2020年高考数学一轮复习知识点总结 数列与三角函数

合集下载

高三数学第一轮复习知识点总结

高三数学第一轮复习知识点总结

高三数学第一轮复习知识点总结高三数学第一轮复习知识点总结第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二:平面向量和三角函数。

重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。

第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。

难度比较小。

第三:数列。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四:空间向量和立体几何。

在里面重点考察两个方面:一个是证明;一个是计算。

第五:概率和统计。

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。

第六:解析几何。

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。

考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

第七:押轴题。

考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。

这是高考所考的七大板块核心的考点。

高三数学数列与三角函数知识点要点梳理

高三数学数列与三角函数知识点要点梳理

高三数学数列与三角函数知识点要点梳理数列和三角函数是高中数学的两个重要组成部分,对于高三学生来说,掌握这两个模块的知识点和解题技巧至关重要。

本文将对高三数学数列与三角函数的知识点进行详细梳理,帮助大家系统地理解和掌握这部分内容。

一、数列1.1 数列的定义与性质1.1.1 数列的定义数列是由一系列按一定顺序排列的数构成的序列。

通常表示为 a_n,其中 n 表示项数。

1.1.2 数列的性质(1)有限数列:项数有限;(2)无限数列:项数无限;(3)收敛数列:项数趋于有限值;(4)发散数列:项数趋于无穷大。

1.2 数列的通项公式1.2.1 等差数列等差数列的通项公式为 a_n = a_1 + (n - 1)d,其中 a_1 是首项,d 是公差。

1.2.2 等比数列等比数列的通项公式为 a_n = a_1 * q^(n-1),其中 a_1 是首项,q 是公比。

1.3 数列的求和1.3.1 等差数列求和等差数列的前 n 项和为 S_n = n/2 * (a_1 + a_n) = n/2 * (2a_1 + (n - 1)d)。

1.3.2 等比数列求和等比数列的前 n 项和为 S_n = a_1 * (1 - q^n) / (1 - q),其中 |q| < 1。

1.4 数列的极限1.4.1 数列极限的定义数列极限是指当 n 趋于无穷大时,数列的某一项或某一项的某种形式趋于的一个确定的数。

1.4.2 数列极限的性质(1)收敛数列有极限;(2)发散数列无极限;(3)数列极限具有保号性、保序性。

二、三角函数2.1 三角函数的定义与性质2.1.1 三角函数的定义三角函数是周期函数,主要包括正弦函数、余弦函数、正切函数等。

2.1.2 三角函数的性质(1)周期性:f(x + T) = f(x),其中 T 是函数的周期;(2)奇偶性:f(-x) = f(x)(偶函数)或 f(-x) = -f(x)(奇函数);(3)单调性:在一定区间内,三角函数的单调性可分为增函数和减函数。

数学高考必备三角函数与数列知识点梳理

数学高考必备三角函数与数列知识点梳理

数学高考必备三角函数与数列知识点梳理【数学高考必备】三角函数与数列知识点梳理数学一直是许多学生心中的痛点和难题,其中三角函数与数列是高考数学中重要的知识点。

掌握好这两个知识点,对于高考取得好成绩至关重要。

本文将对数学高考必备的三角函数与数列知识点进行梳理和总结,帮助学生更好地备考。

一、三角函数知识点梳理1. 基本概念三角函数是以角的弧度或角度为自变量,以正弦、余弦和正切等函数为代表的一类函数。

在高考中,我们常用的三角函数有正弦函数、余弦函数和正切函数。

2. 基本性质在求解问题时,我们需要掌握三角函数的基本性质。

比如,正弦函数和余弦函数的周期性、对称性,正切函数的定义域和值域等。

3. 三角函数的图像与变换学习三角函数的图像与变换是非常重要的。

要了解正弦函数和余弦函数的波形特点,理解振幅、周期、相位以及图像的平移、伸缩等基本变换。

4. 基本恒等式与解题技巧高考中,有许多与三角函数相关的方程、等式和恒等式需要我们灵活运用。

掌握基本的恒等式和解题技巧,能够帮助我们快速解决相关问题。

二、数列知识点梳理1. 基本概念与性质数列是一系列按照一定法则排列的数的集合。

在高考中,我们经常遇到的数列有等差数列、等比数列和等差数列的前n项和等。

2. 数列的通项与特殊情况数列的通项公式是数列中的一项与项下标之间的关系式。

对于不同种类的数列,我们需要掌握求解通项公式的方法,以及特殊情况的处理。

3. 数列的性质与运算数列的性质是数列研究中的重要内容。

我们需要掌握等差数列和等比数列的性质,包括递推公式、前n项和的公式以及求和公式等。

4. 数列应用题高考中,数列应用题是非常常见的题型。

掌握数列的相关知识,能够帮助我们解决各种与实际问题相关的数学题目。

总结:三角函数和数列是高考数学中的重要知识点,也是必备的数学基础。

在备考过程中,我们应该注重理解基本概念和性质,学会应用基本公式和技巧解题。

此外,多做一些相关的习题和应用题,提高自己的解题能力。

高考数学数列知识点归纳

高考数学数列知识点归纳

高考数学中的数列知识点主要包括以下内容:
1. 数列的定义与性质:
-数列的概念:数列是按照一定规律排列的数的集合。

-项数与前n项和:第n项表示数列中的第n个数,前n项和表示数列前n项的和。

-通项公式与递推公式:通项公式是指可以通过给定的项数n来直接计算某一项的公式,递推公式则是通过前一项或前几项来计算下一项的公式。

2. 常见数列:
-等差数列:数列中的每个数都与其前一个数之差相等。

-等比数列:数列中的每个数都与其前一个数之比相等。

-斐波那契数列:数列中的每个数都是前两个数之和,即第三项开始满足an = an-1 + an-2。

3. 数列的性质和运算:
-数列的有界性:数列可以是有界的(上有界、下有界)、无界的或发散的。

-数列的单调性:数列可以是递增的、递减的或保持不变。

-数列的极限:数列可能有极限(有限或无穷)或不存在极限。

4. 数列的求和:
-等差数列的求和公式:利用等差数列的性质,可以得到等差数列前n项和的通用公式。

-等比数列的求和公式:利用等比数列的性质,可以得到等比数列前n项和的通用公式。

5. 数列的应用:
-常见问题的建模与解决:通过将实际问题转化为数列的形式,利用数列的性质和公式来解决问题。

以上是高考数学中与数列相关的主要知识点。

掌握这些知识点,能够帮助学生在解答数列相关题目时更加熟练和准确。

需要注意的是,除了理论知识,还需要进行大量的练习和实践,以提高对数列概念的理解和应用能力。

高考数学一轮复习知识点归纳总结

高考数学一轮复习知识点归纳总结

高考数学一轮复习知识点归纳总结在高考备考过程中,数学是一个重要的科目。

为了能够顺利地完成高考数学科目的复习备考,有必要对之前学习过的知识点进行归纳总结,以便于加深理解和记忆。

本文将对高考数学一轮复习的知识点进行归纳总结,帮助考生进行有效的复习。

1. 函数与方程1.1 函数的定义和性质1.2 一次函数及其图像1.3 二次函数及其图像1.4 指数函数与对数函数1.5 三角函数及其图像1.6 方程与不等式的解法2. 数列与数列的应用2.1 等差数列2.2 等比数列2.3 数列的通项公式与前n项和公式2.4 等差数列和等比数列的应用3. 三角函数与解三角形3.1 三角函数的定义和基本性质3.2 三角函数的基本关系式3.3 解三角形的基本方法4. 平面向量与坐标系4.1 平面向量的定义和运算4.2 向量的坐标表示与方向角表示 4.3 向量共线与平行4.4 坐标系与平面几何5. 空间几何与立体几何5.1 空间几何中的点、直线和面5.2 空间几何中的位置关系5.3 立体几何中的体积与表面积计算6. 概率与统计6.1 随机事件与概率6.2 条件概率和独立事件6.3 统计与抽样调查7. 导数与微分7.1 导数的概念和性质7.2 常见函数的导数计算7.3 函数的极值与最值7.4 微分与应用8. 积分与定积分8.1 定积分的概念和性质8.2 定积分的计算方法8.3 曲线的长度与旋转体的体积以上是高考数学一轮复习的主要知识点。

