输入欠压保护电路二

合集下载

ATX电源用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解

ATX电源用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解

用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解本开头电源控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。494是双排16脚集成电路,工作电压7~40V。它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路ATX电源的控制电路见图1。控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。494是双排16脚集成电路,工作电压7~40V。它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路,振荡频率由{5}脚外接电容及{6}脚外接电阻来决定。{13}脚为高电平时,由{8}脚及{11}脚输出双路反相(即推挽工作方式)的脉宽调制信号。本例为此种工作方式,故将{13}脚与{14}脚相连接。比较器是一种运算放大器,符号用三角形表示,它有一个同相输入端“+”;一个反相输入端“-”和一个输出端。比较器同相端电平若高于反相端电平,则输出端输出高电平;反之输出低电平。494内的比较放大器有四个,为叙述方便,在图1中用小写字母a、b、c、d来表示。其中a是死区时间比较器。因两个作逆变工作的三极管串联后接到+310V的直流电源上,若两个三极管同时导通,就会形成对直流电源的短路。两个三极管同时导通可能发生在一个管子从截止转为导通,而另一个管子由导通转为截止的时候。因为管子在转换时有时间的延迟,截止的管子已经转为导通了,但导通的管子尚未完全转为截止,于是两个管子都呈导通状态而形成对直流电源的短路。为防止这样的事情发生,494设置了死区时间比较器a。从图1可以看出,在比较器a的反相输入端串联了一个“电源”,正极接反相端,负极接494的{4}脚。A比较器同相端输入的锯齿波信号,只有大于“电源”电压的部分才有输出,在三极管导通变为截止与截止转为导通期间,也就是死区时间,494没有脉冲输出,避免了对直流电源的短路。死区时间还可由{4}脚外接的电平来控制,{4}脚的电平上升,死区时间变宽,494输出的脉冲就变窄了,若{4}脚的电平超过了锯齿波的峰值电压,494就进入了保护状态,{8}脚和{11}脚就不输出脉冲了。494内部还有3个二输入端与门(用1、2、3表示)、两个二输入端与非门、反相器、T触发器等电路。与门是这样一种电路,只有所有的输入端都是高电平,输出端才能输出高电平;若有一个输入端为低电平,则输出端输出低电平。反相器的作用是把输入信号隔离放大后反相输出。与非门则相当于一个与门和一个反相器的组合。T触发器的作用是:每输入一个脉冲,输出端的电平就变化一次。如输出端Q为低电平,输入一个脉冲后,Q变为高电平,再输入一个脉冲,Q又回到低电平。比较器、与门、反相器、T触发器以及锯齿波振荡器及{8}脚、{11}脚输出的波形见图2。339是四比较过流保护过压保护一、产生PW-OK信号PC主机要求各路电源稳定之后才工作,以保护各元器件不致因电压不稳而损坏,故设置了PW-OK信号(约的C比较器的输出端{14}脚为零电平。另外,339的{1}脚低电平信号因D34的钳位作用,也使{14}脚为低电平,经R50和R63使{11}脚亦为低电平。因此D比较器的输出端{13}脚为低电平,也就是PW-OK信号为低电平,主机不会工作。开启主机时,通过人工或遥控操作闭合了与PS-ON相关的开关,PS-ON呈低电平,经R37使339的反相端{6}脚为低电平,B比较器{1}脚输出高电平,D35、D36反偏截止,A比较器的输出电平则由{5}脚与{4}脚的电平决定。正常工作时,{5}脚电平低于{4}脚电平,{2}脚输出低电平,经R41送到494的{4}脚,使{4}脚的电平变为低电平,锯齿波振荡信号可以从死区时间比较器a输出脉冲信号,另一方面,振荡信号送到了PWM比较器b 的同相输入端,PWM比较器输出的脉冲信号的宽度,则是由494的{1}脚的电平(也就是负载的大小)与{16}脚的电平来决定。PWM比较器输出的脉冲信号,最后经缓冲放大器放大后,从{8}、{11}脚输出脉冲信号,ATX电源向主机输出±5V、±12V、+3.3V电源。此过程因C35的充电有数百毫秒的延时,但对主机开机并无影响。494的{1}脚从+5V、+12V经取样电阻R15、R16得到电压,其电平略高于{2}脚电平,{3}脚输出高电平,经R48使339的{9}脚得到高电平,其电平高于{8}脚电平,因而{14}脚输出高电平,此电平经R50与基准+5V电源经R64共同对C39充电,经数百毫秒后,{11}脚电平升到高于{10}脚电平时,D比较器{13}脚输出高电平,此电平经R49反馈至{11}脚,维持{11}脚处于高电平状态,故{13}脚输出稳定的高电平PW-OK信号,主机检测到此信号后即开始正常工作。关机时,主机内开关使PS-ON呈高电平,此时339的{6}脚电平高于{7}脚,{1}脚输出低电平,因二极管D34的钳位作用,{14}脚呈低电平,C39对C比较器及B比较器放电,很快{11}脚呈低电平,{13}脚输出低电平,即PW-OK信号呈低电平。在339的{1}脚为低电平时,经D36使{4}臆脚为低电平,{2}脚输出高电平,经R41传送到494的{4}脚,但因C35电位不能突变,经数百毫秒的放电后方使494的{4}脚转为高电平,从而封锁正负脉冲的输出,主机进入待机状态。上述的过程中,关机时C39和C35都要放电,但因放电时间常数不同,C39放电较快,故PW-OK信号先于各电源变成低电平,满足了主机关机的需要。此外,关机时因各路输出电源的电解电容放电需要时间,也使PW-OK信号先于各电源回到低电平。二、稳压494的{2}脚经R47与基准电压+5V相连,维持较好的稳定电压,而{1}脚则与取样电阻R15、R16与+5V、+12V相连接,正常的情况下,{1}脚电平与{2}脚电平相等或略高。当输出电压升高时(无论+5V或+12V),{1}脚电平高于{2}脚电平,c比较器输出误差电压与锯齿波振荡脉冲在PWM比较器b进行比较使输出脉冲宽度变窄,输出电压回落到标准值,反之则促使振荡脉冲宽度增加,输出电压回升。由于494内的放大器增益很高,故稳压精度很好。从稳压的原理,我们可以得到ATX电源输出电压偏高或偏低的维修方法。如果输出电压偏低,可在494的{1}脚对地并联电阻,或是把R47的电阻增大。要是电源的输出偏高,则可在{2}脚对地并联电阻,也可以用增大R33或取下R69、R35来降低输出电压。三、过流保护过流保护的原理是基于负载愈大,Q3、Q4集电极的脉冲电压也愈高,也即是R13(1.5kΩ)上的电压也愈高,从这里采样经D14整流和C36滤波,再经R54、R55并联电阻与R51、R56、R58等组成的分压电路送到494的{16}脚。随着负载的加重,{16}脚的电平也随之上升,当超过{15}脚的电平时,误差放大器输出的误差电压促使调制脉冲的宽度变窄从而使负载电流减小。另外,从R56、R58并联电阻获得的分压再经R52送到339的{5}脚,当{5}脚的电平超过{4}脚时,{2}脚即输出高电平送到494的{4}脚,494停止输出脉冲信号,终止±5V、±12V、+3.3V 电源的输出,达到过流及短路保护的目的。需要说明的是:494的{16}脚电平的高低只能改变输出脉冲的宽度,但不影响494的{4}脚电平状态,而339的{5}脚电平一旦超过{4}脚的电平,339的{2}脚就送出高电平去封锁449的脉冲输出,终止±5V、±12V、+3.3V电源的输出,同时{2}脚的高电平经R59和二极管D39反馈到{5}脚,维持{5}脚处于高电平状态,此时若过载或短路状态消失,494的{4}脚仍维持高电平,±5V与±12V、+3.3V电源仍不能输出,只有切断交流市电的输入,再重新接通交流电,方可再次开机。四、过压保护过电压保护由R17和稳压管Z02并联电路从+5V采样,经D37送到339的{5}脚。若+5V电源由于某种原因升高,339的{5}脚电平也会随之升高,当超过{4}脚电平时,{2}脚即送出高电平去494的{4}脚,封锁±5V、±12V、+3.3V电源的输出,达到过电压保护的目的。正常工作时,R17上的压降不大,Z02截止送到{5}脚的电压较低,若+5V电源的电压上升,使R17上的压降超过Z02的稳压值,Z02导通,+5V电源上升后的电压值全部加到339的{5}脚上,促使其快速封锁494脉冲的输出,以保护电源五、欠压保护欠压保护从-5V的D32及-12V处的R14取样,经R34和D37送到339的{5}脚。若因某种原因使输出电压过低时,-12V及-5V电压的负值也会随之减小,也就是电压值上升,经R34及D37送往339的{5}脚使电平上升,339的{2}脚送出高电平到494的{4}脚,从而封锁449脉冲的输出,实现欠压保护。二极管D32在导通时,其电压降与通过的电流基本无关,保持在0.6V~0.7V,于是-5V电压的减少量会全部传送到D32的负端,提高了欠压保护的灵敏度。六、电源保护电路故障的维修从上面的叙述中可以了解到,各种保护电路最终都是通过控制339的{5}脚电平来控制494的{4}脚电平实现的。正常工作时,339的{5}脚电平低于339的{4}脚电平,339的{2}脚输出低电平,使494的{4}脚呈低电平状态(约为0.25V)。若339的{5}脚电平高于339的{4}脚电平,339的{2}脚输出高电平,于是494的{4}脚变为高电平,电源就进入了保护状态,终止各路电源的输出。因此ATX电源出了故障,若电源的整流、滤波、逆变以及辅助电源均完好,则要检查339的{4}、{5}脚的电平。若是{5}脚电平高于{4}脚的电平,表示电源进入了保护状态。下一步则找出是什么原因使电源进入了保护状态。可检查与339的{5}脚相连各支路另一端的电压是不是比{5}脚电压高,高出{5}脚电压的支路就是故障所在的支路。另外,也可以用断开与{5}脚相连的一个个支路,若是断开某一条支路后{5}脚的电平正常了,那么故障就出在这一条支路上。再沿着这条支路往下查,很快就可以把故障排除。下面通过两个实例来加以说明。1.一台SLPS-250ATXC电源的输出电压偏低。空载下,+5V电源的电压只有+1.8V,其他各路电压也按比例同样下降。电源是采用TL494及LM339集成电路的典型ATX电路。检查494的{4}脚电压为+2.6V。电路似乎处于保护状态。但保护状态时各路输出的电压均应为零,而现在却是正常电压的三分之一,令人费解。试着把494的第{4}脚接地,电源立即输出正常。{4}脚接地就正常工作,说明494并未损坏,问题可能出在339以及有关的电路。用万用表查339管脚的电压,当查到第{4}脚及{7}脚时,各路电源均正常了。甚至只用一条表笔去碰{7}脚或{4}脚,也可使电源恢复正常工作。这等于在{4}脚或{7}脚上加了一条“天线”,天线接收了外来信号电源就工作正常了!我试了试天线的长度,40厘米以下对电源不起作用,长度增加了,输出电压也随着增加,达到1米左右时,输出电压就正常了,494的{4}脚电压也恢复到0V。但电源要用“天线”才能工作,说明还有故障未找到。再检查339的{4}脚与{5}脚的电压,{5}脚电压为2.4V,{4}脚的电压为1.2V,输出端{2}脚的电压为2.9V。(这部分电路见图3)。但是339的{2}脚高电位,必须由{5}脚电位高于{4}脚的电位时才能产生,那{5}脚最初的高电位是怎么来的?把与{5}脚相连的各支路断开试一试。在断开c支路以后,电源就正常了。沿着D2往下找,最后在+3.3V电源处对地接一个1000μF的电容时,电源就正常了。再检查+3.3V电源原来的滤波电容,发现已经失效。更换电容后494的{4}脚电压恢复正常,用表笔去碰触339的{4}脚或{7}脚也不起作用,问题得到了解决。为什么+3.3V电源的滤波电容失效会造成输出电压偏低?+3.3V电源在没有电容滤波时,输出的直流电源中含有很强的由逆变功率管输出的脉冲成分,通过D3及D2送到LM339的{5}脚,使{5}脚的电平高于{4}脚的电平,电源进入了保护状态。从+20V 电源经R3、D1、R2和三个并联电阻到接地的支路中,三个电阻并联后的电阻值是2.43kΩ,再略去其他支路的影响,可以估算出{5}脚的电压大约是2.3V,因二极管D1的钳位作用,{2}脚输出电压只能在2.9V左右,经R1送到TL494的{4}脚,减去电阻R1的降压,494的{4}脚电压就是2.6V了。在此电压下,494会输出较窄的脉冲,于是在空载下,+5V电源有约1.8V的电压输出。解决的办法可在d支路中串联一个47kΩ的电阻,并把R2由3.9kΩ换成100kΩ就行了。经这样处理后,不论是正常工作或是保护状态,各路电源的输出电压和各管脚的电压均正常了。而R2电阻的改动,也不会影响电源的过载保护性能。至此,电源的故障才完全得到了解决(爱好者手中若有SLPS-250ATXC电源,可参考此例加一个47kΩ电阻以提高电源的保护性能)。为什么339的{4}脚加了天线会正常工作呢?这是{2}脚经D1反馈到{5}脚后,产生了轻微的高频寄生振荡。{4}脚或{7}脚接了天线以后,破坏了电路的振荡条件,使{4}脚的电压升高,当超过{5}脚的电压时,{2}脚送出0V的低电平信号到494的{4}脚,电源就工作正常了。同样,在D1支路中串联了47kΩ电阻后,增加了阻尼因数,破坏了电路的振荡条件,电源也就正常了。此时若取下+3.3V电源处新加的电解电容,通电后,电源会立即进入保护状态,各路电源都没有输出。2.一台新时代HY-ATX300电源,空载时输出电压正常,但不能带动负载。检查494各个管脚的电压,发现{12}脚的电压只有10V,这是造成不能带动负载的原因。在辅助电源逆变变压器T3的初级线圈1加上16.5V的高频电压,测得次级+5VSB挡线圈3的电压是0.9V,向494集成电路{12}脚供电线圈4的电压为1.5V,约是+5VSB挡线圈电压的 1.7倍。电源的+5VSB电源是直接从线圈3经整流和滤波后得到,+5VSB电源的稳压则是借助WD431稳压集成电路和光电耦合器反馈回逆变三极管得到的,如图4所示。由此可以算出线圈4的电压为5×1.7=8.5V,因负载较轻,经电容滤波后的电压就是10V左右了。由此说明T3脉冲变压器线圈4的匝数少了。拆开T3变压器,得到各绕组的匝数为:初级2×110匝;反馈绕组10匝;+5VSB绕组12匝;绕组4的匝数是8匝。重新绕制绕组4,把匝数由原来的8匝增加到20匝,其余绕组的匝数不变。绕好后上机实验,494集成电路{12}脚的电压上升到17V,电源的输入功率可达130W,故障排除。从故障现象看,可能是工厂生产时将变压器装错了。。

