中职数学数列基础知识教案备课讲稿
中职数学数列基础知识教案备课讲稿
中职数学数列基础知识教案课 题 6.1.1 数列的基本知识课 型 新课⒉ 数列的项:数列中的每一个数叫做数列的项. 其中第1个数叫做第1项(或首项),第2个数叫做第2项,…,第n 个数叫做第n 项.其中反应各项在在数列中的位置的数字1,2,…,n ,称为项数.例如数列:3.数列的分类:只有有限项的数列叫做有穷数列; 有无限项的数列叫做无穷数列. 判断那些是有穷数列那些是无穷数列?(幻灯片)4. 数列的一般形式:ΛΛn a a a a 321、、 {}n a 或简记为 )(.*∈N n n a n 项是数列的第其中通项或一般项叫数列}{a n n a练习(幻灯片)5、数列的通项公式:如果a n (n =1,2,3,…)与n 之间的关系可用a n = f ( n )来表示,那么这个关系式叫做这个数列的通项公式,其中n 的取值是正整数集的一个子集. 例1例2小结:(幻灯片)举例使学生对数列项的认识教师利用上面举过的例子,讲解“数列的分类”通过练习,学生分组讨论:数列的每一项与这一项的序号是否有一定的对应关系?这一关系可否用一个公式表示?通过例题使学生更好的运用 通项公式解题教师引导梳理,总结本节课的知识点.教 者 赵凌娇时 间2012、9教 学 目 标知识目标:理解数列的有关概念和通项公式的意义.能力目标:了理解数列与函数的关系,培养学生观察分析的能力.情感目标:使学生体会数学与生活的联系,提高数学学习的兴趣.重 点 数列的概念及其通项公式. 难 点 数列通项公式的概念. 教 具 多媒体师 生 活 动教 学 过 程导入:1.讲故事,感受数列2.引入新课:童年的歌谣《数青蛙》 寻找规律,在空格内填数字:(1)()()81615131211、、、、、、、 Λ1410842)2(、)(、、、)(、、 22222754323、)(、、、、、)()( Λ)(、、)(、、、、、、)(218532114归纳它们有何共同特点?教师讲述古印度传说故事《棋盘上的麦粒》.学生倾听故事,认识数列.幻灯片播放,让学生从生活中认识数列教师提出问题.ΛΛ643222221、、、。
《数列复习课中职》课件
值和公差。
5
应用题
通过一些应用题来加深对等差数列 的理解和运用。
三、等比数列
定义和公式
介绍等比数列的概念,以及 如何使用通项公式来找到等 比数列的任意项。
等比数列的通项公式
学习等比数列的通项公式, 并了解其在财务领域的应用。
等比数列的前n项和公 式
了解如何计算等比数列的前n 项和,包括复利问题的应用。
斐波那契数 列求和公式
总结斐波那契数列 的求和公式和特点。
总结
对数列求和公式进 行总结并回顾重要 内容。
七、总结和展望
1 数列的重要性
总结数列在数学和实 际应用中的重要性。
2 下一步的学习动向 3 课程回顾和总结
推荐学习数学中其他 相关的主题和概念。
回顾本次课程的重点 内容和你的学习成果。
等比数列的性质
探索等比数列的性质和规律, 如比值和公比。
应用题
通过一些实际应用题来加深 对等比数列的理解和运用。
四、斐波那契数列
1 定义和公式
介绍斐波那契数列的 定义和递推公式。
2 斐波那契数列的
性质
探索斐波那契数列的 一些特性和规律,如 黄金分割。
3 应用题
通过一些实际问题来 理解和应用斐波那契 数列。
《数列复习课中职》PPT 课件
欢迎来到《数列复习课中职》PPT课件!在这次复习中,我们将深入探讨数列 的定义、性质、分类以及重要的求和公式。让我们开始吧!
一、数列的定义和概念
什么是数列
了解数列的基本定义以及它在数学中的重要性。
数列的性质
探索数列的一些重要性质,包括有界性、递增性和递减性。
数列的分类
介绍不同类型的数列,如等差数列、等比数列和斐波那契数列。
人教版中职数学基础模块下册《数列的概念》教案 (一)
人教版中职数学基础模块下册《数列的概念》教案 (一)本文将围绕人教版中职数学基础模块下册《数列的概念》教案进行阐述和分析。
文章结构分为引言、教案分析和教学体会。
希望本文能够对数学教学教师以及学生们提供一些参考和帮助。
引言数列是数学中的一个重要概念,在高中数学中便有涉及。
而在中职教学中,更是需要对数列进行更加深入的了解和探究。
为此,人教版编写了《数列的概念》的教案,帮助教师更好地教授这一内容。
接下来将对这一教案进行分析和讨论。
教案分析一、教学目标本教案的教学目标明确,包括基本知识、技能、过程、情感和价值观的培养。
其中包括对数列和等差数列的定义和性质、数列的公式和求和公式以及解决实际问题的能力。
通过教学,学生们可以具备较好的数列分析能力,掌握一定的实际问题解决能力。
二、教学内容本教案的教学内容主要包括以下几个方面:数列的概念、等差数列的定义和性质、数列的公式和求和公式以及解决实际问题。
这些内容相辅相成,包含了数列最基本的知识点,可以帮助学生们全面地了解数列的性质和应用。
三、教学方法本教案的教学方法多样,包括了讲授、自主学习、小组合作等多种形式。
其中,小组合作能够增强学生们的合作意识和解决问题的能力;自主学习则可以培养学生们的自主学习能力。
这些教学方法能够帮助学生们更好地掌握数列相关知识点。
四、教具准备和课堂安排本教案的教具准备比较充足,包括了PPT、教学黑板、教学实物等。
这些教具对于教师讲解、学生学习都有很大的帮助。
此外,教案规定了较为详细的课堂安排,包括了准备、导入、展示、提高、反思等五个环节。
这种严谨的课堂安排有助于教学效果的提高。
