根据阈值的图像分割方法

合集下载

阈值分割的原理

阈值分割的原理

阈值分割的基本原理阈值分割是一种常见的图像处理技术,用于将图像中的目标与背景分开。

其基本原理是通过设定一个阈值,将图像中的像素根据其灰度值与阈值的大小关系进行分类,从而实现目标和背景的分割。

1. 灰度图像转换在进行阈值分割之前,首先需要将彩色图像转换为灰度图像。

这是因为彩色图像包含了RGB三个通道的信息,而在阈值分割中只考虑灰度信息。

灰度图像可以通过对彩色图像进行加权平均来获得。

常见的加权平均方法有亮度法和平均法。

亮度法通过计算每个像素点的RGB通道值的加权平均来得到灰度值:Gray = 0.299 * R + 0.587 * G + 0.114 * B其中R、G、B分别表示红、绿、蓝三个通道的取值。

2. 设定阈值设定阈值是阈值分割中最重要的一步。

阈值可以根据应用需求来确定,也可以通过试验找到最佳结果。

在设定阈值时,需要考虑两个因素:目标与背景的灰度差异和图像中的噪声。

如果目标与背景之间的灰度差异较大,可以选择较低的阈值;如果图像中存在较多噪声,可以选择较高的阈值。

设定阈值的常见方法有手动设定、直方图分析和自适应阈值法。

•手动设定:用户根据经验或直觉选择一个合适的阈值。

这种方法简单直接,但需要用户对图像有一定了解。

•直方图分析:通过分析图像的灰度直方图来确定一个合适的阈值。

可以根据直方图上的波峰和波谷来确定分割点。

•自适应阈值法:根据图像局部区域内的灰度特性来自适应地确定阈值。

常见的方法包括基于均值、基于局部方差和基于最大类间方差等。

3. 分割操作在设定了阈值之后,就可以对图像进行分割操作了。

分割操作将图像中所有像素点根据其灰度与设定阈值的大小关系进行分类。

通常情况下,将大于或等于阈值的像素点归为一类(目标),将小于阈值的像素点归为另一类(背景)。

分割操作可以通过以下公式表示:Binary(x, y) = {1, if Gray(x, y) >= Threshold; 0, if Gray(x, y) < Threshold}其中,Binary(x, y)表示二值图像中坐标为(x, y)的像素点的值,Gray(x, y)表示灰度图像中对应像素点的灰度值,Threshold表示设定的阈值。

otsu阈值分割

otsu阈值分割

otsu阈值分割Otsu阈值分割是一种基于图像的自动阈值选择算法,用于将图像分割成前景和背景两部分。

该分割方法可以有效地抑制不同灰度级的像素混合,并克服Kittler阈值分割算法存在的一些缺点。

二、阈值分割原理1. 什么是阈值分割?阈值分割是一种图像处理算法,用于将一幅图像中的像素分割成前景和背景两部分,以便更容易对图像进行分析。

2. 如何选择阈值?选择阈值的方法有很多种,主要有:经验法:根据对图像的实际感知,经验地确定最佳的阈值。

用户设定法:根据用户的需求,设定一个阈值来分割图像。

自动阈值选择法:根据图像的直方图和其他信息,自动选择一个最佳的阈值。

三、Otsu阈值分割Otsu阈值分割是一种自动阈值选择算法,它可以根据图像的灰度直方图和其他信息,自动选择一个最佳的阈值进行分割。

它是为了克服Kittler阈值分割算法存在的一些缺点而发明的。

1. Otsu阈值分割的基本原理Otsu阈值分割的目标是寻找一个使两个灰度级的像素混合最小的阈值。

因此,它的基本原理如下:(1)假定图像只有两个灰度级,即前景和背景;(2)计算图像的灰度直方图,分别计算前景和背景像素的期望;(3)遍历每一个阈值,计算前景和背景两个灰度级的标准差;(4)计算前景和背景两个灰度级的混合,并取最小值;(5)得到的最小值就是最优阈值。

2. Otsu阈值分割的优势与Kittler阈值分割算法相比,Otsu阈值分割算法有以下优势:减少噪声:Otsu阈值分割算法可以有效地抑制不同灰度级的像素混合,从而更好地抑制噪声;提高分割准确度:Otsu阈值分割算法可以根据图像的灰度直方图,自动选择一个最佳的阈值,从而提高分割准确度;支持多种分割方式:Otsu阈值分割算法不仅可以支持二值分割,还可以支持多值分割,甚至可以使用多个阈值进行多次分割。

四、总结Otsu阈值分割是一种自动阈值选择算法,它可以根据图像的灰度直方图和其他信息,自动选择一个最佳的阈值进行分割。

迭代法阈值分割

迭代法阈值分割

迭代法阈值分割
迭代法阈值分割是将图像根据其灰度值划分成两个不同的区域的分割
方法。

该方法基于不同灰度级别的像素点在一定阈值下的分布情况。

迭代
法的过程是:首先将图像的灰度值按照一定方式分类,再计算每个分类的
平均值作为阈值,然后将这个阈值与原来设置的阈值进行比较,如果不相等,则再次分类,直到阈值不再改变,即分割结束。

迭代法阈值分割的步骤如下:
1.设置初始阈值(一般是灰度值的平均值)。

2.将图像的灰度值按照阈值分为两个区域。

3.分别计算两个区域的平均灰度值。

4.将计算出的平均灰度值作为新的阈值,与原来的阈值进行比较。

5.如果两个阈值相同,则分割结束;如果不同,则将新的阈值作为初
始阈值,重新进行分割。

6.重复步骤2至步骤5,直到阈值不再改变,分割结束。

迭代法阈值分割是一种简单的图像分割方法,但是结果可能不够理想,因为它不能处理图像中灰度值分布不均匀的情况,也不能处理图像的噪声。

因此,在实际应用中需要结合其他方法来提高分割效果。

图像分割的常用方法

图像分割的常用方法

图像分割的常用方法
1. 阈值分割:根据像素灰度值与预设阈值之间的大小关系将图片分成黑白两个部分,常用于二值化处理。

2. 区域生长:利用像素之间的空间连通关系,从种子像素开始,将与其相邻的像素逐步合并成同一个区域。

3. 全局图像分割:将图像分成多个颜色或灰度级别,然后根据图像亮度、颜色、纹理、空间信息等特征进行分类,常用于分类、检测、识别等任务。

4. 模型分割:使用先前训练好的模型对图像分类和分割。

例如,利用卷积神经网络(CNN) 对图像进行分类和分割。

5. 基于图的分割:将图像转换成图形结构,建立节点之间的连接关系,通过图形算法对图形进行分割。

6. 边缘检测:检测图像中的边缘线条并将其分割出来,常用于目标检测和识别。

7. 水平集分割:该方法使用曲线(水平集) 对图像进行分割,可以在不同曲线之间自由地移动,因此在较复杂的图像中可以得到更好的分割效果。

otsu 法

otsu 法

Otsu方法一、概述Otsu方法是一种用于图像阈值分割的经典算法,它由日本学者大津于1979年提出。

该方法基于图像的灰度直方图,通过最大化类间方差来确定最佳阈值,从而实现图像分割。

Otsu方法具有简单、快速、自适应等优点,因此在图像处理领域得到了广泛应用。

二、原理Otsu方法的原理基于图像的灰度直方图。

首先,计算图像的灰度直方图,得到每个灰度级出现的概率。

然后,选择一个阈值,将图像分为前景和背景两部分。

接着,计算前景和背景的类间方差,使类间方差最大的阈值即为最佳阈值。

类间方差是前景和背景两部分灰度级分布差异的度量。

当阈值增加时,前景像素数减少,背景像素数增加;反之,当阈值减少时,前景像素数增加,背景像素数减少。

通过计算类间方差,选择使得类间方差最大的阈值作为最佳阈值,可以将前景和背景尽可能地分开。

三、实现步骤1.计算灰度直方图:统计图像中每个灰度级的像素数。

2.初始化阈值:选择一个初始阈值,将图像分为前景和背景两部分。

3.计算类间方差:根据前景和背景像素数的概率计算类间方差。

4.迭代更新阈值:不断改变阈值,并重新计算类间方差,直到找到最佳阈值。

5.应用阈值进行分割:将最佳阈值应用于图像,得到分割后的前景和背景图像。

四、应用场景Otsu方法在许多图像处理应用中都得到了广泛应用,例如:1.图像分割:Otsu方法适用于将图像分割成前景和背景两部分,常用于医学影像分析、遥感图像处理等领域。