uvlo欠压保护电路原理

uvlo欠压保护电路原理

UVLO欠压保护电路原理1. UVLO(欠压锁定)概述- 定义与基本原理:UVLO是一种欠压保护技术,用于防止电路在输入电压低于某个阈值时正常工作。

它通过监测输入电压,当电压降至设定值以下时,触发保护机制,防止设备损坏。

- 应用领域:UVLO广泛应用于各种电子设备,如电源管理模块、电源适配器、DC-DC转换器等。

它确保这些设备在不稳定或低电压条件下能够正常工作,提高系统的可靠性。

- 工作原理:UVLO工作原理基于一个比较器,监测输入电压并将其与设定的阈值进行比较。

当输入电压低于阈值时,UVLO触发,切断电源或启动相应的保护机制。

2. UVLO的设计要点- 阈值设定:UVLO的有效性取决于准确的阈值设定。

设计师需根据特定应用的电源要求选择适当的阈值,确保在低电压条件下及时触发保护。

- 滞回特性:UVLO通常设计具有一定的滞回特性,以防止在边缘电压处于临界值时发生不稳定的切换。

滞回确保在电压上升时,设备不会过早地恢复正常工作。

- 延时机制:为防止瞬态干扰触发误报,UVLO常常包含延时机制。

通过延时,可以确保输入电压在一段时间内稳定在低电压区域,而不是由于瞬时波动导致误报。

- 精准度与灵敏度:UVLO的精准度和灵敏度对系统性能至关重要。

高精度和灵敏的UVLO能够更精确地监测电压变化,并在必要时迅速作出响应。

3. UVLO与系统稳定性- 防止欠压故障:UVLO通过防止系统在欠压状态下工作,有效地防止了由于电压不足而导致的系统故障。

这对于电源管理至关重要,特别是对于一些对电压要求较高的敏感设备。

- 稳定电源输出:UVLO有助于维持电源输出的稳定性。

在低电压条件下,电源可能无法提供足够的电流和功率,从而导致系统不稳定。

UVLO的作用在于及时发现并避免这种情况。

- 降低热损耗:在欠压状态下工作可能导致电源电路大量电流通过,产生过多的热损耗。

UVLO通过阻止在不稳定条件下的运行,有助于减少这种热损耗。

4. UVLO的实际应用案例- 电源管理芯片:UVLO广泛嵌入在各种电源管理芯片中,如稳压器、开关电源控制器等。

过欠压、过流、过温、软启动、CNT保护实际电路详解!