教学体会通过对教案的分析和讨论,我们可以看到这份教案的编写有着较为严谨的逻辑和合理的设计。
在实际教学中,我也发现了教案的优点和好处。
例如,教案具有较高的针对性和系统性,能够帮助学生们更好地理解和掌握数列相关知识点;同时,教案的安排合理,能够帮助教师更好地指导和管理整个教学过程。
中职中专技校数学下册 第一章 数列概念等差数列 等比数列
31..22 等差数数列列
节菜单
例题解析
1.1 数列的基本知识
1.2 等差数列 例1 下列数列都是等差数列,试求出其1.中3 的等未比知数项列:
(1)3,a,5
(2)3,b,c,-9
解 (1)由题意得
(2)由题意得
解方程组,得 b=-1,c=-5
31..22 等差数数列列
节菜单
1.1 数列的基本知识
第1章 数 列
谢尔宾斯基三角形
数列的基本知识 等差数列 等比数列
3.1 数列的基本知识
节菜单
教学目标
1.理解数列的定义、表示、分类等基1本.1概念数.列的基本知识 2.理解数列的项、通项公式及前n项1和.的2 意义等.差数列 3.理解数列的通项公式,并会用通项1公.3式写等出比数列数的列任意一项.
1.2 等差数列
45..能培在养具学体生情观境察中 、, 分发 析现 问数 题列 的的 能等 力差 ,关 由系 特, 殊1并 到.能 一3 用 般有 的等关 归比知 纳识能数解力列决.相应的问题.
教学重点
1.等差数列的概念. 2.等差数列的通项公式. 3.等差数列的前n项和公式.
教学难点 等差数列的通项公式与前n项和公式的综合应用.
例2 求下列数列的一个通项公式 (1) 2,5,8,11,… (2)
解(1)观察数列的规律
节菜单
1.1 数列的基本知识 1.2 等差数列 1.3 等比数列
由此可知其通项公式为 an=3n-1
3.1 数列的基本知识
(2) 解 观察数列的规律
节菜单
1.1 数列的基本知识 1.2 等差数列 1.3 等比数列
an=-5+(n-1)( -4) 设这个数列的第n项是-401,则
中职数学基础模块下册第六章数列
【课题】6.1 数列的概念【教学目标】知识目标:(1)了解数列的有关概念;(2)掌握数列的通项(一般项)和通项公式.能力目标:通过实例引出数列的定义,培养学生的观察能力和归纳能力.【教学重点】利用数列的通项公式写出数列中的任意一项并且能判断一个数是否为数列中的一项.【教学难点】根据数列的前若干项写出它的一个通项公式.【教学设计】通过几个实例讲解数列及其有关概念:项、首项、项数、有穷数列和无穷数列.讲解数列的通项(一般项)和通项公式.从几个具体实例入手,引出数列的定义.数列是按照一定次序排成的一列数.学生往往不易理解什么是“一定次序”.实际上,不论能否表述出来,只要写出来,就等于给出了“次序”,比如我们随便写出的两列数:2,1,15,3,243,23与1,15,23,2,243,3,就都是按照“一定次序”排成的一列数,因此它们就都是数列,但它们的排列“次序”不一样,因此是不同的数列.例1和例3是基本题目,前者是利用通项公式写出数列中的项;后者是利用通项公式判断一个数是否为数列中的项,是通项公式的逆向应用.例2是巩固性题目,指导学生分析完成.要列出项数与该项的对应关系,不能泛泛而谈,采用对应表的方法比较直观,降低了难度,学生容易接受.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】,. 从小到大依次取正整数时,cos ,…. 的近似值(四舍五入法),,n a ,.()n ∈N下角码中的数为项数,1a 表示第【教师教学后记】【课题】 6.2 等差数列(一)【教学目标】知识目标:(1)理解等差数列的定义; (2)理解等差数列通项公式. 能力目标:通过学习等差数列的通项公式,培养学生处理数据的能力.【教学重点】等差数列的通项公式.【教学难点】等差数列通项公式的推导.【教学设计】本节的主要内容是等差数列的定义、等差数列的通项公式.重点是等差数列的定义、等差数列的通项公式;难点是通项公式的推导.等差数列的定义中,应特别强调“等差”的特点:d a a n n =-+1(常数).例1是基础题目,有助于学生进一步理解等差数列的定义.教材中等差数列的通项公式的推导过程实际上是一个无限次迭代的过程,所用的归纳方法是不完全归纳法.因此,公式的正确性还应该用数学归纳法加以证明.例2是求等差数列的通项公式及其中任一项的巩固性题目,注意求公差的方法.等差数列的通项公式中含有四个量:,,,,1n a n d a 只要知道其中任意三个量,就可以求出另外的一个量.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】【教师教学后记】【课题】 6.2 等差数列(一)【教学目标】知识目标:(1)理解等差数列的定义; (2)理解等差数列通项公式. 能力目标:通过学习等差数列的通项公式,培养学生处理数据的能力.【教学重点】等差数列的通项公式.【教学难点】等差数列通项公式的推导.【教学设计】本节的主要内容是等差数列的定义、等差数列的通项公式.重点是等差数列的定义、等差数列的通项公式;难点是通项公式的推导.等差数列的定义中,应特别强调“等差”的特点:d a a n n =-+1(常数).例1是基础题目,有助于学生进一步理解等差数列的定义.教材中等差数列的通项公式的推导过程实际上是一个无限次迭代的过程,所用的归纳方法是不完全归纳法.因此,公式的正确性还应该用数学归纳法加以证明.