2.目标检测:Otsu方法可以用于检测图像中的目标,例如人脸检测、手势识别等。

3.图像增强:通过Otsu方法可以对图像进行增强,突出前景信息,提高图像的可读性。

基于阈值的图像分割算法研究综述

基于阈值的图像分割算法研究综述

第41卷第6期2023年12月沈阳师范大学学报(自然科学版)J o u r n a l o f S h e n y a n g N o r m a lU n i v e r s i t y(N a t u r a l S c i e n c eE d i t i o n)V o l.41N o.6D e c.2023文章编号:16735862(2023)06052604基于阈值的图像分割算法研究综述:原理㊁分类及典型算法杨林蛟(沈阳师范大学化学化工学院,沈阳110034)摘要:随着计算机技术的飞速发展,图像处理技术在各个领域都得到了广泛应用,如产品质量检测㊁医学图像处理㊁军事目标的定位与跟踪等㊂作为图像处理技术和计算机视觉技术的研究基础,图像分割技术目前已出现了大量不同类型的算法,并在各个领域的应用中发挥着重要的作用㊂其中,基于阈值的图像分割算法因具有简单有效㊁计算量小㊁性能稳定等优点而受到了人们的普遍青睐㊂首先,对图像分割技术按照不同的划分方式进行了简单的分类;其次,对阈值分割算法的基本原理㊁分类及最典型的O t s u算法的基本思想进行了详尽的介绍;最后,对阈值分割算法目前存在的问题进行了阐述,并对算法未来的发展趋势进行了展望㊂研究工作可为图像处理技术的进一步发展提供理论借鉴㊂关键词:图像处理;阈值分割;阈值选取;算法中图分类号:T P391文献标志码:Ad o i:10.3969/j.i s s n.16735862.2023.06.007A r e v i e w o ft h r e s h o l d-b a s e di m a g es e g m e n t a t i o n a l g o r i t h m s:P r i n c i p l e s,c l a s s i f i c a t i o na n d t y p i c a l a l g o r i t h m sY A N GL i n j i a o(C o l l e g e o fC h e m i s t r y a n dC h e m i c a l E n g i n e e r i n g,S h e n y a n g N o r m a lU n i v e r s i t y,S h e n y a n g110034,C h i n a)A b s t r a c t:W i t h t h e r a p i dd e v e l o p m e n t o f c o m p u t e r t e c h n o l o g y,i m a g e p r o c e s s i n g t e c h n o l o g y h a sb e e n w i d e l y u s e di nv a r i o u s f i e l d s,s uc ha s p r od u c t q u a l i t y de t e c t i o n,m e d i c a l i m a g e p r o c e s s i n g,m i l i t a r y t a r g e t p o s i t i o n i n g a n d t r a c k i n g.A s t h e b a s i s o f i m a g e p r o c e s s i n g t e c h n o l o g y a n d c o m p u t e rv i s i o nt e c h n o l o g y,al a r g e n u m b e r o f d i f f e r e n tt y p e s o fa l g o r i t h m s h a s e m e r g e d,a n d t h e s ea l g o r i t h m s p l a y a ni m p o r t a n t r o l e i nv a r i o u s f i e l d so fa p p l i c a t i o n.A m o n g t h e m,t h r e s h o l db a s e di m a g e s e g m e n t a t i o na l g o r i t h m h a sb e e n w e l c o m e db e c a u s eo f i t sa d v a n t a g e so fs i m p l e,e f f e c t i v e,l i t t l e c o m p u t a t i o na n ds t a b l e p e r f o r m a n c e.F i r s t l y,t h e i m a g es e g m e n t a t i o nt e c h n o l o g y i ss i m p l yc l a s s i f i e da c c o rd i n g t o t he d if f e r e n t p a r t i t i o n i ng w a y s.S e c o n d l y,th eb a si c p r i n c i p l e,c l a s s i f i c a t i o n,a n d t h eb a s i ci d e ao ft h e m o s tt y p ic a lO t s ua l g o r i t h m o ft h r e s h o l ds e g m e n t a t i o na l g o r i t h m a r ei n t r o d u c e di n d e t a i l.A tl a s t,t h ee x i s t i n g p r o b l e m s o ft h r e s h o l d s e g m e n t a t i o n a l g o r i t h m a r ed e s c r i b e d,a n dt h ef u t u r ed e v e l o p m e n tt r e n d o ft h i sa l g o r i t h m a r ef o r e c a s t e d.T h i s w o r kc a np r o v i d e t h e o r e t i c a l r e f e r e n c e f o r t h e f u r t h e r d e v e l o p m e n t o f i m a g e p r o c e s s i n g t e c h n o l o g y.K e y w o r d s:i m a g e p r o c e s s i n g;t h r e s h o l d s e g m e n t a t i o n;t h r e s h o l d s e l e c t i o n;a l g o r i t h m 图像处理技术一般是指利用计算机对图像进行分析,以达到所需结果的技术,又可称为影像处理㊂收稿日期:20230929基金项目:辽宁省教育厅科学研究经费项目(L J C202004,L J C202005)㊂作者简介:杨林蛟(1976 ),男,青海西宁人,沈阳师范大学高级实验师,硕士㊂图像处理技术主要包括图像的数字化㊁图像的增强和复原㊁图像的分割和识别㊁图像的数据编码等㊂其中,图像分割在计算机视觉中起着至关重要的作用,是图像处理技术的基础㊂图像分割的目的是使图像得到简化或改变图像的表示形式,图像经过分割后会形成一些特定的㊁具有独特性质的区域,这里的独特性质一般指像素的灰度㊁颜色和纹理等㊂其过程就好比把图像中的每一个像素打上一个特定的标签,使得具有相同标签的像素具有相同的视觉特性,从而用来定位图像的物体和边界㊂图像分割技术一直是计算机视觉研究的热点之一,历经数十年的发展,大量的分割算法被人们相继提出并得到广泛应用[1]㊂其中,基于阈值的图像分割算法因具有实时㊁有效㊁自动㊁应用广泛等优点而受到人们的广泛关注㊂本文首先对现有的图像分割技术进行了简单的划分,接着对基于阈值的分割算法的原理㊁分类及最典型的O t s u 算法进行了系统的介绍,以期为图像处理技术的进一步发展提供理论借鉴㊂1 图像分割技术的分类目前,人们对图像分割技术进行了大量的研究,并取得了卓有成效的研究成果,开发出了很多算法㊂如图1所示,如果按照图像类型划分,图像分割技术可分为灰度图像分割和彩色图像分割,灰度图像分图1 图像分割技术的7种不同划分方式F i g .1 S e v e nd i f f e r e n tw a y s o f i m a g es e g m e n t a t i o n t e c h n o l o g y割主要用于处理非自然图像,彩色图像分割则主要用于处理自然图像;按照是否存在用户交互,可将图像分割技术分为监督式分割和非监督式分割,监督式分割主要用于对图像和视频进行编辑,非监督式分割则主要用于处理图像背景较为单一的文本图像㊁工业图像等;按照表示方式的不同,图像分割技术又可分为基于像素级的分割和超像素级的分割,目前大多数的分割算法属于基于像素级的分割技术,其通常具有较高的处理精度;按照图像的另一种表示方式,图像分割技术则分为单一尺度的分割和多尺度分割,单一尺度的分割是在原始尺度空间上构建相关的分割模型,而多尺度分割则可充分挖掘图像的基本信息;从属性来划分,图像分割技术可分为单一属性的分割和多属性分割,前者只对灰度㊁颜色㊁纹理等特征中的一种属性进行分割,后者则能综合运用图像的多种属性;从操作空间来划分,图像分割技术可分为利用图像特征信息的分割和利用空间位置信息的分割,其中前者主要包括阈值分割算法和聚类算法等,后者主要包括水平集分割算法㊁活动轮廓算法等;从驱动方式划分,图像分割技术可分为基于边缘的分割和基于区域的分割㊂2 阈值分割算法阈值分割算法主要利用图像的特征信息对图像进行分割,目前已有上百种算法被陆续提出㊂其主要思想是不同的目标具有不同的诸如颜色㊁灰度㊁轮廓等特征,根据特征间的细小差别,通过选取特定的阈值将目标物与背景划分开来,进而实现快速的图像分割㊂2.1 阈值分割算法的基本原理阈值法的基本原理是先确定一个阈值[2],然后将所有像素按照其特征值与阈值的大小关系划分为2个类别㊂当特征值大于阈值时,该像素被归为目标类;反之,被归为背景类㊂通过选择合适的阈值,可以实现对图像目标与背景的有效分离㊂设原始图像为f (x ,y ),在f (x ,y )中找出特征值T ,将原始图像分割为2个部分,得到分割后的图像为g (x ,y )=b 