过欠压、过流、过温、软启动、CNT保护实际电路详解!

输出过压保护电路当用户在使用电源模块时,可能会由于某种原因,造成模块输出电压升高,为了保护用户电路板上的器件不被损坏,当模块的输出电压高于一定值时,模块必须封锁脉冲,阻止输出电压的继续上升。

D320产生一个5.1V电压基准送至运放U301反相输入端,R330、R334、R336用于检测输出电压、检测电压值送至运放U301同相输入端。

输出电压没有达到过压保护点时,运放U301 5脚的电压小于6脚的电压,运放输出为低电平,输出正常。

输出电压Vo升高到设定检测点电压时,电阻R336、R334、R330检测的分压比送入运放U301的5脚,此时5脚电压高于6脚电压,运放U301输出高电平,封闭控制芯片PWM信号,模块输出电压为零。

过流保护电路实例(1)图2.过流保护电路实例工作原理T2采集模块原边开关管的输入电流,采样电流经取样电阻R18转换成电压信号,再经两路开关二极管(D6)整流形成两路控制信号。

一路峰值信号去控制38C43的3脚;另一路准峰值电平进入38C43 EA的反相输入端2脚。

采用CT作电流采样的好处是采样电路功耗小,采样电路灵活,CT可以放置在MOSFET开关管的D极或S极,也可以串联于主变压器原边的Vin+端。

缺点是电路稍复杂,体积大,CT存在大占空比时不能有效复位的问题。

CT采样一般用于中大功率的模块。

3843PWM芯片介绍图3.3843芯片内部结构图芯片工作原理虚线所框部分为38C43芯片内置的误差放大器和电流放大器。

误差放大器的输出经过内部分压后(被钳位到1V),进入电流放大器的反相输入端,与电流采样信号比较后进入PWM产生电路。

最终在芯片的6脚输出PWM信号。

在这里,误差放大器被用来作OCP保护,电流控制放大器I/A作峰值电流限流保护。

误差放大器E/A用于准峰值限流。

当38C43反相输入端2脚的直流电平达到2.5V时,误差放大器E/A起作用,使38C43的6脚输出驱动信号占空比D减小,达到模块OCP之目的。

24V开关电源的几种保护电路

24V开关电源的几种保护电路

24V开关电源常用的几种保护电路1.防浪涌软启动电路24V开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。

在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。

上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。

2.过压、欠压及过热保护电路进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。

因此对输入电源的上限和下限要有所限制,为此采用过压、欠压保护以提高电源的可靠性和安全性。

温度是影响电源设备可靠性的最重要因素。

根据有关资料分析表明,电子元器件温度每升高2℃,可靠性下降10%,温升50℃时的工作寿命只有温升25℃时的1/6,为了避免功率器件过热造成损坏,在开关电源中亦需要设置过热保护电路。

3.缺相保护电路由于电网自身原因或电源输入接线不可靠,24V开关电源有时会出现缺相运行的情况,且掉相运行不易被及时发现。

当电源处于缺相运行时,整流桥某一臂无电流,而其它臂会严重过流造成损坏,同时使逆变器工作出现异常,因此必须对缺相进行保护。

检测电网缺相通常采用电流互感器或电子缺相检测电路。

由于电流互感器检测成本高、体积大,故开关电源中一般采用电子缺相保护电路。

图5是一个简单的电子缺相保护电路。

三相平衡时,R1~R3结点H电位很低,光耦合输出近似为零电平。

当缺相时,H点电位抬高,光耦输出高电平,经比较器进行比较,输出低电平,封锁驱动信号。

比较器的基准可调,以便调节缺相动作阈值。

该缺相保护适用于三相四线制,而不适用于三相三线制。

电路稍加变动,亦可用高电平封锁PWM信号。

公司常用保护电路原理介绍

公司常用保护电路原理介绍
该电路主要应用于功率较大的模块电源限流保护电路当中,它可以有效降低模块在过流时的自身功耗,从而可以 达到保护模块免于高温等损坏延长模块使用寿命的目的。
14 Emerson Confidential
过温保护电路举例 (1)
VCC2 R235 3.6k 1206 HO T 1 3 2 R229 1 2 K104 20K 0805 1% PRO TECT D207 BAV70
8 7 6 5 Vref Vcc OUT GND U803 COMP 1
Vfb 2
Isense 3 R/CT 4
UC3843 R848 10K V808 2N4403 R859 2 100 D818 1 1N4148 C840 330U/25V +
图一、 DC-DC软启动电路
19 Emerson Confidential
6 Emerson Confidential
过流保护电路实例(1)
2 3
VREF IRF640 C14 0.47U VinO
7 6 1
8
T2
4 5
2 3
R22
CT1001C J4
8 7 6 5
N1 1.5K
O J4 CT R19 R20 2 IS1 16 3 1 IS2 R17 C11 220P R15 47K R16A R R16 8.2 C12 R18 0.01U 1K 470 J4 J4 IS3 D6 BAW56
图6.过温保护电路实例1
Vcc2( 辅助电源):+15V HOT (过温信号):高电平有效(>5V) PROTECT(控制保护信号):高电平有效(>5V)
15 Emerson Confidential
过温保护电路举例

buck型dc-dc变换器中保护电路的设计

buck型dc-dc变换器中保护电路的设计

buck型DC-DC变换器是一种常见的电源转换器,用于将高压直流电源转换为稳定的低压直流电源,广泛应用于电子设备和通信系统中。

在设计buck型DC-DC变换器时,保护电路的设计至关重要,可以有效保护电路和相关元器件,提高整个系统的可靠性和稳定性。

本文将从保护电路的设计入手,对buck型DC-DC变换器进行深入研究和分析。

1. 保护电路的作用保护电路是buck型DC-DC变换器中的重要组成部分,其主要作用是防止过流、过压、过温等异常情况对电路和元器件造成损坏。

通过及时检测异常信号并采取相应的保护措施,可以有效避免电路的故障和损坏,延长系统的使用寿命。

2. 过流保护电路设计过流是buck型DC-DC变换器中常见的故障情况之一,如果电流超过设定的安全范围,将会对电路和元器件造成严重的损害。

在设计过流保护电路时,需要合理选择电流传感器和保护元件,并设置合适的保护触发门槛。

常用的过流保护电路包括电流限制器、熔断器和过流保护芯片等,通过这些器件的合理组合可以实现对电路的有效保护。

3. 过压保护电路设计过压是另一种常见的故障情况,当输入电压超过设定的安全范围时,将对电路和元器件产生严重的影响。

在设计过压保护电路时,需要考虑输入电压的波动范围和保护触发门槛,并选择合适的过压保护器件进行搭配。

常用的过压保护电路包括过压保护芯片、击穿二极管和电容滤波器等,通过这些器件的合理配置可以有效防止过压对电路的损坏。

4. 过温保护电路设计过温是buck型DC-DC变换器中的另一个重要故障情况,当工作温度超过元器件的最大承受温度时,将会导致电路的失效和损坏。

在设计过温保护电路时,需要合理选择温度传感器和保护器件,并设置适当的保护触发温度。

常用的过温保护电路包括温度开关、热敏电阻和温度保护芯片等,通过这些器件的合理配置可以实现对电路的及时保护。

5. 其他保护电路设计除了上述提到的过流、过压和过温保护电路外,buck型DC-DC变换器的保护系统还需要考虑短路保护、输入欠压保护和输出失稳保护等其他故障情况。

UC3842开关电源各功能电路详解

UC3842开关电源各功能电路详解

UC3842开关电源各功能电路详解一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM 控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。