例2是求等差数列的通项公式及其中任一项的巩固性题目,注意求公差的方法.等差数列的通项公式中含有四个量:,,,,1n a n d a 只要知道其中任意三个量,就可以求出另外的一个量.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】【教师教学后记】【课题】 6.3 等比数列【教学目标】知识目标:(1)理解等比数列的定义; (2)理解等比数列通项公式. 能力目标:通过学习等比数列的通项公式,培养学生处理数据的能力.【教学重点】等比数列的通项公式.【教学难点】等比数列通项公式的推导.【教学设计】本节的主要内容是等比数列的定义,等比数列的通项公式.重点是等比数列的定义、等比数列的通项公式;难点是通项公式的推导.等比数列与等差数列在内容上相类似,要让学生利用对比的方法去理解和记忆,并弄清楚二者之间的区别和联系.等比数列的定义是推导通项公式的基础,教学中要给以足够的重视.同时要强调“等比”的特点:q a a nn =+1(常数). 例1是基础题目,有助于学生进一步理解等比数列的定义.与等差数列一样,教材中等比数列的通项公式的归纳过程实际上也是不完全归纳法,公式的正确性也应该用数学归纳法加以证明,这一点不需要给学生讲.等比数列的通项公式中含有四个量:1a ,q ,n , n a , 只有知道其中任意三个量,就可以求出另外的一个量.教材中例2、例3都是这类问题.注意:例3中通过两式相除求公比的方法是研究等比数列问题常用的方法.从例4可以看到,若三个数成等比数列,则将这三个数设成是aq a qa,,比较好,因为这样设了以后,这三个数的积正好等于,3a 很容易将a 求出.【教学备品】教学课件.【课时安排】2课时.(90分钟) 【教学过程】【教师教学后记】【课题】 6.3 等比数列【教学目标】知识目标:理解等比数列前n 项和公式. 能力目标:通过学习等比数列前n 项和公式,培养学生处理数据的能力.【教学重点】等比数列的前n 项和的公式.【教学难点】等比数列前n 项和公式的推导.【教学设计】本节的主要内容是等比数列的前n 项和公式,等比数列应用举例.重点是等比数列的前n 项和公式;难点是前n 项和公式的推导、求等比数列的项数n 的问题及知识的简单实际应用.等比数列前n 项和公式的推导方法叫错位相减法,这种方法很重要,应该让学生理解并学会应用.等比数列的通项公式与前n 项和公式中共涉及五个量:n n S a n q a 、、、、1,只要知道其中的三个量,就可以求出另外的两个量.教材中例6是已知n n S a a 、、1求n q 、的例子.将等号两边化成同底数幂的形式,利用指数相等来求解n 的方法是研究等比数列问题的常用方法.【教学备品】教学课件.【课时安排】3课时.(135分钟)【教学过程】++n a a 式的两边分别减去(2)式的两边,得111=-a a【教师教学后记】−。
人教版中职数学基础模块下册《数列的概念》教案 (二)
人教版中职数学基础模块下册《数列的概念》教案 (二)1. 数列的定义- 数列是由一系列有序数所组成的序列。
- 数列中的每个数叫做数列的项,用a1, a2, a3, …… 表示。
- 数列的项数可以是有限的,也可以是无限的。
2. 数列的分类- 等差数列:相邻两项之差相等,称为公差,用d表示。
- 等比数列:相邻两项之比相等,称为公比,用q表示。
- 等差-等比数列:既有等差又有等比的性质,称为等差-等比数列。
3. 数列的通项公式- 等差数列的通项公式:an = a1 + (n-1)d- 等比数列的通项公式:an = a1q^(n-1)- 等差-等比数列的通项公式:an = a1q^(n-1) + (n-1)d4. 数列的前n项和公式- 等差数列的前n项和公式:Sn = (a1+an)n/2- 等比数列的前n项和公式:Sn = (a1(1-q^n))/(1-q)- 等差-等比数列的前n项和公式:Sn = (a1q^n-d)/(q-1)5. 数列的应用- 数列在数学中有广泛的应用,如数学分析、概率论、组合数学等。
- 数列在生活中也有很多应用,如金融领域的利息计算、物流领域的路径规划等。
6. 数列的拓展- 斐波那契数列:数列的每一项都是其前两项之和,即a(n) = a(n-1) + a(n-2),其中a1 = 1,a2 = 1。
- 等比数列的和无穷公式:当|q|<1时,Sn = a1/(1-q);当|q|≥1时,Sn = 无穷大或无穷小。
- 等比数列的和的性质:当|q|<1时,Sn有上界,即Sn≤a1/(1-q);当|q|≥1时,Sn无上界。
中职数学数列的基本知识ppt课件
中职数学数列的基本知识ppt课件目录•数列基本概念与性质•数列求和与通项公式•数列递推关系与性质•数列极限与收敛性判断•数列在实际问题中应用举例PART01数列基本概念与性质数列定义数列表示方法数列的项通常用带下标的字母来表示数列,如{an}。
数列中的每一个数都叫做数列的项。
0302 01数列定义及表示方法按照一定顺序排列的一列数。
等差数列性质任意两项之差为常数。
从第一项开始,依次成等差数列的若干个数的和等于项数乘以中间项。
中间项等于首尾两项和的一半。
等差数列定义:从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
等比数列定义:从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列。
等比数列性质任意两项之比为常数。
中间项的平方等于首尾两项的乘积。