0,f (x ,y )<t b 1,f (x ,y )ȡ{t725 第6期 杨林蛟:基于阈值的图像分割算法研究综述:原理㊁分类及典型算法若取b 0=0(黑),b 1=1(白),即为图像的二值化㊂2.2 阈值分割算法的分类根据利用信息种类的不同,可将阈值分割算法分为以下几类:1)基于直方图形状的方法㊂该类方法主要根据直方图的形状属性来划分像素,其又可分为 凸壳 法㊁ 峰谷 法和形状建模法3类㊂1997年,C a r l o t t o [3]对图像的概率密度进行了多尺度分析,并以此估计最佳阈值;1998年,C a i 和L i u [4]利用P r o n y 谱分析法得到了图像多重指数信号能量谱的近似值;之后,G u o 和P a n d i t [5]提出了一个全极模型㊂2)基于熵的方法㊂该类方法利用灰度分布的熵信息来划分像素㊂J o h a n n s e n 和B i l l e [6]最早对熵算法进行了研究㊂之后,很多学者对这一算法进行了改进,如P a l [7]在交叉熵的基础上建立了一种对前景和背景后验概率密度的模型;S u n [8]依靠 模糊事件熵 的最大化,采用了Z a d e h 的S 隶属度函数㊂3)基于聚类的阈值分割方法㊂该类方法又可分为迭代法㊁聚类法㊁最小误差法和模糊聚类4类,其主要通过对灰度数据进行聚类分析来获取阈值㊂其中,聚类法是通过将前景和背景的加权方差最小化来获得最佳阈值,是阈值分割算法中较为经典的算法之一㊂L i u 和L i [9]将聚类法扩展到了二维,景晓军等[10]将聚类法扩展到了三维㊂4)基于对象属性的方法㊂该类方法通过度量原始图像与二值图像间的诸如灰度片段㊁形状紧密性㊁纹理等的属性特性来选取阈值㊂基于对象属性的方法可分为片段保存法㊁边缘匹配法㊁模糊相似法㊁拓扑固定态法㊁最大信息法和模糊紧密性增强法6类㊂5)基于空间的方法㊂该类方法又可分为同现方法㊁高次熵法㊁基于随机集合的方法和二维模糊划分法4类,其选取阈值的方式是度量灰度分布和邻域内像素的相关性㊂C h a n g 等[11]在确保源图像与二值图像的同现概率以最低程度发散的条件下建立了阈值;B r i n k [12]认为空间熵可由二元熵在所有可能间隔的总和来计算㊂6)局部自适应方法㊂局部自适应方法可以克服其他阈值算法的许多缺陷,受到了人们的普遍关注,其主要的2种形式分别为邻域法和分块法㊂邻域法一般会受到邻域范围的制约,因而对文字等狭长目标比较敏感,但对平坦的大块前景或背景容易造成误分;分块法的适用范围会更广,但分块之间结果的不连续是该方法的缺陷之一㊂2.3 典型阈值分割算法介绍O t s u 阈值分割算法,也可称为最大类间方差算法,是最常用的一类阈值分割算法,也是阈值分割领域各类文献中被引用数量最多的算法之一㊂该算法选取使得类间方差最大的灰度值作为划分背景和前景的最佳阈值,其基本思想如下:在一幅灰度图像中,假设其灰度级为L ,用n i 表示灰度级为i 的像素个数,N 表示总像素的个数,则N =n 0+n 1+ +n L -1㊂用p i 表示灰度图像中灰度值i 的像素点出现的概率,则有p i =n i N ㊂设有阈值t 将图像分为前景和背景2个部分,分别用C 0={0,1, ,t }和C 1={t +1,t +2, ,L -1}表示㊂设ω0为C 0出现的概率,ω1为C 1出现的概率,则有ω0=ðt i =0p i ,ω1=ðL -1i =t +1p i ,且ω0+ω1=1㊂则C 0和C 1的平均灰度μ0和μ1为μ0=ðt i =0i ㊃p i ω0=μ(t )ω0,μ1=ðL -1i =t +1i ㊃p i ω1=μ-μ(t )1-ω0用σ2B 表示类间方差,其表达式为σ2B =ω0(μ0-μ)2+ω1(μ1-m )2=ω0㊃ω1(μ0-μ1)2最佳分割阈值t *即为使得类间方差σ2B 最大的阈值t :t *=a r g m a x t ɪ{0,1, L -1}σ2B 上述O t s u 算法又称一维O t s u 算法,它在不对概率密度函数做出假设的情况下,以均值和方差的概率密度为基础对图像的分割状态进行描述,可以在很大程度上提高算法的运算速度㊂后来,人们又发展了二维O t s u 阈值分割方法,它是在原来一维算法灰度值的基础上加入了像素邻域平均灰度作为第825沈阳师范大学学报(自然科学版) 第41卷二维,因而提高了一维算法的抗噪声能力㊂O t s u 阈值分割算法的分割效果如图2所示㊂(a )原始图像(b )O t u s 法阈值选择图2 O t s u 阈值分割算法的分割效果F i g .2 S e g m e n t a t i o ne f f e c t o f O t s u t h r e s h o l d s e g m e n t a t i o na l g o r i t h m 2.4 阈值分割算法目前存在的问题虽然阈值分割算法在国内外研究者们数十年的努力下已经取得了长足的进步,但目前仍然存在着如不均匀光照㊁噪声干扰㊁文本图像 劣化 等问题亟待解决㊂其中,不均匀光照会使直方图中的目标波峰与背景波峰混杂在一起,从而降低直方图阈值法的效果;噪声对图像处理的整个过程都有影响,去噪已成为图像分割领域的一个研究重点;长时间保存的纸质文档会出现背面字迹浸透㊁字迹污染等现象,从而造成分割时产生大量的误分㊂3 结论与展望图像分割是计算机视觉的基础技术,分割效果将直接影响如目标定位㊁目标识别㊁目标跟踪㊁场景分析等的后续处理㊂在众多的图像分割算法中,阈值分割算法一直以其实时㊁高效等特点受到人们的普遍关注㊂但从目前来看,阈值分割算法仍面临着许多难以解决的困难,可行的解决方法是从更高的图像语义出发,对图像内容进行抽象分析,然后指导低层次的图像分割,重复这样的操作若干次,可以逐步提高分割的精度㊂目前,对该种分割方式的研究仍处于探索阶段㊂参考文献:[1]S E Z G I N M ,S A N K U RB .S u r v e y o v e r i m a g e t h r e s h o l d i n g t e c h n i qu e s a n d q u a n t i t a t i v e p e r f o r m a n c e e v a l u a t i o n [J ].J E l e c t r o n I m a g i n g ,2004,13(1):146168.[2]阴国富.基于阈值法的图像分割技术[J ].现代电子技术,2007(23):107108.[3]C A R L O T T O M J .H i s t o g r a m a n a l y s i su s i n g as c a l e -s p a c ea p p r o a c h [J ].I E E E T r a n sP a t t e r n A n a l M a c hI n t e l l ,1997,9(1):121129.[4]C A I J ,L I UZQ.An e wt h r e s h o l d i n g a l g o r i t h m b a s e do na l l -p o l em o d e l [C ]ʊP r o c e e d i n g so f t h e14t hI n t e r n a t i o n a l C o n f e r e n c e o nP a t t e r nR e c o g n i t i o n .B r i b a n e :I E E E ,1998:3436.[5]G U O R ,P A N D I TS M.A u t o m a t i c t h r e s h o l ds e l e c t i o nb a s e do nh i s t o gr a m m o d e sa n dad i s c r i m i n a n t c r i t e r i o n [J ].M a c hV i s i o nA p p l ,1998,10:331338.[6]J OHA N N S E N G ,B I L L EJ .At h r e s h o l ds e l e c t i o n m e t h o du s i n g i n f o r m a t i o n m e a s u r e s [C ]ʊP r o c e e d i n gso f t h e6t h I n t e r n a t i o n a l C o n f e r e n c e o nP a t t e r nR e c o g n .M u n i c h :G e r m a n y ,1982:140143.[7]P A L N R.O nm i n i m u mc r o s s -e n t r o p y t h r e s h o l d i n g [J ].P a t t e r nR e c o g n ,1996,29(4):575580.[8]S U NCY.An o v e lf u z z y e n t r o p y a p p r o a c h t o i m ag e e nh a n c e m e n t a n d t h r e s h o l di n g [J ].S i gn a l P r o c e s s ,1999,75:277301.[9]L I UJZ ,L I W Q.T h ea u t o m a t i ct h r e s h o l d i n g o f g r a y -l e v e l p i c t u r e sv i at w o -d i m a n s i o n a lO t s u me t h o d [J ].A c t a A u t o m a t i c aS i n ,1993,19:101105.[10]景晓军,李剑峰,刘郁林.一种基于三维最大类间方差的图像分割算法[J ].电子学报,2003,31(9):12811285.[11]C HA N GC ,C H E N K ,WA N GJ ,e t a l .Ar e l a t i v e e n t r o p y b a s e d a p p r o a c h i n i m a g e t h r e s h o l d i n g [J ].P a t t e r nR e c o gn ,1994,27(9):12751289.[12]B R I N K A D.M i n i m u ms p a t i a l e n t r o p y t h r e s h o l d s e l e c t i o n [J ].I E E EP r o c e e d i n g s ,1995,142(3):128132.925 第6期 杨林蛟:基于阈值的图像分割算法研究综述:原理㊁分类及典型算法。