②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4 为安规电容,L2、L3为差模电感。

② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

电器开关原理剖析:开关的过压保护与欠压保护

电器开关原理剖析:开关的过压保护与欠压保护

电器开关原理剖析:开关的过压保护与欠压保护电器开关是电路中常见的一种控制元件,用于控制电路的通断。

在使用电器开关时,往往需要考虑到电路运行中可能出现的过压和欠压现象,以保护设备的使用安全。

首先,我们来了解一下什么是过压和欠压。

过压是指电路中电压超过额定电压的情况,这种情况下电器设备会受到过大的电压冲击,导致设备的损坏甚至是烧毁。

欠压则表示电路中电压低于额定电压,这种情况下电器设备可能无法正常工作,甚至无法启动。

为了防止过压和欠压对设备造成的损坏,电器开关通常具备过压保护和欠压保护功能。

在电器开关中实现过压保护的一种常见方法是采用过压保护器件,如过压维码二极管(TVS),它是一种能够在电压超过一定阈值时迅速变为导通状态的二极管。

当电路中出现过压时,过压维码二极管会迅速导通,形成一条低阻抗的通路,将过压电压引流到地,使电器设备所承受的电压保持在安全范围内,避免设备损坏。

除了过压保护器件外,还可以通过过压保护电路来实现过压保护。

过压保护电路通常由一个比较器、一个参考电压源和一个触发器组成。

比较器的作用是将输入电压与参考电压进行比较,当输入电压高于参考电压时,触发器会输出一个高电平信号,该信号通过继电器或其他元件断开电源电路,以达到过压保护的效果。

欠压保护的实现方法与过压保护类似,可以采用欠压保护器件或欠压保护电路。

欠压保护器件中的常见组件是欠压维码二极管(Zener Diode),它具有特定的击穿电压,当电路中电压低于该击穿电压时,欠压维码二极管会迅速导通,为设备提供必要的电压支持。

欠压保护电路的工作原理与过压保护电路类似,也是通过比较器、参考电压源和触发器的组合来实现。

当输入电压低于参考电压时,触发器的输出信号会断开电源电路,以实现欠压保护。

总之,电器开关的过压保护和欠压保护的实现都是通过特定的器件或电路组合来完成的。

这些保护措施能够有效地避免过高或过低的电压对电器设备的损坏,保障设备的安全运行。

在电器开关的选购和使用过程中,我们应该注意到这些保护功能,选择具备过压保护和欠压保护功能的开关,以提高电器设备的使用寿命和安全性。

过压及欠压的保护电路图

过压及欠压的保护电路图

图4是仅用一个4比较器LM339及几个分立元器件构成的过压、欠压、过热保护电路。

取样电压可以直接从辅助控制电源整流滤波后取得,它反映输入电源电压的变化,比较器共用一个基准电压,N1.1为欠压比较器,N1.2为过压比较器,调整R1可以调节过、欠压的动作阈值。

N1.3为过热比较器,R T为负温度系数的热敏电阻,它与R7构成分压器,紧贴于功率开关器件IGBT的表面,温度升高时,R T阻值下降,适当选取R7的阻值,使N1.3在设定的温度阈值动作。

N1.4用于外部故障应急关机,当其正向端输入低电平时,比较器输出低电平封锁PWM驱动信号。

由于4个比较器的输出端是并联的,无论是过压、欠压、过热任何一种故障发生,比较器输出低电平,封锁驱动信号使电源停止工作,实现保护。

如将电路稍加变动,亦可使比较器输出高电平封锁驱动信号。

交流电源过压、欠压保护电路一、实验目的1、学习使用运算放大器构成比较器。

2、学习元件的选择及用万用表检测电子器件。

3、学会电路调试技术。

二、实验设备与器件1、函数信号发生器2、双踪示波器3、交流毫伏表4、数字万用表5、元件自选三、设计要求a) 设计说明某些用电设备对输入电压有一定的要求,电网工作正常时,用电设备接通电源,电网电压波动超过正负10%时,自动切断电源,停止工作。

b)设计要求1)要求利用实验台和所学过的模拟电子技术的知识,实际该装置。

2)输入市电。

3)使用运算放大器构成比较器。

4)电源工作正常,绿色发光二极管亮,电源过压、欠压,红色发光二极管亮。

四、设计提示实验的原理框图如图1所示。

市电经整流滤波后加入比较器电路,电网电压在正常范围时,执行电路将常开触点J闭合,用电设备通电;当电网电压波动超过正负10%时,触点J断开。

切断电源,用电设备停止工作。

图1 交流电源过压、欠压保护电路原理框图利用实验装置似的交流变压输出的14、16、18V端点模拟电网电压的变化。

用16V模拟电网电压工作在正常范围,用14V和18V模拟电网电压波动超出正负10%状态。

开关电源欠压保护电路的设计

开关电源欠压保护电路的设计

开关电源欠压保护电路的设计保护电路的设计,无疑是电源设计中一个非常重要的环节,它对于提高电源工作的安全可靠性、延长电源的使用寿命都起着十分重要的作用。

在设计保护电路时,一方面要保证其功能完善,工作稳定可靠;另一方面应力求简单明了,避免繁复。

本文介绍的开关电源欠压保护电路,欠压检测与反馈控制合用同一只光耦,可以对电源输出欠压作出准确灵敏的反应并充分利用了3842自身的电路特点,使用简单的阻容元件实现了欠压保护电路的自动恢复功能。

2 3842的内部结构及其控制电路3842的工作原理已为大家所熟知,本文在此不作重复介绍。

值得注意的是3842误差放大器的输出结构,在2脚接地时,误差放大器会完全截止,不再吸入电流,这就使3842的应用具有了一定的灵活性。

图1、图2是两种常用的3842控制电路。

图1是标准的3842控制电路,误差放大器的图1 3842控制电路一补偿电路Zi和Zf可以为控制回路提供必要的零极点补偿,通过对控制回路传递函数的校正,使电源的动态响应得到改善。

在图2所示的控制电路中,由于2脚接地,3842的误差放大器始终处于截止状态,PWM比较器的比较电压直接由反馈光耦控制,这种控制方法简单易行,也可避免图2 3842控制电路二止状态,PWM比较器的比较电压直接由反馈光耦控制,这种控制方法简单易行,也可避免因误差放大器补偿不当造成的电源工作不稳定,在电源设计中也获得了广泛应用。

本文所介绍的开关电源欠压保护电路就是基于这种控制模式设计的。

3 单光耦自恢复欠压保护电路以3842单端反激电源为例,当电源供电电压过低或电源输出端过载、短路时,电源的初级电流都会大幅度增加,由于采样电阻Rs的限流作用,使得电源的工作占空比缩小,输出电压下降,电源处于非正常工作状态。

特别是当输出端短路时,变压器中磁通的释放能力近似为零,随着磁通的积累,变压器将处于磁饱和状态。

在初级功率管导通时,供电电压几乎全部加在功率管上,虽然采样电阻Rs可以为功率管提供短时间的保护,但长时间的短路必然会导致功率管严重发热乃至损坏,所以在电源设计时必须增加欠压检测和保护电路,当检测到电源输出端出现欠压现象时,应及时关闭电源控制器,以防电源损坏。

开关电源电路组成及各部分详解

开关电源电路组成及各部分详解

开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

输入电路的原理及常见电路1、AC输入整流滤波电路原理:①、防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。

②、输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③、整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、DC输入滤波电路原理:①、输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4为安规电容,L2、L3为差模电感。

②、R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

保护电路图全集

保护电路图全集

保护电路图全集一.低功耗定时开关电路图二.LM339组成的过压、欠压及过热保护电路进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。

因此对输入电源的上限和下限要有所限制,为此采用过压、欠压保护以提高电源的可靠性和安全性。

温度是影响电源设备可靠性的最重要因素。

根据有关资料分析表明,电子元器件温度每升高2℃,可靠性下降10%,温升50℃时的工作寿命只有温升25℃时的1/6,为了避免功率器件过热造成损坏,在开关电源中亦需要设置过热保护电路。

图4是仅用一个4比较器LM339及几个分立元器件构成的过压、欠压、过热保护电路。

取样电压可以直接从辅助控制电源整流滤波后取得,它反映输入电源电压的变化,比较器共用一个基准电压,N1.1为欠压比较器,N1.2为过压比较器,调整R1可以调节过、欠压的动作阈值。

N1.3为过热比较器,RT为负温度系数的热敏电阻,它与R7构成分压器,紧贴于功率开关器件IGBT的表面,温度升高时,RT阻值下降,适当选取R7的阻值,使N1.3在设定的温度阈值动作。