从第一项开始,依次成等比数列的若干个数的积等于首项乘以末项再乘以公比的次幂。
算术数列几何数列调和数列混合数列常见数列类型及特点01020304每一项与前一项的差为常数,如1, 3, 5, 7,...每一项与前一项的比为常数,如2, 4, 8, 16,...每一项的倒数成等差数列,如1, 1/2, 1/3, 1/4,...不具有明显规律的数列,需要通过其他方法进行分析和处理。
PART02数列求和与通项公式等差数列求和公式推导通过倒序相加法或错位相减法推导等差数列求和公式。
等差数列求和公式应用利用等差数列求和公式解决与等差数列相关的问题,如计算前n项和、求某一项的值等。
等比数列求和公式推导通过错位相减法或等比数列的性质推导等比数列求和公式。
等比数列求和公式应用利用等比数列求和公式解决与等比数列相关的问题,如计算前n 项和、求某一项的值等。
通过观察数列的前几项,找出数列的通项公式。
观察法根据已知的递推关系式,逐步推导出数列的通项公式。
递推法通过设定未知数,建立方程组,求解得到数列的通项公式。
待定系数法通项公式求解方法典型例题解析已知等差数列的前n项和为Sn,且S10=100,S20=300,求S30。
中职数学数列的基本知识课件
目录
• 数列基本概念与性质 • 数列求和与通项公式 • 数列在生活中的应用 • 数列极限初步认识 • 数列在职业领域中的应用 • 总结回顾与拓展延伸
01 数列基本概念与性质
数列定义及表示方法
数列定义
按照一定顺序排列的一列数。
数列表示方法
通常用带下标的字母表示,如$a_n$,其中$n$为自然数,表示数列的第$n$项 。
易错难点剖析及注意事项
等差数列与等比数列的判定
在判断一个数列是否为等差或等比数列时,需要注意公差或公比 是否恒定,以及首项是否符合定义。
公式应用中的细节问题
在使用等差数列和等比数列的通项公式和求和公式时,需要注意公 式中各项的对应关系,以及是否满足公式的使用条件。
极限概念的理解
在理解数列极限的概念时,需要注意极限的严格定义,以及极限的 唯一性、保号性等性质。
等比数列及其性质
等比数列定义:从第二项起,每一项与它的前一项的比值等 于同一个常数的一种数列。 等比数列性质
任意两项之比为常数。
中项性质:在等比数列中,如果$m+n=p+q$,则$a_m times a_n = a_p times a_q$。 等比中项:如果在$a$与$b$中间插入一个数$G$,使$a$, $G$,$b$成等比数列,那么$G$叫做$a$与$b$的等比中项 。
解答1
根据等差数列的性质和已知条件,可以列出方程组求解 得到公差d=2,进而得到通项公式an=2n-1和前n项和公 式Sn=n^2。
例题2
已知等比数列{bn}的前n项和为Tn,且b1=2,T3=26 ,求bn和Tn。
解答2
根据等比数列的性质和已知条件,可以列出方程组求解 得到公比q=3,进而得到通项公式bn=2*3^(n-1)和前 n项和公式Tn=(3^n-1)/2。
(完整版)职高数学复习-数列教案
第 课时教学内容:数列的定义教学目的:理解数列的定义、通项公式、Sn 的含义,掌握通项公式的求法及其应用,了解递推的含义.教学重点:数列的基本概念.教学难点:求通项公式、递推公式的应用 教学过程:一、数列的定义: 按一定顺序排列成的一列数叫做数列. 记为:{a n }.即{a n }: a 1, a 2, … , a n .二、通项公式:用项数n 来表示该数列相应项的公式,叫做数列的通项公式。
1、本质:数列是定义在正整数集(或它的有限子集)上的函数. 2、通项公式: a n =f(n)是a n 关于n 的函数关系. 三、前n 项之和:S n = a 1+a 2+…+a n 注 求数列通项公式的一个重要方法: 对于数列}{n a ,有: ⎩⎨⎧≥-==-)2()1(11n s s n s a n nn例1、已知数列{100-3n},(1)求a 2、a 3;(2)67是该数列的第几项;(3)此数列从第几项起开始为负项. 解:例2 求下列数列的通项公式:(1)1,3,5,7, ……(2)-211⨯,321⨯,-431⨯,541⨯.…… (3)9,99,999,9999,……解:(1)12-=n a n ;(2))1(1)1(+-=n n a nn ;(3)110-=nn a练习:定写出数列3,5,9,17,33,……的通项公式: 答案:a n =2n +1 。
例3 已知数列{}n a 的第1项是1,以后的各项由公式111-+=n n a a 给出,写出这个数列的前5项.解 据题意可知:3211,211,123121=+==+==a a a a a ,58,3511534==+=a a a 例4 已知数列{}n a 的前n 项和,求数列的通项公式: (1) n S =n 2+2n ; (2) n S =n 2-2n-1.解:(1)①当n ≥2时,n a =n S -1-n S =(n 2+2n)-[(n-1)2+2(n-1)]=2n+1;②当n=1时,1a =1S =12+2×1=3;③经检验,当n=1时,2n+1=2×1+1=3,∴n a =2n+1为所求. (2)①当n ≥2时,n a =n S -1-n S =(n 2-2n-1)-[(n-1)2+2(n-1)-1]=2n-3; ②当n=1时,1a =1S =12-2×1-1=-2;③经检验,当n=1时,2n-3=2×1-3=-1≠-2,∴n a =⎩⎨⎧≥-=-)2(32)1(2n n n 为所求.