根据阈值的图像分割方法

合集下载

阈值分割的原理

阈值分割的原理

阈值分割的基本原理阈值分割是一种常见的图像处理技术,用于将图像中的目标与背景分开。

其基本原理是通过设定一个阈值,将图像中的像素根据其灰度值与阈值的大小关系进行分类,从而实现目标和背景的分割。

1. 灰度图像转换在进行阈值分割之前,首先需要将彩色图像转换为灰度图像。

这是因为彩色图像包含了RGB三个通道的信息,而在阈值分割中只考虑灰度信息。

灰度图像可以通过对彩色图像进行加权平均来获得。

常见的加权平均方法有亮度法和平均法。

亮度法通过计算每个像素点的RGB通道值的加权平均来得到灰度值:Gray = 0.299 * R + 0.587 * G + 0.114 * B其中R、G、B分别表示红、绿、蓝三个通道的取值。

2. 设定阈值设定阈值是阈值分割中最重要的一步。

阈值可以根据应用需求来确定,也可以通过试验找到最佳结果。

在设定阈值时,需要考虑两个因素:目标与背景的灰度差异和图像中的噪声。

如果目标与背景之间的灰度差异较大,可以选择较低的阈值;如果图像中存在较多噪声,可以选择较高的阈值。

设定阈值的常见方法有手动设定、直方图分析和自适应阈值法。

•手动设定:用户根据经验或直觉选择一个合适的阈值。

这种方法简单直接,但需要用户对图像有一定了解。

•直方图分析:通过分析图像的灰度直方图来确定一个合适的阈值。

可以根据直方图上的波峰和波谷来确定分割点。

•自适应阈值法:根据图像局部区域内的灰度特性来自适应地确定阈值。

常见的方法包括基于均值、基于局部方差和基于最大类间方差等。

3. 分割操作在设定了阈值之后,就可以对图像进行分割操作了。

分割操作将图像中所有像素点根据其灰度与设定阈值的大小关系进行分类。

通常情况下,将大于或等于阈值的像素点归为一类(目标),将小于阈值的像素点归为另一类(背景)。

分割操作可以通过以下公式表示:Binary(x, y) = {1, if Gray(x, y) >= Threshold; 0, if Gray(x, y) < Threshold}其中,Binary(x, y)表示二值图像中坐标为(x, y)的像素点的值,Gray(x, y)表示灰度图像中对应像素点的灰度值,Threshold表示设定的阈值。

otsu阈值分割

otsu阈值分割

otsu阈值分割Otsu阈值分割是一种基于图像的自动阈值选择算法,用于将图像分割成前景和背景两部分。

该分割方法可以有效地抑制不同灰度级的像素混合,并克服Kittler阈值分割算法存在的一些缺点。

二、阈值分割原理1. 什么是阈值分割?阈值分割是一种图像处理算法,用于将一幅图像中的像素分割成前景和背景两部分,以便更容易对图像进行分析。

2. 如何选择阈值?选择阈值的方法有很多种,主要有:经验法:根据对图像的实际感知,经验地确定最佳的阈值。

用户设定法:根据用户的需求,设定一个阈值来分割图像。

自动阈值选择法:根据图像的直方图和其他信息,自动选择一个最佳的阈值。

三、Otsu阈值分割Otsu阈值分割是一种自动阈值选择算法,它可以根据图像的灰度直方图和其他信息,自动选择一个最佳的阈值进行分割。

它是为了克服Kittler阈值分割算法存在的一些缺点而发明的。

1. Otsu阈值分割的基本原理Otsu阈值分割的目标是寻找一个使两个灰度级的像素混合最小的阈值。

因此,它的基本原理如下:(1)假定图像只有两个灰度级,即前景和背景;(2)计算图像的灰度直方图,分别计算前景和背景像素的期望;(3)遍历每一个阈值,计算前景和背景两个灰度级的标准差;(4)计算前景和背景两个灰度级的混合,并取最小值;(5)得到的最小值就是最优阈值。

2. Otsu阈值分割的优势与Kittler阈值分割算法相比,Otsu阈值分割算法有以下优势:减少噪声:Otsu阈值分割算法可以有效地抑制不同灰度级的像素混合,从而更好地抑制噪声;提高分割准确度:Otsu阈值分割算法可以根据图像的灰度直方图,自动选择一个最佳的阈值,从而提高分割准确度;支持多种分割方式:Otsu阈值分割算法不仅可以支持二值分割,还可以支持多值分割,甚至可以使用多个阈值进行多次分割。

四、总结Otsu阈值分割是一种自动阈值选择算法,它可以根据图像的灰度直方图和其他信息,自动选择一个最佳的阈值进行分割。

迭代法阈值分割

迭代法阈值分割

迭代法阈值分割
迭代法阈值分割是将图像根据其灰度值划分成两个不同的区域的分割
方法。

该方法基于不同灰度级别的像素点在一定阈值下的分布情况。

迭代
法的过程是:首先将图像的灰度值按照一定方式分类,再计算每个分类的
平均值作为阈值,然后将这个阈值与原来设置的阈值进行比较,如果不相等,则再次分类,直到阈值不再改变,即分割结束。