在复习过程中,考生可以根据自己的掌握情况,有针对性地选择学习重点,并结合相关题目进行练习和巩固。

同时,复习过程中要注重总结归纳,将重要的公式和解题方法进行整理,以便于在考试中能够快速准确地运用到。

此外,做题时要注重思路和方法的灵活运用,培养解决问题的能力和思维能力。

希望本文所提供的高考数学一轮复习知识点归纳总结对考生们进行复习备考有所帮助,祝愿各位考生能够取得优异的成绩!。

高考数学一轮复习知识点总结:三角函数

高考数学一轮复习知识点总结:三角函数

高考数学一轮复习知识点总结:三角函数高考第一轮复习既以教材为基本内容,又以教学大纲以及当年的考试说明为依据,做到知识点的全面涉及与提高巩固。

查字典数学网整理了高考数学一轮复习知识点总结:三角函数,供参考。

高中数学三角函数知识点总结:锐角三角函数公式sin =的对边 / 斜边cos =的邻边 / 斜边tan =的对边 / 的邻边cot =的邻边 / 的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )高中数学三角函数知识点总结:三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a = tan a tan(/3+a) tan(/3-a)高中数学三角函数知识点总结:三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina高中数学三角函数知识点总结:辅助角公式Asin+Bcos=(A^2+B^2)^(1/2)sin(+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsin+Bcos=(A^2+B^2)^(1/2)cos(-t),tant=A/B降幂公式sin^2()=(1-cos(2))/2=versin(2)/2cos^2()=(1+cos(2))/2=covers(2)/2tan^2()=(1-cos(2))/(1+cos(2))高中数学三角函数知识点总结:推导公式tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos^21-cos2=2sin^21+sin=(sin/2+cos/2)^2=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosasin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(3/2)2-sin2a]=4sina(sin260-sin2a)=4sina(sin60+sina)(sin60-sina)=4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]co s[(60-a)/2]=4sinasin(60+a)sin(60-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(3/2)2]=4cosa(cos2a-cos230)=4cosa(cosa+cos30)(cosa-cos30)=4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2] sin[(a-30)/2]}=-4cosasin(a+30)sin(a-30)=-4cosasin[90-(60-a)]sin[-90+(60+a)]=-4cosacos(60-a)[-cos(60+a)]=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)高中数学三角函数知识点总结:半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(++)=sincoscos+cossincos+coscossin-sinsinsin cos(++)=coscoscos-cossinsin-sincossin-sinsincos tan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-ta ntan)高中数学三角函数知识点总结:两角和差cos(+)=coscos-sinsincos(-)=coscos+sinsinsin()=sincoscossintan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)高中数学三角函数知识点总结:和差化积sin+sin = 2 sin[(+)/2] cos[(-)/2]sin-sin = 2 cos[(+)/2] sin[(-)/2]cos+cos = 2 cos[(+)/2] cos[(-)/2]cos-cos = -2 sin[(+)/2] sin[(-)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 高中数学三角函数知识点总结:积化和差sinsin = [cos(-)-cos(+)] /2coscos = [cos(+)+cos(-)]/2sincos = [sin(+)+sin(-)]/2cossin = [sin(+)-sin(-)]/2高中数学三角函数知识点总结:诱导公式sin(-) = -sincos(-) = costan (a)=-tansin(/2-) = coscos(/2-) = sinsin(/2+) = coscos(/2+) = -sinsin() = sincos() = -cossin() = -sincos() = -costanA= sinA/cosAtan(/2+)=-cottan(/2-)=cottan()=-tantan()=tan诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sin=2tan(/2)/[1+tan^(/2)]cos=[1-tan^(/2)]/1+tan^(/2)]tan=2tan(/2)/[1-tan^(/2)]高中数学三角函数知识点总结:其它公式(1)(sin)^2+(cos)^2=1(2)1+(tan)^2=(sec)^2(3)1+(cot)^2=(csc)^2证明下面两式,只需将一式,左右同除(sin)^2,第二个除(cos)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=-Ctan(A+B)=tan(-C)(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC) 整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nZ)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C /2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC(9)sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)++sin[+2*(n -1)/n]=0cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)++cos[+2*(n-1) /n]=0 以及sin^2()+sin^2(-2/3)+sin^2(+2/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0高考数学一轮复习知识点总结:三角函数就分享到这里了,更多高考备考信息请继续关注查字典数学网高考频道!。

2020年高三数学一轮复习(备战2021)必备知识梳理 08 数列(理科)

2020年高三数学一轮复习(备战2021)必备知识梳理 08 数列(理科)

备战2021 高三数学一轮复习必备知识梳理08数列一、数列的概念1.数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫作这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第一项(通常也叫作首项). 2.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫作这个数列的通项公式.3.数列的递推公式如果数列{a n }的第一项(或前几项),且任意一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个式子来表示,即a n =f (a n -1)(或a n =f (a n -1,a n -2)等),那么这个式子叫作数列{a n }的递推公式.4.前n 项和S n 与a n 的关系(1)前n 项和S n =a 1+a 2+a 3+…+a n .(2)数列{a n }的前n 项和为S n ,那么a n ={S 1,n =1,S n -S n−1,n ≥2,这个关系式对任意数列均成立. 5.数列的分类(1)单调性递增数列:∀n ∈N *,a n +1>a n ;递减数列:∀n ∈N *,a n +1<a n ;常数列:∀n ∈N *,a n +1=a n ;摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列.(2)周期性周期数列:∀n ∈N *,存在正整数k ,a n +k =a n .二、等差数列1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫作等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a+b 2,其中A 叫作a ,b 的等差中项. 2.等差数列的有关公式(1)通项公式:a n = a 1+(n -1)d .(2)前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d =d 2n 2+(a 1-d 2)n (n ∈N *)⇔S n =An 2+Bn (A ,B 为常数,n ∈N *).3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)假设{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),那么a k +a l =a m +a n .(3)假设{a n }是等差数列,公差为d ,那么{a 2n }也是等差数列,公差为2d .(4)假设{a n },{b n }是等差数列,那么{pa n +qb n }也是等差数列.(5)假设{a n }是等差数列,公差为d ,那么a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(6)在等差数列{a n }中,假设a 1>0,d<0,那么S n 存在最大值;假设a 1<0,d>0,那么S n 存在最小值.4.等差数列前n 项和的性质(1)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d .(2)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )= n (a n +a n +1).(3)当项数为偶数2n 时,S 偶-S 奇= nd ;当项数为奇数2n -1时,S 奇-S 偶=a 中,S 奇∶S 偶= n ∶(n -1). (4)假设{a n },{b n }均为等差数列且其前n 项和为S n ,T n ,那么a n b n=S 2n -1T 2n -1. (5)假设{a n }是等差数列,那么{S n n}也是等差数列,其首项与{a n }的首项相同,公差是{a n }的公差的12.三、等比数列1.等比数列的有关概念(1)定义如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫作等比数列.这个常数叫作等比数列的公比,通常用字母q 表示,定义的表达式为a n+1a n =q .(2)等比中项如果a ,G ,b 成等比数列,那么G 叫作a 与b 的等比中项.即G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒ G 2=ab .2.等比数列的有关公式(1)通项公式:a n = a 1q n -1.(2)前n 项和公式:S n ={na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1. 3.等比数列的常用性质(1)通项公式的推广:a n = a m ·q n -m (n ,m ∈N *).(2)假设m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),那么a m ·a n = a p ·a q =a k2. (3)假设数列{a n },{b n }(项数相同)是等比数列,那么{λa n },{1a n },{a n 2},{a n ·b n },{an b n }(λ≠0)仍然是等比数列.(4)在等比数列{a n }中,等距离取出假设干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .(5)等比数列{a n }的单调性:当q>1,a 1>0或0<q<1,a 1<0时,数列{a n }是递增数列;当q>1,a 1<0或0<q<1,a 1>0时,数列{a n }是递减数列;当q =1时,数列{a n }是常数列.(6)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .四、数列求和、数列的综合应用1.公式法直接利用等差数列、等比数列的前n 项和公式求和.(1)等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .(2)等比数列的前n 项和公式:S n ={na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1. 2.几种数列求和的常用方法(1)分组求和法:一个数列的通项公式是由假设干个等差或等比或可求和的数列组成的,因此求和时可用分组求和法,分别求和而后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时使中间的一些项可以相互抵消,从而求得前n 项和.常用的裂项公式:①1n (n+1)=1n −1n+1; ②1(2n -1)(2n+1)=12(12n -1-12n+1); ③√n+√n+1=√n +1−√n .(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法与并项求和法:①倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离〞的两项的和相等,那么求这个数列的前n 项和可用倒序相加法,如等差数列的前n 项和公式就是用此法推导的.②并项求和法在一个数列的前n 项和中,可两两结合求解,那么称之为并项求和.形如a n =(-1)n f (n )的数列,可考虑采用两项合并求解.。

高考数学一轮复习重要知识点

高考数学一轮复习重要知识点

届高考数学一轮复习重要知识点高考数学第一轮复习时大家一定要掌握好每个知识点,高考频道小编汇总了届高考数学一轮复习重要知识点,更多高考数学复习资料继续关注我们!第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二:平面向量和三角函数。

重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。

第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。

难度比较小。

第三:数列。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四:空间向量和立体几何。

在里面重点考察两个方面:一个是证明;一个是计算。

第五:概率和统计。

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一等可能的概率,第二事件,第三是独立事件,还有独立重复事件发生的概率。

第六:解析几何。

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。

考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是高考(微博)已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

第七:押轴题。

考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。

高考数学一轮复习资料 第6讲 三角函数篇之三角函数知识点概述

高考数学一轮复习资料 第6讲 三角函数篇之三角函数知识点概述

第一部分:基本知识点回顾第一节:三角函数概念1. 角的概念2. 象限角第I 象限角的集合:⎭⎬⎫⎩⎨⎧∈+<<Z k k k ,222ππαπα 第II 角限角的集合:⎭⎬⎫⎩⎨⎧∈+<<+Z k k k ,222ππαππα 第III 象限角的集合: ⎭⎬⎫⎩⎨⎧∈+<<+Z k k k ,2322ππαππα 第IV 象限角的集合:⎭⎬⎫⎩⎨⎧∈+<<+Z k k k ,)1(2232παππα3. 轴线角4. 终边相同的角①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合): {}Z k k ∈+⨯=,360|αββ ; ②终边在x 轴上的角的集合:{}Z k k ∈⨯=,180| ββ;③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180| ββ;④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ.5. 弧度制定义:我们把长度等于半径长的弧所对的圆心角叫1弧度角 角度制与弧度制的互化:π=︒1801801π=︒ 1弧度︒≈︒=3.57180π6.弧度制下的公式 扇形弧长公式r =α,扇形面积公式211||22S R R α==,其中α为弧所对圆心角的弧度数。

7. 任意角的三角函数定义:利用直角坐标系,可以把直角三角形中的三角函数推广到任意角的三角数.在α终边上任取一点(,)P x y (与原点不重合),记22||r OP x y ==+,则sin y r α=,cos x r α=,tan y xα=,注: ⑴三角函数值只与角α的终边的位置有关,由角α的大小唯一确定,∴三角函数是以角为自变量,以比值为函数值的函数.(2)正弦、余弦、正切函数的定义域8. 各象限角的各种三角函数值符号:一全二正弦,三切四余弦第二节:同角三角函数的基本关系式及诱导公式 一、基础知识(一) 同角三角函数的基本关系式: ①平方关系;1cos sin 22=+αα ②商式关系;αααtan cos sin = 任意角三角函数定义单位圆定义: 坐标点定义: 象限角的三角函数值的符号轴线角的三角函数值 三角函数线 同角三角函数的基本关系式 诱导公式三角函数的图像与性质 定义域、值域、周期性、奇偶性、 单调性(最值)、对称性三角函数的图像 三角函数的性质 函数)sin(ϕω+=x A y 的图像 五点作图法 三角函数的图像变换相关概念的物理意义 先相位后周期:先周期后相位:三角恒等变换1.和、差角公式;2.二倍角公式;3.升、降幂公式;4.半角公式;5.辅助角公式(收缩代换). 解三角形正弦定理 余弦定理及推论 解三角形的四种类型 三角形的面积公式 角的有关概念任意角 定义 分类终边相同角的概念 按旋转方向分: 按终边位置分:弧度制 定义及规定 弧度与角度的换算特殊角的度数与 弧度数的对应表 扇形公式③倒数关系。