注:数列前n 项的和n S 和通项n a 是数列中两个重要的量,在运用它们的关系式1n n n a S S -=-时,一定要注意条件2n ≥ ,求通项时一定要验证1a 是否适合四、提高:例5 当数列{100-2n}前n 项之和最大时,求n 的值.分析:前n 项之和最大转化为10n n a a +≥⎧⎨≤⎩.五、同步练习:1.已知:2n a n n =+,那么 (C ) (A )0是数列中的一项 (B )21是数列中的一项 (C )702是数列中的一项 (C )30不是数列中的一项2、在数列2,5,9,14,20,x ,…中,x 的值应当是 (D ) (A )24 (B )25 (C )26 (D )273、已知数列11,7,3,…,79,…且a n =179,则n 为 (C ) (A )21 (B )41 (C )45 (D )494、数列{a n }通项公式a n =log n+1(n+2),则它的前30项之积是 (B )(A )51(B )5 (C )6 (D )231log 3log 3215+ 5、已知数列1,-1,1,-1,…,则下列各式中,不是它的通项公式的为 (D ) (A )1)1(--=n n a (B )2)12(sinπ-=n a n (C ) 1 ()1()n n a n ⎧=⎨-⎩为奇数为偶数(D )n n a )1(-=6、数列 ,541,431,321,211⋅⋅-⋅⋅-的一个通项公式是 (A )(A ))1(1)1(+-=n n a n n (B ))1(1)1(1+-=+n n a n n(C )nn a nn)1(1)1(-⋅-=(D ))2()1(+-=n n a nn7、数列通项是nn a n ++=11,当其前n 项和为9时,项数n 是 (B )(A )9 (B )99 (C )10(D )100 8.数列112,223,334,445,…的一个通项公式是 (B )(A )21n n a n =+ (B )221n n n a n +=+ (C )211n n n a n ++=+ (D )221n n n a n +=+ 92,5,22,11,,则25 (B ) (A )第六项 (B )第七项 (C )第八项 (D )第九项 10.已知数列{a n }满足a 1=1,且121(2)n n a a n -=+≥,求数列的第五项a 5= 31 11、已知数列{a n }的前n 项和S n 满足log 2 (S n + 1) = n + 1,求a n .(答案: 3 n=12 n 2n n a ⎧=⎨≥⎩)12、已知数列{100-4n},(1)求a 10;(2)求此数列前10项之和; (3)当此数列前n 项之和最大时,求n 的值. 答案(1)60(2)780(3)24or2513、设数列{a n }中,S n =-n 2+24n ,(1)求通项公式; (2)求a 10+a 11+a 12+…+a 20的值; (3)求S n 最大时a n 的值.答案:(1)an=25-2n (2)-55(3)1 补充:1、已知数列{a n }满足a 1=b(b ≠1),且)(211N n a a nn ∈-=+, (1)求a 1, a 2, a 3; (2)求此数列的通项公式.2、已知数列{a n }前n 项之和S n =1nn +,求a n .3、一数列的通项公式为a n = 30 + n -n 2. ①问-60是否为这个数列中的一项. ②当n 分别为何值时,a n = 0, a n >0, a n <0第 课时教学内容:等差数列(1)教学目的:通过复习,巩固等差数列的定义、通项公式、求和公式 教学重点:等差数列 教学过程:(一)主要知识 1.等差数列的定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.即:)()(1•+∈=-N n d a a n n 常数2.通项:d n a a n )1(1-+=,推广:d m n a a m n )(-+=. 3.求和:d n n na a a n S n n 2)1(2)(11-+=+=.(关于n 的没有常数项的二次函数). 4.中项:若a 、b 、c 等差数列,则b 为a 与c 的等差中项:2b=a+c (二)主要方法: 1.等差数列的判定方法(1)定义法: )()(1•+∈=-N n d a a n n 常数 (2)中项法:212+++=n n n a a a (3)通项法:d n a a n )1(1-+= (4)前n 项和法:Bn An S n +=2 2.知三求二(n n S a n d a ,,,,1),要求选用公式要恰当.3.设元技巧: 三数:d a a d a +-,, 四数d a d a d a d a 3,,,3-+-- (二)基础题型: 讲练题:1.求等差数列8,5,2…的第20项。
职高数学基础模块下(人教版)教案:数列
职高数学基础模块下(人教版)教案:数列一、基础知识定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。
其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。
定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。