迭代法阈值分割的步骤如下:
1.设置初始阈值(一般是灰度值的平均值)。

2.将图像的灰度值按照阈值分为两个区域。

3.分别计算两个区域的平均灰度值。

4.将计算出的平均灰度值作为新的阈值,与原来的阈值进行比较。

5.如果两个阈值相同,则分割结束;如果不同,则将新的阈值作为初
始阈值,重新进行分割。

6.重复步骤2至步骤5,直到阈值不再改变,分割结束。

迭代法阈值分割是一种简单的图像分割方法,但是结果可能不够理想,因为它不能处理图像中灰度值分布不均匀的情况,也不能处理图像的噪声。

因此,在实际应用中需要结合其他方法来提高分割效果。

图像分割的常用方法

图像分割的常用方法

图像分割的常用方法
1. 阈值分割:根据像素灰度值与预设阈值之间的大小关系将图片分成黑白两个部分,常用于二值化处理。

2. 区域生长:利用像素之间的空间连通关系,从种子像素开始,将与其相邻的像素逐步合并成同一个区域。

3. 全局图像分割:将图像分成多个颜色或灰度级别,然后根据图像亮度、颜色、纹理、空间信息等特征进行分类,常用于分类、检测、识别等任务。

4. 模型分割:使用先前训练好的模型对图像分类和分割。

例如,利用卷积神经网络(CNN) 对图像进行分类和分割。

5. 基于图的分割:将图像转换成图形结构,建立节点之间的连接关系,通过图形算法对图形进行分割。

6. 边缘检测:检测图像中的边缘线条并将其分割出来,常用于目标检测和识别。

7. 水平集分割:该方法使用曲线(水平集) 对图像进行分割,可以在不同曲线之间自由地移动,因此在较复杂的图像中可以得到更好的分割效果。

otsu 法

otsu 法

Otsu方法一、概述Otsu方法是一种用于图像阈值分割的经典算法,它由日本学者大津于1979年提出。

该方法基于图像的灰度直方图,通过最大化类间方差来确定最佳阈值,从而实现图像分割。

Otsu方法具有简单、快速、自适应等优点,因此在图像处理领域得到了广泛应用。

二、原理Otsu方法的原理基于图像的灰度直方图。

首先,计算图像的灰度直方图,得到每个灰度级出现的概率。

然后,选择一个阈值,将图像分为前景和背景两部分。

接着,计算前景和背景的类间方差,使类间方差最大的阈值即为最佳阈值。

类间方差是前景和背景两部分灰度级分布差异的度量。

当阈值增加时,前景像素数减少,背景像素数增加;反之,当阈值减少时,前景像素数增加,背景像素数减少。

通过计算类间方差,选择使得类间方差最大的阈值作为最佳阈值,可以将前景和背景尽可能地分开。

三、实现步骤1.计算灰度直方图:统计图像中每个灰度级的像素数。

2.初始化阈值:选择一个初始阈值,将图像分为前景和背景两部分。

3.计算类间方差:根据前景和背景像素数的概率计算类间方差。

4.迭代更新阈值:不断改变阈值,并重新计算类间方差,直到找到最佳阈值。

5.应用阈值进行分割:将最佳阈值应用于图像,得到分割后的前景和背景图像。

四、应用场景Otsu方法在许多图像处理应用中都得到了广泛应用,例如:1.图像分割:Otsu方法适用于将图像分割成前景和背景两部分,常用于医学影像分析、遥感图像处理等领域。