N1.4用于外部故障应急关机,当其正向端输入低电平时,比较器输出低电平封锁PWM驱动信号。

由于4个比较器的输出端是并联的,无论是过压、欠压、过热任何一种故障发生,比较器输出低电平,封锁驱动信号使电源停止工作,实现保护。

如将电路稍加变动,亦可使比较器输出高电平封锁驱动信号。

图4 过压、欠压、过热保护电路· [图文] 低功耗定时开关电路图· [图文] LM339组成的过压、欠压及过热保护电路· [图文] 采用继电器和限流电阻构成的软启动电路· [图文] 采用晶闸管和限流电阻组成的软启动电路· [组图] 防浪涌软启动电路· [图文] CW431CS过电压保护应用电路· [图文] 弧焊电源保护电路的设计· [图文] 电动车控制器短路保护时间的计算方法· 太阳能热水器与防雷电设计方案· ESD保护元件的对比分析及大电流性能鉴定· [图文] PolySwitch元件的保护特性解析· 如何正确选择中小型断路器· 变频器过电压产生的原因及解决方法· [图文] ESD保护时怎样维持USB信号完整性· [图文] 集成运算放大器输出过流保护电路原理· [图文] 集成运算放大器供电过压保护电路原理· [图文] 保险丝熔断自愈电路图原理· [图文] 停电自锁保护开关电路原理图· [图文] 压敏电阻原理及应用· [图文] 选用压敏电阻的方法· [图文] 整流电源的过压保护-压敏电阻及其应用· [图文] 用于三极管的过压保护-压敏电阻及其应用 · [图文] 彩电消磁电路的过压保护-压敏电阻及其应用 · [组图] 显像管放电保护-压敏电阻及其应用· [图文] 直流电机的稳速保护-压敏电阻及其应用· [图文] 固态继电器电路的过压保护-压敏电阻及其应用 · [图文] 电视机的防雷保护-压敏电阻及其应用· [图文] 电视机稳压保护器-压敏电阻及其应用· [图文] 由TL431组成的高精度的恒流源电路图· [图文] 带滞回区的电池放电保护电路· [图文] 红外线探测报警器制作原理· [图文] 过流保护电路原理· [图文] 直流电路的过流保护设计方法· [图文] 蒸汽熨斗自动保护电路原理图· [图文] 含指示灯的短路保护电路· [图文] 三相三线制电源缺相保护电路· [图文] 锂芯保护电路· [图文] T3(E3)保护电路及解决方案· [图文] VDSL保护电路及解决方案· [图文] HDSL保护电路及解决方案· [组图] USB2.0接口ESD防护电路· [图文] HDMI接口的ESD保护电路及解决方案· [图文] 太阳能热水器控制板浪涌解决方案· [组图] CAN总线防护电路及解决方案· [图文] 12V电源接口防雷方案· [图文] 以太网供电(POE)接口供电保护电路· [图文] 车载电源浪涌防护电路(12V电源保护电路)· [图文] V.35接口保护电路· [组图] E1(T1)保护电路及方案· [图文] 音频接口保护电路· [图文] RS232接口保护电路· [图文] RJ45接口防护电路· [组图] 视频接口保护放电管BS0060N-C/BS0050N-C· [图文] SLIC保护方案及电路· [图文] RS-485接口保护电路· [组图] 通信设备电路的保护· [图文] 电冰箱欠压或瞬间断电保护电路 (含工作原理)· [图文] 一种基于单片机的节能断电保护电路设计· [图文] 集成芯片的保护电路· [图文] 采用CW136构成的过压保护电路· [图文] 闩式短路保护电路· [图文] 升压斩波电路· [图文] 电压采集与电流采集电路· [图文] 关机保护电路· [图文] 有复位措施的关机保护电路· [图文] 取样保持电路Ⅱ· [图文] 取样保持电路Ⅰ· [图文] 简易安全电路· [图文] 扬声器保护装置Ⅱ· [图文] 听觉保护装置· [图文] 两台计算机之间通信用调制解调器,传真卡的保护装置 · [图文] 分时安全电路· [图文] 超压保护电路· [图文] 调制解调器保护装置· [图文] 扬声器保护装置Ⅰ· [组图] 电源使用的继电器保险丝· [图文] 过载指示器· [图文] 安全电路· [图文] 电子保险丝· [图文] 扬声器保护装置· 过流保护电路图· [图文] 基本锁存电路· [图文] NE602输出电路· [组图] NE602输入电路· [图文] 电容器磁滞补偿器· [图文] 倍频程均衡器· [图文] 利用结型场效应管(JFET)的斩波器电路 · [图文] 八进制模转换器· [图文] 实用微分器· [图文] 电容倍增器· [图文] 锁相环电路· [图文] 具有延迟作用的消颤电路· [组图] 模拟DE误操作电路(续)· [图文] 模拟DE误操作电路· [组图] 四输入最小 最大值选择电路· [图文] 卤灯保护器· [图文] 与门· [图文] 求方根电路· [图文] 双50W数字功放TDA8902J电路· [图文] 喇叭保护电路· [图文] LED显示前导零删除器· [图文] 精密正向电流源· [图文] 多脉冲输出时基电路· [图文] 无需散热的3A dc-dc变换器· [图文] PC口令保护电路· [图文] 交替式简化启动电路,输入电压感测电路 · [图文] 协同电路保护方案使通信设备免受损害 · [图文] 并联推挽源极跟随器电路图· [图文] 4并联推挽源极跟随器电路图· [图文] 源极跟随器高频特性下降的因素电路图 · [图文] 源极跟随器的负载电路图· [图文] 源极跟随器+晶体管恒流负载电路图 · [图文] 源极跟随器+恒流负载电路图· [图文] 推挽源极跟随器电路图· [图文] 使用P沟JFWT的源极跟随器· [图文] 实验性源极跟随器电路图· [图文] 改善转换失真的推挽射极跟随器电路图 · [图文] 采用JFET的推挽源极跟随器电路图· [图文] OP放大器+源极跟随器电路图· [图文] AD9850构成时钟发生器电路及其应用 · [图文] ad9850外围电路· [图文] 过零检测移相触发驱动电路· [图文] 鱼缸变色夜明珠电路图· [图文] 声控眨眼玩具电路图· [图文] 声控音乐娃娃电路图· [图文] 鸟鸣闪光画屏电路图· [图文] 延迟型音乐电子报尿器电路图· [图文] 视力保护测光器电路图· [图文] 模拟气功发生器电路图· [图文] 假性近视校正器电路图· [图文] 耳聋助听-收音两用机电路图· [图文] 耳聋助听-收音两用机电路图· [图文] 电子疼痛理疗器电路图· [图文] 电子疲劳消除器度电路图· [图文] 场效应治疗仪电路图· [图文] 场效应带和保温带电路图· [图文] 简易型电冰箱保护器电路图· [图文] 家用电器自动调压保护器电路图· [图文] 家用电器漏电保护插座电路图· [图文] 家用电器漏电、触电保护器电路图· [图文] 家用电器简易过压保护器电路图· [图文] 会自动电冰箱保护器电路图· [图文] 会自动电冰箱保护器电路图· [图文] 黑白电视机简易保护器电路图· [图文] 彩色电视机自动保护器电路图· [图文] 机载计算机电源系统框图· [图文] 机载计算机电源系统的过压保护电路· [图文] 火控计算机的掉电保护电路· [图文] 过热保护电路· [图文] 输入欠电压保护电路· [图文] 过电压保护电路(含输入、输出过电压保护电路) · 过电流保护原理· [图文] 软启动保护电路· [图文] 简单的极性保护电路· [图文] 温敏晶闸管电动机过热保护电路图· [图文] 温控晶闸管及其温度报警器电路图· [图文] 看门狗电路图· [图文] 卡片读取电路图· [图文] 具一防止电流影响光敏晶体管的电路图· [图文] 晶闸管与门电路电路图· [图文] 晶体管热敏保护电路图· [图文] 保险柜、冰箱开门时间过长音响报叫电路图 · [图文] 安全可靠的间歇式电加热控制电路图· [图文] 安全电烫斗架电路图· [图文] 鱼缸水温自动加热控制电路图· [图文] 迎送客电子模特电路图· [图文] 婴儿摇床自动晃动电路图· [图文] 遥控门铃电路图· [图文] 限时门锁报警器电路图· [图文] 水温告知器电路图· [图文] 双音电子门铃电路图2· [图文] 双音电子门铃电路图1· [图文] 手携式简易验币器电路图· [图文] 使用磁牌取水的自动供水电路图 · [图文] 时控密码电子门铃电路图· [图文] 声控照明电子挂钟电路图· [图文] 热水瓶触摸自动出水电路图· [图文] 燃气灶熄火声光报警电路图· [图文] 燃气炉全自动点火器电路图· [图文] 全自动交流稳压器电路图· [图文] 全自动家电保护器电路图· [图文] 男女声音电子迎客器电路图· [图文] 门铃、对讲、报警三功能电路图 · [图文] 旅馆用保安电子锁装置电路图· [图文] 可供调压、定时的多功能插座电路图 · [图文] 简易实用的地震报警电路图· [图文] 家用限时报知器电路图· [图文] 家用电器保护器电路图· [图文] 家用地震声光报讯器电路图· [图文] 家电自动开、停的定时电路图· [图文] 家电指触保护器电路图· [图文] 家电两用定时器电路图· [图文] 家电定时断点控制器电路图· [图文] 家电产品长定时电路图· [图文] 积算器跑表变换器电路图1· [图文] 挥手电停闹的电子钟电路图· [图文] 花盆缺水告知器电路图· [图文] 多功能数控锁电路图· [图文] 多功能家电插座电路图2· [图文] 多功能家电插座电路图1· [图文] 多功能家电保护器电路图· [图文] 多功能电源插座电路图· [图文] 叮咚音响电子门铃电路图· [图文] 电子语言模特招待电路图· [图文] 电子手杖电路图· [图文] 电饭煲自动控制器电路图· [图文] 电饭煲自动功率调节器电路图· [图文] 冲击振动报叫器电路图· [图文] 超声遥控语音门铃电路图· [图文] 超声波鱼缸加氧器电路图· [图文] 变色电子胸花电路图· [图文] 保险柜、冰箱开门时间过长音响报叫电路图 · [图文] 安全可靠的间歇式电加热控制电路图· [图文] 安全电烫斗架电路图· [图文] 自启动式过流保护控制电路图· [图文] 自动复位触点保安器电路图· [图文] 直流稳压电源保护装置电路图· [图文] 预警式漏电自动保安器电路图· [图文] 有稳压充电回路的蓄电池保护器电路图 · [图文] 相位脉冲式电动机断相保护器电路图· [图文] 市电停电声光报警电路图· [图文] 声光告警功能的限电电路图· [图文] 皮带机综合保护器电路图· [图文] 交流电欠压、过压灯光显示电路图· [图文] 交流电复电声光报讯器电路图2· [图文] 交流电复电声光报讯器电路图1· [图文] 简易漏电保安器电路图· [图文] 简单的电动机断相与过流保护装置电路图 · [图文] 监测电池欠压状态的指示电路图· [图文] 家有电器漏电检测报警插座电路图· [图文] 家用电子保安器电路图· [图文] 过压、欠压延时自动保护电路图· [图文] 高压验电器电路图· [图文] 高低压保护延时电路图· [图文] 多功能家电保护器电路图2· [图文] 多功能家电保护器电路图1· [图文] 断线光电隔离式保护电路图· [图文] 电压双限自动保护器电路图· [图文] 电压监视器电路图· [图文] 电器设备过载和缺相保护装置电路图· [图文] 电器产品漏电检测语音告警插座电路图 · [图文] 电机综合保护报警装置电路图· [图文] 电机的自动过流保护电路图· [图文] 电动机断相过载保护器电路图· [图文] 触点、过压保安器电路图· [图文] 不间断电源蓄电池电压监控器电路图· [图文] 保险丝过荷熔断声光报警保安插座电路图 · [图文] 过电流限制电路· [图文] 