC,BC上的点,且DE∥BC,△ABC沿DE折叠,使点A落在点F处.若∠B=50°,则∠BDF=________.16.如图,已知边长为1的正方形ABCD中,AC,BD交于点O,过点O任作一条直线分别交AD,BC于点E,F,则阴影部分的面积是________.(第16题) (第17题) (第18题)17.如图,AD,AE分别是△ABC的角平分线和高线,且∠B=50°,∠C=70°,则∠EAD=________.18.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=12 (AB+AD),若∠D=115°,则∠B=________.三、解答题(19~21题每题10分,其余每题12分,共66分) 19.【2022·益阳】如图,在Rt△ABC中,∠B=90°,CD∥AB,DE⊥AC于点E,且CE=AB.试说明:△CED≌△ABC.20.【2022·牡丹江四中模拟】如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC于E,求∠EDC的度数.21.【2021·黄石】如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)试说明:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.22.【教材P110复习题T4改编】如图,在△ABC中,AC=BC,D是边AB上一点,AE⊥CD于点E,BF⊥CD交CD的延长线于点F,若CE=BF,AE=EF+BF.(1)试说明:∠ACE=∠CBF;(2)判断直线AC与BC的位置关系,并说明理由.。

沪教版七年级数学下册试题 第十四章 《三角形》单元测试卷(含答案)

沪教版七年级数学下册试题 第十四章 《三角形》单元测试卷(含答案)