2.目标检测:Otsu方法可以用于检测图像中的目标,例如人脸检测、手势识别等。

3.图像增强:通过Otsu方法可以对图像进行增强,突出前景信息,提高图像的可读性。

基于阈值的图像分割算法研究综述

基于阈值的图像分割算法研究综述

第41卷第6期2023年12月沈阳师范大学学报(自然科学版)J o u r n a l o f S h e n y a n g N o r m a lU n i v e r s i t y(N a t u r a l S c i e n c eE d i t i o n)V o l.41N o.6D e c.2023文章编号:16735862(2023)06052604基于阈值的图像分割算法研究综述:原理㊁分类及典型算法杨林蛟(沈阳师范大学化学化工学院,沈阳110034)摘要:随着计算机技术的飞速发展,图像处理技术在各个领域都得到了广泛应用,如产品质量检测㊁医学图像处理㊁军事目标的定位与跟踪等㊂作为图像处理技术和计算机视觉技术的研究基础,图像分割技术目前已出现了大量不同类型的算法,并在各个领域的应用中发挥着重要的作用㊂其中,基于阈值的图像分割算法因具有简单有效㊁计算量小㊁性能稳定等优点而受到了人们的普遍青睐㊂首先,对图像分割技术按照不同的划分方式进行了简单的分类;其次,对阈值分割算法的基本原理㊁分类及最典型的O t s u算法的基本思想进行了详尽的介绍;最后,对阈值分割算法目前存在的问题进行了阐述,并对算法未来的发展趋势进行了展望㊂研究工作可为图像处理技术的进一步发展提供理论借鉴㊂关键词:图像处理;阈值分割;阈值选取;算法中图分类号:T P391文献标志码:Ad o i:10.3969/j.i s s n.16735862.2023.06.007A r e v i e w o ft h r e s h o l d-b a s e di m a g es e g m e n t a t i o n a l g o r i t h m s:P r i n c i p l e s,c l a s s i f i c a t i o na n d t y p i c a l a l g o r i t h m sY A N GL i n j i a o(C o l l e g e o fC h e m i s t r y a n dC h e m i c a l E n g i n e e r i n g,S h e n y a n g N o r m a lU n i v e r s i t y,S h e n y a n g110034,C h i n a)A b s t r a c t:W i t h t h e r a p i dd e v e l o p m e n t o f c o m p u t e r t e c h n o l o g y,i m a g e p r o c e s s i n g t e c h n o l o g y h a sb e e n w i d e l y u s e di nv a r i o u s f i e l d s,s uc ha s p r od u c t q u a l i t y de t e c t i o n,m e d i c a l i m a g e p r o c e s s i n g,m i l i t a r y t a r g e t p o s i t i o n i n g a n d t r a c k i n g.A s t h e b a s i s o f i m a g e p r o c e s s i n g t e c h n o l o g y a n d c o m p u t e rv i s i o nt e c h n o l o g y,al a r g e n u m b e r o f d i f f e r e n tt y p e s o fa l g o r i t h m s h a s e m e r g e d,a n d t h e s ea l g o r i t h m s p l a y a ni m p o r t a n t r o l e i nv a r i o u s f i e l d so fa p p l i c a t i o n.A m o n g t h e m,t h r e s h o l db a s e di m a g e s e g m e n t a t i o na l g o r i t h m h a sb e e n w e l c o m e db e c a u s eo f i t sa d v a n t a g e so fs i m p l e,e f f e c t i v e,l i t t l e c o m p u t a t i o na n ds t a b l e p e r f o r m a n c e.F i r s t l y,t h e i m a g es e g m e n t a t i o nt e c h n o l o g y i ss i m p l yc l a s s i f i e da c c o rd i n g t o t he d if f e r e n t p a r t i t i o n i ng w a y s.S e c o n d l y,th eb a si c p r i n c i p l e,c l a s s i f i c a t i o n,a n d t h eb a s i ci d e ao ft h e m o s tt y p ic a lO t s ua l g o r i t h m o ft h r e s h o l ds e g m e n t a t i o na l g o r i t h m a r ei n t r o d u c e di n d e t a i l.A tl a s t,t h ee x i s t i n g p r o b l e m s o ft h r e s h o l d s e g m e n t a t i o n a l g o r i t h m a r ed e s c r i b e d,a n dt h ef u t u r ed e v e l o p m e n tt r e n d o ft h i sa l g o r i t h m a r ef o r e c a s t e d.T h i s w o r kc a np r o v i d e t h e o r e t i c a l r e f e r e n c e f o r t h e f u r t h e r d e v e l o p m e n t o f i m a g e p r o c e s s i n g t e c h n o l o g y.K e y w o r d s:i m a g e p r o c e s s i n g;t h r e s h o l d s e g m e n t a t i o n;t h r e s h o l d s e l e c t i o n;a l g o