图像处理中的图像分割与提取方法

图像处理中的图像分割与提取方法

图像处理中的图像分割与提取方法图像分割与提取在图像处理中是非常重要的技术,它能够将一幅图像分割成不同的区域,并且提取出感兴趣的目标。

图像分割与提取的应用广泛,涉及到医学图像分析、计算机视觉、遥感图像分析等领域。

本文将介绍几种常用的图像分割与提取方法。

1. 阈值分割阈值分割是最简单也是最常用的图像分割方法之一。

该方法通过设定一个或多个阈值,将图像分成不同的区域。

阈值的选取可以根据图像的特点和需求来确定。

在灰度图像中,通常使用单一阈值来分割图像;而在彩色图像中,可以同时对多个颜色通道进行分割,或者将颜色空间转换为其他颜色空间进行分割。

2. 区域生长区域生长是一种基于像素相似性的图像分割方法,其基本思想是选择一个或多个种子点,然后根据像素相似性的准则逐步生长区域,直到满足停止准则为止。

区域生长方法对于具有明显边界的目标图像分割效果较好。

在实际应用中,可以使用均值、标准差、梯度等准则来评估像素之间的相似性。

3. 边缘检测边缘检测是一种常用的图像提取方法,其目的是识别图像中的边界。

边缘是图像中像素灰度变化明显的地方,可以通过求取像素灰度值的梯度来检测。

常用的边缘检测算法包括Sobel算子、Prewitt算子、Canny算子等。

在实际应用中,边缘检测算法通常需要经过非极大值抑制、双阈值处理等步骤进行优化。

4. 分水岭算法分水岭算法是一种基于图论的图像分割算法,它模拟了水在图像中流动的过程。

该算法首先将图像中的亮度值作为高度值构建一个二维拓扑图,然后根据图像中的边缘信息和像素灰度值的梯度计算图像中各个区域的边界。

通过对边界进行变换,可以将图像分割成不同的区域。

分水岭算法在处理具有复杂纹理和连续边界的图像时效果较好。

5. 基于深度学习的方法近年来,基于深度学习的图像分割与提取方法取得了显著的进展。

通过搭建深度神经网络,可以利用大规模训练样本进行图像分割与提取任务。

常见的深度学习方法包括全卷积神经网络(FCN)、U-Net、Mask R-CNN等。

在Matlab中实现医学图像分割和医学图像配准的方法

在Matlab中实现医学图像分割和医学图像配准的方法

在Matlab中实现医学图像分割和医学图像配准的方法医学图像处理在现代医学中起着重要的作用,它可以帮助医生更好地了解人体的结构和病变情况。

其中,医学图像分割和医学图像配准是两个常用的图像处理任务。

本文将介绍如何使用Matlab实现这两个任务的方法。

一、医学图像分割医学图像分割是将医学图像中感兴趣的区域从背景中分离出来的过程。

这对于病灶的检测和定位非常重要。

在Matlab中,有多种方法可以实现医学图像分割,如基于阈值的分割、基于区域的分割和基于边缘的分割等。

1. 基于阈值的分割基于阈值的分割是医学图像分割中最简单的方法之一。

它将图像中的像素根据亮度和颜色等特征进行分类。

在Matlab中,可以使用imbinarize函数实现阈值分割。

通过调整阈值的大小,可以得到不同的分割结果。

然而,这种方法对于复杂的图像可能效果不佳。

2. 基于区域的分割基于区域的分割是将图像中的像素分成若干区域,并根据相似性准则将它们合并或进一步细分的方法。

在Matlab中,可以使用regionprops函数计算各个区域的特征,并根据这些特征对区域进行分类和合并。

这种方法通常适用于异质性较小的图像。

3. 基于边缘的分割基于边缘的分割是通过检测图像中的边缘信息来实现分割的方法。

在Matlab中,可以使用边缘检测算法(如Canny算子)来提取图像中的边缘信息,并通过边缘连接或边缘跟踪来实现分割。

这种方法对于图像中有明显边缘的情况效果较好。

二、医学图像配准医学图像配准是将多个医学图像的位置和方向相对一致的过程。

它在医学影像的比较、融合和后续处理等方面具有重要的应用。

在Matlab中,有多种方法可以实现医学图像配准,如基于特征的配准、基于互信息的配准和基于形变场的配准等。

1. 基于特征的配准基于特征的配准是通过提取图像中的一些特征点或特征区域,并通过计算它们之间的相似性来实现配准的方法。

在Matlab中,可以使用SURF算法或SIFT算法来提取图像的特征,并通过RANSAC算法等方法来计算配准的变换矩阵。

基于阈值的图像分割方法

基于阈值的图像分割方法

3计算 两组平 均灰 度值 l . 和 2 ;
4重新选 择 阈值 T, 的 T的定义 为 :=I+r/ ; . 新 T ( t) x y2
循 环做 第 二步 到第 四步 .一 直到两 组 的平 均 灰度 范 围为 [lz ]设 T为 阈值 。 z z, 。 2 是 1和 z 任 一 值 。 2在 可 值 。 和 不再 生 改变 ,那 么 我们 就 获得 了所 需要 以得 到一 幅二值 图像 。 数学 表达式 为 : 其 的阈值 。 32算 法描述 .