数学中的数列和三角函数知识

数学中的数列和三角函数知识

数学中的数列和三角函数知识一、数列知识1.数列的定义:数列是由一些按照一定顺序排列的数构成的序列。

2.数列的表示方法:–列举法:直接将数列中的各项写出来;–通项公式法:用公式表示数列中任意一项的值。

3.数列的分类:–整数数列:数列中的每一项都是整数;–有理数数列:数列中的每一项都是有理数;–实数数列:数列中的每一项都是实数。

4.数列的性质:–单调性:数列可以分为单调递增、单调递减或常数数列;–周期性:数列中存在周期性的重复项;–收敛性:数列的各项逐渐趋近于某一确定的值。

5.等差数列:数列中任意两项之差都相等的数列。

–定义:数列{a_n}中,如果对于任意的n,都有a_n - a_(n-1) = d,那么数列{a_n}就是等差数列,其中d为常数,称为公差。

–通项公式:a_n = a_1 + (n - 1)d–前n项和公式:S_n = n/2 * (a_1 + a_n)6.等比数列:数列中任意两项的比值都相等的数列。

–定义:数列{a_n}中,如果对于任意的n,都有a_n / a_(n-1) = q,那么数列{a_n}就是等比数列,其中q为常数,称为公比。

–通项公式:a_n = a_1 * q^(n-1)–前n项和公式:S_n = a_1 * (1 - q^n) / (1 - q)(q ≠ 1)二、三角函数知识1.三角函数的定义:三角函数是用来描述直角三角形中角度与边长之间关系的函数。

2.基本三角函数:–正弦函数(sin):sinθ = 对边 / 斜边–余弦函数(cos):cosθ = 邻边 / 斜边–正切函数(tan):tanθ = 对边 / 邻边3.特殊角的三角函数值:–sin30° = 1/2,cos30° = √3/2,tan30° = 1/√3–sin45° = √2/2,cos45° = √2/2,tan45° = 1–sin60° = √3/2,cos60° = 1/2,tan60° = √3–sin90° = 1,cos90° = 0,tan90° = 无穷大4.三角函数的性质:–周期性:三角函数具有周期性,如sinθ和cosθ的周期都是2π;–奇偶性:sinθ和tanθ是奇函数,cosθ是偶函数;–单调性:三角函数在各自的定义域内具有单调性。

2020高考数学复习数列知识点汇总

2020高考数学复习数列知识点汇总

2020高考数学复习数列知识点汇总高考是人生道路上的重要转折点,会对考生的未来发展产生重要的影响作用,甚至改变命运。

想要在高考中取得好成绩,自然是要付出努力的,只有努力才能获得回报。

这里给大家分享一些2020高考高频考点知识归纳,希望对大家有所帮助。

2020高考数学复习数列知识点汇总1.高二数学数列知识点数列概念①数列是一种特殊的函数。

其特殊性主要表现在其定义域和值域上。

数列可以看作一个定义域为正整数集N或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。

②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。

图像法;c.解析法。

其中解析法包括以通项公式给出数列和以递推公式给出数列。

③函数不一定有解析式,同样数列也并非都有通项公式。

点击查看:高中数学知识点总结等差数列1.等差数列通项公式an=a1+(n-1)dn=1时a1=S1n≥2时an=Sn-Sn-1an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b2.等差中项由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。

这时,A叫做a与b的等差中项(arithmeticmean)。

有关系:A=(a+b)÷23.前n项和倒序相加法推导前n项和公式:Sn=a1+a2+a3+·····+an=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①Sn=an+an-1+an-2+······+a1=an+(an-d)+(an-2d)+······+[an-(n-1)d]②由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n 个)=n(a1+an)∴Sn=n(a1+an)÷2等差数列的前n项和等于首末两项的和与项数乘积的一半:Sn=n(a1+an)÷2=na1+n(n-1)d÷2Sn=dn2÷2+n(a1-d÷2)亦可得a1=2sn÷n-an=[sn-n(n-1)d÷2]÷nan=2sn÷n-a1有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+14.等差数列性质一、任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式。

2024年高考数学第一轮复习重点总结(2篇)

2024年高考数学第一轮复习重点总结(2篇)

2024年高考数学第一轮复习重点总结一、函数与方程1. 函数的概念与性质- 函数的定义:给定一个集合X和Y,如果对于集合X中的每个元素x,都有唯一一个元素y与之对应,那么就称这个对应关系为函数,记作y = f(x)。

- 函数的性质:定义域、值域、图像、奇偶性、单调性等。

2. 一次函数与二次函数- 一次函数:y = kx + b,其中k为斜率,b为截距。

掌握一次函数的图像、性质和应用。

- 二次函数:y = ax^2 + bx + c,其中a ≠ 0。

掌握二次函数的图像、性质和应用,包括顶点坐标、对称轴、开口方向、零点等。

3. 指数与对数函数- 指数函数:y = a^x,其中a>0且a≠1。

掌握指数函数的图像、性质和应用,包括定义域、值域、增减性等。

- 对数函数:y = loga(x),其中a>0且a≠1。

掌握对数函数的图像、性质和应用,包括定义域、值域、增减性等,以及常用对数函数的特殊性质。

4. 复合函数与反函数- 复合函数:由两个或多个函数通过代数运算得到的新函数。

掌握复合函数的性质和计算方法。

- 反函数:函数f(x)的反函数记作f^(-1)(x),满足f(f^(-1)(x)) = f^(-1)(f(x)) = x。

掌握反函数的概念、性质和计算方法。

5. 方程与不等式- 方程的解:使方程两边相等的未知数的值。

掌握一元一次方程、一元二次方程的解法,以及应用题中方程的建立和解题方法。

- 不等式的解:使不等式左边大于、小于或等于右边的未知数的值。

掌握一元一次不等式、一元二次不等式的解法,以及应用题中不等式的建立和解题方法。

二、数与数量关系1. 数列与数列求和- 数列的概念与表示:数列是按照一定规律排列起来的一组数。

掌握等差数列、等比数列的概念与表示方法,以及常见数列的性质。

- 数列的通项公式:根据数列的规律,确定数列的通项公式。

掌握等差数列、等比数列的通项公式,以及应用题中数列的建立和求解方法。

高三数学复习知识点总结归纳

高三数学复习知识点总结归纳

高三数学复习知识点总结归纳高三数学复习知识点总结第一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二、平面向量和三角函数。

重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。

第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。

难度比较小。

第三、数列。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。

第五、概率和统计。

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。

第六、解析几何。

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括:第一类所讲的直线和曲线的位置关系,这是考试最多的内容。

考生应该掌握它的通法;第二类我们所讲的动点问题;第三类是弦长问题;第四类是对称问题,这也是2008年高考已经考过的一点;第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