r i t h m 图像处理技术一般是指利用计算机对图像进行分析,以达到所需结果的技术,又可称为影像处理㊂收稿日期:20230929基金项目:辽宁省教育厅科学研究经费项目(L J C202004,L J C202005)㊂作者简介:杨林蛟(1976 ),男,青海西宁人,沈阳师范大学高级实验师,硕士㊂图像处理技术主要包括图像的数字化㊁图像的增强和复原㊁图像的分割和识别㊁图像的数据编码等㊂其中,图像分割在计算机视觉中起着至关重要的作用,是图像处理技术的基础㊂图像分割的目的是使图像得到简化或改变图像的表示形式,图像经过分割后会形成一些特定的㊁具有独特性质的区域,这里的独特性质一般指像素的灰度㊁颜色和纹理等㊂其过程就好比把图像中的每一个像素打上一个特定的标签,使得具有相同标签的像素具有相同的视觉特性,从而用来定位图像的物体和边界㊂图像分割技术一直是计算机视觉研究的热点之一,历经数十年的发展,大量的分割算法被人们相继提出并得到广泛应用[1]㊂其中,基于阈值的图像分割算法因具有实时㊁有效㊁自动㊁应用广泛等优点而受到人们的广泛关注㊂本文首先对现有的图像分割技术进行了简单的划分,接着对基于阈值的分割算法的原理㊁分类及最典型的O t s u 算法进行了系统的介绍,以期为图像处理技术的进一步发展提供理论借鉴㊂1 图像分割技术的分类目前,人们对图像分割技术进行了大量的研究,并取得了卓有成效的研究成果,开发出了很多算法㊂如图1所示,如果按照图像类型划分,图像分割技术可分为灰度图像分割和彩色图像分割,灰度图像分图1 图像分割技术的7种不同划分方式F i g .1 S e v e nd i f f e r e n tw a y s o f i m a g es e g m e n t a t i o n t e c h n o l o g y割主要用于处理非自然图像,彩色图像分割则主要用于处理自然图像;按照是否存在用户交互,可将图像分割技术分为监督式分割和非监督式分割,监督式分割主要用于对图像和视频进行编辑,非监督式分割则主要用于处理图像背景较为单一的文本图像㊁工业图像等;按照表示方式的不同,图像分割技术又可分为基于像素级的分割和超像素级的分割,目前大多数的分割算法属于基于像素级的分割技术,其通常具有较高的处理精度;按照图像的另一种表示方式,图像分割技术则分为单一尺度的分割和多尺度分割,单一尺度的分割是在原始尺度空间上构建相关的分割模型,而多尺度分割则可充分挖掘图像的基本信息;从属性来划分,图像分割技术可分为单一属性的分割和多属性分割,前者只对灰度㊁颜色㊁纹理等特征中的一种属性进行分割,后者则能综合运用图像的多种属性;从操作空间来划分,图像分割技术可分为利用图像特征信息的分割和利用空间位置信息的分割,其中前者主要包括阈值分割算法和聚类算法等,后者主要包括水平集分割算法㊁活动轮廓算法等;从驱动方式划分,图像分割技术可分为基于边缘的分割和基于区域的分割㊂2 阈值分割算法阈值分割算法主要利用图像的特征信息对图像进行分割,目前已有上百种算法被陆续提出㊂其主要思想是不同的目标具有不同的诸如颜色㊁灰度㊁轮廓等特征,根据特征间的细小差别,通过选取特定的阈值将目标物与背景划分开来,进而实现快速的图像分割㊂2.1 阈值分割算法的基本原理阈值法的基本原理是先确定一个阈值[2],然后将所有像素按照其特征值与阈值的大小关系划分为2个类别㊂当特征值大于阈值时,该像素被归为目标类;反之,被归为背景类㊂通过选择合适的阈值,可以实现对图像目标与背景的有效分离㊂设原始图像为f (x ,y ),在f (x ,y )中找出特征值T ,将原始图像分割为2个部分,得到分割后的图像为g (x ,y )=b 0,f (x ,y )<t b 1,f (x ,y )ȡ{t725 第6期 杨林蛟:基于阈值的图像分割算法研究综述:原理㊁分类及典型算法若取b 0=0(黑),b 1=1(白),即为图像的二值化㊂2.2 阈值分割算法的分类根据利用信息种类的不同,可将阈值分割算法分为以下几类:1)基于直方图形状的方法㊂该类方法主要根据直方图的形状属性来划分像素,其又可分为 凸壳 法㊁ 峰谷 法和形状建模法3类㊂1997年,C a r l o t t o [3]对图像的概率密度进行了多尺度分析,并以此估计最佳阈值;1998年,C a i 和L i u [4]利用P r o n y 谱分析法得到了图像多重指数信号能量谱的近似值;之后,G u o 和P a n d i t [5]提出了一个全极模型㊂2)基于熵的方法㊂该类方法利用灰度分布的熵信息来划分像素㊂J o h a n n s e n 和B i l l e [6]最早对熵算法进行了研究㊂之后,很多学者对这一算法进行了改进,如P a l [7]在交叉熵的基础上建立了一种对前景和背景后验概率密度的模型;S u n [8]依靠 模糊事件熵 的最大化,采用了Z a d e h 的S 隶属度函数㊂3)基于聚类的阈值分割方法㊂该类方法又可分为迭代法㊁聚类法㊁最小误差法和模糊聚类4类,其主要通过对灰度数据进行聚类分析来获取阈值㊂其中,聚类法是通过将前景和背景的加权方差最小化来获得最佳阈值,是阈值分割算法中较为经典的算法之一㊂L i u 和L i [9]将聚类法扩展到了二维,景晓军等[10]将聚类法扩展到了三维㊂4)基于对象属性的方法㊂该类方法通过度量原始图像与二值图像间的诸如灰度片段㊁形状紧密性㊁纹理等的属性特性来选取阈值㊂基于对象属性的方法可分为片段保存法㊁边缘匹配法㊁模糊相似法㊁拓扑固定态法㊁最大信息法和模糊紧密性增强法6类㊂5)基于空间的方法㊂该类方法又可分为同现方法㊁高次熵法㊁基于随机集合的方法和二维模糊划分法4类,其选取阈值的方式是度量灰度分布和邻域内像素的相关性㊂C h a n g 等[11]在确保源图像与二值图像的同现概率以最低程度发散的条件下建立了阈值;B r i n k [12]认为空间熵可由二元熵在所有可能间隔的总和来计算㊂6)局部自适应方法㊂局部自适应方法可以克服其他阈值算法的许多缺陷,受到了人们的普遍关注,其主要的2种形式分别为邻域法和分块法㊂邻域法一般会受到邻域范围的制约,因而对文字等狭长目标比较敏感,但对平坦的大块前景或背景容易造成误分;分块法的适用范围会更广,但分块之间结果的不连续是该方法的缺陷之一㊂2.3 典型阈值分割算法介绍O t s u 阈值分割算法,也可称为最大类间方差算法,是最常用的一类阈值分割算法,也是阈值分割领域各类文献中被引用数量最多的算法之一㊂该算法选取使得类间方差最大的灰度值作为划分背景和前景的最佳阈值,其基本思想如下:在一幅灰度图像中,假设其灰度级为L ,用n i 表示灰度级为i 的像素个数,N 表示总像素的个数,则N =n 0+n 1+ +n L -1㊂用p i 表示灰度图像中灰度值i 的像素点出现的概率,则有p i =n i N ㊂设有阈值t 将图像分为前景和背景2个部分,分别用C 0={0,1, ,t }和C 1={t +1,t +2, ,L -1}表示㊂设ω0为C 0出现的概率,ω1为C 1出现的概率,则有ω0=ðt i =0p i ,ω1=ðL -1i =t +1p i ,且ω0+ω1=1㊂则C 0和C 1的平均灰度μ0和μ1为μ0=ðt i =0i ㊃p i ω0=μ(t )ω0,μ1=ðL -1i =t +1i ㊃p i ω1=μ-μ(t )1-ω0用σ2B 