核磁共振氢谱解析方法ppt

合集下载

核磁共振氢谱自旋系统与解析PPT课件

核磁共振氢谱自旋系统与解析PPT课件

NaOD交换: 羰基α-氢
例如:
OH OH
OH OH
COOH
COOH
O
O
(A)
(B)
第34页/共53页
三、溶剂效应
苯的溶剂效应
第35页/共53页
四、位移试剂
O
(
) 3Eu
O
O
(
) 3 Pr
O
Δ∝ 1
r3
-NH2 > -OH > C=O > -OR > -COOR > -C≡N
第36页/共53页
五、双照射去偶
3
+
[6-8]}
第16页/共53页
例: 2,6-二甲基吡啶的1HNMR谱(60MHz)如下:
v1 ~ v8 依次为456, 449.5, 447, 440.5, 421.5,420.5, 414, 412.5Hz
由上式计算得 δA=7.45ppm,δB=6.96ppm, JAB=7.8Hz
第17页/共53页
第25页/共53页
五、四旋系统
4个质子间的相互偶合, 常见的有 AX3 A2X2 A2B2 AA'BB'
AX3 A2X2 一级谱 A2B2, AA'BB'二级谱
例如:CH3CHO, CH3CHX-, -OCH2CH2CO- 等 一级谱处理。
第26页/共53页
A2B2系统
A2B2系统理论上18条峰,常见14条峰,A、B各自为7
HB
HB
HA HB
第9页/共53页
四、三旋系统
A3 AX2 AB2 AMX ABX ABC系统 (X-CH=CH2 ,-CH2-CH< ,三取代苯,二取代吡啶等)

《核磁共振氢谱》PPT课件

《核磁共振氢谱》PPT课件

3. 影响化学位移的因素:
= d + p + a + s H核外只有s电子,故d 起主要作用, a 和s对也有一定的 作用。
影响化学位移的因素---诱导效应
核外电子云的抗磁性屏蔽是影响质子化学位移的主要因素。
核外电子云密度与邻近原子或基团的电负性大小密切相关, 电负性强的原子或基团吸电子诱导效应大,使得靠近它们的 质子周围电子云密度减小,质子所受到的抗磁性屏蔽( d)
范德华效应
当两个原子相互靠近时,由于受到范德华力作用, 电子云相互排斥,导致原子核周围的电子云密度降低 ,屏蔽减小,谱线向低场方向移动,这种效应称为范 德华效应。
这种效应与相互影响的两个原子之间的距离密切相关 ,当两个原子相隔 0.17nm(即范德华半径之和)时 ,该作用对化学位移的影响约为 0.5,距离为 0 . 2 0 nm 时 影 响 约 为 0 . 2 , 当 原 子 间 的 距 离 大 于 0.25nm 时可不再考虑。
共轭效应
在共轭效应中,推电子基使H减小,拉电子基使H增
大。
(+1.43)
H
O CH 3 H
H
(+1.29)
H
(-1.10)
H
H
(-0.59)
H
O
H
(0.00)
H
(-0.21)
H
(-0.81)
相连碳原子的杂化态影响
碳碳单键是碳原子 sp杂化轨道重叠而成的,而碳碳双键和三键分别 是 sp2和 sp杂化轨道形成的。s电子是球形对称的,离碳原子近, 而离氢原子较远。所以杂化轨道中 s成分越多,成键电子越靠近碳 核,而离质子较远,对质子的屏蔽作用较小。
芳烃的各向异 8.9;环内H 在受到高度的屏蔽作 用,故 : -1.8