建 电

21 年第 8 01 期
基 于阈值 的图像分割方法
张 建 光 .李 永 霞 z
(1 水 学院数 学与计 算机 系 河北 衡 水 . 衡 0 3 0 2衡水 学院教 育 系 河北 衡 水 500 . 030 500
【 要】 摘 :通过分析 图像阈值分割方法的基本原理 。得 出直方 图闽值分割方法以及迭代阈值 图像分
31理 论 基 础 .
度 级直 方 图呈 明显 的双峰 值 。如图 :
f ,y ( 1 x
迭代 的方法 产生 阈值 .可 以通过 程 序 自动计 算 出 比较 合适 的分割 阈值 。其计 算方法 是这样 的 : 1 . 阈值 T 通 常可 以选 择 图像 的平 均灰度 值 来 选择 . 作为 初始值 :

以上是 比较理 想 的情 况 .实际 中很 难 找到 这 样 的
图像 。一幅通常有多个物体和背景所组成 , 假如 , 其灰 度级 直方 图能呈 现 出多个 明显 的 峰值 。则仍 可 以选 峰 ) b 直 图3 ) 原始图 ( 速代 值 效果 C a 像 b ) 闻 分割 图 值间峰谷处的灰度值作为阈值 ,此时有多个 阈值将 图 图2a 原始图像() 方岛门限选择效果图 【 像 进行 分割 . 这样 就 是 多峰值 阈值选择 。 比如 有 3 峰 个 1 . 原 图得数据 区指 针 以及 图像 的高 和宽 ; 取得 值 .可以去两个峰谷处的灰度值 T ,2 11 作为阈值 。同 ' 2进 行直方 图统计 : . 样 . 以将 阈值化后 的图像变成二值图像 , 可 其数学表达 3 . 设定初始 阈值 T 17 _2 : 4分别 计 算 图像 中小 于 T和 大 于 T下转 第 9 . ( 9页 ) 式为: g (

图像分割的阈值法综述

图像分割的阈值法综述

图像分割的阈值法综述一、本文概述图像分割是计算机视觉和图像处理领域中的一项基础而重要的任务,其目标是将图像划分为多个具有相似特性的区域,以便于后续的图像分析和理解。

在众多图像分割方法中,阈值法因其简单、高效和易于实现的特点,受到了广泛关注和应用。

本文旨在对图像分割的阈值法进行综述,探讨其基本原理、发展历程、主要方法、优缺点以及未来发展趋势。

本文将简要介绍阈值法的基本原理,包括灰度阈值法、颜色阈值法和基于直方图的阈值法等。

通过对这些方法的描述,使读者对阈值法有一个初步的认识和了解。

本文将回顾阈值法的发展历程,从最早的固定阈值法到后来的自适应阈值法,再到基于机器学习和深度学习的阈值法。

通过对这些发展历程的梳理,可以清晰地看到阈值法在不断进步和完善。

接着,本文将重点介绍几种主流的阈值法方法,包括Otsu法、最大熵法、最小误差法等。

这些方法各有优缺点,适用于不同的图像分割场景。

通过对这些方法的详细介绍和比较,可以帮助读者更好地选择和应用适合自己的阈值法方法。

本文还将分析阈值法的优缺点,并探讨其在不同应用场景下的适用性和局限性。

还将展望阈值法的未来发展趋势,包括如何结合其他图像分割方法、如何引入更多的先验知识以及如何借助深度学习等技术来进一步提升阈值法的性能等。

本文将对全文进行总结,并给出一些建议和展望。

希望通过本文的综述,能够为读者提供一个全面而深入的视角,以更好地理解和应用图像分割的阈值法。

二、阈值法基本原理阈值法是一种简单而有效的图像分割方法,其基本原理是基于图像的灰度特性,设定一个或多个阈值,将图像中的像素划分为不同的类别,从而实现图像分割。

阈值分割的基本思想是,假设图像由具有不同灰度级的两类区域组成,这两类区域的灰度值具有明显差异,那么可以选择一个适当的阈值,将图像的每个像素的灰度值与这个阈值进行比较,根据比较结果将像素分配到不同的区域中。

如果像素的灰度值大于阈值,则将其归为一类,否则归为另一类。

固定阈值分割算法

固定阈值分割算法

固定阈值分割算法
固定阈值分割算法是图像处理中最基本的阈值分割算法之一。

它通过选择一个固定的阈值,将图像分为两个部分:一个部分是低于阈值的像素,另一个部分是高于阈值的像素。

这样,图像可以很容易地被分成不同的区域,其中阈值是用来分割图像的关键。

固定阈值分割算法的步骤如下:
1. 选择一个适当的阈值。

2. 将图像中低于阈值的像素设置为一个值,高于阈值的像素设置为另一个值。

3. 根据需要对分割后的图像进行处理。

固定阈值分割算法的优点在于其简单性和计算效率。

然而,它的缺点是需要手动选择阈值,这对于复杂的图像来说可能是困难的,因此通常需要使用其他阈值分割算法来自动选择阈值。

自适应阈值分割算法

自适应阈值分割算法

自适应阈值分割算法自适应阈值分割算法是一种用于图像处理的重要方法,常被应用于图像的分割与边缘检测等领域。

其原理是根据图像中像素的灰度级特性来自动确定一个适应于图像的阈值,从而将图像分割成具有不同灰度级的区域。

一般来说,自适应阈值分割算法主要包括以下步骤:1. 确定分割窗口的大小:分割窗口是指在图像中进行阈值计算的区域。

合适的窗口大小可以根据图像的尺寸来确定,一般情况下,窗口大小越大,阈值计算的准确性越高,但同时计算的时间也会增加。

2. 计算每个像素的局部阈值:对于图像中的每个像素,利用其周围窗口内的像素灰度级信息来计算一个局部阈值。

常见的计算方法有基于平均值、中值、最大最小值等。

3. 对图像进行二值化分割:根据计算得到的局部阈值与图像中像素的灰度级比较,将像素分为两类,一类是高于阈值的像素(亮像素),另一类是低于阈值的像素(暗像素)。

通过这一步骤,图像就被分割成了具有不同亮度的区域。

4. 进行后处理:分割后的图像可能存在噪声或连接问题,需要进行后处理来进行调整。

常见的后处理方法包括形态学操作、连通区域分析等。

自适应阈值分割算法的优点在于它能够自动选择合适的阈值,适用于复杂的图像场景,能够提高分割的准确性。

但同时也存在一些缺点,如计算时间较长、对图像中存在的光照变化敏感等。

常见的自适应阈值分割算法有:1. 基于全局阈值的自适应算法(Global Adaptive Thresholding):该算法将图像分割为两个区域,根据区域内像素的平均灰度值计算一个全局阈值,并根据该阈值将图像二值化。

但这种方法在图像中存在光照不均匀的情况下效果较差。

2. 基于局部阈值的自适应算法(Local Adaptive Thresholding):该算法将图像分割为多个区域,并根据每个区域内像素的局部特性计算一个局部阈值。

这种方法可以克服全局阈值算法对光照变化的敏感性。

3. 基于统计的自适应算法:该算法根据图像中像素的统计特性来确定阈值,常见的方法有OTSU算法、最大类间方差(Maximally Interclass Variance)等。

