七年级上册复习题(3)
人教版七年级上册英语Unit3 复习检测试题
Unit 3 复习检测一、根据首字母提示完成单词。
1. My sister is 30 and she is an English t .2. I can't h you with English because I'm not good at it.3. Ms. Miller is nice and she is w in her class.4. You must write these numbers in your n .5. You can find this book in my school l .二、根据汉语提示完成句子。
6. 那是迈克的蓝色夹克衫吗?________ ________ Mike's blue jacket?7. 我把学生证丢了。
I ________ ________ school ID card.8. 你如何拼写“notebook”这个单词?________ do you ________ the word “notebook”?9. 艾伦在教室里发现了一串钥匙。
Alan found ________ ________ ________ ________ in the classroom.10. 你可以向你的老师要学生证。
You can ______________ your teacher________ your school ID card.三、按要求完成句子。
11. Those are her erasers. (改为一般疑问句)________ ________ her erasers?12. Is that Jack's black pen? (补全肯定答语)Yes, ________ ________.13. Are these your books? (补全否定答语)No, ________ ________.14. Those are her CDs. (改为同义句)Those CDs ________ ________.15. Thank you for helping me. (改为同义句)________ for ________ help.四、完形填空。
人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题三(含答案) (44)
人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题三(含答案)冰封超市购进一批运动服,按进价提高40%后标价,为了让利于民,增加销量,超市决定打八折出售,这时每套运动服的售价为140元.(1)求每套运动服的进价?(2)超市卖出一半后,正好赶上双十一促销,商店决定将剩下的运动服每3套400元的价格出售,很快销售一空,这批运动服超市共获利14000元,求该超市共购进多少套运动服?【答案】(1)每套运动服的进价为125元.(2)该超市共购进1200套运动服.【解析】【分析】(1)设每套运动服的进价是x元.进价×(1+40%)×八折=售价;(2)设该超市共购进m套运动服,根据“商店决定将剩下的运动服每3套400元的价格出售,很快销售一空,这批运动服超市共获利14000元”列出方程并解答.【详解】解:(1)设每套运动服的进价为x元(1+40%)×80%x=140∴ x=125答:每套运动服的进价为125元.(2)设该超市共购进m套运动服,(140-125)×2m +(4003-125)×2m =14000 ∴m =1200 答:该超市共购进1200套运动服.【点睛】本题考查了一元一次方程的应用.关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.32.下表中有两种移动电话计费方式:说明:月使用费固定收取,主叫不超限定时间不再收费,主叫超时部分加收超时费;被叫免费.(1)若李杰某月主叫通话时间为200分钟则他按方式一计费需 元,按方式二计费需 元;若他按方式二计费需103.8元,则主叫通话时间为 分钟;(2)是否存在某主叫通话时间t (分钟),按方式一和方式二的计费相等,若存在,请求出t 的值;若不存在,请说明理由;(3)请你通过计算分析后,直接给出当月主叫通话时间t (分钟)满足什么条件时,选择方式一省钱;当每月主叫通话时间t (分钟)满足什么条件时,选择方式二省钱.【答案】(1)75;100;400;(2)当t=300时,方式一和方式二的计费相等;(3)当月主叫通话时间小于300分钟时,选择计费方式一省钱;当月主叫通话时间等于300分钟时,选择两种计费方式费用相等;当月主叫通话时间大于300分钟时,选择计费方式二省钱.【解析】【分析】(1)根据两种计费方式收费标准列式计算,即可求出结论;(2)分t≤160、160<t≤380、t>380三种情况考虑:①当t≤160时,由65≠100可得出不存在计费相等;②当160<t≤380时,由计费相等,即可得出关于t的一元一次方程,解之即可得出结论;③当t>380时,由计费相等,即可得出关于t的一元一次方程,解之即可得出t值,由该t值不大于380可得出不存在计费相等.综上即可得出结论;(3)分t≤160、160<t<300、t=300、300<t≤380、t>380五种情况比较两种计费方式收费的多少,此题得解.【详解】解:(1)按方式一计费需:65+(200﹣160)×0.25=75(元),按方式二计费需100元.主叫通话时间(103.8﹣100)÷0.19+380=400(分钟).故答案为75;100;400.