表示类间方差,其表达式为σ2B =ω0(μ0-μ)2+ω1(μ1-m )2=ω0㊃ω1(μ0-μ1)2最佳分割阈值t *即为使得类间方差σ2B 最大的阈值t :t *=a r g m a x t ɪ{0,1, L -1}σ2B 上述O t s u 算法又称一维O t s u 算法,它在不对概率密度函数做出假设的情况下,以均值和方差的概率密度为基础对图像的分割状态进行描述,可以在很大程度上提高算法的运算速度㊂后来,人们又发展了二维O t s u 阈值分割方法,它是在原来一维算法灰度值的基础上加入了像素邻域平均灰度作为第825沈阳师范大学学报(自然科学版) 第41卷二维,因而提高了一维算法的抗噪声能力㊂O t s u 阈值分割算法的分割效果如图2所示㊂(a )原始图像(b )O t u s 法阈值选择图2 O t s u 阈值分割算法的分割效果F i g .2 S e g m e n t a t i o ne f f e c t o f O t s u t h r e s h o l d s e g m e n t a t i o na l g o r i t h m 2.4 阈值分割算法目前存在的问题虽然阈值分割算法在国内外研究者们数十年的努力下已经取得了长足的进步,但目前仍然存在着如不均匀光照㊁噪声干扰㊁文本图像 劣化 等问题亟待解决㊂其中,不均匀光照会使直方图中的目标波峰与背景波峰混杂在一起,从而降低直方图阈值法的效果;噪声对图像处理的整个过程都有影响,去噪已成为图像分割领域的一个研究重点;长时间保存的纸质文档会出现背面字迹浸透㊁字迹污染等现象,从而造成分割时产生大量的误分㊂3 结论与展望图像分割是计算机视觉的基础技术,分割效果将直接影响如目标定位㊁目标识别㊁目标跟踪㊁场景分析等的后续处理㊂在众多的图像分割算法中,阈值分割算法一直以其实时㊁高效等特点受到人们的普遍关注㊂但从目前来看,阈值分割算法仍面临着许多难以解决的困难,可行的解决方法是从更高的图像语义出发,对图像内容进行抽象分析,然后指导低层次的图像分割,重复这样的操作若干次,可以逐步提高分割的精度㊂目前,对该种分割方式的研究仍处于探索阶段㊂参考文献:[1]S E Z G I N M ,S A N K U RB .S u r v e y o v e r i m a g e t h r e s h o l d i n g t e c h n i qu e s a n d q u a n t i t a t i v e p e r f o r m a n c e e v a l u a t i o n [J ].J E l e c t r o n I m a g i n g ,2004,13(1):146168.[2]阴国富.基于阈值法的图像分割技术[J ].现代电子技术,2007(23):107108.[3]C A R L O T T O M J .H i s t o g r a m a n a l y s i su s i n g as c a l e -s p a c ea p p r o a c h [J ].I E E E T r a n sP a t t e r n A n a l M a c hI n t e l l ,1997,9(1):121129.[4]C A I J ,L I UZQ.An e wt h r e s h o l d i n g a l g o r i t h m b a s e do na l l -p o l em o d e l [C ]ʊP r o c e e d i n g so f t h e14t hI n t e r n a t i o n a l C o n f e r e n c e o nP a t t e r nR e c o g n i t i o n .B r i b a n e :I E E E ,1998:3436.[5]G U O R ,P A N D I TS M.A u t o m a t i c t h r e s h o l ds e l e c t i o nb a s e do nh i s t o gr a m m o d e sa n dad i s c r i m i n a n t c r i t e r i o n [J ].M a c hV i s i o nA p p l ,1998,10:331338.[6]J OHA N N S E N G ,B I L L EJ .At h r e s h o l ds e l e c t i o n m e t h o du s i n g i n f o r m a t i o n m e a s u r e s [C ]ʊP r o c e e d i n gso f t h e6t h I n t e r n a t i o n a l C o n f e r e n c e o nP a t t e r nR e c o g n .M u n i c h :G e r m a n y ,1982:140143.[7]P A L N R.O nm i n i m u mc r o s s -e n t r o p y t h r e s h o l d i n g [J ].P a t t e r nR e c o g n ,1996,29(4):575580.[8]S U NCY.An o v e lf u z z y e n t r o p y a p p r o a c h t o i m ag e e nh a n c e m e n t a n d t h r e s h o l di n g [J ].S i gn a l P r o c e s s ,1999,75:277301.[9]L I UJZ ,L I W Q.T h ea u t o m a t i ct h r e s h o l d i n g o f g r a y -l e v e l p i c t u r e sv i at w o -d i m a n s i o n a lO t s u me t h o d [J ].A c t a A u t o m a t i c aS i n ,1993,19:101105.[10]景晓军,李剑峰,刘郁林.一种基于三维最大类间方差的图像分割算法[J ].电子学报,2003,31(9):12811285.[11]C HA N GC ,C H E N K ,WA N GJ ,e t a l .Ar e l a t i v e e n t r o p y b a s e d a p p r o a c h i n i m a g e t h r e s h o l d i n g [J ].P a t t e r nR e c o gn ,1994,27(9):12751289.[12]B R I N K A D.M i n i m u ms p a t i a l e n t r o p y t h r e s h o l d s e l e c t i o n [J ].I E E EP r o c e e d i n g s ,1995,142(3):128132.925 第6期 杨林蛟:基于阈值的图像分割算法研究综述:原理㊁分类及典型算法。