核磁共振谱图解析 ppt课件

核磁共振谱图解析  ppt课件
PPT课件 21
在核磁管里加入1-2滴重水即可将活泼氢交换掉
HDO
活泼氢
PPT课件
22
CH3(CH2)15CH2CH2SH
PPT课件
23
氟对氢的偶合
氟对氢的偶合在核磁中是经常碰见的,并且 利用此规律可以解决和验证很多芳香环上取代基 的取代位置问题。 参考下面的列表和谱图:
PPT课件
24
1H和19F的耦合常数
6-10
衍生物
4-8 0-3
J邻2.5
PPT课件
25
PPT课件
26
PPT课件
27
PPT课件
28
PPT课件
29
关于手性化合物和前手性化合物中CH2上两个 氢的化学位移
与某碳原子相连的四个基团不等同时,该碳 原子则是手性碳原子,若有一对相同基团时,该 碳原子则是前手性碳原子。与手性碳上相连的碳 上的两个氢或者相隔2键或3键等以上碳上的两个 氢都是不等价的,且两个氢的偶合常数在8-15Hz 范围(同碳耦合),有的甚至更高。
核磁共振(பைடு நூலகம்MR)谱 图解析
PPT课件
1
常用的核磁共振(NMR)实验
1H 13C 13C-DEPT135o
( CH CH3 , CH2 ) 13C-DEPT90o ( CH ) 1H -1H COSY (化学键上相邻氢原子的识别) 1H -1H TOCSY (结构片断的识别) 1H -1H NOESY (空间上相近的氢原子的识别) 1H - 13C (HSQC, HMQC) (碳氢一键相关) 1H - 13C HMBC (碳氢远程相关——碳氢原子二、三键偶合)
PPT课件
33
用NOESY方法对异构体的鉴别

核磁共振氢谱及碳谱(NMR)PPT课件

核磁共振氢谱及碳谱(NMR)PPT课件
核磁共振氢谱及碳谱
13C 谱
碳谱的特点
13C谱测定的困难:
1. 天然丰度低:~1.1%; 而 1H: 99.98%
2. 相 对 灵 敏 度 低 : gCgH/4, 因 此 其 相 对 灵 敏 度 为 (gC/gH)3=0.016。
3. 再考虑到弛豫等因素,总体来讲,13C的灵敏度要比 1H低约6000倍。
1H耦合的碳谱无法解释,因为往往会重叠在一起 。
ppt精选版
3
碳谱的特点
3. 由于碳谱的化学位移范围很大,在较为复杂的分子中, 1H耦合的碳谱无法解释,因为往往会重叠在一起 。 因此实际上我们通常使用的13C谱是质子去耦谱。
ppt精选版
4
碳谱的特点
13C谱的优点:
1. C构成化合物的骨架,因而C谱能够提供结构鉴定的 重要信息
160 140 120 100 90 80 70 60 50 40 30 ppm
• 对C而言,C=1.988,即C的信号强度最大可达到原来
的3倍,再加上谱线有几条合并成1条,总的强度增加
就更大。
ppt精选版
32
1H去耦脉冲序列
x
y
I
x
S
y, -y b
y
ppt精选版
Deco up le
33
1H去耦脉冲序列
小,|p|减小,dC减小。
• 如电子体系:电子密度r与dC有一个线性关

dC = 160r + 287.5 (ppm)
即电子密度r越大,化学位移越小
ppt精选版
11
烷烃中C的化学位移
• 取代基电负性对化学位移的影响
a. 取代基电负性越大,相邻的a-C原子越往低场移,

核磁共振氢谱PPT课件

核磁共振氢谱PPT课件


m=I, I-1, I-2, ……-I
• 每种取向各对应一定能量状态
• I=1/2的氢核只有两种取向
• I=1的核在B0中有三种取向
.
10
z
z
z
m =+1
m =
B0
m = +1/2
m =
m =
m =
m = 1/2
m = 1
m = 1 m = 2
I = 1/2
I=1
I=2
I=1/2的氢核 与外磁场平行,能量较低,m=+1/2, E 1/2= -B0
与外磁场方向相反, 能量较高, m= -1/2, .
E -1/2=1B1 0
• 核磁矩与外磁场相互作用而产生的核磁场作用能 E, 即各能级的能量为 E=-ZB0
E 1/2= -B0 E-1/2= B0
.
12
I=1/2的核自旋能级裂分与B0的关系
• 由式 E = -ZB0及图可知1H核在磁场 中,由低能 级E1向高能级E2跃迁,所需能量为 △E=E2-E1= B0 -(-B0) = 2 B0
代入上式得: h I(I1) 2
当I=0时,P=0,原子核没有自旋现象,只有I﹥0,原 子核才有自旋角动量和自旋现象
.
9
二、核自旋能级和核磁共振
(一)核自旋能级
• 把自旋核放在场强为B0的磁场中,由于磁矩 与磁 场相互作用,核磁矩相对外加磁场有不同的取向,共 有2I+1个,各取向可用磁量子数m表示
.
6
• 自旋角动量
– 一些原子核有自旋现象,因而具有自旋角动 量。由于核是带电粒子,故在自旋同时将产 生磁矩。核磁矩与角动量都是矢量,磁矩的 方向可用右手定则确定。