阈值分割

阈值分割

6.2 灰度阈值分割一、 阈值分割利用目标物与背景在灰度特性上的差异,设 置一个阈值T ,将目标物与背景分割开来,形成 二值图像⎩⎨⎧<≥=T y x f T y x f if y x g ),(,),(,),(01 ⎩⎨⎧>≤=T y x f T y x f if y x g ),(,),(,),(01二、 阈值选择 1. 最佳阈值目标像素占 )10(<<θθ, 背景像素占 θ-1 目标灰度概率密度)(1z p , 背景灰度概率密度)(2z pT 为分割阈值整个图像灰度概率密度函数为混合高斯密度函数22222121)(212)(21121212)1()()(μσμσσπθσπθθθ-----+=-+=z z eep z p z p目标错划为背景的概率⎰∞=T dz z p T )()(11ε背景错划为目标的概率⎰∞-=Tdz z p T )()(22ε)()1()()(21T T T εθεθε-+=0)1(0)(21=-+-⇒=∂∂p p T T θθε)()(121T p T p =-θθ22222121122)(2)()1(ln σμσμσθθσ--=---T T 当 22221σσσ== 时, θθμμσμμ--++=1ln212221T若 21=θ, 则)(2121μμ+=T 2. 双阈值法所有目标像素灰度值1T >,大多数目标像素灰度值2T > 所有背景像素灰度值2T <,大多数背景像素灰度值1T <分割过程:(1)利用2T 分割目标物(目标核心)(2)利用1T ,将灰度值大于1T 紧靠目标核心的像素并入目标3. 可变阈值法(局部阈值法)将图像分块,计算每块的直方图,若直方图为双 峰,则利用最佳阈值,若直方图为单峰,则利用 邻近小块的阈值进行内插 例:预处理(对数变换,减影、取平均去噪声)分块(256⨯256图像分成7⨯7块,块间相互重迭50%) 求直方图,确定每块的分割阈值 分割。

imagej阈值分割方法

imagej阈值分割方法

imagej阈值分割方法
阈值分割是一种常用的图像处理方法,用于将图像中的像素根据它们的灰度值分成两
个或多个类别。

这一方法在图像分割、形状识别、计算机视觉和医学图像处理等领域中具
有重要的应用。

ImageJ是一个免费的开源图像处理软件,它支持多种阈值分割算法,包括简单全局阈值、自适应阈值和Otsu阈值等。

本文将介绍ImageJ中的阈值分割方法并提供
相关的中文解释。

1. 简单全局阈值
简单全局阈值(Simple thresholding)是一种基本的阈值分割方法,它将图像中所有像素的灰度值与固定的阈值进行比较,将大于该阈值的像素标记为白色,否则标记为黑色。

简单全局阈值通常适用于灰度分布比较单一的图像。

在ImageJ中可通过以下步骤进行简单全局阈值分割:
1)打开待处理图像,点击菜单“Image”->“Adjust”->“Threshold”,打开阈值窗口。

2)在阈值窗口中,将阈值调整到适当的位置,可以通过手动拖动滑块或输入数值进行调整。

3)点击“Apply”按钮,将阈值分割应用到图像中,得到分割结果。

需要注意的是,阈值的选择对分割结果影响很大,应根据图像的具体特点进行调整。

2.自适应阈值
自适应阈值(Adaptive thresholding)是一种根据图像局部灰度值的分布来自适应计算阈值的方法。

它适用于图像灰度分布不均匀的情况,能够自动根据图像局部光照情况调
整阈值,可以得到更好的分割效果。

3.Otsu阈值
Otsu阈值方法能够自动计算出最佳的阈值,但对噪声较敏感,为了得到更好的分割效果,需要事先对图像进行滤波处理。

基于阈值的图像分割

基于阈值的图像分割

N
N
i 0
L 1
i
第i级出现的概率为:
Ni P i N
在OTSU算法中,以阈值k将所有的像素分为目标C0和背景C1两类。其 中,C0类的像素灰度级为0~k-1,C1类的像素灰度级为k~L-1。 图像的总平均灰度级为:
u iP i
i 0
L 1
C0类像素所占面积的比例为:
0 P i
(a)原图 图3-1 生成直方图
(b)直方图
3.2 最大类间方差法(OTSU)
最大类间方差法又称为OTSU算法,大津法(OTSU)是一种确定图像二 值化分割阈值的算法,由日本学者大津于1979年提出。从大津法的原理 上来讲,该方法又称作最大类间方差法,因为按照大津法求得的阈值进 行图像二值化分割后,前景与背景图像的类间方差最大。 原理: 对于图像 A(x,y),前景(即目标) 和背景的分割阈值记作 T ,属于前景 的像素点数占整幅图像的比例记为 ω 0,其平均灰度μ 0;背景像素点数 占整幅图像的比例为 ω 1,其平均灰度为μ 1。图像的总平均灰度记为 μ , 类间方差记为g。 设A是一幅具有L级灰度级的图像,其中第i级像素为 个,其中i的值 在0~L-1之间,图像的总像素点个数为:
2 2
2
2
令k从0~L-1变化,计算在不同k值下的类间方差 k 2 使得 k 最大时的那个k值就是所要求的最优阈值。
图3-2为采用OTSU方法取得最优阈值后进行阈值分割的结果。 MATLAB程序如下: I=imread('tsaml.jpg'); [width,height]=size(I); level=graythresh(I); BW=im2bw(I,level); figure imshow(BW) MATLAB 提供 graythresh 函数来自动获取分割阈值, im2bw 功能是 转换图像为二进制图像。这两个函数结合使用,graythresh函数是自适 应阈值,求出图像的自适应阈值,然后利用im2bw函数再转化为二值图像 并输出,得到如图所示的自适应阈值图。