图像处理中的图像分割与提取方法

图像处理中的图像分割与提取方法

图像处理中的图像分割与提取方法图像分割与提取在图像处理中是非常重要的技术,它能够将一幅图像分割成不同的区域,并且提取出感兴趣的目标。

图像分割与提取的应用广泛,涉及到医学图像分析、计算机视觉、遥感图像分析等领域。

本文将介绍几种常用的图像分割与提取方法。

1. 阈值分割阈值分割是最简单也是最常用的图像分割方法之一。

该方法通过设定一个或多个阈值,将图像分成不同的区域。

阈值的选取可以根据图像的特点和需求来确定。

在灰度图像中,通常使用单一阈值来分割图像;而在彩色图像中,可以同时对多个颜色通道进行分割,或者将颜色空间转换为其他颜色空间进行分割。

2. 区域生长区域生长是一种基于像素相似性的图像分割方法,其基本思想是选择一个或多个种子点,然后根据像素相似性的准则逐步生长区域,直到满足停止准则为止。

区域生长方法对于具有明显边界的目标图像分割效果较好。

在实际应用中,可以使用均值、标准差、梯度等准则来评估像素之间的相似性。

3. 边缘检测边缘检测是一种常用的图像提取方法,其目的是识别图像中的边界。

边缘是图像中像素灰度变化明显的地方,可以通过求取像素灰度值的梯度来检测。

常用的边缘检测算法包括Sobel算子、Prewitt算子、Canny算子等。

在实际应用中,边缘检测算法通常需要经过非极大值抑制、双阈值处理等步骤进行优化。

4. 分水岭算法分水岭算法是一种基于图论的图像分割算法,它模拟了水在图像中流动的过程。

该算法首先将图像中的亮度值作为高度值构建一个二维拓扑图,然后根据图像中的边缘信息和像素灰度值的梯度计算图像中各个区域的边界。

通过对边界进行变换,可以将图像分割成不同的区域。

分水岭算法在处理具有复杂纹理和连续边界的图像时效果较好。

5. 基于深度学习的方法近年来,基于深度学习的图像分割与提取方法取得了显著的进展。

通过搭建深度神经网络,可以利用大规模训练样本进行图像分割与提取任务。

常见的深度学习方法包括全卷积神经网络(FCN)、U-Net、Mask R-CNN等。

在Matlab中实现医学图像分割和医学图像配准的方法

在Matlab中实现医学图像分割和医学图像配准的方法

在Matlab中实现医学图像分割和医学图像配准的方法医学图像处理在现代医学中起着重要的作用,它可以帮助医生更好地了解人体的结构和病变情况。

其中,医学图像分割和医学图像配准是两个常用的图像处理任务。

本文将介绍如何使用Matlab实现这两个任务的方法。

一、医学图像分割医学图像分割是将医学图像中感兴趣的区域从背景中分离出来的过程。

这对于病灶的检测和定位非常重要。

在Matlab中,有多种方法可以实现医学图像分割,如基于阈值的分割、基于区域的分割和基于边缘的分割等。

1. 基于阈值的分割基于阈值的分割是医学图像分割中最简单的方法之一。

它将图像中的像素根据亮度和颜色等特征进行分类。

在Matlab中,可以使用imbinarize函数实现阈值分割。

通过调整阈值的大小,可以得到不同的分割结果。

然而,这种方法对于复杂的图像可能效果不佳。

2. 基于区域的分割基于区域的分割是将图像中的像素分成若干区域,并根据相似性准则将它们合并或进一步细分的方法。

在Matlab中,可以使用regionprops函数计算各个区域的特征,并根据这些特征对区域进行分类和合并。

这种方法通常适用于异质性较小的图像。

3. 基于边缘的分割基于边缘的分割是通过检测图像中的边缘信息来实现分割的方法。

在Matlab中,可以使用边缘检测算法(如Canny算子)来提取图像中的边缘信息,并通过边缘连接或边缘跟踪来实现分割。

这种方法对于图像中有明显边缘的情况效果较好。

二、医学图像配准医学图像配准是将多个医学图像的位置和方向相对一致的过程。

它在医学影像的比较、融合和后续处理等方面具有重要的应用。

在Matlab中,有多种方法可以实现医学图像配准,如基于特征的配准、基于互信息的配准和基于形变场的配准等。

1. 基于特征的配准基于特征的配准是通过提取图像中的一些特征点或特征区域,并通过计算它们之间的相似性来实现配准的方法。

在Matlab中,可以使用SURF算法或SIFT算法来提取图像的特征,并通过RANSAC算法等方法来计算配准的变换矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程结业论文课题名称基于阈值的图像分割方法姓名湛宇峥学号1412202-24学院信息与电子工程学院专业电子信息工程指导教师崔治副教授2017年6月12日湖南城市学院课程结业论文诚信声明本人郑重声明:所呈交的课程结业论文,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。

对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。

本人完全意识到本声明的法律结果由本人承担目录摘要 (1)关键词 (1)ABSTRACT (2)KEY WORDS (2)引言 (3)1基于点的全局阈值选取方法 (4)1.1最大类间交叉熵法 (5)1.2迭代法 (6)2基于区域的全局阈值选取方法 (7)2.1简单统计法 (8)2.3 直方图变化法 (9)3局部阈值法和多阈值法 (10)3.1水线阈值算法 (11)3.2变化阈值法 (12)4仿真实验结论 (12)参考文献 (13)附录基于阈值的图像分割方法摘要:图像分割多年来一直受到人们的高度重视,至今这项技术也是趋于成熟,图像分割方法类别也是不胜枚举,近年来每年都有上百篇有关研究报道发表。