电话提醒装置电路图· [图文] 电唱机与扩音机的配接电路图· [图文] 典型的自给偏压电路图· [图文] 典型的OTL功率放大电路图· [图文] 单管交流电压放大电路图· [图文] 单管放大电路及其直流等效电路图· [图文] 测量三极管特性曲线的电路图· [图文] 变压器倒相式OTL电路图· [图文] 半导体三极管的三种基本放大电路的三种连接法电路图 · [图文] 半导体三极管的等效电路图· [图文] BTL电路工作原理图· [图文] 300mW收音机低频放大电路图· [图文] 20W OCL功率放大器电路图· [图文] 3W手提汉化筒电路原理图· [图文] 3W半导体扩音机电路图· [图文] 自激推挽逆变电路图· [图文] 自激式开关电源典型电路图· [图文] 自激单管逆变电路图· [图文] 自动调光台灯电路图· [图文] 指示灯电源指示电路图· [图文] 直流无触点开关电路图· [图文] 直流高压发生器电路原理图· [图文] 直流低压保险丝熔断指示电路图· [图文] 鱼缸恒温器电路图· [图文] 用TVP元件的过压保护电路图· [图文] 延长灯泡寿命的电路图· [图文] 压敏电阻延时器电路图· [图文] 压敏电阻显像管保护电路图· [图文] 压敏电阻-晶闸管过压保护电路图· [图文] 压敏电阻简易过压保护电路图· [图文] 稳压二极管稳压电路图· [图文] 稳压二极管式过压保护电路图3· [图文] 稳压二极管式过压保护电路图2· [图文] 稳压二极管式过压保护电路图1· [图文] 微型紫光验币器电路图· [图文] 推挽式开关电源典型电路图· [图文] 汤姆逊TFE5114彩色电视机开关电源电路图· [图文] 索尼KV-1882彩色电视机开关电源电路图· [图文] 速印机电机控制电路图· [图文] 双向二极管触发双向晶闸管调压电路图· [图文] 数字式谷物水分测量仪电源电路图· [图文] 输出可调的CD-DC变换电路图· [图文] 输出100V的稳压电源电路图· [图文] 市电指示器电路图· [图文] 市电过压、欠压保护电路图· [图文] 市电过压、过流保护电路图· [图文] 使用频闪信号灯电路图· [图文] 升压式开关电源典型电路图· [图文] 升压电路图· [图文] 三相桥式整流电路图· [图文] 三相桥式整流波形电路图· [图文] 三相桥式晶闸管整流电路图· [图文] 三极管驱动电路图· [图文] 三分频彩灯控制器电路图· [图文] 三端可调输出正稳压器典型应用电路图 · [图文] 三端可调输出负稳压器典型应用电路图 · [图文] 三端固定输出正稳压器典型应用电路图 · [图文] 三端固定输出负稳压器典型应用电路图 · [图文] 三倍压整流电路图· [图文] 日立NP82C彩色电视机开关电源电路图 · [图文] 日立CIP-236彩色电视机开关电源电路图 · [图文] 热敏元件式过压保护电路图· [图文] 氖灯电源指示电路图· [图文] 氖灯触发晶闸管调压电路图· [图文] 氖灯保险丝熔断指示电路图· [图文] 扩展输出电流电路图· [图文] 扩流电路图· [图文] 快速熔断保险丝的晶闸管过压保护电路图 · [图文] 孔雀KQ47-79彩色电视机开关电源电路图 · [图文] 聚合开关式过流保护电路图· [图文] 具有放大环节的稳压电路图· [图文] 晶闸管阶梯波逆变电路图· [图文] 晶闸管过流保护电路图· [图文] 晶闸管断路过压保护电路图· [图文] 晶闸管并联逆变电路图· [图文] 接近开关电路图· [图文] 交流无触点开关电路图· [图文] 降压式开关电源典型电路图· [图文] 简单串联稳压电路图· [图文] 家用电器漏电指示电路图· [图文] 家用电器调压器电路图· [图文] 集成电路漏电保护器电路图· [图文] 互补振荡触发电路图· [图文] 恒温箱温控器电路图· [图文] 恒流源电路图· [图文] 高输入电压稳压电路图· [图文] 负离子发生器电路图· [图文] 反转式开关电源典型电路图· [图文] 反转式DC-DC变换器典型电路图· [图文] 发光二极管电源指示电路图· [图文] 发光二极管保险丝熔断指示电路图 · [图文] 二倍压整流电路图· [图文] 多路输出的DC-DC变换电路图· [图文] 多倍压整流电路图· [图文] 电子镇流器电路图· [图文] 电子灭蚊拍电路图· [图文] 电子调光台灯电路图· [图文] 电源指示电路图· [图文] 电源噪声滤波器电路图· [图文] 电压控制移相的触发电路图· [图文] 电压低落报警器电路图· [图文] 电容降压直流供电电路图· [图文] 电池电压指示器电路图· [图文] 电表式电源指示电路图· [图文] 单相整流设备电路图· [图文] 音源输入电路和喇叭保护电路· [组图] 基于LM393的电机保护电路设计· [图文] 扩展输出电流电路图· [图文] 扩流电路图· [图文] 具有放大环节的稳压电路图· [图文] 降压式开关电源典型电路图· [图文] 简单串联稳压电路图· [图文] 恒流源电路图· [图文] 高输入电压稳压电路图· [图文] 负离子发生器电路图· [图文] 反转式开关电源典型电路图· [图文] 二倍压整流电路图· [图文] 多倍压整流电路图· [图文] 电子镇流器电路图· [图文] 电源噪声滤波器电路图· [图文] 电容降压直流供电电路图· [图文] 单相整流设备电路图· [图文] 单相全波整流电路图· [图文] 单相桥式整流电路图· [图文] 单端正激式开关电源典型电路图 · [图文] 单端反激式开关电源典型电路图 · [图文] 带电容滤波器的单相全波整流电路图· [图文] 带电容滤波器的单相半波整流电路图· [图文] 带电感滤波器的单相全波整流电路图· [图文] M型滤波电路图· [图文] MF-20型万用表交流电压测量电路图· [图文] L型滤波电路图· [图文] HG滤波电路图· [图文] 31cm黑白电视机电源电路图· [图文] 30W扩音机电源电路图· [图文] 0.5-10V输出电压可调电路图· [图文] 0-30V可调稳压电源电路图· [图文] 过电压保护汽车系统-Overvoltage Protection in Automotive Systems · [图文] 压敏电阻器的应用及选用· [图文] 带过载保护的电荷放大器电路· [图文] 用安全电压控制电焊机的节能线路· [图文] 简易漏电保安器· [图文] 简易超电压保护电路图· [图文] 自动调零数字电压表电路图· [图文] 抑零式电压表电路图· [图文] 数字电压表自动校准电路图· [图文] 扩展量程的音量表电路图· [图文] 宽带交流电压表电路图· [图文] 交流毫伏表电路图· [图文] 高输入阻抗毫伏表电路图· [图文] 低成本高灵敏度电压表电路图· [图文] 低成本高灵敏度电压表电路图· [图文] 场效应晶体管电压表电路图· [图文] 4位液晶显示数字电压表电路图· [图文] 3位数字电压表电路图· [图文] 3位精确有效值交流电压表电路图· [图文] 3位共阳极显示数字电压表电路图· [图文] 电压频率转换器电路图4· [图文] 电压频率转换器电路图3· [图文] 电压频率转换器电路图2· [图文] 电压频率转换器电路图1· [图文] 超精密电压频率转换器电路图· [图文] 10Hz-10kHz电压频率转换器电路图· [图文] 无稳压管精密mV电源电路图· [图文] 同相双极性电流源电路图· [图文] 双向电流源电路图2· [图文] 双向电流源电路图1· [图文] 可调基准低电压源电路图· [图文] 可编程电压源电路图· [图文] 精密双路基准电压源电路图· [图文] 精密基准微功耗10V基准电压源电路图 · [图文] 精密基准双极性输出基准电压源电路图 · [图文] 精密基准方波基准电压源电路图· [图文] 精密基准低噪声缓冲式基准电流源电路图 · [图文] 精密基准标准电池等效电路图· [图文] 精密基准0-20V基准电源电路图· [图文] 基准电压电路图2· [图文] 基准电压电路图1· [图文] 恒流源电路图· [图文] 高稳定基准电压源电路图· [图文] 反相双极性电源电路图· [图文] 低功耗稳压基准电源电路图· [图文] 0-20V基准电源电路图· [图文] ±10V基准电压源电路图· [图文] ±5V基准电压源电路图· [图文] ±3V基准电压源电路图· [图文] 使用光敏电阻的光电烟火报警器电路图 · [图文] 光电烟火探测器电路图· [图文] 9V电池供电的离子型烟火探测器电路图 · [图文] 施密特触发器电路图· [图文] 施密特触发器电路图1· [图文] 没有回差的施密特触发器电路图· [图文] 回差值可变的施密特触发器电路图· [图文] 失调量可调的采样与保持电路图· [图文] 结型场效应晶体管采样与保持电路图 · [图文] 高速采样与保持放大器电路图· [图文] 高速采样与保持电路图3· [图文] 高速采样与保持电路图2· [图文] 高速采样与保持电路图1· [图文] 高精度采样与保持电路图· [图文] 峰值的检测与保持电路图· [图文] 低漂移采样与保持电路图· [图文] 采样与保持电路图· [图文] ×1000采样与保持电路图· [图文] 交流电火线检测探头电路图· [图文] 电子组合锁电路图· [图文] 电源故障报警器电路图2· [图文] 电源故障报警器电路图1· [图文] 电源掉电检测器电路图· [图文] 电灯延迟开关电路图· [图文] 地线故障断路装置电路图· [图文] 地线测试器电路图· [图文] 单电源应急照明系统电路图· [图文] 直流电源的快速短路保护电路图· [图文] 逻辑电路电源的过压保护电路图· [图文] 快速动作的电源保护电路图· [图文] 具有自动复位的过压保护电路图· [图文] 简单的快速短路保护电路图· [图文] 电源保护电路电路图· [图文] 5V快速短路保护电路图· [图文] 真空管电压表射频探头用的稳压器电路图· [图文] 用于电池供电的计算器、收音机或盒式磁带录音机的电源电路图 · [图文] 遥控关断限流稳压器电路图· [图文] 双输出基准电源电路图· [图文] 输出可调的稳压器电路图2· [图文] 输出可调的稳压器电路图1· [图文] 具有可调的电流变化范围及输出电压的电源电路图· [图文] 简单分离电源电路图· [图文] 供MPU使用的多路输出开关式稳压器电路图· [图文] 高压稳压器电路图· [图文] 高精度高压稳压器电路图· [图文] 低压稳压器电路图· [图文] 12V-9V、7.5V或6V的变换器电路图· [图文] 10A稳压器电路图· [图文] 6.0A可变输出开关式稳压器电路图· [图文] 5A恒压恒流稳压器电路图· [图文] 0-30V稳压器电路图· [图文] 0-22V稳压器电路图· [图文] 0-10V3A可调稳压器电路图· [图文] 正压开关稳压器电路图· [图文] 正压浮动稳压器电路图· [图文] 增加齐纳管输出能力的电路图· [图文] 远距离自动检测的15V1A稳压器电路图· [图文] 稳压器电路图· [图文] 双极性电源电路图· [图文] 曲单-电源变成两组分离的稳压电源电路图· [图文] 汽车用稳压器电路图· [图文] 慢接通15V稳压器电路图· [图文] 旅行用电须刀适配器电路图· [图文] 开关降压稳压器电路图· [图文] 具有短路保护的低压稳压器电路图· [图文] 具有独立的超稳定基准的5.0V6.0A25kHz开关稳压器电路图· [图文] 工作在200kHz的开关稳压器电路图。