第十四章《三角形》单元测试卷一、单选题(共18分)1.已知三角形的三边长分别为3,5,x,则x不可能是()A.3B.5C.7D.82.在△ABC和△FMN中,已知AB=6,BC=7,∠B=48°,MN=6,FN=7,∠N=48°,能证明△ABC≌△MNF的判定方式为()A.SAS B.AAS C.ASA D.SSA3.△ABC的三边分别是a,b,c,不能判定是等腰三角形的是()A.∠A:∠B:∠C=2:2:3B.a:b:c=2:2:3C.∠B=50°,∠C=80°D.2∠A=∠B+∠C4.下列说法中正确的是()A.两腰对应相等的两个等腰三角形全等B.两锐角对应相等的两个直角三角形全等C.面积相等的两个三角形全等D.斜边对应相等的两个等腰直角三角形全等5.若a、b是等腰三角形的两边长,且满足关系式(a−2)2+|b−5|=0,则这个三角形的周长是( )A.9cm B.12cm C.9cm或12cm D.15cm或6cm 6.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC 和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.一定成立的结论有().A.①②③B.①②④C.①②③④D.①②③⑤二、填空题(共24分)7.若三角形三个内角满足∠A=12∠B=13∠C,则∠C=______.8.已知a、b、c为三角形的三边,且则a2+b2+c2=ab+bc+ac,则三角形的形状是 _____.9.如图,在等边△ABC中AB=2,BD是AC边上的高,延长BC至点E,使CE=CD,则BE的长为 ___________.10.如图,将△ABC绕点A顺时针旋转40°得到△ADE,点B的对应点D恰好落在边BC上,则∠ADE=___________°.11.已知△ABC的三边长分别是4、5、8,△DEF的三边分别是4、2x−1、3y−1,若这两个三角形全等,则x+y=______.12.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线的垂线段BD、CE,若BD=5厘米,CE=8厘米,则DE的长为______.13.在等腰三角形ABC中,其中一内角为50°,腰AB的垂直平分线MN交AC所在的直线于点D,则∠DBC的度数为______.14.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为18和21两个部分,则这个等腰三角形的底边长为______.15.如图,点E是△ABC的内角∠ABC和外角∠ACF的两条角平分线的交点,过点E作MN∥BC,交AB于点M,交AC于点N,若BM−CN=6,则线段MN的长度为____.16.如图,∠MON是一个钢架,∠MON=5°,为使钢架更牢固,需在其内部焊接一些钢管,如CD、DE、EF……若焊接的钢管的长度都与OC的长度相等,则最多能焊接___________根.17.定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”,若等腰△ABC是“倍长三角形”,底边BC的长为5,则腰AB的长为___________.18.如图,过边长为2的等边△ABC的边AB上一点P,作PE⊥AC于点E,Q为BC 延长线上一点,当PA=CQ时,连接PQ交AC边于点D,则DE的长为______.三、解答题(共58分)19.(本题5分)如图,已知△ABC,∠ACB=85°,点E,F分别在AB,AC上,ED交AC于点G,交BC的延长线于点D,∠FEG=40°,∠CGD=45°.求证:EF ∥BC.20.(本题5分)如图,△ABC中,∠ABC=45°,两条高AD和BE交于H.求证:BH=AC.21.(本题7分)如图,在△ABC中,已知∠BAC=90°,AD⊥BC,AD与∠ABC的平分线交于点E,试说明△AEF是等腰三角形的理由.22.(本题7分)如图,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC,BF与CE相交于点M.(1)求证:EC=BF;(2)求证:EC⊥BF.23.(本题8分)如图,点E是等边△ABC外一点,点D是BC边上一点,AD=BE,∠CAD=∠CBE,连接ED,EC.(1)试说明△ADC与△BEC全等的理由;(2)试判断△DCE的形状,并说明理由.24.(本题8分)如图,已知等边△ABC和等边△CDE,P、Q分别为AD、BE的中点.(1)试判断△CPQ的形状并说明理由.