图谱解析 核磁共振图谱-氢谱ppt课件

图谱解析 核磁共振图谱-氢谱ppt课件
16H2 z 27H0z2.7p 0pm
6M 0 H1z0 M 0Hz
23
SKLF
0:60MHz 100MHz 200MHz 400MHz
H0:1.4092T 2.3488T 4.6975T 9.3951T
1ppm= 60Hz 100Hz 200Hz 400Hz
100MHz 10 8 6 4 2 0
=60 MHz
B0
图4.8 核磁共振的吸收过程;当 v = 吸收发生
15
SKLF
共振
噢,我明白了!
当入射射线的振荡电场的频率同原子 核进动产生的电场频率一样时,两个 电场将会发生耦合,能量将会发生转 移,从而引起自旋形状的改动。我们 就说这种原子核入射的电磁射线发生 了共振。
16
SKLF
4.5 原子核自旋形状的数量分布
例如,在60MHz的磁场中, CH3Br 的化 学位移为162 Hz ,而在100MHz 中其化学位 H 3C 移为270 Hz.
CH 3 Si CH 3 CH 3
TMS
22
SKLF
化学位移( ), 同场强无关的表示方法
(化学位移Hz)
(核磁共振频率MHz) 特定质子的 值通常是一样的,不需求再思索丈量 频率了。
由于地球重力磁场 的影响,顶端沿着 本人轴进动.
当有外加磁场存在 时,原子核开场沿 着本身自旋的轴以 角速度进动 (拉莫 尔频率).
14
SKLF
, 同外加磁场的强度成比例;外加磁场强度越大, 进动的速率越大.
• 由于原子核带有电荷,原子核进动将产生同样频率的振 荡电场。
• 假设有一样频率的射线照射进动质子,此时射线的能量 将被吸收.
rohsolvrohsolvsolv45sklf412412磁各向异性磁各向异性环电流74ppm图图421421苯的抗磁的各向异性苯的抗磁的各向异性46sklf422乙炔的抗磁的各向异性乙炔的抗磁的各向异性23ppm47sklfch263155108070051图423由于在一些常见的重键系统中电子的存在致使构成各向异性48sklf图图424424一些实践分子的各向异性效应一些实践分子的各向异性效应49sklf413413n1n1分叉法那么n1法那么每种一样类型的质子的吸收意味着被相邻碳上的化学等价质子n个分裂为n1clchcl395ppm双峰577ppm三重50sklf图图425112425112三氯乙烷的三氯乙烷的1hnmr1hnmr图谱图谱51sklfch3ch2i图426426乙基碘的乙基碘的1hnmr1hnmr图谱图谱52sklf图图4274272硝基丙烷的硝基丙烷的1hnmr1hnmr图谱图谱53sklf自旋自旋裂分给出了一种新型的构造信息它阐明相邻碳上有多少个质子致使产生多重峰