过欠压保护电路

过欠压保护电路

二、调试结果及分析 以下数据为在实际正常市电(经测量为 241v)情况下所测得数据 令市电下高压报警值为 x1,低压报警值为 x2 设定变压器输出初值为 U 初=11v(约合 220v 交流电下的 10v 直流) 调节 R1 使其在高压 12v 时开始报警,则低压在 0.6755*12=8.1v 时开始报警,对应交流电分别为
利用 T0 管和 T1 管的开关特性来控制继电器 J(6v)的通断,从而达到通过继电器来控制用电器电源通断 的目的。如图八:当 T0 和 T1 均不导通时,T2 不导通,继电器不工作,当 T0 或 T1 导通时,T2 管导通, 继电器工作,切断用电器电源。考虑到自感的影响,可在继电器旁并联一二极管,防止继电器从吸合到断 开瞬间所产生的 感应电压击穿三极管。 该方案由于 T0 和 T1 不导通时输出的低电平约为 1.2v,使的 T2 中有电流产生,在继电器上有约为 3.4v 的 压降,而继电器在 4v 左右时开始工作,因此继电器处于不稳定状态。 解决方案:在 T2 发射极加一电阻分压,使继电器两端电压下降到约为 2v,经实验该电阻阻值约为 15 欧, 该情况下报警时继电器压降约为 5v,能正常工作,继电器吸合;而当恢复正常电压时,由于继电器上还有 两伏的压降,使的继电器仍处于吸合状态,由此可防止因电压多次高低波动对用电器造成的损害,只有人 工复位(即将继电器与 6v 电源断路一次)后,用电器才能继续工作。 3.实验结果:调节 R1,确定使其在输入直流 12v 时刚好报警,则由比例关系得低压报警值为 0.6755*12=8.1v。 调节电位器使输出电压超过 12v 后报警,继电器吸合,在恢复正常电压时继电器仍吸合;同理,当输出由 正常减小到 8.1v 后报警,继电器吸合,在恢复正常电压时,继电器仍吸合。 用继电器的上述原理来控制用电器的开关,实现了继电器对用电器的有效保护。 整机电路图见最后。

采用CCM_PFC控制器ICE2PCS02的300W_PFC评估板介绍

采用CCM_PFC控制器ICE2PCS02的300W_PFC评估板介绍

采用CCM PFC控制器ICE2PCS02的300W PFC评估板介绍2007-11-19嵌入式在线收藏|打印本文将介绍一款采用英飞凌第二代连续导通模式(CCM)PFC控制器ICE2PCS02的300W功率因素校正(PFC)电路。