(2)如果将等边△CDE绕点C旋转,在旋转过程中△CPQ的形状会改变吗?请你将图2中的图形补画完整并说明理由.25.(本题8分)已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求∠DOE的度数;(2)试判断△MNC的形状,并说明理由.26.(本题10分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到如下图所示的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到如下图所示的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,不必证明;(3)当直线MN绕点C旋转到如图的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,不必证明.答案一、单选题1.D【分析】已知两边时,第三边的范围是大于两边的差,小于两边的和.这样就可以确定x 的范围,也就可以求出x 的不可能取得的值.【详解】解:∵3+5=8,5−3=2,∴2<x <8.故选:D .2.A【分析】根据全等三角形的判定方法并结合所给条件可得答案.【详解】解:∵AB =6,BC =7,∠B =48°,MN=6,FN =7,∠N =48°,∴AB =MN ,∠B =∠N ,BC =NF ,在△ABC 和△MNF 中,{AB =MN∠B =∠N BC =NF,∴△ABC ≌△MNF (SAS ).故选:A .3.D【分析】根据等腰三角形的判定,三角形内角和定理,进行计算逐一判断即可解答.【详解】解:A 、因为∠A:∠B:∠C =2:2:3,∠A +∠B +∠C =180°,所以∠A =∠B =180°×(22+2+3)=(3607)°,所以△ABC 是等腰三角形;B 、因为 a:b:c =2:2:3,所以设a =b =2x ,则有两边相等的△ABC 是等腰三角形;C 、因为 ∠A +∠B +∠C =180°,所以∠A =180°−∠B −∠C =180°−50°−80°=50°,则∠A =∠B ,所以△ABC 是等腰三角形;D 、因为2∠A =∠B +∠C ,∠A +∠B +∠C =180°,则∠A+2∠A=180°,那么∠A=60°,∠B+∠C=120°,不能判定是等腰三角形.故选:D.4.D【分析】根据全等三角形的判定方法和等腰三角形的性质判定即可.【详解】解:A、两腰对应相等的两个等腰三角形,只有两边对应相等,所以不一定全等,不合题意;B、两锐角对应相等的两个直角三角形,缺少对应的一对边相等,所以不一定全等,不合题意;C、面积相等的两个三角形形状不一定相同,则不一定全等,不合题意;D、斜边对应相等的两个等腰直角三角形,满足三个角及一条边对应相等,故全等,符合题意;故选:D.5.B【分析】利用非负性,求出a,b的值,分a是腰长和b是腰长,两种情况,讨论求解即可.【详解】解:∵(a−2)2+|b−5|=0,∴a−2=0,b−5=0,∴a=2,b=5;当a是腰长时:2+2<5,三边不能构成三角形,∴b为腰长,∴三角形的周长是:5+5+2=12cm;故选B.6.D【分析】①根据△ABC和△CDE是等边三角形可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≅△BCE,可推知AD=BE;②由△ACD≅△BCE得∠CBE=∠CAD和∠ACB=∠DCE=60°,AC=BC,得到△CQB ≅△CPA (ASA ),再根据∠PCQ =60°推出△PCQ 为等边三角形,又由∠PQC=∠DCE ,根据内错角相等,两直线平行,可知②正确;③同②得△ACP ≅△BCQ ,即可得出结论;④根据∠DQE =∠ECQ +∠CEQ =60°+∠CEQ ,∠CDE=60°,可知∠DQE≠∠CDE ,可知④错误;⑤先根据全等三角形的性质可得∠DAC =∠EBC ,再根据∠AOB =∠DAC +∠BEC =∠EBC +∠BEC =∠ACB =60°,可知⑤正确.【详解】解:①∵△ABC 和△CDE 为等边三角形,∴AC =BC ,CD =CE ,∠BCA =∠DCE =60°,∴∠ACD =∠BCE ,在△ACD 和△BCE 中,{AC =BC∠ACD =∠BCE CD =CE,∴△ACD ≅△BCE (SAS ),∴AD =BE ,∠ADC =∠BEC ,①正确;②∠DCP=180°−2×60°=60°=∠ECQ ,在△CDP 和△CEQ 中,{∠ADC =∠BECCD =CE ∠DCP =∠ECQ,∴△CDP ≅△CEQ (ASA ).