图像分割是由图像处理进到图像分析的关键环节,是指把图像分成各具特性的区域并提取出有用的目标的技术和过程。

在日常生活中,人们对图片的要求也是有所提高,在对图像的应用中,人们经常仅对图像中的某些部分感兴趣,这些部分就对应图像中的特定的区域,为了辨识和分析目标部分,就需要将这些有关部分分离提取出来,因此就要应用到图像分割技术。

关键词:图像分割;阈值;matlabBased on thresholding for image segmentationmethodsAbstract:Image segmentation is a indispensable part of image processing and analysis, have important practical significance.It is according to the needs of image processing and analysis of the image into each area and extract the characteristic of technology and process of interested target.Image segmentation methods and types have a lot of different categories, some segmentation operation can be directly applied to all images, while others can only apply to special image.The purpose of this paper is to through the collection of image segmentation method based on threshold related information, analysis the advantages and disadvantages of various segmentation algorithm, using the MATLAB tools to threshold segmentation algorithm is studied. Keywords: image segmentation; The threshold value; matlab引言在现代科学中,随着计算机科学技术的不断发展,人们在日常生活中对图像信息的需求急剧暴涨,人们对图像得要求也越来越高,p图软件,美颜相机等等也是越来越受大众喜爱,对此,数字图像处理技术在近年来也是得到了迅速的发展和改进,成为当下学科领域的热门焦点。

图像分割是图像识别和计算机视觉至关重要的预处理。

没有正确的分割就不可能有正确的识别。

但是,进行分割仅有的依据是图像中像素的亮度及颜色,由计算机自动处理分割时,将会遇到各种困难。

例如,光照不均匀、噪声的影响、图像中存在不清晰的部分,以及阴影等,常常发生分割错误。

因此图像分割是需要进一步研究的技术。

人们希望引入一些人为的知识导向和人工智能的方法,用于纠正某些分割中的错误,是很有前途的方法。

图像分割是从图像处理到图像分析的关键步骤,可以说,图像分割结果的好坏直接影响对图像的理解。

图像分割的方法也是不胜枚举。

其中阈值法就是一种传统而又简单实用的图像分割方法,也是最基础和最广泛的分割方法。

这些方法都广泛应用于各个领域,比如,红外技术应用,医药技术应用,农业工程技术应用,工业产业等行业。

1:基于点的全局阈值选取方法1.1最大类间交叉熵法在取阈值分割中,一般要求月至的选取要使分割的目标与背景尽可能的差异,假设图像有目标1和背景2两类像素,可以用交叉熵来度量目标和背景间的差异,将这种类间差异性用原始图像p 中的个像素点S 判决到目标和背景两类区域的两个后验概率p(1/s),p(2/s)之间的交叉熵的平均值表示,通过最大化将像素点判决到不同的区域的后验概率来求最优的阈值。

在这里,我们设X 是一幅具有L 级灰度级的图像,其中第i 级像素为i N 个,其中i 的值在0~L-1之间,图像的总像素点个数为:第i 级出现的概率为:图像的总平均灰度级为:∑-==10L i iiP μN N P i i =∑-==10L i i N N0C 类像素所占面积的比例为:1C 类像素所占面积的比例为:01-=ωω10C 类像素的平均灰度为:000=ωμμ/)()(k k 1C 类像素的平均灰度为: 111=ωμμ/)()(k k其中,则类间方差公式为:22)()()(01002-+-=μμωμμωδk1.2迭代法迭代法求阈值的原理: 基于逼近的思想,步骤如下: 1. 求出图象的最大灰度值和最小灰度值,分别记为ZMAX 和ZMIN ,令初始阈值T0=(ZMAX+ZMIN)/2; 2. 根据阈值TK 将图象分割为前景和背景,分别求∑-=0=10k i iP ω∑-=0=10)(k i i iP k μ∑-=01-==1)(1)(L k i i k iP k μμ出两者的平均灰度值ZO 和ZB 3. 求出新阈值TK+1=(ZO+ZB)/2; 4. 若TK=TK+1,则所得即为阈值;否则转2,迭代计算。