第七、押轴题。

考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。

这是高考所考的七大板块核心的考点。

2020届高考数学一轮复习讲义第四章《三角函数、解三角形》

2020届高考数学一轮复习讲义第四章《三角函数、解三角形》

2020届高考数学一轮复习讲义第四章《三角函数、解三角形第一节任意角和弧度制及任意角的三角函数1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式:3.任意角的三角函数三角函数正弦余弦正切定义设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么y 叫做α的正弦,记作sin αx 叫做α的余弦,记作cos αyx 叫做α的正切,记作tan α各象限符号一+++二+--三--+四-+-三角函数线有向线段MP 为正弦线有向线段OM 为余弦线有向线段AT 为正切线[小题体验]1.若θ是第二象限角,且满足sin θ2<0,则θ2的终边在第________象限.答案:三2.若角α的终边过点sin5π6,tan α=________.答案:-33.α为第一象限角,则sin α+cos α________1.(填“>”“<”“=”)答案:>1.注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.角度制与弧度制可利用180°=πrad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况.4.三角函数的定义中,当P (x ,y )是单位圆上的点时有sin α=y ,cos α=x ,tan α=yx ,但若不是单位圆时,如圆的半径为r ,则sin α=y r ,cos α=x r ,tan α=yx.[小题纠偏]1.-1000°是第________象限角,α=3是第________象限角,72°=________rad.答案:一二2π52.如图所示,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是____________.答案:(cos θ,sin θ)考点一角的集合表示及象限角的判定(基础送分型考点——自主练透)[题组练透]1.下列命题中,真命题是()A .第一象限角是锐角B .直角不是任何象限角C .第二象限角比第一象限角大D .三角形的内角一定是第一或第二象限角解析:选B390°是第一象限角,但不是锐角,A 错;135°是第二象限角,390°>135°,C 错;直角不是任何象限角,D 错,B 对.2.若α=k π-π4(k ∈Z ),则α在()A .第一象限或第三象限B .第一象限或第二象限C .第二象限或第四象限D .第三象限或第四象限解析:选C当k =2m +1(m ∈Z )时,α=2m π+3π4,所以α在第二象限;当k =2m (m ∈Z )时,α=2m π-π4,所以α在第四象限.故选C.3.设集合M |x =k 2·180°+45°,k N |x =k 4·180°+45°,k 那么M ________N .(填“=”“⊆”“⊇”)解析:法一:由于M |x =k2·180°+45°,k ∈={…,-45°,45°,135°,225°,…},N |x =k4·180°+45°,k ∈={…,-45°,0°,45°,90°,135°,180°,225°,…},显然有M ⊆N .法二:由于M 中,x =k2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N .答案:⊆4.终边在直线y =3x 上的角的集合为__________________.解析:在坐标系中画出直线y =3x ,可以发现它与x 轴正半轴的夹角是π3,终边在直线y =3x |α=k π+π3,k ∈.答案|α=k π+π3,k 5.(2018·嘉兴七校联考)设角α是第三象限角,且满足|sinα2|=-sin α2,则α2是第________象限角.解析:因为角α是第三象限角,所以2k π+π<α<2k π+3π2(k ∈Z ),所以k π+π2<α2<k π+3π4(k ∈Z ),所以α2是第二或第四象限角.又因为|sin α2|=-sin α2,所以sin α2<0,所以α2是第四象限角.答案:四[谨记通法]1.终边在某直线上角的求法4步骤(1)数形结合,在平面直角坐标系中画出该直线;(2)按逆时针方向写出[0,2π)内的角;(3)再由终边相同角的表示方法写出满足条件角的集合;(4)求并集化简集合.2.确定kα,αk (k ∈N *)的终边位置3步骤(1)用终边相同角的形式表示出角α的范围;(2)再写出kα或αk的范围;(3)然后根据k 的可能取值讨论确定kα或αk 的终边所在位置.考点二扇形的弧长及面积公式(基础送分型考点——自主练透)[题组练透]1.若一扇形的圆心角为72°,半径为20cm ,则扇形的面积为()A .40πcm 2B .80πcm 2C .40cm 2D .80cm 2解析:选B∵72°=2π5,∴S 扇形=12|α|r 2=12×2π5×202=80π(cm 2).2.若扇形的圆心角是α=120°,弦长AB =12cm ,则弧长l 等于()A.433πcm B.833πcm C.43cm D .83cm解析:选B设扇形的半径为r cm ,如图.由sin 60°=6r ,得r =43cm ,∴l =|α|·r =2π3×43=833πcm.3.(2019·瑞安模拟)设扇形的周长为8,面积为4,则扇形的圆心角的弧度数为________.解析:+l =8,=4.=2,4,所以扇形的圆心角的弧度数为|α|=l r =42=2.答案:24.若扇形的圆心角α=60°,半径R =10cm ,求扇形的弧长l 及扇形的弧所在的弧形的面积.解:∵α=60°=π3,R =10cm ,∴l =Rα=10×π3=10π3cm.设弧形的面积为S ,则S =12R 2α-12R 2sin π3=12×102×π3-12×102×32=2.[谨记通法]弧度制下有关弧长、扇形面积问题的解题策略(1)明确弧度制下弧长公式l =|α|r ,扇形的面积公式是S =12lr =12|α|r 2(其中l 是扇形的弧长,α是扇形的圆心角).(2)求扇形面积的关键是求得扇形的圆心角、半径、弧长三个量中的任意两个量.考点三三角函数的定义(题点多变型考点——多角探明)[锁定考向]任意角的三角函数(正弦、余弦、正切)的定义属于理解内容.在高考中多以选择题、填空题的形式出现.常见的命题角度有:(1)三角函数定义的应用;(2)三角函数值的符号判定.[题点全练]角度一:三角函数定义的应用1.已知角α的终边经过点P (-x ,-6),且cos α=-513,则1sin α+1tan α=________.解析:∵角α的终边经过点P (-x ,-6),且cos α=-513,∴cos α=-xx 2+36=-513,即x =52或x =-52(舍去),∴-52,-sin α=-1213,∴tan α=sin αcos α=125,则1sin α+1tan α=-1312+512=-23.答案:-232.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=________.解析:设P (t,2t )(t ≠0)为角θ终边上任意一点,则cos θ=t 5|t |.当t >0时,cos θ=55;当t <0时,cos θ=-55.因此cos 2θ=2cos 2θ-1=25-1=-35.答案:-35角度二:三角函数值的符号判定3.(2019·湖州六校联考)已知sin 2θ<0,且|cos θ|=-cos θ,则点P (tan θ,sin θ)在()A .第一象限B .第二象限C .第三象限D .第四象限解析:选B由|cos θ|=-cos θ可知cos θ<0,由sin 2θ=2sin θcos θ<0可知sinθ>0,所以tan θ<0.所以点P (tan θ,sin θ)在第二象限.4.已知点P (sin θcos θ,2cos θ)位于第三象限,则角θ是第________象限角.解析:因为点P (sin θcos θ,2cos θ)位于第三象限,所以sin θ·cos θ<0,2cos θ<0θ>0,θ<0,所以θ为第二象限角.答案:二[通法在握]定义法求三角函数的3种情况(1)已知角α终边上一点P 的坐标,可求角α的三角函数值.先求P 到原点的距离,再用三角函数的定义求解.(2)已知角α的某三角函数值,可求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.(3)已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.[演练冲关]1.已知角α的终边经过点(3,-4),则sin α+1cos α=()A .-15B.3715C.3720D.1315解析:选D ∵角α的终边经过点(3,-4),∴sin α=-45,cos α=35,∴sin α+1cos α=-45+53=1315.2.如图,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α的值为()A.45B .-45C.35D .-35解析:选D因为点A 的纵坐标y A =45,且点A 在第二象限,又因为圆O 为单位圆,所以A 点横坐标x A =-35,由三角函数的定义可得cos α=-35.一抓基础,多练小题做到眼疾手快1.已知点P (tan α,sin α)在第三象限,则角α的终边在()A .第一象限B .第二象限C .第三象限D .第四象限解析:选D因为点P α<0,α<0,所以α的终边在第四象限,故选D.2.(2018·舟山五校联考)若tan α<0,则()A .sin α<0B .cos α>0C .sin αcos α<0D .2cos 2α-1<0解析:选C因为tan α<0,所以α是第二或第四象限角,所以sin α,cos α的符号不确定,故排除A 、B ;当α是第二象限角时,sin α,cos α符号相反,所以sin αcos α<0;当α是第四象限角时,sin α,cos α符号相反,所以sin αcos α<0,故选C.3.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α(0<α<π)的弧度数为()A .π3B .π2C .3D .2解析:选C 设圆半径为r ,则其内接正三角形的边长为3r ,所以3r =αr ,所以α= 3.4.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 坐标为(x ,y ),所以x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3).答案:(-1,3)5.(2019·丽水模拟)已知角α的终边经过点(2,-2),则sin α=________,sin αcos α=________.解析:因为角α的终边经过点(2,-2),所以sin α=-22,cos α=22,sin αcos α=-12.答案:-22-12二保高考,全练题型做到高考达标1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是()A .π3B .π6C .-π3D .-π6解析:选C 将表的分针拨快应按顺时针方向旋转,为负角.故A 、B 不正确,又因为拨快10分钟,故应转过的角为圆周的16,即为-16×2π=-π3.2.(2019·台州模拟)已知点P (sin(-30°),cos(-30°))在角θ的终边上,且θ∈[-2π,0),则角θ的大小为()A .-π3B .2π3C .-2π3D .-4π3解析:选D 因为P (sin(-30°),cos(-30°)),所以-12,θ是第二象限角,又θ∈[-2π,0),所以θ=-4π3.3.已知角α终边上一点P 的坐标是(2sin 2,-2cos 2),则sin α等于()A .sin 2B .-sin 2C .cos 2D .-cos 2解析:选D因为r =(2sin 2)2+(-2cos 2)2=2,由任意三角函数的定义,得sin α=yr=-cos 2.4.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为()A .1B .-1C .3D .-3解析:选B由α=2k π-π5(k ∈Z )及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1.5.点A (sin 2018°,cos 2018°)在直角坐标平面上位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:选C由2018°=360°×5+(180°+38°)可知,2018°角的终边在第三象限,所以sin2018°<0,cos2018°<0,即点A位于第三象限.6.已知角α的终边经过点(3a-9,a+2),且cosα≤0,sinα>0,则实数a的取值范围是________.解析:∵cosα≤0,sinα>0,∴角α的终边落在第二象限或y轴的正半轴上.a-9≤0,+2>0,∴-2<a≤3.答案:(-2,3]7.已知α是第二象限的角,则180°-α是第________象限的角.解析:由α是第二象限的角可得90°+k·360°<α<180°+k·360°(k∈Z),则180°-(180°+k·360°)<180°-α<180°-(90°+k·360°)(k∈Z),即-k·360°<180°-α<90°-k·360°(k∈Z),所以180°-α是第一象限的角.答案:一8.(2017·北京高考)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若sinα=13,则sinβ=________.解析:当角α的终边在第一象限时,取角α终边上一点P1(22,1),其关于y轴的对称点(-22,1)在角β的终边上,此时sinβ=13;当角α的终边在第二象限时,取角α终边上一点P2(-22,1),其关于y轴的对称点(22,1)在角β的终边上,此时sinβ=13.综上可得sinβ=13.答案:139.已知角θ的终边上有一点(a,a),a∈R且a≠0,则sinθ的值是________.解析:由已知得r=a2+a2=2|a|,sinθ=ar=a2|a|=>0,a<0.所以sinθ的值是22或-22.答案:22或-2210.已知扇形AOB的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB .解:设扇形AOB 的半径为r ,弧长为l ,圆心角为α,(1)+l =8,=3,=3,2=1,6,∴α=l r =23或α=l r =6.(2)法一:∵2r +l =8,∴S 扇=12lr =14l ·2r=14×=4,当且仅当2r =l ,即α=lr =2时,扇形面积取得最大值4.∴圆心角α=2,弦长AB =2sin 1×2=4sin 1.法二:∵2r +l =8,∴S 扇=12lr =12r (8-2r )=r (4-r )=-(r -2)2+4≤4,当且仅当r =2,即α=lr =2时,扇形面积取得最大值4.∴弦长AB =2sin 1×2=4sin 1.11.角α终边上的点P 与A (a,2a )关于x 轴对称(a >0),角β终边上的点Q 与A 关于直线y =x 对称,求sin αcos α+sin βcos β+tan αtan β的值.解:由题意得,点P 的坐标为(a ,-2a ),点Q 的坐标为(2a ,a ).所以sin α=-2a a 2+(-2a )2=-25,cos α=a a 2+(-2a )2=15,tan α=-2aa=-2,sin β=a (2a )2+a 2=15,cos β=2a (2a )2+a 2=25,tan β=a 2a =12,故sin αcos α+sin βcos β+tan αtan β=-25×15+15×25+(-2)×12=-1.三上台阶,自主选做志在冲刺名校(2019·衢州模拟)已知角α的终边经过点P(x,-2)(x≠0),且cosα=36x.(1)求x的值;(2)求sinα+1tanα的值.解:(1)因为角α的终边经过点P(x,-2),且cosα=36 x,所以有xx2+2=36x.因为x≠0,所以x2+2=12,解得x=±10.(2)若x=10,则P(10,-2),所以sinα=-212=-66,tanα=-210=-55,所以sinα+1tanα=-66- 5.