∴CP =CQ ,∴∠CPQ =∠CQP =60°,∴∠QPC =∠BCA ,∴PQ ∥AE ,②正确;③同②得:△ACP ≅△BCQ ,∴AP =BQ ,③正确;④∵DE >QE ,且DP =QE ,∴DE >DP ,④错误;⑤∵△ACD ≅△BCE ,∴∠DAC =∠EBC ,∴∠AOB =∠DAC +∠BEC =∠EBC +∠BEC =∠ACB =60°,⑤正确;故答案为:①②③⑤.二、填空题7.90°【分析】根据三角形内角和定理进行计算即可求解.【详解】解:∵∠A=12∠B=13∠C,∠A+∠B+∠C=180°∴13∠C+23∠C+∠C=180°解得:∠C=90°,故答案为:90°.8.等边三角形【分析】先把所给等式左右两边同时乘以2,然后利用完全平方公式得到(a−b)2 +(b−c)2+(c−a)2=0,由此求解即可.【详解】解:∵a2+b2+c2=ab+bc+ac,∴a2+b2+c2−ab−bc−ac=0,∴2a2+2b2+2c2−2ab−2bc−2ac=0,∴a2−2ab+b2+b2−2bc+c2+a2−2ac+c2=0,即(a−b)2+(b−c)2+(c−a)2=0,∴a﹣b=0,b﹣c=0,c﹣a=0,∴a=b=c,∴△ABC为等边三角形.故答案为:等边三角形.9.3【分析】由等边三角形的性质可得AC=BC=AB=2,根据BD是AC边上的高线,可得AD=CD,再由题中条件CE=CD,即可求得BE.【详解】解:∵△ABC是等边三角形,∴AC=BC=AB=2,∵BD是AC边上的高线,∴D为AC的中点,∴AD=CD=12AC,∵CE=CD,∴CE=12AC=1,∴BE=BC+CE=2+1=3.故答案为:3.10.70【详解】根据旋转的性质得到AD=AB,∠ADE=∠B,根据等腰三角形的性质得到∠ADB=∠B,求得∠ADE=∠ADB=70°.【解答】解:由旋转的性质可知,AD=AB,∠ADE=∠B,∴∠ADB=∠B,∵∠BAD=40°,∴∠ADE=∠ADB=∠B=12×(180°−40°)=70°,故答案为:70.11.6或132【分析】根据全等三角形的性质得到5=2x−1,8=3y−1,或8=2x−1,5=3y−1,分别求出x,y的值,代入计算即可.【详解】解:∵两个三角形全等,∴5=2x−1,8=3y−1,或8=2x−1,5=3y−1,∴{x=3y=3或{x=92y=2,∴x+y=3+3=6或x+y=92+2=132,故答案为:6或132.12.13厘米【分析】利用垂直的定义得到∠BDA=∠AEC,由平角的定义及同角的余角相等得到∠ABD=∠CAE,利用AAS证得△ABD≌△CAE,再由全等三角形对应边相等得到DB=AE=5,AD=CE=8,由DE=AD+AE即可求出DE长.【详解】解:∵BD⊥DE,CE⊥DE,∴∠BDA=∠BAC=∠AEC=90°,∴∠BAD +∠CAE =90°,∵∠BAD +∠ABD =90°,∴∠ABD =∠CAE ,在△ABD 和△CAE 中,{∠ADB =∠CEA ∠ABD =∠CAE AB =CA,∴△ABD ≌△CAE(AAS),∴DB =AE =5,CE =AD =8,则DE =AD +AE =8+5=13(厘米),故答案为:13厘米.13.15或30【分析】根据等腰三角形的一个内角为50°,分类讨论等腰三角形,①当等腰三角形角为:50,65,65;②当等腰三角形角为:50,50,80;再根据垂直平分线的性质,即可.【详解】∵等腰三角形ABC 中,其中一个内角为50°,∴①当AB =AC ,∠A =50°,如下图:∴∠CBA=65°,∵MN 垂直平分AB ,∴AD=BD ,∴∠BAD =∠DBA =50°,∴∠CBD=∠CBA −∠ABD =15°;②当BA =BC ,∠A =∠C =50°,如下图:∴∠ABC=80°,∵MN 垂直平分AB,∴AD =BD ,∴∠A =∠ABD =50°,∴∠CBD=80°−50°=30°,∴∠DBC 的度数为:15或者30.故答案为:15或者30.14.11或15【分析】根据题意画出图形,设等腰三角形的腰长为a ,底边为b ,根据中点定义得到AD 与DC 相等都等于腰长a 的一半,AC 边上的中线BD 将这个三角形的周长分为AB +AD 和BC +CD 两部分,分别表示出两部分,然后分AB +AD =18,BC +CD =21或AB +AD =21,BC +CD =18两种情况分别列出方程组,分别求出方程组的解即可得到a 与b 的两对值,根据三角形的两边之和大于第三边判定能否构成三角形,即可得到满足题意的等腰三角形的底边长.