第四章核磁共振HNMR ppt课件

第四章核磁共振HNMR ppt课件

两种自旋取向能级差与外磁 场B0的关系
2020/11/13
19
现在从另一角度来讨论核磁共振现象。
在B0中,原子核绕其自旋轴旋转(自旋 轴与核磁矩μ方向一致),而自旋轴又与静磁 场B0保持某一夹角θ,而绕B0进动,称为 Larmor进动(如图所示)
2020/11/13
I=1/2的核的Larmor进动
尽管共振频率各有差异,但差异不大,仅为百万 分之十左右,对其绝对值的测量难以达到所需要 的精度。
2020/11/13
32
故实际工作中是采用测定相对值来表示,即 以某标准物质的共振峰为原点,测定样品中 各共振峰与原点的相对距离,这种相对距离 就称为化学位移(Chemical shift)。
2020/11/13
26
4.1.4 驰豫过程 1.弛豫过程
当大量的原子核在外磁场中取向并达到平衡,高低能 级的分布可利用Boltzman定律来描述。即低能级的数目 略多于高能级的数目,且ΔE极小。当用射频电磁波照射外 磁场中原子核时,低能级的核吸收能量跃迁至高能级,产 生核磁共振信号。由于ΔE极小,高能级粒子通过自发辐射 回到低能级的几率几乎为零。因此若要在一定时间间隔内 持续检测到NMR信号,必须有某种过程存在,它使高能级 的原子核回到低能级,以保持低能级的粒子数始终略大于 高能级的粒子数。这个过程就是弛豫过程。
ωL=ω=2πν=γB0
ν共振= γB0/2π
参见下面的示意图
2020/11/13
22
核磁能量吸收和跃迁过程
2020/11/13
23
下面对核磁共振方程进行讨论
( ν共振= γB0/2π )
①对于同一核,如I=1/2的1H核,发生共振时,
ν照射与B0的关系

《核磁共振氢谱》课件

《核磁共振氢谱》课件

芳烃的氢谱解析
芳烃的氢谱特征
芳烃的氢谱峰形较复杂,有多个峰,且峰与峰之间的距离较近。
芳烃的氢谱解析要点
根据峰的数量和位置,确定芳烃的类型和碳原子数;根据峰的强度 和形状,确定氢原子的类型和数量。
实例分析
以苯为例,其氢谱有多个峰,分别对应于不同位置上的氢原子。
PART 04
氢谱解析中的常见问题与 解决策略
偶合常数
当两个氢原子之间的距离足够近时, 它们的核磁共振信号会发生偶合,导 致峰分裂成双重峰。偶合常数是衡量 两个氢原子之间距离的指标。
氢谱解析的一般步骤
确定峰的位置和强度
根据核磁共振氢谱中的峰位置和强度,可以推断出分子中氢原子 的类型和数量。
确定氢原子的连接关系
通过分析峰的偶合常数,可以确定氢原子之间的连接关系,从而确 定分子的结构。
峰的简化问题
总结词
峰的简化问题是指某些情况下氢谱峰的数量过多,使得解析变得复杂。
详细描述
在某些情况下,由于分子结构中存在多个等效氢原子,会产生大量的重叠峰。这增加了氢谱解析的难 度。解决策略包括利用分子对称性来简化氢谱,以及利用去偶技术来消除某些峰的干扰,从而使得氢 谱更加简洁明了。
解析中的不确定性问题
多核共振技术
总结词
多核共振技术能够同时研究多个原子核的相 互作用和动态行为,有助于更全面地了解分 子结构和化学反应过程。
详细描述
多核共振技术是一种新兴的技术,它通过同 时研究多个原子核的相互作用和动态行为, 能够提供更全面、更深入的分子结构和化学 反应过程信息。这一技术的应用,将有助于 推动化学、生物学、物理学等领域的发展, 为解决复杂体系的研究提供新的手段。
2023-2026
ONE