若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d.定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式:S n =d n n na a a n n 2)1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn .定义3 等比数列,若对任意的正整数n ,都有q a ann =+1,则{a n }称为等比数列,q 叫做公比。
定理3 等比数列的性质:1)a n =a 1q n -1;2)前n 项和S n ,当q ≠1时,S n =qq a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。
职业高中数学数列教案
职业高中数学数列教案
教学目标:
1. 了解数列的概念和性质;
2. 掌握等差数列和等比数列的概念,能够判断一个数列是等差数列还是等比数列;
3. 能够求解等差数列和等比数列的通项公式;
4. 能够利用数列的性质解决实际问题。
教学重点和难点:
1. 等差数列和等比数列的概念及性质;
2. 求解等差数列和等比数列的通项公式;
3. 判断一个数列是等差数列还是等比数列。
教学准备:
1. 课件、教材和教具;
2. 学生练习题和课堂练习题。
教学过程:
一、导入新知识(5分钟)
老师通过引入实际生活中的数字问题,引起学生对数列的兴趣,帮助学生理解数列的概念和意义。
二、讲解理论知识(20分钟)
1. 介绍等差数列和等比数列的定义和性质;
2. 分别讲解等差数列和等比数列的通项公式;
3. 讲解如何判断一个数列是等差数列还是等比数列。
三、练习与实践(25分钟)
1. 让学生做一些练习题,巩固所学知识;
2. 给学生几道实际问题,让他们利用所学知识解决问题。
四、总结归纳(5分钟)
老师总结本节课的重点知识,帮助学生理解整体知识结构。
五、课后作业(5分钟)
布置相应的课后作业,让学生巩固所学知识。
教学反思:
本节课主要是对数列的基本知识进行介绍和讲解,通过实例练习和实际问题来深化学生对数列的理解和应用能力。
希望学生能够掌握数列的基本性质,并能够熟练运用通项公式进行求解问题。
中职数列教学设计方案
一、教学目标1. 知识目标:(1)使学生掌握数列的概念、通项公式、前n项和公式等基本知识。
(2)使学生了解数列在自然科学、社会科学和实际生活中的应用。
2. 能力目标:(1)培养学生观察、分析、归纳、推理等数学思维能力。
(2)提高学生运用数列知识解决实际问题的能力。
3. 情感目标:(1)激发学生对数学学习的兴趣,培养良好的学习习惯。
(2)培养学生的合作精神、创新意识和团队协作能力。
二、教学内容1. 数列的概念及性质2. 数列的通项公式3. 数列的前n项和公式4. 数列的应用三、教学过程1. 导入新课(1)结合实际生活,引导学生思考数列在生活中的应用,激发学生学习兴趣。
(2)通过列举实例,让学生了解数列的基本概念。
2. 新课讲解(1)数列的概念及性质:讲解数列的定义、通项公式、递推公式等基本概念,并通过实例让学生理解数列的性质。
(2)数列的通项公式:讲解数列的通项公式、递推公式、求和公式等,通过实例让学生掌握通项公式的求解方法。
(3)数列的前n项和公式:讲解数列的前n项和公式,并通过实例让学生掌握前n项和的计算方法。
(4)数列的应用:结合实际生活,讲解数列在自然科学、社会科学和实际生活中的应用。
3. 练习巩固(1)布置课后作业,巩固所学知识。
(2)课堂上进行随堂练习,及时检验学生的学习效果。
4. 总结与反思(1)引导学生总结本节课所学内容,巩固知识点。
(2)鼓励学生提出问题,共同探讨解决方法。
四、教学评价1. 课堂表现:观察学生在课堂上的学习态度、合作精神、创新意识等方面。
2. 作业完成情况:检查学生课后作业的完成质量,了解学生对知识的掌握程度。
3. 课堂练习:通过课堂练习,检验学生对知识的运用能力。
4. 期末考试:全面评价学生对数列知识的掌握程度。
五、教学资源1. 教材:选用符合中职教学要求、内容丰富的数列教材。
2. 多媒体课件:制作与教学内容相关的多媒体课件,提高课堂教学效果。
3. 实际案例:收集与数列相关的实际案例,丰富教学内容。
中职教育数学《等差数列》教案
观看
课件
思考
三、动脑思考探索新知
如果一个数列从第2项开始,每一项与它前一项的差都等于同一个常数,那么,这个数列叫做等差数列.这个常数叫做等差数列的公差,一般用字母d表示.
由定义知,若数列 为等差数列, 为公差,则 ,即
思考
理解
记忆
四、巩固知识典型例题
例1已知等差数列的首项为12,公差为−5,试写出这个数列的第2项到第5项.
思考
归纳
理解
记忆
三、巩固知识典型例题
例2求等差数列 ...的第50项.
解由于 所以通项公式为
即
故
例3在等差数列 中, 公差 求首项
解由于公差 故设等差数列的通项公式为
由于 ,故 ,
解得
【小提示】
本题目初看是知道2个条件,实际上是3个条件: , .
观察
思考
主动
求解
观察
思考
求解
领会
思考
求解
四、运用知识强化练习练习6.2.2
本次课学了哪些内容?重点和难点各是什么?
回忆
反思
七、继续探索活动探究
(1)书面作业:教材习题6.2的1、2、3、4题
(2)思考例4的解题方法,完成练习6.2.2的第4题
动手
求解
1.求等差数列 ,1, ,…的通项公式与第15项.
2.在等差数列 中, , ,求 与公差 .
3.在等差数列 中, , ,判断-48是否为数列中的项,如果是,请指出是第几项.