(2)①当t≤160时,方式一计费需65元,方式二计费需100元,∴不存在计费相等;②当160<t≤380时,有65+0.25(t﹣160)=100,解得:t=300;③当t>380时,有65+0.25(t﹣160)=100+0.19(t﹣380),解得:t=1403,∵1403<380,∴舍去,即不存在计费相等.综上所述:当t=300时,方式一和方式二的计费相等.(3)当0≤t≤160时,75<100,∴选计费方式一省钱;当160<t≤300时,65+0.25(t﹣160)≤100,∴选计费方式一省钱;当t=300时,65+0.25(t﹣160)=100,∴两种计费方式费用相等;当300<t≤380时,65+0.25(t﹣160)>100,∴选计费方式二省钱;当t>380时,65+0.25(t﹣160)>100+0.19(t﹣380),∴选计费方式二省钱.综上所述:当月主叫通话时间小于300分钟时,选择计费方式一省钱;当月主叫通话时间等于300分钟时,选择两种计费方式费用相等;当月主叫通话时间大于300分钟时,选择计费方式二省钱.【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)根据收费标准,列式计算;(2)分t ≤160、160<t ≤380、t >380三种情况考虑;(3)分t ≤160、160<t <300、t =300、300<t ≤380、t >380五种情况考虑.33.列方程解应用题:整理一批图书,由一个人做要30h 完成.现计划由一部分人先做1h ,然后增加6人与他们一起做2h ,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?【答案】具体应先安排6人工作.【解析】【分析】根据题意,设具体应先安排x 人工作,则x 人先做1h 完成这项工作的30x , 增加6人与他们一起做2h ,完成这项工作的6230x +⨯,由相等关系:x 人先做1h 完成的工作+增加6人与他们一起做2h ,完成的工作=1,可以列出相应的方程,从而可以解答本题.【详解】设具体应先安排x 人工作,6213030x x ++⨯=, 解得,x =6,答:具体应先安排6人工作.故答案为具体应先安排6人工作.【点睛】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.34.在数轴上,点A 表示数a ,点B 表示数b ,已知a 、b 满足()2360a b b ++-=.(1)求a 、b 的值;(2)若在数轴上存在一点C ,使得C 到A 的距离是C 到B 的距离的2倍,求点C 表示的数;(3)若小蚂蚁甲从点A 处以1个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B 处以2个单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时在原点O 处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t 秒.求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t .【答案】甲、乙两小球到原点的距离相等时经历的时间为43秒或8秒 【解析】【分析】(1)根据非负数的性质求得a 、b 的值;(2)点C 可能在A 、B 之间,也可能在点B 的右侧;(3)需要分类讨论:①甲、乙两球均向左运动,即0≤t ≤3时;①甲、乙两球均向左运动,即t >3时.根据速度、时间、距离的关系列出方程并解答.【详解】解:(1)①()360a b b ++-=,①3060a b b +=⎧⎨-=⎩,解得a=-2,b=6;(2)设点C表示的数是x,①当点C在A、B之间时,x-(-2)=2(6-x),;解得x=103①当点C在B点的右侧时, x-(-2)=2(x-6),解得x=7综上所述,点C表示10或7;3(3)①甲、乙两球均向左运动,即0≤t≤3时,此时OA=2+t,OB′=6-2t,则可得方程2+t=6-2t,;解得t=43①甲继续向左运动,乙向右运动,即t>3时,此时OA=2+t,OB′=2t-6,则可得方程2+t=2t-6,解得t=8.秒或8秒.答:甲、乙两小球到原点的距离相等时经历的时间为43【点睛】本题考查了非负数的性质,一元一次方程的应用,数轴的知识及分类讨论的数学思想,注意在求解未知数的时候,我们可以设出这个量,然后根据题目的等量关系列方程求解.35.某学校在一次环保知识宣传活动中,需要印刷若干份调查问卷.印刷厂有甲、乙两种收费方式:甲种方式收制版费6元,每一份收印刷费0.1元;乙种方式不收制版费,每印一份收印刷费0.12元.设共印调查问卷x份:(1)按甲种方式应收费多少元,按乙种方式应收费多少元(用含x的代数式表示);(2)若共需印刷500份调查问卷,通过计算说明选用哪种方式合算?(3)印刷多少份调查问卷时,甲、乙两种方式收费一样多?【答案】(1)按甲种方式印刷x份需(0.1x+6)元,按乙种方式印刷x份需0.12x元;(2)甲种方式合算;(3)300份时价格相同.【解析】【分析】(1)根据题意可列甲种方式收费(0.1x+6)元,乙种方式收费0.12x元;(2)分别计算出甲乙两种方式的收费钱数,再作比较;(3)令(0.1x+6)=0.12x,解出x即可.【详解】解:(1)按甲种方式印刷x份需(0.1x+6)元,按乙种方式印刷x份需0.12x 元;⨯+6=56元,(2)x=500时,甲种方式收费:0.1500⨯=60元,乙种方式收费:0.12500故甲种方式合算;(3)令(0.1x+6)=0.12x,解得x=300,即印300份时价格相同.