《核磁共振氢谱解析》PPT课件

《核磁共振氢谱解析》PPT课件

在解析糖类的氢谱时,需要注意 区分不同糖环类型的影响,以便 准确推断出糖类分子的结构特征 。
由于糖类分子结构的复杂性,其 氢谱信号可能会出现重叠现象, 需要仔细解析以获得准确的结论 。
05
氢谱解析的挑战与展望
复杂样品与混合物的解析
挑战
复杂样品和混合物中的多种成分可能 导致谱线重叠和干扰,增加了氢谱解 析的难度。
峰面积
表示某一峰的强度或高 度,通常与产生该峰的
质子数成正比。
积分线
对谱线进行积分,得到 积分线,可以用于定量
分析。
校正因子
由于不同化学环境对质 子自旋耦合的影响,需 要引入校正因子来准确
计算质子数。
03
氢谱解析实践
简单分子的氢谱解析
总结词
掌握基础解析方法
01
总结词
熟悉常见峰型
03
总结词
注意杂质的干扰
解决方案
采用先进的谱图解析技术和化学位移 差异法,结合分子结构和物理状态信 息,对重叠的谱线进行分离和鉴别。
高磁场下的氢谱解析
挑战
高磁场条件下,氢谱的分辨率和灵敏度得到提高,但同时也带来了谱线复杂化 和解析难度增加的问题。
解决方案
利用高磁场下的多量子跃迁和异核耦合等效应,结合计算机模拟和量子化学计 算,对高磁场下的氢谱进行解析。
氢谱解析技巧与注意事项
总结词
重视峰的归属与确认
总结词
在复杂氢谱中,应注意分辨和区分重 叠的峰,运用适当的技巧和方法进行 解析。
详细描述
在解析氢谱时,应重视每个峰的归属 与确认,确保解析结果的准确性。
详细描述
注意峰的重叠与分辨
04
氢谱解析案例分析
案例一:醇类的氢谱解析

《核磁共振氢谱》课件

《核磁共振氢谱》课件

《核磁共振氢谱》课件课程目标:1. 理解核磁共振氢谱的基本原理2. 学会分析核磁共振氢谱图3. 掌握核磁共振氢谱在有机化学中的应用第一部分:核磁共振氢谱的基本原理1. 核磁共振现象核磁共振的定义核磁共振的产生条件核磁共振的物理过程2. 核磁共振氢谱的化学位移化学位移的定义化学位移的影响因素化学位移的计算方法3. 核磁共振氢谱的耦合常数耦合常数的定义耦合常数的影响因素耦合常数的计算方法4. 核磁共振氢谱的积分强度积分强度的定义积分强度的影响因素积分强度的计算方法第二部分:核磁共振氢谱的解析1. 核磁共振氢谱图的解读谱线的数量和位置谱线的形状和积分强度谱线的耦合情况2. 等效氢的判断等效氢的定义等效氢的判断方法等效氢的例外情况3. 核磁共振氢谱的应用实例简单有机化合物的分析复杂有机化合物的分析手性化合物的分析第三部分:核磁共振氢谱的实验操作1. 核磁共振氢谱的样品制备样品的选择和制备方法样品的纯化和干燥样品的装载和测试2. 核磁共振氢谱的仪器操作核磁共振仪的基本结构核磁共振仪的操作步骤核磁共振氢谱的获取和保存3. 核磁共振氢谱的数据处理核磁共振氢谱的数据分析核磁共振氢谱的峰拟合核磁共振氢谱的定量分析第四部分:核磁共振氢谱的实践练习1. 练习题目简单有机化合物的核磁共振氢谱分析复杂有机化合物的核磁共振氢谱分析手性化合物的核磁共振氢谱分析2. 练习解答分析过程和思路核磁共振氢谱的解析步骤最终答案和讨论总结:核磁共振氢谱是一种重要的有机化学分析方法,通过对氢原子的核磁共振现象进行研究,可以得到有机化合物的结构和性质信息。