2:基于区域的全局阈值选取方法2.1简单统计法简单统计法是一种基于简单的图像统计的基础阈值选取方法。

阈值通过简单统计法可以直接计算得到,从而避免了去分析灰度直方图。

该方法的计算公式为()()()∑∑∑∑=x y x yy x e y x f y x e T ,,, (8)其中, (){}y x e e y x e ,max ,=()()y x f y x f e x ,1,1+--=()()1,1,+--=y x f y x f e y2.2 直方图变化法实际的说,直方图的谷底是非常理想的分割阈值,现实很难操作,而且在实际应用中,图像也会受到噪声等其他环境等的影响从而使其直方图上原本分离的峰之间的谷底被填充,或者目标和背景的峰相距很近或者大小差不多。

直方图变化的基本思想是利用一些像素领域的局部性质对原来的直方图进行变换已得到一个新的直方图,对比原直方图,或者峰之间的谷更深了。

或者谷转变成峰从而更好检测了。

借助前面的梯度算子作用于领域可以得到该像素的梯度值。

3:局部阈值法和多阈值法3.1水线阈值算法分水岭图像分割算法是借助地形学的概念进行操作的,这种方法近年来得到了广泛的使用,该算法要操作需要掌握相关的数学形态学的理念和方法。

该算法是串行计算过程,得到的是目标的边界,这种方法是通过确定分水岭的位置而进行的图像分割,但由于各区域内部像素的灰度很相近,相邻区域的像素灰度差距比较大,可以先计算一幅图的梯度图,再找梯度图的分水岭。

3.2变化阈值法有时候图像中有如下一些情况:有阴影,照度不均匀,各处的对比度不同,突发噪声,背景灰度变化等,在这些情况下,如果只用一个固定的全局阈值对整幅图像进行分割,则由于不能兼顾图像各处的情况而使分割效果受到影响。

有一种解决办法就是用与象素位置相关的一组阈值来对图像各部分分别进行分割。

这种与坐标相关的阈值也叫动态阈值,此方法也叫变化阈值法。

例如,一幅照度不均(左边亮右边暗)的原始图像为:图4.原始图像图5.阈值低,对亮区效果好,则暗区差图6.阈值高,对暗区效果好,则亮区差图7.按两个区域取局部阈值的分割结果4:仿真实验结论阈值法是一种传统但有简单有效实用的基础图像分割方法。

图像的的变化是无穷无尽的,在实际应用中,通常将多种分割算法有效地结合在一起使用以获得更好的分割效果。

除了以上介绍的方法外,还存在着多种不同的其他有效方法,在此,就不多介绍,此外,本片论文也存在在一些描述不是很清楚的地方,希望有缘读者可以提供相关建议和意见,一定多加感谢。

参考文献:1 夏得深,傅德胜.现代图像处理技术与应用.东南大学出版,20012余成波.数字图像处理及MATLAB实现[M].重庆:重庆大学出版社,2003.3刘直芳,游胜志等.基于多尺度彩色形态矢量算子的边缘检测.中国图像图形学报2002 (9) 888-8934周铭,周惠.基于遗传算法的自适应聚类图像阈值分割方法.计算机工程与应用[J],2005,5(6):231-245.5杨杰,黄朝兵. 数字图像处理及MATLAB实现.电子工业出版社,20106 吴一全,朱兆达.图像处理中阈值选取方法30年(1962-1992)的进展(一).数据采集与处理[J],1993,9(3):193-201.7 吴一全,朱兆达.图像处理中阈值选取方法30年(1962-1992)的进展(二).数据采集与处理8 王茜蓓,彭中,刘莉.一种基于自适应阈值的图像分割算法.北京理工大学学报[J],2003,23(4):531-524.9 Sahoo P K et al. A survey of thresholding techniques. ComputerVision, Graphics and Image Processing[J],1988,41(3):233-260.10 Doyle W.Operations useful for similarity-invariant pattern recognition JACM[J],1962, 9(2):259-26711 Perez A, Gonzalez R C.An iterative thresholding algorithm for image segmentation. IEEE Trans[J],1987,9(6):742-751.附录:I=imread('tsaml.jpg');I=double(I);T=(min(I(:))+max(I(:)))/2;done=false;i=0;while ~doner1=find(I<=T);r2=find(I>T);Tnew=(mean(I(r1))+mean(I(r2)))/2;done=abs(Tnew-T)<1;T=Tnew;i=i+1;endI(r1)=0;I(r2)=1;figure;imshow(I)2:a=imread('img.bmp'); imshow(a)figure;imhist(a)。

相关文档
最新文档