【详解】解:依题意可得:这一边上的中线为腰上的中线,画出图形如下:设这个等腰三角形的腰长为a ,底边长为b ,∵D 为AC 的中点,∴AD =DC =12AC =12a ,根据题意得:{a +12a =1812a +b =21或{a +12a =2112a +b =18,解得:{a =12b =15 或{a =14b =11.又∵三边长12、12、15和14、14、11均可以构成三角形,∴底边长为11或15.故答案为:11或15.15.6【分析】根据角平分线的定义得到∠MBE=∠CBE,根据平行线的性质得到∠MEB=∠CBE,等量代换得到∠MBE=∠MEB,求得BM=EM,同理,CN=EN,于是得到结论.【详解】∵BE平分∠ABC,∴∠MBE=∠CBE,∵MN∥BC,∴∠MEB=∠CBE,∴∠MBE=∠MEB,∴BM=EM,同理,CN=EN,∵BM−CN=9,∴MN=ME−EN=BM−CN=6,故答案为:6.16.17【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理求解.【详解】解:∵焊接的钢管的长度都与OC的长度相等,即OC=CD=DE=EF,∴∠CDO=∠MON=5°,即第一个等腰△OCD的底角是5°;∴∠DCE=∠DEC=10°,即第二个等腰△CDE的底角是10°;∴∠EDF=∠EFD=15°,即第三个等腰△DEF的底角是15°;……∴等腰三角形的底角度数是5的倍数,且最大的角为85°,∴最多能焊接85°÷5°=17(根),故答案为:17.17.10【分析】分两种情况讨论:①AB=AC=2BC;②BC=2AB=2AC,再利用三角形三边关系进行检验即可得到答案.【详解】解:∵△ABC是等腰三角形,∴AB=AC,∵△ABC是“倍长三角形”,BC=5,①当AB=AC=2BC时,AB=AC=10;②当BC=2AB=2AC时,AB=AC= 2.5,根据三角形三边关系,此时,A、B、C 不能构成三角形,不符合题意,所以,若等腰△ABC是“倍长三角形”,底边BC的长为5,则腰AB的长为10,故答案为:10.18.1【分析】过点P作PF∥BC交AC于点F,根据题意可证△APF是等边三角形,根据等腰三角形三线合一证明AE=FE,根据全等三角形判定定理可证△PFD≌△QCD,DF=DC,进而证明DE=1AC,计算求值即可.2【详解】过点P作PF∥BC交AC于点F,如图,∴∠APF=∠B=60°,∠A=60°,△APF是等边三角形,∴PF=PA,∵PE⊥AC,∴AE=FE;∵PA=CQ,∴PF=QC,∵PF∥BC,∴∠PFD=∠QCD,在△PFD和△QCD中,{PF=QC∠PFD=∠QCD∠PDF=∠QDC ∴△PFD≌△QCD,∴DF=DC;∴DF=12FC,EF=12AF,∵DF+EF=DE,FC+AF=AC,∴DE=12FC+12AF=12(FC+AF)=12AC,∵AC=2,DE=12AC=12×2=1故答案为:1三、解答题19.解:∵∠CGD=45°,∴∠EGF=∠CGD=45°,∵∠FEG=40°,∴∠AFE=∠EGF+∠FEG=45°+40°=85°,∵∠ACB=85°,∴∠AFE=∠ACB,∴EF∥BC.20.证明:由题意可得:∠ADB=∠ADC=∠BEC=90°∴∠HBD+∠BHD=∠HBD+∠C=90°∴∠BHD=∠C又∵∠ABD=45°∴AD=BD在△ADC和△BDH中{∠ADB=∠ADC∠BHD=∠CAD=BD∴△ADC≌△BDH(AAS)∴BH=AC21.解:∵BF平分∠ABC,∴∠ABF=∠DBF,又∵∠BAC=90°,AD⊥BC,∴∠AFE=90°−∠ABF,∠DEB=90°−∠DBF,∴∠AFE=∠DEB,又∵∠DEB=∠AEF,∴∠AEF=∠AFE,∴△AEF是等腰三角形.22.(1)证明:∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF,在△ABF和△AEC中,{AB=AE∠EAC=∠BAFAC=AF∴△ABF≌△AEC(SAS),∴EC=BF;(2)证明:设AB与CE交于点D,∵△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°−∠ABF−∠BDM=180°−90°=90°,∴EC⊥BF.23.