思考
了解
动手
求解
五、理论升华整体建构
思考并回答下面的问题:
等差数列的通项公式是什么?结论:等差数列的通项公式
理解
强化
中职数学:数列的基本知识课件
通过使用列表法,可以把数列的每一项都列出来,更好地分析和解决数列问题。
3 经典题型解析
我们将在课件中分享一些数列的经典题型,并提供详细的解析过程。
五、练习与总结
数列练习题
通过练习题,巩固对数列知识的理解和应用能力。
数列知识点总结
对数列的概念、公式以及应用进行总结,方便复习和回顾。
数列的符号表示
数列通常用大写字母表示, 如a,b,c,...,其中a1表示 数列的第一项。
数列的分类
数列可以分为等差数列、等 比数列以及其他常见数列。
二、数列的通项公式
等差数列
等差数列是指数列中每一项与 前一项之差为常数的数列。
等差数列公式
通项公式:an = a1 + (n-1)d
等差数列性质
等差数列的相邻两项之间的差 值为常数,求和公式为 (n/2)(a1+an)。
疑难解答
最后,我们将解答你在学习数列过程中遇到的各种疑难问题。
等差数列示例
例如,1, 3, 5, 7, 9是 一个等差数列,前n 项和可以用公式计算。
等比数列求和
等比数列的前n项和 公式为Sn = a1(1 rn)/(1 - r)。
等比数列示例
例如,2, 6, 18, 54是 一个等比列的应用
1 数列在实际中的应用
数列在金融、物理、计算机科学等领域中有广泛的应用,如利润预测、物体运动轨迹的 分析等。
中职数学:数列的基本知 识课件
欢迎来到中职数学数列的基本知识课件!在这个课件中,我们将深入探讨数 列的概念、符号表示和通项公式,以及计算数列的前n项和,还会介绍数列在 实际中的应用。准备好开始了吗?让我们一起来探索数列的奥秘吧!
中职数学基础模块下册:6《数列》教案设计(全章)
6.1.1 数列的定义【教学目标】1. 理解数列的有关概念和通项公式的意义.2. 了理解数列与函数的关系,培养学生观察分析的能力.3. 使学生体会数学与生活的密切联系,提高数学学习的兴趣.教学重点数列的概念及其通项公式.教学难点数列通项公式的概念.教学方法这节课主要采用情景教学法.利用多媒体,在教师的引导下,根据学生的认知水平,设计了创设情境——引入概念,观察归纳——形成概念,讨论研究——深化概念,即时训练——巩固新知等环节.各步骤环环相扣,层层深入,引导学生体会数学概念形成过程中所蕴涵的数学方法,使之获得内心感受.【教学过程】环节教学内容师生互动设计意图导入1.讲故事,感受数列2.提出问题,引入新课我国有用十二生肖纪年的习俗,每年都用一种动物来命名,12年轮回一次.2009年(农历乙丑年)是21世纪的第一个牛年,请列出21世纪所有牛年的年份.教师讲述古印度传说故事《棋盘上的麦粒》.学生倾听故事,认识数列.教师提出问题.学生分组讨论,找出问题的答案.创设情境,让学生认识数列,激发学生的好奇心,增强学生的学习兴趣.提出和本节课密切相关的问题,让学生思考,充分发挥学习小组的作用,展开讨论.新课1.数列的定义把21世纪所有牛年的年份排成一列,得到2 009,2 021,2 033,2 045,2 057,2 069,2 081,2 093.①像①这样按一定次序排列的一列数,叫做数列.数列中的每一个数都叫做这个数列教师在学生探究的基础上,给出问题的答案.教师板书定义.教师出示一组数列的例新课新课的项,各项依次叫做这个数列的第1项(或首项),第2项,…,第n项,…,比如,2 009是数列①的第1项(或首项),2 093是数列①的第8项.举出一些数列的例子:大于3且小于11的自然数排成一列4,5,6,7,8,9,10;②正整数的倒数排成一列1,12,13,14,…;③2精确到1,0.1,0.01,0.001,…的近似值排成一列1,1.4,1.41,1.414,…;④-1的1次幂,2次幂,3次幂,4次幂,…排成一列-1,1,-1,1,-1,…;⑤无穷多个2排成一列2,2,2,2,…;⑥这些都是数列.2.数列的分类项数有限的数列叫做有穷数列,项数无限的数列叫做无穷数列.练习(1)已知数列3,7,11,15,…,则33是它的第项.(2)已知数列1,12,-13,14,…,(-1)n+1·1n,…,那么它的第10项是().(A)-1 (B)1(C)-110(D)1103.数列的一般形式数列从第一项开始,按顺序与正整数对应.所以数列的一般形式可以写成a1,a2,a3,…,a n,…,子.师:数列4,5,6,7,8,9,10;与10,9,8,7,6,5,4是不同的数列.而集合{4,5,6,7,8,9,10}与{10,9,8,7,6,5,4}是相同的集合.强调数列的有序性,集合元素的无序性.教师利用上面举过的例子,讲解“数列的分类”.请学生指出上述数列中的有穷数列和无穷数列:①②是有穷数列,③④⑤⑥是无穷数列.同桌之间讨论,完成练习.教师巡视指导.强调数列的“有序性”,使学生对数列定义有更深刻的认识,又为后面学习数列的通项公式埋下伏笔.重视举例这一环节,调动学生的思维,发挥学生的主动性,加深对数列定义的理解.观察实例,培养学生分类能力.通过练习,让学生进一步掌握数列的定义.。
中职数学:数列的基本知识课件
等比数列的通项公式
总结词
等比数列的通项公式是用来表示数列中每一项的数学表达式。
详细描述
等比数列的通项公式是 a_n=a_1×q^(n-1),其中 a_n 是第 n 项的值,a_1 是第一项的值,q 是公比 ,n 是项数。