若x=-10,则P(-10,-2),所以sinα=-212=-66,tanα=210=55,所以sinα+1tanα=-66+ 5.第二节同角三角函数的基本关系与诱导公式_1.同角三角函数的基本关系式(1)平方关系:sin2α+cos2α=1;(2)商数关系:tanα=sinαcosα.2.诱导公式组序一二三四五六角2k π+α(k ∈Z )π+α-απ-απ2-απ2+α正弦sin α-sin α-sin αsin αcos αcos_α余弦cos α-cos αcos α-cos_αsin α-sin α正切tan αtan α-tan α-tan_α口诀函数名不变符号看象限函数名改变符号看象限记忆规律奇变偶不变,符号看象限[小题体验]1.已知=35,αsin(π+α)=______.答案:-452.若tan θ=12,则2cos α-3sin α3cos α+4sin α的值为________.答案:1103.化简sin(-1071°)sin 99°+sin(-171°)sin(-261°)的结果为________.解析:原式=(-sin 1071°)sin 99°+sin 171°sin 261°=-sin(3×360°-9°)sin(90°+9°)+sin(180°-9°)·sin(270°-9°)=sin 9°cos 9°-sin 9°cos 9°=0.答案:01.利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.2.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.3.注意求值与化简后的结果一般要尽可能有理化、整式化.[小题纠偏]1.已知α是第二象限角,sin α=513,则cos α=________.答案:-12132.________,________.答案:(1)22(2)3考点一三角函数的诱导公式(基础送分型考点——自主练透)[题组练透]1.(2018·宁波模拟)sin 210°cos 120°的值为()A .14B .-34C .-32D .34解析:选Asin 210°cos 120°=-sin 30°(-cos 60°)=12×12=14.2.(2019·嵊州模拟)已知sin(π+α)=-12,则cos ()A .12B .-12C .32D .-32解析:选B因为sin(π+α)=-12=-sin α,所以sin α=-12.3.已知=33,则________.解析:-π6+=tan π=-=-33.答案:-334.(易错题)设f (α)αf解:∵f (α)=(-2sin α)(-cos α)+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos α(1+2sin α)sin α(1+2sin α)=1tan α,∴=114π=1tan π6= 3.5.已知π<α<2π,cos(α-7π)=-35,求sin(3π+α)·tan 解:∵cos(α-7π)=cos(7π-α)=cos(π-α)=-cos α=-35,∴cos α=35.∴sin(3π+α=sin(π+α)·-sin α=sin αsin α·cos αsin α=cos α=35.[谨记通法]1.利用诱导公式把任意角的三角函数转化为锐角三角函数的步骤也就是:“负化正,大化小,化到锐角就好了.”2.利用诱导公式化简三角函数的要求(1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.考点二同角三角函数的基本关系(重点保分型考点——师生共研)[典例引领]1.已知sin α+3cos α3cos α-sin α=5,则sin 2α-sin αcos α的值为()A .-15B .-25C .15D .25解析:选D 依题意得:tan α+33-tan α=5,∴tan α=2.∴sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1=22-222+1=25.2.已知sin θ=m -3m +5,cos θ=4-2mm +5(m ≠0),则tan(k π+θ)(k ∈Z)的值为________.解析:因为sin θ=m -3m +5,cos θ=4-2mm +5,所以sin 2θ+cos 2θ=1,解得m =8,所以sin θ=513,cos θ=-1213,所以tan θ=sin θcos θ=-512.所以tan(k π+θ)(k ∈Z )=tan θ=-512.答案:-5123.已知sin θ+cos θ=43,θsin θ-cos θ的值为________.解析:因为(sin θ+cos θ)2=sin 2θ+cos 2θ+2sin θ·cos θ=1+2sin θcos θ=169,所以2sin θcos θ=79,则(sin θ-cos θ)2=sin 2θ+cos 2θ-2sin θcos θ=1-2sin θcosθ=29.又因为θsin θ<cos θ,即sin θ-cos θ<0,所以sin θ-cos θ=-23.答案:-23[由题悟法]同角三角函数基本关系式的应用技巧技巧解读适合题型切弦互化主要利用公式tan θ=sin θcos θ化成正弦、余弦,或者利用公式sin θcos θ=tan θ化成正切表达式中含有sin θ,cos θ与tan θ“1”的变换1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tanπ4=(sin θ±cos θ)2∓2sin θcos θ表达式中需要利用“1”转化和积转换利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化表达式中含有sin θ±cos θ或sin θcos θ[即时应用]1.若sin α=-513,且α为第四象限角,则tan α的值等于()A .125B .-125C .512D .-512解析:选D法一:因为α为第四象限的角,故cos α=1-sin 2α==1213,所以tan α=sin αcos α=-5131213=-512.法二:因为α是第四象限角,且sin α=-513,所以可在α的终边上取一点P (12,-5),则tan α=yx=-512.故选D.2.(2019·缙云模拟)设sin α+sin β=13,则sin α-cos 2β的最大值为()A .-35B .-23C .-1112D .49解析:选D因为sin α+sin β=13,所以sin α=13-sin β.因为-1≤sin α≤1,所以-23≤sin β≤1.所以sin α-cos 2β=13-sin β-1+sin 2ββ-1112,当sin β=-23时,sin α-cos 2β有最大值49.3.已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为()A .-32B .32C .-34D .34解析:选B∵5π4<α<3π2,∴cos α<0,sin α<0且|cos α|<|sin α|,∴cos α-sin α>0,又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴cos α-sin α=32.4.已知sin(π-α)-cos(π+α)α<sin α-cos α=________.解析:由sin(π-α)-cos(π+α)=23,得sin α+cos α=23,①将①两边平方得1+2sin αcos α=29,故2sin αcos α=-79.∴(sin α-cos α)2=1-2sin αcos α=1=169.又∵π2<α<π,∴sin α>0,cos α<0.∴sin α-cos α=43.答案:43一抓基础,多练小题做到眼疾手快1.(2018·嘉兴七校联考)已知=32,且|α|<π2,则tan α=()A .-33B .33C .-3D .3解析:选C 因为sin α=32,所以sin α=-32.因为|α|<π2,所以α=-π3,所以tan α==-3.2.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于()A .-π6B .-π3C .π6D .π3解析:选D ∵sin(π+θ)=-3cos(2π-θ),∴-sin θ=-3cos θ,∴tan θ= 3.∵|θ|<π2,∴θ=π3.3.(2019·嘉兴模拟)已知sin α,cos α是方程3x 2-2x +a =0的两个根,则实数a 的值为()A .56B .-56C .43D .34解析:选B由题可得,sin α+cos α=23,sin αcos α=a3.所以sin 2α+cos 2α=(sin α+cos α)2-2sin αcos α=49-2a 3=1,解得a =-56.4.1-2sin (π+2)cos (π+2)=()A .sin 2-cos 2B .cos 2-sin 2C .±(sin 2-cos 2)D .sin 2+cos 2解析:选A1-2sin (π+2)cos (π+2)=1-2sin 2·cos 2=sin 22-2sin 2·cos 2+cos 22=|sin 2-cos 2|.又∵π2<2<π,∴sin 2>0,cos 2<0.∴|sin 2-cos 2|=sin 2-cos 2.5.如果sin(π+A )=12,那么cos ________.解析:∵sin(π+A )=12,∴-sin A =12.∴sin A =12.答案:12二保高考,全练题型做到高考达标1.已知tan(α-π)=34,且α()A .45B .-45C .35D .-35解析:选B因为tan(α-π)=34,所以tan α=34.又因为α所以α为第三象限的角,cos α=-45.2.已知f (x )=a sin(πx +α)+b cos(πx +β)+4,若f (2018)=5,则f (2019)的值是()A .2B .3C .4D .5解析:选B∵f (2018)=5,∴a sin(2018π+α)+b cos(2018π+β)+4=5,即a sin α+b cos β=1.∴f (2019)=a sin(2019π+α)+b cos(2019π+β)+4=-a sin α-b cos β+4=-1+4=3.3.(2018·宁波五校联考)已知倾斜角为α的直线l 与直线x +2y -3=0垂直,则cos (1009π-2α)的值为()A .-35B .35C .2D .-12解析:选B由题意可得tan α=2,所以cos (1009π-2α)=-cos 2α=-cos 2α-sin 2αsin 2α+cos 2α=-1-tan 2αtan 2α+1=35.4.当θ为第二象限角,且=13时,1-sin θcos θ2-sin θ2的值是()A .1B .-1C .±1D .0解析:选B ∵=13,∴cos θ2=13,∴θ2在第一象限,且cos θ2<sin θ2,∴1-sin θcos θ2-sin θ2=cos θ2-sinθ21.5.若sin α是5x 2-7x -6=0的根,则(π+α)()A .35B .53C .45D .54解析:选B由5x 2-7x -6=0,得x =-35或x =2.则sin α=-35.故原式=cos α(-cos α)·tan 2αsin α·(-sin α)·(-sin α)=1-sin α=53.6.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为()A .1+5B .1-5C .1±5D .-1-5解析:选B由题意知sin θ+cos θ=-m 2,sin θcos θ=m 4.∵(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m2,解得m =1±5,又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5.7.已知a (|a |≤1),则sin ________.解析:由题意知,cos π=-a .sin π2+a ,所以0.答案:08.(2019·义乌模拟)已知tan(π-α)=-2,则1sin 2α-2cos 2α=________.解析:因为tan(π-α)=-tan α=-2,所以tan α=2.所以1sin 2α-2cos 2α=sin 2α+cos 2αsin 2α-2cos 2α=tan 2α+1tan 2α-2=4+14-2=52.答案:529.(2018·嘉兴七校联考)已知cos(75°+α)=513,α是第三象限角.求sin(195°-α)+cos(α-15°)的值.解:因为cos(75°+α)=513,且α是第三象限角,所以75°+α是第四象限角,所以sin(75°+α)=-1-cos 2(75°+α)=-1213.所以sin(195°-α)+cos(α-15°)=sin(α-15°)+cos(α-15°)=sin [(α+75°)-90°]+cos [(α+75°)-90°]=-cos(α+75°)+sin(α+75°)=-513-1213=-1713.10.已知sin(3π+θ)=13,求cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)(θ-π)-解:∵sin(3π+θ)=-sin θ=13,∴sin θ=-13.∴原式=-cos θcos θ(-cos θ-1)+cos θcos θ·(-cos θ)+cos θ=11+cos θ+cos θ-cos 2θ+cos θ=11+cos θ+11-cos θ=21-cos 2θ=2sin 2θ=21=18.三上台阶,自主选做志在冲刺名校1.sin 21°+sin 22°+…+sin 290°=________.解析:sin 21°+sin 22°+…+sin 290°=sin 21°+sin 22°+…+sin 244°+sin 245°+cos 244°+cos 243°+…+cos 21°+sin 290°=(sin 21°+cos 21°)+(sin 22°+cos 22°)+…+(sin 244°+cos 244°)+sin 245°+sin 290°=44+12+1=912.答案:9122.已知f (x )=cos 2(n π+x )·sin 2(n π-x )cos 2[(2n +1)π-x ](n ∈Z).(1)化简f (x )的表达式;(2)求f 解:(1)当n 为偶数,即n =2k (k ∈Z )时,f (x )=cos 2(2k π+x )·sin 2(2k π-x )cos 2[(2×2k +1)π-x ]=cos 2x ·sin 2(-x )cos 2(π-x )=cos 2x ·(-sin x )2(-cos x )2=sin 2x ;当n 为奇数,即n =2k +1(k ∈Z )时,f (x )=cos 2[(2k +1)π+x ]·sin 2[(2k +1)π-x ]cos 2{[2×(2k +1)+1]π-x }=cos 2[2k π+(π+x )]·sin 2[2k π+(π-x )]cos 2[2×(2k +1)π+(π-x )]=cos 2(π+x )·sin 2(π-x )cos 2(π-x )=(-cos x )2sin 2x (-cos x )2=sin 2x ,综上得f (x )=sin 2x .(2)由(1)得=sin 2π2018+sin 21008π2018=sin 2π2018+sin=sin 2π2018+cos 2π2018=1.第三节三角函数的图象与性质1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象上,五个关键点是:(0,0)(π,0)(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象上,五个关键点是:(0,1),(π,-1),(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z).[小题体验]1.①y =cos 2x;②y =sin 2x;③y =tan 2x;④y =|sin x |四个函数中,最小正周期为π的奇函数是________.答案:②2.(教材习题改编)函数y =-2的定义域为________________.|x ≠k π+π3,k1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响.2.要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,尽量化成ω>0时的情况.3.