通过对核磁共振氢谱的基本原理、解析方法和实验操作的学习,可以更好地理解和应用核磁共振氢谱,为有机化学研究和教学提供有力的工具。

科学性:1. 内容准确:课件中的概念、原理和实验操作应基于有机化学和核磁共振氢谱的现有科学知识,确保无误。

2. 信息更新:课件中所引用的文献和数据应是最新的,以保证教学内容的时效性。

核磁共振氢谱图课件

核磁共振氢谱图课件

环境,从而确定有机化合物的分子结构。
确定碳原子的类型和连接方式
02
结合氢谱图和碳谱图,可以推断出碳原子的类型和连接方式,
进一步确定有机化合物的骨架结构。
判断手性分子构型
03
通过氢谱图可以确定手性分子的构型,对于不对称合成和手性
识别具有重要意义。
蛋白质结构的解析
确定氨基酸序列
通过氢谱图结合其他谱图,可以解析蛋白质的一级结构,即氨基 酸的排列顺序。
误差控制
采取适当的措施,控制实 验误差,提高实验结果的 准确性。
安全注意事项
了解氢谱图实验的安全风 险,如高磁场、射频辐射 等,注意安全操作规程。
THANKS FOR WATCHING
感谢您的观看
峰的耦合
在某些情况下,氢原子之间可能存在耦合作用。这种耦合作用可能导致相邻氢原子的共振频率发生改变。通过对 耦合现象的分析,可以获得关于分子中氢原子耦合作用的信息。
CHAPTER 04
氢谱图的应用
有机化合物结构的鉴定
确定氢原子的类型和数目
01
通过氢谱图,可以清晰地显示出不同类型氢原子的数目和化学
确定蛋白质三级结构
通过氢谱图分析蛋白质分子内部氢原子的相互作用和运动,有助于 解析蛋白质的三级结构。
研究蛋白质相互作用
氢谱图可以用来研究蛋白质之间的相互作用,如配体与受体之间的 结合方式以及结合常数等。
药物分子的结构研究
确定药物分子的化学结构
氢谱图是研究药物分子化学结构的重要手段之一,可以确定药物 分子中氢原子的类型和数目以及它们的连接方式。
峰的对称性
峰的对称性反映了氢原子在分子中的构型或构象。某些分子可能具有多个构型或 构象,这些构型或构象可以通过氢谱的峰对称性来区分。通过对峰对称性的分析 ,可以获得关于分子构型或构象的信息。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 驰豫过程可分为两种类型:自旋-晶格驰 豫和自旋-自旋驰豫。
-
驰豫过程:由激发态恢复到平衡态的过程
• 自旋晶格驰豫:核与环境进行能量交换。体系能 量降低而逐渐趋于平衡。又称纵向驰豫。速率 1/T1,T1为自旋晶格驰豫时间。
1, 2, 3, --- 自旋惰球体 有
2H, 10B,
-
-
-
-
能级分裂
两种取向代表两个能级,m=-1/2能级高于m=1/2能级。
EN
I
H0
2NH0
-
核的回旋和核磁共振 当一个原子核的核磁矩处于磁场BO中,由于核自身的旋 转,而外磁场又力求它取向于磁场方向,在这两种力的 作用下,核会在自旋的同时绕外磁场的方向进行回旋, 这种运动称为Larmor进动。
-
原子核的进动
在磁场中,原子核的自旋取向有2I+1个。各个取向由一个自旋量子 数m表示。
磁旋比:1H=26753, 2H=410 7,13C= 6726弧度/秒 高斯
N
H0-
2
H0
自旋角速度ω,外磁场H0,进动频率ν
-
共振条件
原子核在磁场中发生能级分裂,在磁场的垂直方向上加小交变电场,
如频率为v射,当v射等于进动频率ν,发生于高低能态的核各有多少?
• 在绝对温度0度时,全部核处于低能态 • 在无磁场时,二种自旋取向的几率几乎相等 • 在磁场作用下,原子核自旋取向倾向取低能态,但室温时热能比
原子核自旋取向能级差高几个数量级,热运动使这种倾向受破坏, 当达到热平衡时,处于高低能态的核数的分布服从Boltzmann分 布:
交变电场的能量,跃迁到高能态,称核磁共振。
-
核磁共振的条件:
ΔE