ICE2PCS02采用了BiCMOS 技术,使用很少的外围元件即可满足PFC应用的全部要求。

为提高功率转换效率,这款升压型PFC电路中使用了CoolMOSTM C3系列器件和高压碳化硅(SiC)肖特基二极管thinQ!TM。

英飞凌第一代CCM PFC控制器ICE1PCS01/02就是一款很受市场欢迎的CCM PFC产品,而采用Bi-CMOS技术的第二代ICE2PCS01/02又在第一代基础上做了一些重要的改进。

第二代ICE2PCS01/02的内部参考被调整到更低的3V,以确保精确的保护与控制水平。

此外,它的优点还包括VCC工作电压范围更宽、改良了内部振荡器、新增了直接大电容过压保护等。

这些优点将使其应用性能更佳,设计更灵活。

下面是一个典型的设计实例,该实例利用最少的外部元件达到了PFC应用的所有要求。

线路输入ICE2PCS01/02的AC线路输入端包括用作过流保护的输入保险丝F1,用于滤除高频电流纹波的R1、L1和CX1,用于抑制射频干扰的扼流圈L2、X2型电容CX1和CX2以及Y1型电容CY1和CY2,以及用于限制每次上电时浪涌电流的串联RT1。

功率级升压型PFC转换器在桥式整流器BR1之后,就是由L3、Q1、D1和C2组成的升压型PFC转换器。

电源开关Q1用的是采用第三代CoolMOS技术的SPP20N60C3。

BR1、Q1和碳化硅二极管D1共用同一个散热器,以保证系统产生的热量能均匀发散。

输出电容C2提供能量缓冲功能,用以将100Hz的输出电压纹波降低到可接受的水平。

升压型转换器的PWM控制升压型PFC转换器的PWM控制由一块8引脚的CCM PFC芯片ICE2PCS02实现。

(完整版)欠压保护电路

(完整版)欠压保护电路

(完整版)欠压保护电路欠压保护电路初始上电:Qa1和Qa2导通情况,可能由于电源电压的不同而结果不同.若初始电压大于12.7V,则Qa1导通,Qa2关断,此时输出一直为高电平,若初始电压小于8。

6V,(图中的参数)由VDD*(R1+R2)/(R1+R2+R4+R5)=0.7V计算得出,则Qa1关断,Qa2导通,输出为低电平。

那么在过压保护电路中,就可以将12。

7V设置为电压上限,在欠压保护电路中,就可以将8.6V设置为电压下限,由使用决定.正常工作状态下(要么小于8。

6V,要么大于12。

7V),分析欠压电路情况:电路大于12.7V正常工作,若某种情况下,出现欠压,Qa2仍然关断,此时由于R1、R2、R4、R5组成的回路,使得Qa1一直导通,直到VDD 〈8。

6V时,不足以使得Qa1导通(Vbe〈0.7V),此时Qa2导通,输出低电平.也就是说,欠压保护的低压值为8。

6V。

当电压回升后,由于Qa2一直导通,所以R5右电压始终几乎为0,直到VDD大于12.7V时,依靠稳压管产生0.7V的电压,使得Qa1再次导通,Qa2关断,输出为高。

因此,在欠压应用下,可以实现的电压保护范围是 <8。

6V,开启范围是〉12.7V,同样,在过压保护中,可以实现的是正常工作〈8.6V开启,大于12.7V截止,逻辑与欠压下相反。

通过调节R5的阻值,可以改变保护的下限值,通过调节稳压管,可以改变保护的上限值。

上限值为:Vd1+0。

7V。

下限值为0。

7*(R1+R2+R4+R5)/(R1+R2)=V。

此电路中,迟滞窗口为8。

6V—12.7V.对上述电路的使用,可以将输出作为MOS管的控制信号,也可以经过光耦电平转换,输入到MCU进行电压检测判断。

开关电源电路详解图

开关电源电路详解图

开关电源电路详解图一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成.辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护.当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。

②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰.当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流.因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰.C3、C4 为安规电容,L2、L3为差模电感。

② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路.当C6上的电压充至Z1的稳压值时Q2导通.如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

电源过压欠压保护电路课设报告

电源过压欠压保护电路课设报告

交流电源过压、欠压保护电路一、设计任务a)设计说明某些用电设备对输入电压有一定的要求,电网正常工作时,用电设备接通电源,电网电压波动超过正负10%时,自动切断电源,停止工作。

设计要求1)要求利用实验台和所学过的模拟电子技术的知识,实际该装置。

2)输入市电。

3)使用运算放大器构成比较器。

4)电源工作正常,绿色发光二极管亮,电源过压、欠压,红色发光二极管亮。

二、设计要求1.根据设计指标要求进行预设计,确定电路形式估算元件参数并选择元器件。

2.进行指标核算,根据设计的电路利用理论公式,核算有关指标能否达到设计要求。

3.按时提交课程设计报告,画出设计电路图,交一份A3图纸,完成相应答辩。

三、参考书籍《模拟电子技术基础》(第四版)童诗白,华成英高等教育出版社 2006;《电工电子实验与课程设计指导》朱小龙,梁秀荣中国矿业大学出版社 2013;《电子技术实验与课程设计》毕满青机械工业出版社2006;《Multisim 10 虚拟仿真和业余制版使用技术》黄培根电子工业出版社 2008.目录一、前言 (4)二、方案论证 (5)三、电路工作原理及说明 (6)3.1整流滤波电路 (6)3.2比较器电路 (8)3.3执行电路 (11)四、电路仿真 (12)五、设计心得 (14)附录一 (17)附录二 (18)参考文献 (19)一、前言随着微控技术的日益完善和发展,在工业控制中,用电设备通常工作至三相电源中,而很多用电设备在使用中对相应提供的工作电源有着较高的要求。

但通常电网产生的电压偏高(是指给定的瞬间设备端电压U与设备额定电压Un之差),以及大功率电动机的起动,电焊机的工作,特别是大型电弧炉和大型轧钢机冲击性负荷的工作,均会引起负荷的急剧变动,使电网电压损耗随之产生相应变动,从而使用户公共供电点的电压出现波动现象。

而上述情况所造成的电压波动,又会给用电设备造成不应有的过压、欠压现象。

如长时间供给用电设备,则会极大的损坏用电设备。

输入欠压保护电路二

输入欠压保护电路二

输出欠压保护电路二
目录
1概述(电路类别、实现主要功能描述): (2)
2电路组成(原理图): (2)
3工作原理分析(主要功能、性能指标及实现原理): (2)
4关键参数计算分析: (2)
5电路的优缺点 (2)
6电路的应用说明: (3)
7 应用的注意事项: (3)
1
23Va 4关键参数计算分析:
以SR48S3V3-33W 为例。

设定欠压关断值为32V ,恢复值为34V 。

VD4取5.1V ,R1取100K ,
1
)7.01.5(3227.01.5R R --+= Ω=-⨯=k R 1.228
.5141008.52 R2取22k Ω。

1)7.01.5
(3421
//27.01.5R R R --+= R2//R21=20.56k ,求得R21为316k Ω,R21取300k Ω。

5电路的优缺点
优点:电路形式简单,成本较低。

缺点:因稳压管VD4批次间稳压值的差异,导致欠压保护点上下浮动,大批量生产时需经常调试相关参数。

6电路的应用说明:
SR48S3V3-33WG、SRL48S3V3-33WG、 SR24S3V3-33W等。

7 应用的注意事项:
VD4应该选温度系数较好的稳压管,需调试的元件如R2应考虑多个并联以方便调试。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

输出欠压保护电路二
目录
1概述(电路类别、实现主要功能描述): (2)
2电路组成(原理图): (2)
3工作原理分析(主要功能、性能指标及实现原理): (2)
4关键参数计算分析: (2)
5电路的优缺点 (2)
6电路的应用说明: (3)
7 应用的注意事项: (3)
1
23Va 4关键参数计算分析: 以SR48S3V3-33W 为例。

设定欠压关断值为32V ,恢复值为34V 。

VD4取5.1V ,R1取100K , 1
)
7.01.5(322
7
.01.5R R --+=
Ω=-⨯=
k R 1.228
.514100
8.52 R2取22k Ω。

1
)
7.01.5(3421
//27.01.5R R R --+=
R2//R21=20.56k ,求得R21为316k Ω,R21取300k Ω。

5电路的优缺点
优点:电路形式简单,成本较低。

缺点:因稳压管VD4批次间稳压值的差异,导致欠压保护点上下浮动,大批量生产时需经常调试相关参数。

6电路的应用说明:
SR48S3V3-33WG、SRL48S3V3-33WG、 SR24S3V3-33W等。

7 应用的注意事项:
VD4应该选温度系数较好的稳压管,需调试的元件如R2应考虑多个并联以方便调试。

相关文档
最新文档