三角函数存在多个单调区间时易错用“∪”联结.[小题纠偏]1.函数y =4sin(-x ),x ∈[-π,π]的单调性是()A .在[-π,0]上是增函数,在[0,π]上是减函数B .在-π2,π2上是增函数,在-π,-π2和π2,π上是减函数C .在[0,π]上是增函数,在[-π,0]上是减函数D .在π2,π和-π,-π2上是增函数,在-π2,π2上是减函数答案:D2.函数f (x )=sin x 在区间0,π2上的最小值为________.解析:由已知x ∈0,π2,得2x -π4∈-π4,3π4,所以x ∈-22,1,故函数f (x )=sin x 在区间0,π4上的最小值为-22.答案:-2 2考点一三角函数的定义域(基础送分型考点——自主练透)[题组练透] 1.函数y=log21sin x-1的定义域为________.解析:21sin x-1≥0,x>0,所以有0<sin x≤12,解得2kπ<x≤2kπ+π6或2kπ+5π6≤x<2kπ+π,k∈Z,|2kπ<x≤2kπ+π6或2kπ+5π6≤x<2kπ+π,k∈.|2kπ<x≤2kπ+π6或2kπ+5π6≤x<2kπ+π,k2.函数y=lg(sin2x)+9-x2的定义域为______________.解析:2x>0,-x2≥0,π<x<kπ+π2,k∈Z,3≤x≤3.∴-3≤x<-π2或0<x<π2.∴函数y=lg(sin2x)+9-x2的定义域为-3答案:-3[谨记通法]三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数图象来求解.考点二三角函数的值域或最值(重点保分型考点——师生共研)[典例引领]1.函数y=≤x≤9)的最大值与最小值之和为()A.2-3B.0C.-1D.-1-3解析:选A∵0≤x≤9,∴-π3≤π6x-π3≤7π6,∴∈-32,1.∴y ∈[-3,2],∴y max +y min =2-3.2.(2018·浙北联考)函数f (x )=2cos 2x +5sin x -4的最小值为________,最大值为________.解析:f (x )=2cos 2x +5sin x -4=-2sin 2x +5sin x -2=-x +98.因为-1≤sin x ≤1,所以当sin x =-1时,f (x )有最小值-9;当sin x =1时,f (x )有最大值1.答案:-913.函数y =sin x -cos x +sin x cos x ,x ∈[0,π]的值域为________________.解析:设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,即sin x cos x =1-t 22,且-1≤t ≤ 2.∴y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-1时,y min =-1.∴函数的值域为[-1,1].答案:[-1,1]4.(2019·平阳模拟)已知函数f (x )=2a x a +b (a <0)的定义域为0,π2,值域为[-5,1],则a+b =________.解析:因为x ∈0,π2,所以2x +π6∈π6,7π6,所以x ∈-12,1.因为a <0,所以f (x )∈[3a +b ,b ].因为函数的值域为[-5,1],所以3a +b =-5,b =1,所以a =-2,所以a +b =-1.答案:-1[由题悟法]三角函数最值或值域的3种求法(1)直接法:直接利用sin x 和cos x 的值域求解.(2)化一法:把所给三角函数化为y =A sin(ωx +φ)+k 的形式,由正弦函数单调性写出函数的值域.(3)换元法:把sin x 、cos x 、sin x cos x 或sin x ±cos x 换成t ,转化为二次函数.[即时应用]求函数y =cos 2x +sin x|解:令t =sin x ,∵|x |≤π4,∴t ∈-22,22.∴y =-t 2+t +1+54,∴当t =12时,y max =54,当t =-22时,y min =1-22.∴函数y =cos 2x +sin x |的最大值为54,最小值为1-22.考点三三角函数的性质(题点多变型考点——多角探明)[锁定考向]三角函数的性质主要包括单调性、奇偶性、周期性、对称性,而三角函数的对称性多与奇偶性、周期性结合.常见的命题角度有:(1)三角函数的周期性;(2)三角函数的对称性;(3)三角函数的单调性.[题点全练]角度一:三角函数的周期性1.(2019·湖州期末)函数y =5sin -π3x()A .6B .-6C .2π3D .23解析:选A函数的最小正周期为T =2π|-π3|=6.2.(2017·天津高考)设函数f (x )=2sin(ωx +φ),x ∈R,其中ω>0,|φ|<π.若2,0,且f (x )的最小正周期大于2π,则()A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π24解析:选A∵2,0,∴11π8-5π8=T4(2m +1),m ∈N ,∴T =3π2m +1,m ∈N ,∵f (x )的最小正周期大于2π,∴T =3π,∴ω=2π3π=23,∴f (x )=+由×5π8+2,得φ=2k π+π12,k ∈Z .又|φ|<π,∴取k =0,得φ=π12.角度二:三角函数的对称性3.(2018·嘉兴期末)函数f (x )=sin x ()A .x =π12B .x =5π12C .x =π3D .x =π6解析:选A由题可得,令2x +π3=k π+π2,k ∈Z ,得x =k π2+π12,k ∈Z .所以当k =0时,函数f (x )的图象的一条对称轴方程为x =π12.4.函数y =cos(3x +φ)的图象关于原点成中心对称图形,则φ=________.解析:由题意,得y =cos(3x +φ)是奇函数,故φ=k π+π2(k ∈Z ).答案:k π+π2(k ∈Z )角度三:三角函数的单调性5.(2019·浦江模拟)已知函数f (x )=2sin +φ>0,|φ|π,且是偶函数,则()A .f (x )B .f (x )C .f (x )D .f (x )解析:选A 因为函数f (x )的最小正周期为π,所以ω=2.因为函数f (x )是偶函数,且|φ|<π2,所以φ=π4.所以f (x )=2sinx =2cos 2x ,所以函数f (x )[通法在握]1.函数f (x )=A sin(ωx +φ)的奇偶性、周期性和对称性(1)若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值;若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.(2)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.2.求三角函数单调区间的2种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用基本三角函数的单调性列不等式求解.(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.[演练冲关]1.(2019·舟山模拟)若函数f (x )=sin(φ-x )是奇函数,则φ的值可能是()A .π6B .π3C .π2D .π解析:选D因为函数f (x )是奇函数,所以φ=k π(k ∈Z ).对比选项可知,φ的值可能是π.故选D.2.若函数f (x )=sin ωx (ω>0)相邻两对称轴之间的距离为2,则ω=________.解析:f (x )=sin ωx =12sin ωx +32cos ωx +sin ωx =32sin ωx +32cos ωx =3sin 又因为f (x )相邻两条对称轴之间的距离为2,所以T =4,所以2πω=4,即ω=π2.答案:π23.函数y =|tan x |-π2,_______.解析:如图,观察图象可知,y =|tan x |-π2,减区间为-π2,0和π.-π2,0和π一抓基础,多练小题做到眼疾手快1.下列函数中,周期为π的奇函数为()A .y =sin x cos xB .y =sin 2xC .y =tan 2xD .y =sin 2x +cos 2x解析:选A y =sin 2x 为偶函数;y =tan 2x 的周期为π2;y =sin 2x +cos 2x 为非奇非偶函数,B 、C 、D都不正确,选A.2.函数y =sin x =2处取得最大值,则正数ω的最小值为()A.π2B.π3C.π4D.π6解析:选D 由题意得,2ω+π6=π2+2k π(k ∈Z ),解得ω=π6+k π(k ∈Z ),∵ω>0,∴当k =0时,ωmin=π6,故选D.3.函数y =cos x -32的定义域为()A.-π6,π6B.k π-π6,k π+π6(k ∈Z )C.2k π-π6,2k π+π6(k ∈Z )D .R 解析:选C∵cos x -32≥0,得cos x ≥32,∴2k π-π6≤x ≤2k π+π6,k ∈Z .4.(2018·浙江六校联考)函数y =3sin x +3cos x ∈0________.解析:化简可得y =23sin 由2k π-π2≤x +π6≤2k π+π2(k ∈Z ),得-2π3+2k π≤x ≤π3+2k π(k ∈Z ),又x ∈0,π2,∴函数的单调递增区间是0,π3.答案:0,π35.函数f (x )=sin x 在0,π2上的值域是________.解析:∵x ∈0,π2,∴2x +π3∈π3,4π3,∴当2x +π3=π2,即x =π12时,f (x )max =1.当2x +π3=4π3,即x=π2时,f (x )min =-32,∴f (x )∈-32,1.答案:-32,1二保高考,全练题型做到高考达标1.(2019·诸暨模拟)若函数f (x )=sin ωx (ω>0)在区间0,π3上单调递增,在区间π3,π2上单调递减,则ω=()A .3B .2C .32D .23解析:选C 因为函数f (x )在区间0,π3上单调递增,在区间π3,π2上单调递减,所以f (x )max =sinωπ3=1.又因为2πω≥2×π2,所以0<ω≤2,所以ωπ3=π2,解得ω=32.2.关于函数y =x ()A .是奇函数BD .最小正周期为π解析:选C函数y =tanx A 错;函数y =tan x 增,B 错;最小正周期为π2,D 错;由2x -π3=k π2,k ∈Z ,得x =k π4+π6,k ∈Z .当k =0时,x =π6,所以它的3.函数f (x )=2sin(ωx +φ)(ω>0)对任意x 都有f ()A .2或0B .-2或2C .0D .-2或0解析:选B因为函数f (x )=2sin(ωx +φ)对任意x 都有x=π6对称,因为在对称轴处对应的函数值为最大值或最小值,所以选B.4.已知函数f (x )=2sin(ωx +φ),x ∈R,其中ω>0,-π<φ≤π.若f (x )的最小正周期为6π,且当x =π2时,f (x )取得最大值,则()A .f (x )在区间[-2π,0]上是增函数B .f (x )在区间[-3π,-π]上是增函数C .f (x )在区间[3π,5π]上是减函数D .f (x )在区间[4π,6π]上是减函数解析:选A∵f (x )的最小正周期为6π,∴ω=13.∵当x =π2时,f (x )有最大值,∴13×π2+φ=π2+2k π(k ∈Z ),φ=π3+2k π(k ∈Z ),∵-π<φ≤π,∴φ=π3.∴f (x )=令-π2+2k π≤x 3+π3≤π2+2k π,k ∈Z ,得-5π2+6k π≤x ≤π2+6k π,k ∈Z ,故f (x )的单调增区间为-5π2+6k π,π2+6k π,k ∈Z ,令k =0,得x ∈-5π2,π2,∵[-2π,0]⊆-5π2,π2,故A 正确.5.已知ω>0,函数f (x )=sinω的取值范围是()A .12,54B .12,34C ,12D .(0,2]解析:选A由π2<x <π得π2ω+π4<ωx +π4<πω+π4,+π4,πω⊆π2,3π2,+π4≥π2,+π4≤3π2,∴12≤ω≤54,故选A.6.若函数f (x )=2tanT 满足1<T <2,则自然数k 的值为________.解析:由题意知,1<πk <2,即k <π<2k .又k ∈N ,所以k =2或k =3.答案:2或37.已知函数f (x )=x ∈-π3,a ,若f (x )的值域是-12,1,则实数a 的取值范围是________.解析:∵x ∈-π3,a ,∴x +π6∈-π6,a +π6,∵当x +π6∈-π6,π2时,f (x )的值域为-12,1,∴结合函数的图象知π2≤a +π6≤7π6,∴π3≤a ≤π.答案:π3,π8.若函数f (x )=ω>0)的图象的相邻两条对称轴之间的距离为π2,且该函数图象关于点(x 0,0)成中心对称,x 0∈0,π2,则x 0=________.解析:由题意得T 2=π2,T =π,ω=2.又2x 0+π6=k π(k ∈Z ),x 0=k π2-π12k ∈Z ),而x 0∈0,π2,所以x 0=5π12.答案:5π129.已知函数f (x )=sin(ωx +φ<φπ.(1)求当f (x )为偶函数时φ的值;(2)若f (x )f (x )的单调递增区间.解:∵f (x )的最小正周期为π,则T =2πω=π,∴ω=2.∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,φ=π2+k π,k ∈Z ,∴cos φ=0,∵0<φ<2π3,∴φ=π2.(2)f (x )×π6+=32,即=32.又∵0<φ<2π3,∴π3<π3+φ<π.∴π3+φ=2π3,φ=π3.∴f (x )=x 令2k π-π2≤2x +π32k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z .∴f (x )的单调递增区间为k π-5π12,k π+π12,k ∈Z .10.已知函数f (x )=2sinx (1)求函数f (x )图象的对称轴方程;(2)求函数f (x )的单调递增区间;(3)当x ∈π4,3π4时,求函数f (x )的最大值和最小值.解:(1)令2x +π4=k π+π2,k ∈Z ,得x =k π2+π8,k ∈Z .所以函数f (x )图象的对称轴方程是x =k π2+π8,k ∈Z .(2)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .故函数f (x )的单调递增区间为k π-3π8,k π+π8,k ∈Z .(3)当x ∈π4,3π4时,3π4≤2x +π4≤7π4,所以-1≤x ≤22,所以-2≤f (x )≤1,所以当x ∈π4,3π4时,函数f (x )的最大值为1,最小值为-2.三上台阶,自主选做志在冲刺名校1.若存在实数a ,使函数y =sin 2x +a cos x +58a -32在闭区间0,π2上取到最大值1,则实数a 等于()A .1B .52C .32D .2解析:选Cy x -12a +a 24+58a -12.当0≤x ≤π2时,0≤cos x ≤1,令t =cos x ,则0≤t ≤1,所以y -12a +a 24+58a -12,0≤t ≤1.①当0≤a 2≤1,即0≤a ≤2时,则当t =a 2cos x =a 2时,y max =a 24+58a -12=1,解得a =32或a =-4(舍去),故a =32;②当a2<0,即a <0时,则当t =0,即cos x =0时,y max =58a -12=1,解得a =125,由于a <0,故这种情况不存在满足条件的a 值;③当a2>1,即a >2时,则当t =1,即cos x =1时,y max =a +58a -32=1,解得a =2013.由于2013<2,故这种情况下不存在满足条件的a 值.综上知,存在a =32符合题意.故选C.2.设函数f (x )=sin(ωx +φ>0,|φ|①它的最小正周期为π;②它的图象关于直线x =π12成轴对称图形;④在区间-π6,以其中两个论断作为条件,另两个论断作为结论,写出你认为正确的一个命题________(用序号表示即可).解析:若①②成立,则ω=2ππ=2.令2×π12+φ=k π+π2,k ∈Z ,且|φ|<π2,故k =0,则φ=π3.此时f (x )=x 当x =π3时,x sin π=0,所以f (x )f (x )在-5π12,π12上是增函数,则f (x )在-π6,⇒③④.用类似的分析可求得①③⇒②④.。