=h v射=
vv迴迴==
h
vB射O =/2hπ
BO
/2π
射频频率与磁场强度Bo是成正比的,在进行核磁共振实
验时,所用的磁强强度越高,发生核磁共振所需的射 频频率也越高。
-
: 要满足核磁共振条件,可通过二种方法来实现
频率扫描(扫频):固定磁场强度,改变射频频率 磁场扫描(扫场):固定射频频率,改变磁场强度 实际上多用后者。 各种核的共振条件不同,如:在1.4092特斯拉的磁场,各 种核的共振频率为:
-
NMR发展
近二十多年发展 高强超导磁场的NMR仪器,大大提高灵敏度和分辨率; 脉冲傅立叶变换NMR谱仪,使灵敏度小的原子核能被测定; 计算机技术的应用和多脉冲激发方法采用,产生二维谱,对判断 化合物的空间结构起重大作用。
• 英国R.R.Ernst教授因对二维谱的贡献而获得1991年的Nobel奖。 • 瑞士科学家库尔特·维特里希因“发明了利用核磁共振技术测定溶
液中生物大分子三维结构的方法”而获得2002年诺贝尔化学奖。
-
•1H-NMR o how many types of hydrogen ? o how many of each type ? o what types of hydrogen ? o how are they connected ?
1H
60.000 MHZ
13C
15.086 MHZ
19F
56.444 MHZ
31P
24.288 MHZ
对于1H 核,不同的频率对应的磁场强度:
射频 40 MHZ
60 100
磁场强度 0.9400 特斯拉 1.4092
2.3500
200
4.7000
300
7.1000
500
11.7500
-
Boltzmann分布
其数值可取:m =I,I-1,I-2, ……,-I ,共有2I
+1个取向。
-
I = n / 2 n = 0 , 1 , 2 , 3 ---(取整数)
一些原子核有自旋现象,因而具有角动量,原子核是带电的粒 子,在自旋的同时将产生磁矩,磁矩和角动量都是矢量,方向是 平行的。
哪些原子核有自旋现象? 实践证明自旋量子数I与原子核的质量 数A和原子序数Z:
A
Z
I
自旋形状 NMR信号 原子核
偶数 偶数
0
32S, 28Si, 30Si
无自旋现象 无
12C,16O,
奇数 奇数或偶数 1/ 2
自旋球体

1H, 13C,
15N, 19F, 31P
奇数 奇数或偶数 3/2, 5/2,--- 自旋惰球体 有 11B,17O,33S,35Cl,79Br,127I
偶数 奇数 14N
• 质量数为双数,但电荷数为单数,如H2,N14, I为整数,1,2……
• I为自旋量子数
-
自旋角动量(PN),自旋量子数(I) I=0,1/2,1,3/2……
磁矩(μN*),核磁矩单位(βN),核磁子;磁旋比(γN)
N gN I(I1)N
N
N
P
N
-
自旋核在磁场中的取向和能级
具有磁矩的核在外磁场中的自旋取向是量子化的, 可用磁量子数m来表示核自旋不同的空间取向,
n+/n- 1+ ΔE / kT
式中:n+ ---- 低能态的核数
n- ---- 高能态的核数
k ----- Boltzmann 常数 T ----- 绝对温度 当T=27 C,磁场强度为1.0特斯拉时,高低能态的核数只差6.8ppm 磁场强度为1.4092时,高低能态的核数只差10ppm
-
核的自旋驰豫
-
NMR谱的结构信息
化学位移 偶合常数 积分高度
-
1. 核磁共振的基本原理
• 原子核的磁矩 • 自旋核在磁场中的取向和能级 • 核的回旋和核磁共振 • 核的自旋弛豫
-
原子核的自旋、磁矩
• 质量数与电荷数均为双数,如C12,O16,没有 自旋现象。I=0
• 质量数为单数,如H1,C13,N15,F19,P31。I 为半整数,1/2,3/2,5/2……
第三章 核磁共振氢谱
1. 核磁共振的基本原理 2. 核磁共振仪与实验方法 3. 氢的化学位移 4. 各类质子的化学位移 5. 自旋偶合和自旋裂分 6. 自旋系统及图谱分类 7. 核磁共振氢谱的解析
-
前言
过去50年,波谱学已全然改变了化学家、生物学家和 生物医学家的日常工作,波谱技术成为探究大自然中 分子内部秘密的最可靠、最有效的手段。NMR是其中 应用最广泛研究分子性质的最通用的技术:从分子的 三维结构到分子动力学、化学平衡、化学反应性和超 分子集体、有机化学的各个领域。 1945年 Purcell(哈佛大学) 和 Bloch(斯坦福大学) 发现核磁共振现象,他们获得1952年Nobel物理奖 1951年 Arnold 发现乙醇的NMR信号,及与结构的关 系 1953年 Varian公司试制了第一台NMR仪器
相关文档
最新文档