图像分割的阈值法综述

图像分割的阈值法综述

图像分割的阈值法综述引言图像分割是计算机视觉领域的一项重要任务,旨在将图像分割成不同的区域或对象。

阈值法是一种常用的图像分割方法,具有算法简单、运算量小、易于实现等优点,因此在工业、医学、军事等领域得到了广泛的应用。

本文将对图像分割的阈值法进行综述,介绍其概念、优缺点、应用现状和发展趋势。

文献综述阈值法是一种基于像素值的图像分割方法,通过设置一个阈值,将像素值划分为不同的类别。

早在1979年,阈值法就已被提出并应用于图像分割领域。

随着技术的发展,各种阈值法模型不断涌现,包括线性阈值法、非线性阈值法、自适应阈值法等。

线性阈值法是最早的一种阈值法,通过将像素值线性地映射到阈值上,将图像分割成两个或多个区域。

常用的线性阈值法包括Otsu’s方法、Mean-Shift方法等。

非线性阈值法则通过非线性映射关系,更加精确地描述像素值的分布情况。

常用的非线性阈值法包括Gamma变换、正态分布模型等。

自适应阈值法则根据图像的局部特征,自适应地设置阈值,以提高图像分割的准确性。

常用的自适应阈值法包括局部阈值法、区域生长法等。

此外,还有基于深度学习的阈值法,如卷积神经网络(CNN)等,通过训练模型学习图像特征,实现更加精确的图像分割。

研究现状目前,阈值法在图像分割中的应用已经非常广泛。

在图像去噪方面,阈值法可以有效地区分噪声和图像信号,从而实现图像的降噪。

在图像降维方面,阈值法可以通过对像素值进行聚类,将图像转换为低维特征表示,从而加速图像处理速度并减少计算复杂度。

然而,阈值法也存在一些局限性。

首先,阈值法的性能对阈值的选择非常敏感,如果阈值选择不合适,可能会导致图像分割效果不佳。

其次,阈值法只能处理静态的图像,对于动态的图像处理效果较差。

此外,对于复杂背景和遮挡等干扰因素,阈值法也难以实现准确的图像分割。

实验设计与结果分析为了验证阈值法在图像分割中的效果,我们设计了一系列实验。

首先,我们选取了不同类型的图像,包括自然场景、人脸、医学影像等,使用不同的阈值法进行分割实验。

基于阈值的分割方法

基于阈值的分割方法

基于阈值的分割方法
阈值分割是图像处理中一种有效的分割方法。

它通过将一张图像
的像素点值分成几个部分来获得一系列局部分割结果,它的实质就是
使用单一阈值来将图像分解为背景和目标之间。

阈值分割法有多种,其中最常用的是简单阈值分割法。

这种方法
用于实现图像的二分法,并使用一个指定的阈值来将整个图像划分为
背景和前景。

当图像中具有两个明显不同的灰度水平时,用阈值分割
法可以很好地实现图像分割:如果像素值低于阈值,则认为它是背景;反之,如果像素值高于阈值,则认为它是前景。

此外,还有一些特殊的阈值分割法,如改进的阈值分割方法、双
阈值分割方法,有助于分割更复杂的图像。

改进的阈值分割方法称为“变量阈值分割法”,它在图像的背景和前景之间使用多个阈值,以
便在更复杂的图像中获得更佳的分割效果。

而双阈值分割方法则使用
两个阈值:一个用于处理黑色点,一个用于处理白色点。

总之,基于阈值的分割方法是一种重要的图像处理技术,它可以
很好地用于图像分割任务,帮助用户更准确地检测复杂场景中的目标物。

灰度阈值法分割

灰度阈值法分割

灰度阈值法分割
灰度阈值法分割是一种常见的图像分割方法,主要用于将图像转换为二值图像。

这种方法通过选择一个或多个灰度阈值,根据像素的灰度值与阈值的比较结果,将像素分为不同的类别。

具体来说,如果像素的灰度值大于或等于阈值,则该像素被分类为特定类别(如目标或背景),否则被分类为另一类别。

然后,根据像素的分类,用不同的数值标记不同类别的像素,从而生成二值图像。

在选择阈值时,通常会考虑图像的灰度直方图。

由于物体与背景以及不同物体之间的灰度通常存在明显差异,在灰度直方图中会呈现明显的峰值。

因此,选择图像灰度直方图中灰度分布的谷底作为阈值,可以有效地对图像进行分割。

例如,Otsu法(最大类间方差法)是一种动态阈值分割算法,其主要思想是根据灰度特性将图像划分为背景和目标两部分,划分依据为选取门限值,使得背景和目标之间的方差最大。

这是该方法的主要思路。

总的来说,灰度阈值法分割是一种简单而有效的图像分割方法,适用于目标与背景有较强对比度的图像。

图像分割算法

图像分割算法

(3) Prewitt算子 Prewitt算子在点(i,j)的梯度幅值表示为:
2 G(i, j ) G x2 G y
简化的卷积模板表示形式为 : G (i, j ) G x G y 其中,sx和sy分别x方向和y方向梯度的模版形式 :
1 1 sx 0 0 1 1 1 0 1 1 sy 1 1 0 0 0 1 1 1
Pa Pi 前景点所占比例
i 1 L
Pb
i T 1 T
P 背景点所占比例
i i 1 L
wa i wb
Pi 前景点平均灰度 Pa Pi
b
i T iPi 全局平均灰度
阈值分割就是简单地用一个或几个阈值将图像的灰度直方图 分成几个类,认为图像中灰度值在同一个灰度类内的像素属于同 一个物体。阈值分割法主要有两个步骤: 第一, 确定进行正确分割的阈值; 第二, 将图像的所有像素的灰度级与阈值进行比较, 以进行区域 划分, 达到目标与背景分离的目的。 其基本原理的数学模型描述为:
1 Sx 0 0 1
0 Sy 1
1 0
(2) Sobel算子 Sobel算子在点(i,j)的梯度幅值表示为:
2 G(i, j ) G x2 G y
简化的卷积模板表示形式为 :
G (i, j ) G x G y
其中,sx和sy分别x方向和y方向梯度的模版形式 :
1 g (i, j) 0
f (i, j) T f (i, j) T
常见的阈值分割算法有: 双峰法、最大类间方差法(OTSU) 、迭代法、最大熵等。
1.双峰法 双峰法的基本思想:它认为图像由前景和背景组成,在灰度直方图上, 前后二景都形成高峰,在双峰之间的最低谷处就是图像的阈值所在。 适用范围:当前后景的对比较为强烈时,分割效果较好;否则基本无效 。 2.最大类间方差法(OTSU) 最大类间方差法的基本思想:将待分割图像看作是由两类组成,一类是 背景,一类是目标,用方差来衡量目标和背景之间的差别,使得目标和 背景两类的类间方差最大的灰度级即认为是最佳阈值。 T 最佳阈值分割公式:

图像阈值法分割综述

图像阈值法分割综述

出相应 的有理多项式 的极小值 , 从而决定 阈值 的方法 1 , L . L i 等人提 出的通 过对 图像 的二维直方图作 F i s h e r 线性 映射来决定 阈值 的
方 法 等。
基于 最大熵原则选 择阈值是最 为重要的 阈值选择 方法之一 , 九 十年代 对最大熵原则 的研 究包括 P . S a h o o 等人提 出了用 R e n y i 熵代替常规 的最大熵原则 l , A. D . B r i n k 把这种方法扩展到二维直方图 J , H. D . C h e n g 等人将模糊测度 函数 的感念引入最大熵原则 , 提 了模糊 C 一 分类最 大熵 原则 1 。
度 越 高 时 间 复 杂 度也 就越 高 。
J . C . Y e n 等人提出的用最大相关性 原则选择 阈值 的方 法 , 这种方法其实只是用他们定义的一个 最大相关性原 则取代 了一般用
的最大熵原则 , N. P a p a m a r k o s 等人 提出的先 找出灰度直方 图的峰值点 , 再 用有 理多项式来拟合灰度直方 图两个峰间的区域 , 让后求
h t t p: / / www. d nz s . n e t . c n
图像阈值法分割综述
刘 超 , 蔡 文 华 , 陆 玲
( 东华理: [大 学 , 江西 南 昌 3 3 0 0 1的难题 , 由于图像分割 的复杂性 , 图像 分割 的方法很 多也很难有一个通用的方法。该文主要是 时 图像 阈值 法分割 的一个综述 , 叙述 了阈值 法分割的一些方法。最后对这 些算 法做 了一 个总结 , 以及时 阂值法分割的期
LI U Cha o, CAI W e n—H ua , LU Li ng
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程结业论文课题名称基于阈值的图像分割方法姓名湛宇峥学号1412202-24学院信息与电子工程学院专业电子信息工程指导教师崔治副教授2017年6月12日湖南城市学院课程结业论文诚信声明本人郑重声明:所呈交的课程结业论文,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。

对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。

本人完全意识到本声明的法律结果由本人承担目录摘要 (1)关键词 (1)ABSTRACT (2)KEY WORDS (2)引言 (3)1基于点的全局阈值选取方法 (4)1.1最大类间交叉熵法 (5)1.2迭代法 (6)2基于区域的全局阈值选取方法 (7)2.1简单统计法 (8)2.3 直方图变化法 (9)3局部阈值法和多阈值法 (10)3.1水线阈值算法 (11)3.2变化阈值法 (12)4仿真实验结论 (12)参考文献 (13)附录基于阈值的图像分割方法摘要:图像分割多年来一直受到人们的高度重视,至今这项技术也是趋于成熟,图像分割方法类别也是不胜枚举,近年来每年都有上百篇有关研究报道发表。

图像分割是由图像处理进到图像分析的关键环节,是指把图像分成各具特性的区域并提取出有用的目标的技术和过程。

在日常生活中,人们对图片的要求也是有所提高,在对图像的应用中,人们经常仅对图像中的某些部分感兴趣,这些部分就对应图像中的特定的区域,为了辨识和分析目标部分,就需要将这些有关部分分离提取出来,因此就要应用到图像分割技术。