2024届高三数学一轮复习:三角函数知识梳理清单

2024届高三数学一轮复习:三角函数知识梳理清单

三角函数知识梳理1.角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。

射线的起始位置称为始边,终止位置称为终边。

按方向旋转所形成的角叫正角,按方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。

2.象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。

如果角的终边在坐标轴上,就认为这个角不属于任何象限,称作轴线角。

(1)四个象限内的角的集合终边在第一象限:终边在第二象限:终边在第三象限:终边在第四象限:(2)若α为第一象限的角,则2α所在象限为若α为第三象限的角,则2α所在象限为3.终边相同的角的表示:(1)α终边与θ终边相同(α的终边在θ终边所在射线上)⇔2()k k αθπ=+∈Z ,注意:相等的角的终边一定相同,终边相同的角不一定相等.(2)α终边与θ终边共线(α的终边在θ终边所在直线上)⇔.(3)α终边与θ终边关于x 轴对称⇔.(4)α终边与θ终边关于y 轴对称⇔.(5)α终边与θ终边关于原点对称⇔.(6)α终边在x 轴上的角可表示为:,k k Z απ=∈;α终边在y 轴上的角可表示为:;α终边在坐标轴上的角可表示为:.4.弧度制(1)1弧度定义:,角α的弧度数的绝对值α=弧长公式:,扇形面积公式:(2)换算关系:1︒=rad ,1rad=︒.5.三角函数定义:⑴设α是一个任意角,终边与单位圆交于点P(x,y),那么y 叫作α的正弦,记作sinα;x 叫作α的余弦,记作cosα;yx叫作α的正切,记作tanα.⑵已知角α终边上一点()y x P ,,且r OP =,则有=αsin =αcos =αtan 三角函数符号规律:一全正,二正弦,三正切,四余弦.(3)一些特殊角的三角函数:α000300450600900120013501500180015075αsin αcos αtan 6.同角三角函数的基本关系式:①平方关系;②商式关系.关于公式1cos sin 22=+αα的深化1+sin 2α=(sin α+cosα)2,1-sin 2α=(sin α-cos α)2,③一些常用特殊三角函数值:αsin αcos αtan 勾股关系αsin αcos αtan 勾股关系53222534=+1785128735132210314117.三角函数的诱导公式公式一二三四五六角2k π+α(k ∈Z)π+α-απ-απ2-απ2+α正弦sin α余弦cos α正切tan α口诀函数名不变,符号看象限函数名改变,符号看象限六组诱导公式统一为“()2k k Z πα±∈”,记忆口诀:奇变偶不变,符号看象限.诱导公式的主要作用是将任意角的三角函数转化为 0~ 90角的三角函数。