(1)∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,在△ADC和△BEC中,{AC=BC∠CAD=∠CBE,AD=BE∴△ADC≌△BEC(SAS);(2)△DCE是等边三角形;理由如下:∵△ADC≌△BEC,∴∠ACD=∠BCE=60°,DC=EC,即△DCE是等腰三角形,∴△DCE是等边三角形.24.(1)如图1,△CPQ 是等边三角形.理由如下:∵△ABC 和△CDE 都是等边三角形,∴∠C =60°,AC =BC ,DC =EC ,∴AC ﹣DC =BC ﹣EC ,即AD =BE .∵P 、Q 分别为AD 、BE 的中点,∴PD =EQ ,∴CD +DP =CE +EQ ,即CP =CQ ,∴△CPQ 是等边三角形;(2)如果将等边△CDE 绕点C 旋转,在旋转过程中△CPQ 的形状不会改变.理由如下:如图2,∵△ABC 和△CDE 都是等边三角形,∴∠ACB =∠DCE =60°,AC =BC ,DC =EC ,∵∠ACD =∠DCE ﹣∠ACE ,∠BCE =∠ACB ﹣∠ACE ,∴∠ACD =∠BCE ,∴在△ACD 与△BCE 中,{AC =BC∠ACD =∠BCE DC =EC,∴△ACD ≌△BCE (SAS ),∴AD =BE ,∠CAD =∠CBE ,即∠CAP =∠CBQ .∵P 是AD 的中点,Q 是BE 的中点,∴AP =12AD ,BQ =12BE ,∴AP =BQ ,∴在△ACP 与△BCQ中,{AC =BC∠CAP =∠CBQ AP =BQ,∴△ACP ≌△BCQ (SAS ),∴PC =QC ,∠BCQ =∠ACP ,∵∠BCQ +∠ACQ =∠ACB =60°,∴∠ACP +∠ACQ =60°,∴∠PCQ =60°,∴△CPQ 是等边三角形.25.(1)解:∵△ABC 、△CDE 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠BCD =∠DCE +∠BCD ,∴∠ACD =∠BCE ,在△ACD 和△BCE 中,{AC =BC∠ACD =∠BCE CD =CE ,∴△ACD ≌BCE (SAS ),∴∠ADC =∠BEC ,∵△DCE 是等边三角形,∴∠CED =∠CDE =60°,∴∠ADE +∠BED=∠ADC +∠CDE +∠BED=∠ADC +60°+∠BED =∠BEC +∠CED +60°=∠DEC +60°=60°+60°=120°,∴∠DOE =180°-(∠ADE +∠BED )=60°;(2)解:△MNC 是等边三角形,理由如下:由(1)得:△ACD ≌△BCE ,∴∠CAD =∠CBE ,AD =BE ,又∵点M 、N 分别是线段AD 、BE 的中点,∴AM =12AD ,BN =12BE ,∴AM =BN ,在△ACM 和△BCN 中,{AC =BC∠CAM =∠CBN AM =BN,∴△ACM ≌△BCN (SAS ),∴CM =CN ,∠ACM =∠BCN ,又∵∠ACB =60°,∴∠ACM +∠MCB =60°,∴∠BCN +∠MCB =60°,∴∠MCN =60°,∴△MNC 是等边三角形.26.(1)证明:①∵AD⊥MN ,BE ⊥MN ,∴∠ADC=∠BEC =90°,∵∠BCA=90°,∴∠ACD+∠BCE =90°,∠BCE +CBE =90°,∴∠ACD =∠CBE ,在△ADC 和△CEB 中,∵{∠ADC =∠CEB =90°∠ACD =∠CBE AC =BC,∴△ADC ≌△CEB (AAS );②∵△ADC ≌△CEB ,∴AD =CE ,BE =CD ,∴DE =DC +CE =BE +AD .(2)解:AD=BE +DE .∵AD ⊥MN ,BE ⊥MN ,∴∠ADC =∠BEC =90°,∵∠ACB =90°,∴∠ACD +∠BCD =90°,∠BCD +∠CBE =90°,∴∠ACD =∠CBE ,在△ACD 和△CBE 中,∵{∠ADC =∠CEB∠ACD =∠CBEAC =BC ,∴△ACD ≌△CBE (AAS ),∴AD =CE ,BE =CD ,∴AD =CD +DE =BE +DE .(3)解:BE =AD +DE .∵AD ⊥MN ,BE ⊥MN ,∴∠ADC =∠BEC =90°,∵∠ACB =90°,∴∠ACD +∠BCD =90°,∠BCD +∠CBE =90°,∴∠ACD =∠CBE ,在△ACD 和△CBE 中,∵{∠ADC =∠CEB∠ACD =∠CBEAC =BC ,∴△ACD ≌△CBE (AAS ),∴AD =CE ,BE =CD ,∴BE =CD =CE +DE =AD +DE .。