关键词:图像分割;阈值;matlabBased on thresholding for image segmentationmethodsAbstract:Image segmentation is a indispensable part of image processing and analysis, have important practical significance.It is according to the needs of image processing and analysis of the image into each area and extract the characteristic of technology and process of interested target.Image segmentation methods and types have a lot of different categories, some segmentation operation can be directly applied to all images, while others can only apply to special image.The purpose of this paper is to through the collection of image segmentation method based on threshold related information, analysis the advantages and disadvantages of various segmentation algorithm, using the MATLAB tools to threshold segmentation algorithm is studied. Keywords: image segmentation; The threshold value; matlab引言在现代科学中,随着计算机科学技术的不断发展,人们在日常生活中对图像信息的需求急剧暴涨,人们对图像得要求也越来越高,p图软件,美颜相机等等也是越来越受大众喜爱,对此,数字图像处理技术在近年来也是得到了迅速的发展和改进,成为当下学科领域的热门焦点。

图像分割是图像识别和计算机视觉至关重要的预处理。

没有正确的分割就不可能有正确的识别。

但是,进行分割仅有的依据是图像中像素的亮度及颜色,由计算机自动处理分割时,将会遇到各种困难。

例如,光照不均匀、噪声的影响、图像中存在不清晰的部分,以及阴影等,常常发生分割错误。

因此图像分割是需要进一步研究的技术。

人们希望引入一些人为的知识导向和人工智能的方法,用于纠正某些分割中的错误,是很有前途的方法。

图像分割是从图像处理到图像分析的关键步骤,可以说,图像分割结果的好坏直接影响对图像的理解。

图像分割的方法也是不胜枚举。

其中阈值法就是一种传统而又简单实用的图像分割方法,也是最基础和最广泛的分割方法。

这些方法都广泛应用于各个领域,比如,红外技术应用,医药技术应用,农业工程技术应用,工业产业等行业。

1:基于点的全局阈值选取方法1.1最大类间交叉熵法在取阈值分割中,一般要求月至的选取要使分割的目标与背景尽可能的差异,假设图像有目标1和背景2两类像素,可以用交叉熵来度量目标和背景间的差异,将这种类间差异性用原始图像p 中的个像素点S 判决到目标和背景两类区域的两个后验概率p(1/s),p(2/s)之间的交叉熵的平均值表示,通过最大化将像素点判决到不同的区域的后验概率来求最优的阈值。

在这里,我们设X 是一幅具有L 级灰度级的图像,其中第i 级像素为i N 个,其中i 的值在0~L-1之间,图像的总像素点个数为:第i 级出现的概率为:图像的总平均灰度级为:∑-==10L i iiP μN N P i i =∑-==10L i i N N0C 类像素所占面积的比例为:1C 类像素所占面积的比例为:01-=ωω10C 类像素的平均灰度为:000=ωμμ/)()(k k 1C 类像素的平均灰度为: 111=ωμμ/)()(k k其中,则类间方差公式为:22)()()(01002-+-=μμωμμωδk1.2迭代法迭代法求阈值的原理: 基于逼近的思想,步骤如下: 1. 求出图象的最大灰度值和最小灰度值,分别记为ZMAX 和ZMIN ,令初始阈值T0=(ZMAX+ZMIN)/2; 2. 根据阈值TK 将图象分割为前景和背景,分别求∑-=0=10k i iP ω∑-=0=10)(k i i iP k μ∑-=01-==1)(1)(L k i i k iP k μμ出两者的平均灰度值ZO 和ZB 3. 求出新阈值TK+1=(ZO+ZB)/2; 4. 若TK=TK+1,则所得即为阈值;否则转2,迭代计算。

2:基于区域的全局阈值选取方法2.1简单统计法简单统计法是一种基于简单的图像统计的基础阈值选取方法。

阈值通过简单统计法可以直接计算得到,从而避免了去分析灰度直方图。

该方法的计算公式为()()()∑∑∑∑=x y x yy x e y x f y x e T ,,, (8)其中, (){}y x e e y x e ,max ,=()()y x f y x f e x ,1,1+--=()()1,1,+--=y x f y x f e y2.2 直方图变化法实际的说,直方图的谷底是非常理想的分割阈值,现实很难操作,而且在实际应用中,图像也会受到噪声等其他环境等的影响从而使其直方图上原本分离的峰之间的谷底被填充,或者目标和背景的峰相距很近或者大小差不多。

直方图变化的基本思想是利用一些像素领域的局部性质对原来的直方图进行变换已得到一个新的直方图,对比原直方图,或者峰之间的谷更深了。

或者谷转变成峰从而更好检测了。

借助前面的梯度算子作用于领域可以得到该像素的梯度值。

3:局部阈值法和多阈值法3.1水线阈值算法分水岭图像分割算法是借助地形学的概念进行操作的,这种方法近年来得到了广泛的使用,该算法要操作需要掌握相关的数学形态学的理念和方法。

该算法是串行计算过程,得到的是目标的边界,这种方法是通过确定分水岭的位置而进行的图像分割,但由于各区域内部像素的灰度很相近,相邻区域的像素灰度差距比较大,可以先计算一幅图的梯度图,再找梯度图的分水岭。

3.2变化阈值法有时候图像中有如下一些情况:有阴影,照度不均匀,各处的对比度不同,突发噪声,背景灰度变化等,在这些情况下,如果只用一个固定的全局阈值对整幅图像进行分割,则由于不能兼顾图像各处的情况而使分割效果受到影响。

有一种解决办法就是用与象素位置相关的一组阈值来对图像各部分分别进行分割。

这种与坐标相关的阈值也叫动态阈值,此方法也叫变化阈值法。

例如,一幅照度不均(左边亮右边暗)的原始图像为:图4.原始图像图5.阈值低,对亮区效果好,则暗区差图6.阈值高,对暗区效果好,则亮区差图7.按两个区域取局部阈值的分割结果4:仿真实验结论阈值法是一种传统但有简单有效实用的基础图像分割方法。

图像的的变化是无穷无尽的,在实际应用中,通常将多种分割算法有效地结合在一起使用以获得更好的分割效果。

除了以上介绍的方法外,还存在着多种不同的其他有效方法,在此,就不多介绍,此外,本片论文也存在在一些描述不是很清楚的地方,希望有缘读者可以提供相关建议和意见,一定多加感谢。

参考文献:1 夏得深,傅德胜.现代图像处理技术与应用.东南大学出版,20012余成波.数字图像处理及MATLAB实现[M].重庆:重庆大学出版社,2003.3刘直芳,游胜志等.基于多尺度彩色形态矢量算子的边缘检测.中国图像图形学报2002 (9) 888-8934周铭,周惠.基于遗传算法的自适应聚类图像阈值分割方法.计算机工程与应用[J],2005,5(6):231-245.5杨杰,黄朝兵. 数字图像处理及MATLAB实现.电子工业出版社,20106 吴一全,朱兆达.图像处理中阈值选取方法30年(1962-1992)的进展(一).数据采集与处理[J],1993,9(3):193-201.7 吴一全,朱兆达.图像处理中阈值选取方法30年(1962-1992)的进展(二).数据采集与处理8 王茜蓓,彭中,刘莉.一种基于自适应阈值的图像分割算法.北京理工大学学报[J],2003,23(4):531-524.9 Sahoo P K et al. A survey of thresholding techniques. ComputerVision, Graphics and Image Processing[J],1988,41(3):233-260.10 Doyle W.Operations useful for similarity-invariant pattern recognition JACM[J],1962, 9(2):259-26711 Perez A, Gonzalez R C.An iterative thresholding algorithm for image segmentation. IEEE Trans[J],1987,9(6):742-751.附录:I=imread('tsaml.jpg');I=double(I);T=(min(I(:))+max(I(:)))/2;done=false;i=0;while ~doner1=find(I<=T);r2=find(I>T);Tnew=(mean(I(r1))+mean(I(r2)))/2;done=abs(Tnew-T)<1;T=Tnew;i=i+1;endI(r1)=0;I(r2)=1;figure;imshow(I)2:a=imread('img.bmp'); imshow(a)figure;imhist(a)。

相关文档
最新文档