高考数学第一轮复习三角函数知识点总结

高考数学第一轮复习三角函数知识点总结

高考数学第一轮复习三角函数知识点总结三角函数是数学中常有的一类对于角度的函数,以下是三角函数知识点总结,请考生阅读学习。

29.正角、负角、零角、象限角的观点你清楚吗?,若角的终边在座标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边同样的角和相等的角的差别吗?30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线 )的定义你知道吗?31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗 ?你注意到正弦函数、余弦函数的有界性了吗?32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转变出现特别角。

异角化同角,异名化同名,高次化低次 )33.反正弦、反余弦、反正切函数的取值范围分别是34.你还记得某些特别角的三角函数值吗?35.掌握正弦函数、余弦函数及正切函数的图象和性质。

你会写三角函数的单一区间吗?会写简单的三角不等式的解集吗?(要注意数形联合与书写规范,可别忘了),你能否清楚函数的图象能够由函数经过如何的变换获得吗?36.函数的图象的平移,方程的平移以及点的平移公式易混:(1)函数的图象的平移为左+右 -,上 +下-如函数的图象左移2个单位且下移 3 个单位获得的图象的分析式为,即。

(2)方程表示的图形的平移为左+右 -,上 -下+如直线左移 2 个个单位且下移 3 个单位获得的图象的分析式为,即。

(3)点的平移公式:点按向量平移到点,则。

37.在三角函数中求一个角时,注意考虑双方面了吗 ?(先求出某一个三角函数值,再判断角的范围 )“师”之观点,大概是从先秦期间的“师长、师傅、先生”而来。

此中“师傅”更早则意指春秋时国君的老师。

《说文解字》中有注曰:“师教人以道者之称也”。

“师”之含义,此刻泛指从事教育工作或是教授知识技术也或是某方面有专长值得学习者。

“老师”的原意并不是由“老”而形容“师”。

“老”在旧语义中也是一种尊称,隐喻年长且学问渊博者。

“老”“师”连用最先见于《史记》,有“荀卿最为老师”之说法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考数学一轮复习知识点总结数列考试内容: 数列.等差数列及其通项公式.等差数列前n 项和公式. 等比数列及其通项公式.等比数列前n 项和公式. 考试要求:(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.(2)理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题. (3)理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,井能解决简单的实际问题. §03. 数 列 知识要点等差数列 等比数列 定义 d a a n n =-+1)0(1≠=+q q a a nn 递推公式 d a a n n +=-1;md a a n m n +=- q a a n n 1-=;m n m n q a a -=通项公式d n a a n )1(1-+=11-=n n q a a (0,1≠q a )数列数列的定义 数列的有关概念 数列的通项 数列与函数的关系 项 项数 通项 等差数列 等差数列的定义 等差数列的通项 等差数列的性质 等差数列的前n 项和 等比数列 等比数列的定义 等比数列的通项 等比数列的性质 等比数列的前n 项和1. ⑴等差、等比数列:等差数列等比数列定义常数)为(}{1d a a P A a n n n =-⇔⋅+常数)为(}{1q a a P G a nn n =⇔⋅+ 通项公式n a =1a +(n-1)d=k a +(n-k )d=dn +1a -dk n k n n q a q a a --==11求和公式n d a n d d n n na a a n s n n )2(22)1(2)(1211-+=-+=+=⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q qq a a q q a q na s n n n中项公式A=2b a + 推广:2n a =m n m n a a +-+ ab G =2。

推广:m n m n n a a a +-⨯=2性质1 若m+n=p+q 则 q p n m a a a a +=+ 若m+n=p+q ,则q p n m a a a a =。

2若}{n k 成A.P (其中N k n ∈)则}{n k a 也为A.P 。

若}{n k 成等比数列 (其中N k n ∈),则}{n k a 成等比数列。

3 .n n n n n s s s s s 232,,-- 成等差数列。

n n n n n s s s s s 232,,--成等比数列。

4)(11n m nm a a n a a d nm n ≠--=--=11a a q nn =- , mnmn a a q=- )(n m ≠5⑵看数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=--中项2kn k n a a A +-+=(0,,* k n N k n ∈))0( k n k n k n k n a a a a G +-+-±=(0,,* k n N k n ∈)前n 项和)(21n n a a nS +=d n n na S n 2)1(1-+=()⎪⎩⎪⎨⎧≥--=--==)2(111)1(111q q qa a qq a q na S n n n 重要性质),,,,(*q p n m N q p n m a a a a q p n m +=+∈+=+),,,,(*q p n m N q p n m a a a a q p n m +=+∈⋅=⋅②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数).⑶看数列是不是等比数列有以下四种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n②112-+⋅=n n na a a (2≥n ,011≠-+n n n a a a )①注①:i. ac b =,是a 、b 、c 成等比的双非条件,即ac b =、b 、c 等比数列.ii. ac b =(ac >0)→为a 、b 、c 等比数列的充分不必要. iii. ac b ±=→为a 、b 、c 等比数列的必要不充分. iv. ac b ±=且0 ac →为a 、b 、c 等比数列的充要.注意:任意两数a 、c 不一定有等比中项,除非有ac >0,则等比中项一定有两个. ③n n cq a =(q c ,为非零常数).④正数列{n a }成等比的充要条件是数列{n x a log }(1 x )成等比数列.⑷数列{n a }的前n 项和n S 与通项n a 的关系:⎩⎨⎧≥-===-)2()1(111n s s n a s a n n n[注]: ①()()d a nd d n a a n -+=-+=111(d 可为零也可不为零→为等差数列充要条件(即常数列也是等差数列)→若d 不为0,则是等差数列充分条件).②等差{n a }前n 项和n d a n d Bn An S n ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=+=22122 →2d可以为零也可不为零→为等差的充要条件→若d 为零,则是等差数列的充分条件;若d 不为零,则是等差数列的充分条件. ③非零..常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列) 2. ①等差数列依次每k 项的和仍成等差数列,其公差为原公差的k 2倍...,,232k k k k k S S S S S --; ②若等差数列的项数为2()+∈N n n ,则,奇偶nd S S =-1+=n na a S S 偶奇;③若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇,1-=n n S S 偶奇 得到所求项数到代入12-⇒n n . 3. 常用公式:①1+2+3 …+n =()21+n n ②()()61213212222++=+++n n n n③()2213213333⎥⎦⎤⎢⎣⎡+=++n n n[注]:熟悉常用通项:9,99,999,…110-=⇒n n a ; 5,55,555,…()11095-=⇒nn a . 4. 等比数列的前n 项和公式的常见应用题:⑴生产部门中有增长率的总产量问题. 例如,第一年产量为a ,年增长率为r ,则每年的产量成等比数列,公比为r +1. 其中第n 年产量为1)1(-+n r a ,且过n 年后总产量为:.)1(1])1([)1(...)1()1(12r r a a r a r a r a a n n +-+-=+++++++-⑵银行部门中按复利计算问题. 例如:一年中每月初到银行存a 元,利息为r ,每月利息按复利计算,则每月的a 元过n 个月后便成为n r a )1(+元. 因此,第二年年初可存款:)1(...)1()1()1(101112r a r a r a r a ++++++++=)1(1])1(1)[1(12r r r a +-+-+.⑶分期付款应用题:a 为分期付款方式贷款为a 元;m 为m 个月将款全部付清;r 为年利率.()()()()()()()()1111111 (1112)1-++=⇒-+=+⇒++++++=+--m m m mm m mr r ar x r r x r a x r x r x r x r a5. 数列常见的几种形式:⑴n n n qa pa a +=++12(p 、q 为二阶常数)→用特证根方法求解.具体步骤:①写出特征方程q Px x +=2(2x 对应2+n a ,x 对应1+n a ),并设二根21,x x ②若21x x ≠可设nn n x c x c a 2211.+=,若21x x =可设n n x n c c a 121)(+=;③由初始值21,a a 确定21,c c .⑵r Pa a n n +=-1(P 、r 为常数)→用①转化等差,等比数列;②逐项选代;③消去常数n 转化为n n n qa Pa a +=++12的形式,再用特征根方法求n a ;④121-+=n n P c c a (公式法),21,c c 由21,a a 确定. ①转化等差,等比:1)(11-=⇒-+=⇒+=+++P rx x Px Pa a x a P x a n n n n . ②选代法:=++=+=--r r Pa P r Pa a n n n )(21x P x a P r P P r a a n n n -+=---+=⇒--1111)(1)1( r r P a P n n +++⋅+=--Pr 211 .③用特征方程求解:⇒⎭⎬⎫+=+=-+相减,r Pa a r Pa a n n n n 111+n a 1111-+--+=⇒-=-n n n n n n Pa a P a Pa Pa a )(. ④由选代法推导结果:Pr P P r a c P c a P r a c P r c n n n -+-+=+=-+=-=--111111112121)(,,. 6. 几种常见的数列的思想方法:⑴等差数列的前n 项和为n S ,在0 d 时,有最大值. 如何确定使n S 取最大值时的n 值,有两种方法: 一是求使0,01 +≥n n a a ,成立的n 值;二是由n da n d S n )2(212-+=利用二次函数的性质求n 的值. ⑵如果数列可以看作是一个等差数列与一个等比数列的对应项乘积,求此数列前n 项和可依照等比数列前n 项和的推倒导方法:错位相减求和. 例如:, (2)1)12,...(413,211n n -⋅⑶两个等差数列的相同项亦组成一个新的等差数列,此等差数列的首项就是原两个数列的第一个相同项,公差是两个数列公差21d d ,的最小公倍数.2. 判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n ≥2的任意自然数,验证)(11---n nn n a a a a 为同一常数。

(2)通项公式法。

(3)中项公式法:验证212-++=n n n a a a N n a a a n n n ∈=++)(221都成立。

3. 在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足⎩⎨⎧≤≥+001m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足⎩⎨⎧≥≤+001m m a a 的项数m 使得m s 取最小值。

在解含绝对值的数列最值问题时,注意转化思想的应用。

(三)、数列求和的常用方法1. 公式法:适用于等差、等比数列或可转化为等差、等比数列的数列。

相关文档
最新文档