七年级下册数学三角形测试题(含答案)(有代表性测试题)

七年级下册数学三角形测试题(含答案)(有代表性测试题)

第7章三角形一、选择题1.如果在一个顶点周围用两个正方形和n 个正三角形恰好可以进行平面镶嵌,则n 的值是( ).A .3 B .4 C .5 D .62.下面四个图形中,线段BE 是⊿ABC 的高的图是( )3.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cmB .6cmC .5cmD .4cm4.三角形一个外角小于与它相邻的内角,这个三角形是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .属于哪一类不能确定 5.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高, DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C (∠C 除外)相等的角的个数是( ) A 、3个 B 、4个 C 、5个 D 、6个6.如图,将一副三角板叠放在一起,使直角的顶点重合于O , 则∠AOC+∠DOB=( )A 、900B 、1200C 、1600D 、18007.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )(A)1个 (B)2个 (C)3个 (D)4个8.给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角 ③三角形的角平分线是射线 ④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线⑥三角形的三条角平分线交于一点,且这点在三角形内。

正确的命题有( )A.1个B.2个C.3个D.4个第5题图第6题图二、填空题9.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。

10.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是___________________.11.把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是 度。

七年级数学第五章三角形测试题及答案

七年级数学第五章三角形测试题及答案

七年级数学(下)北师大版第五章《三角形》自测题一、选择题(每题3分;共24分)1.在△ABC中;∠A是锐角;那么△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定2.如果三条线段的比是①1∶4∶6②1∶2∶3③3∶4∶5④3∶3∶5那么其中可构成三角形的比有_________种.()A.1B.2 C.3D.43.尺规作图的画图工具是()A.刻度尺、量角器B.三角板、量角器C.直尺、量角器D.没有刻度的直尺和圆规4.根据下列已知条件;能判断△ABC≌△A′B′C′的是()A.A B=A′B′BC=B′C′∠A=∠A′B.∠A=∠A′∠C=∠C′AC=B′C′C.∠A=∠A′∠B=∠B′∠C=∠C′D.A B=A′B′BC=B′C′△ABC的周长等于△A′B′C′的周长5.下列说法错误的是()A.两条直角边对应相等的两个直角三角形全等B.斜边和一条直角边对应相等的两个直角三角形全等C.两个锐角对应相等的两个直角三角形全等D.一边一锐角对应相等的两个直角三角形全等6.如图;在△ABF中;∠B的对边是()A.AD B.AE C.AF D.AC7. 如图;BD=DE=EF=FC;那么_________是△ABE的中线.()A.AD B.AE C.AF D.以上都是8.下列每组数分别是三根小木棒的长度;用它们能摆成三角形的是()(1)7 cm、5 cm、11 cm(2)4 cm、3 cm、7 cm(3)5 cm、10 cm、4 cm (4)2 cm、3 cm、1cmA.(1)B.(2) C.(3)D.(4)二、填空题(每题3分;共24分)9.在△ABC中;∠A=3∠B;∠A-∠C=30°;则∠A=___________;∠B=___________;∠C=___________.10.在△ABC中;AB=6 cm;AC=8 cm那么BC长的取值范围是___________.11.如图;已知OA=OB;点C在OA上;点D在OB上;OC=OD;AD与BC 相交于点E;那么图中全等的三角形共有___________对.12.已知△ABC中;∠A∶∠B∶∠C=2∶3∶4;则∠A、∠B、∠C的度数为.13.已知三角形的两边长为3和m;第三边a的取值范围是___________.14.等腰三角形的两边长为4和2;那么它的周长为___________.15.五条长度分别是2;3;4;5;6的线段;任选3条可以组成.16.已知三角形三个内角的度数之比为:1∶3∶5;则这三个内角的度数为。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下册数学三角形
测试题
Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-
七年级数学(下)第四章《角形》测试题
一、选择题
1.在△ABC中,∠A是锐角,那么△ABC是( )
A.锐角三角形B.直角三角形C.钝角三角形 D.不能确定
2.如果三条线段的比是①1∶4∶6 ②1∶2∶3 ③3∶4∶5 ④3∶3∶5那么其中可构成三角形的比有_________种.( )A.1 B.2 C.3 D.4
3.根据下列已知条件,能判断△ABC≌△A′B′C′的是( )
A.AB=A′B′BC=B′C′∠A=∠A′
B.∠A=∠A′∠C=∠C′AC=B′C′
C.∠A=∠A′∠B=∠B′∠C=∠C′
D.AB=A′B′BC=B′C′△ABC的周长等于△A′B′C′的周长
4.下列说法错误的是( )
A.两条直角边对应相等的两个直角三角形全等
B.斜边和一条直角边对应相等的两个直角三角形全等
C.两个锐角对应相等的两个直角三角形全等
D.一边一锐角对应相等的两个直角三角形全等
5.一定在△ABC内部的线段是()
A.锐角三角形的三条高、三条角平分线、三条中线
B.钝角三角形的三条高、三条中线、一条角平分线
C.任意三角形的一条中线、二条角平分线、三条高
D.直角三角形的三条高、三条角平分线、三条中线
6.下列说法中,正确的是()
A.一个钝角三角形一定不是等腰三角形,也不是等边三角形
B.一个等腰三角形一定是锐角三角形,或直角三角形
C.一个直角三角形一定不是等腰三角形,也不是等边三角形
D.一个等边三角形一定不是钝角三角形,也不是直角三角形
7.如图,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有() A.4对 B.5对 C.6对 D.7对
8.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定
9.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()
A.18 B.15 C.18或15 D.无法确定
10.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()
(1)7 cm、5 cm、11 cm(2)4 cm、3 cm、7 cm (3)5 cm、10 cm、4 cm(4)2 cm、3 cm、1cm
A.(1) B.(2) C.(3)D.(4)
二、填空题
11.在△ABC中,∠A=3∠B,∠A-∠C=30°,则∠A=____,∠B=____,∠C___。