等比数列的求和公式
总结词
等比数列的求和公式是用来计算数列 中所有项的和的数学表达式。
多个不同的极限值。
收敛数列具有有界性,即存在一 个正数M,使得数列的项都满足
$|x_n| leq M$。
收敛数列具有保序性,即如果 $x_n leq y_n$,且$lim x_n = lim y_n$,则可以推出$x_n geq
y_n$。
收敛数列的应用
在数学分析中,收敛数列是研究函数极限、连续性、可微性等概念的基础。
04
CATALOGUE
数列的极限与收敛
数列的极限定义
极限是数列的一种特性,表示 数列从某一项开始,无限接近 于一个常数。
极限的定义包括两种形式:数 列的极限和子数列的极限。
数列的极限定义是数学分析中 的基本概念之一,是研究数列 的单调性、有界性以及数列求 和等问题的关键。
收敛数列的性质
收敛数列具有唯一性,即收敛数 列只能收敛到一个点,不会出现
数列与实际问题的综合应用
总结词
数列在解决实际问题中具有广泛的应用,如人口增长、 银行利率、股票价格等都可以用数列进行描述和预测。
详细描述
数列作为一种数学工具,在解决实际问题中具有广泛的 应用。例如,人口增长可以用等差数列或等比数列进行 描述和预测;银行利率和股票价格可以用等比数列进行 计算和分析。通过建立数学模型,可以将这些实际问题 转化为数列问题,从而为决策提供科学的依据。
中职数学数列的基本知识ppt课件
如果两个数列的极限存在 且相等,那么这两个数列 之间的任意数列的极限也 存在且等于这两个数列的 极限。
如果数列单调增加(或减 少)且有上(下)界,那 么该数列的极限存在。
利用无穷小与无穷大的性 质求解数列的极限,如无 穷小与有界函数的乘积仍 为无穷小等。
THANKS
感谢观看
递推数列周期性判断
周期性的定义
递推数列中,如果存在某个正整 数p,使得数列中任意一项与它 前面第p项相等,则称该数列具 有周期性,p为该数列的周期。
周期性判断方法
通过观察、分析数列中各项之间 的变化规律,找出可能存在的周 期p,再验证数列中任意一项是
否与它前面第p项相等。
周期性应用
利用数列的周期性,可以简化数 列的求解过程,如求数列中某项
数列表示方法
数列可以用通项公式或递推公式表示,其中通项公式表示数列中任意一项与项 数n的关系,而递推公式表示数列中相邻项之间的关系。
数列分类及特点
有穷数列和无穷数列
根据项数是否有限,数列可分为有穷 数列和无穷数列。有穷数列项数有限, 无穷数列项数无限。
单调数列和摆动数列
根据数列的增减性,数列可分为单调 数列和摆动数列。单调数列单调递增 或递减,摆动数列则不具备单调性。
性质
等比数列中,任意两项的比值相等,且等于公比;等比数列的 每一项都不为零;等比数列的公比可以是正数、负数或零(除 数列首项外)。
等比数列通项公式推导
公式形式
an=a1×qn-1,其中an表示第n项, a1表示首项,q表示公比,n表示 项数。
推导过程
根据等比数列的定义,可以得到 an/a(n-1)=q,通过递推关系,可 以得到an=a1×q×q×...×q(n-1个 q)=a1×qn-1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中职数学数列基础知
识教案
课 题 6.1.1 数列的基本知识
课 型 新课
⒉ 数列的项:数列中的每一个数叫做数列的项. 其中第1个数叫做第1项(或首项),第2个数叫做第2项,…,第n 个数叫做第n 项.其中反应各项在在数列中的位置的数字
1,2,…,n ,称为项数.
例如数列:
3.数列的分类:
只有有限项的数列叫做有穷数列; 有无限项的数列叫做无穷数列. 判断那些是有穷数列那些是无穷数列?(幻灯片)
4. 数列的一般形式:
ΛΛn a a a a 321、、 {}n a 或简记为 )(.*∈N n n a n 项是数列的第其中
通项或一般项叫数列}{a n n a
练习(幻灯片)
5、数列的通项公式:
如果a n (n =1,2,3,…)与n 之间的关系可用
a n = f ( n )
来表示,那么这个关系式叫做这个数列的通项公式,其中n 的取值是正整数集的一个子集. 例1
例2
小结:(幻灯片)
举例使学生对数列项的认识
教师利用上面举过的例子,
讲解
“数列的分类”
通过练习,学生分组讨论:数列的每一项与这一项的序号是否有一定的对应关系?这一关系可否用一个公式表示?
通过例题使学生更好的运用 通项公式解题
教师引导梳理,总结本节课
的知
识点.
教 者 赵凌娇
时 间
2012、9
教 学 目 标
知识目标:理解数列的有关概念和通项公式的意义.
能力目标:了理解数列与函数的关系,培养学生观察分析的能力.
情感目标:使学生体会数学与生活的联系,提高数学学习的兴趣.
重 点 数列的概念及其通项公式. 难 点 数列通项公式的概念. 教 具 多媒体
师 生 活 动
教 学 过 程
导入:1.讲故事,感受数列
2.引入新课:童年的歌谣《数青蛙》 寻找规律,在空格内填数字:
(1)()(
)8
161
5131211、、、、、、、 Λ1410842)2(、)(、、、)(、、 22222754323、)(、、、、、)()( Λ)(、、)(、、、、、、)(218532114
归纳它们有何共同特点?
教师讲述古印度传说故事《棋盘上的麦粒》.
学生倾听故事,认识数列.
幻灯片播放,让学生从生活中认识数列
教师提出问题.
Λ
Λ643222221、、、。