. 12.在△ABC中,AB=6 cm,AC=8 cm那么BC长的取值范围是
___________.
13.如图,已知OA=OB,点C在OA上,点D在OB上,OC=OD,AD与
BC相交于点E,那么图中全等的三角形共有___________对.
14. 已知△ABC中,∠A∶∠B∶∠C=2∶3∶4,则∠A、∠B、∠C的度数为。

15.已知三角形的两边长为3和 m,第三边a的取值范围是___________.
16.等腰三角形的两边长为4和2,那么它的周长为___________.
17.五条长度分别是2,3,4,5,6的线段,任选3条可以组成____个三角形.它们的边长分别是 .
18.已知三角形三个内角的度数之比为:1∶3∶5,则这三个内角的度数为。

三、作图题(不写作法,保留作图痕迹)
19.如图所示,△ABC,作出△ABC的三条高.
20.已知线段a,b,求作△ABC,使AB=BC=a,AC=b.
四、解答题
21.在△ABC中,已知∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H 是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.
22.已知,M是AB的中点,MC=MD,∠1=∠2,若AC=8 cm,求BD的长度.
23.如图,已知△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高.求∠DBC的度数.24.如图,在△ABC中,AB=AC,D是BC的中点,点E在AD上,找出图中全等的三角形,并说明它们为什么是全等的.
25.如图,AB∥CD,BC⊥AB,若AB=4cm,
2
12cm
=
∆ABC
S,求△ABD中AB边上的高.
26.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC=60°,
求∠BOC的度数.
27.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线.求∠DAE的度数.
五、探究题
28.一个三角形的两边b=4,c=7,试确定第三边a的范围.当各边均为整数时,有几个三角形有等腰三角形吗等腰三角形的各边长各是多少。

相关文档
最新文档