【点睛】此题主要考察列一元一次方程解实际问题.36.小彬和小颖相约到书店去买书,下面是两个人的对话:小斌:“听说花20元办一张会员卡,买书可享受八五折优惠.”小颖:“是的,我上次买了几本书,加上办一张会员卡的费用,最后还省了10元.”根据题目的对话,求小颖上次所买图书的原价.【答案】200元.【解析】【分析】设购买图书的原价为x元,根据原价 折扣+20元=原价-10元,可列方程,解之即可.【详解】设购买图书的原价为x元,由题意得0.85x+20=x-10,解得:x=200,答:小颖上次所买图书的原价为200元.【点睛】此题主要考察一元一次方程的应用.37.把一批书分发给某班的学生,若每名学生发3本书,则剩余20本书;若每名学生发4本书,则还少25本书.问这个班级有多少名学生?这批书有多少本?【答案】这个班级有45名学生,这批书有155本.【解析】【分析】设这个班有x名学生,根据两种不同的分配方法的书的总量相等列出方程并解答即可.【详解】设这个班级有x名学生,依题意,得3x+20=4x-25,3x-4x=-25-20,-x=-45,x=45,所以3x+20=155(本),答:这个班级有45名学生,这批书有155本.【点睛】本题考查了一元一次方程的应用,解题的关键是根据题意找出等量关系列出方程即可.38.如图:在数轴上A点表示数a,B点表示数b,C点表示数c,b是最小的正整数,且a、b满足|a+3|+(c−8)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C 之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=_________,AC=_________,BC=_________.(用含t的代数式表示)(4)请问:3BC−2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【答案】(1)-3;1;8;(2)4;(3)3t+4;5t+11;2t+7;(4)3BC-2AB=13,不随着时间t的变化而改变.【解析】【分析】(1)由非负数的性质,得a+3=0,c﹣8=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)利用题意结合数轴表示出A、B、C三点表示的数,进而可得AB、AC、BC的长;(4)由3BC﹣2AB=3(2t+7)﹣2(3t+4)求解即可.【详解】(1)∵|a+3|+(c−8)2=0,∴a+3=0,c﹣8=0,解得:a=﹣3,c=8.∵b是最小的正整数,∴b=1.故答案为﹣3,1,8.(2)设B 的对称点D 对应的数为x ,则线段AC 和BD 的中点重合,①13822x +-+=,解得:x =4,所以与点B 重合的数是:4. 故答案为4.(3)AB =t +2t +4=3t +4,AC =t +4t +11=5t +11,BC =7+4t -2t =2t +7. 故答案为3t +4;5t +11;2t +7.(4)不变.3BC ﹣2AB =3(2t +7)﹣2(3t +4)=6t +21﹣6t ﹣8=13.不变,始终为13.【点睛】本题考查了数轴及两点间的距离,以及非负数的性质,解题的关键是利用数轴的特点能求出两点间的距离.39.(阅读理解)第一届现代奥运会于1896年在希腊雅典举行,此后每4年举行一次,奥运会如因故不能举行,届数照算.则奥运会的年份可排成如下一列数:1896,1900,1904,1908,…观察上面一列数,我们发现这一列数从第二项起,每一项与它前一项的差都等于同一个常数4,这一列数在数学上叫做等差数列,这个常数4叫做等差数列的公差.(1)等差数列2,5,8,…的第五项多少;(2)若一个等差数列的第二项是28,第三项是46,则它的公差为多少,第一项为多少,第五项为多少;(3)聪明的小雪同学作了一些思考,如果一列数a 1,a 2,a 3,…是等差数列,且公差为d,根据上述规定,应该有:a 2-a1=d,a3-a2= d,a4-a3= d,…所以a 2=a1+d,a3=a2+d=(a1+d)+d=a1+2d,a4=a3+d=( a1+2d)+d=a1+3d,…则等差数列的第n项a n多少(用含有a1、n与d的代数式表示);(4)按照上面的推理,2008年中国北京奥运会是第几届奥运会,2050年会不会(填“会”或“不会”)举行奥运会.【答案】(1)第五项是14;(2)公差是18,第一项是10,第五项是82;(3)等差数列的第n项a n= a1+(n-1)d;(4)2008年中国北京奥运会是第29届奥运会,2050年不会举行奥运会.【解析】【分析】(1)由等差数列的定义可知,公差为3,则第四项为11,第五项为14;(2)由公差定义得:公差=第三项-第二项,即可解决问题,第二项减公差即可求得第一项,第二项加公差的三倍,即可求得第五项;(3)由递推公式即可得到等差数列通项公式;(4)由(3)中通项公式,令a n=2018,解n值;a n=2050,解n值,再进行判断.【详解】(1)由等差数列2,5,8,…可知,公差为3,所以第四项是8+3=11,第五项是11+3=14;(2)由题意得:公差=46-28=18;第一项为:28-18=10,第五项为:46+18+18=82;(3)a 2=a1+d,a3=a2+d=(a1+d)+d=a1+2d= a1+(3-1)d,a4=a3+d=( a1+2d)+d=a1+(4-1)d,…则等差数列的第n项a n= a1+(n-1)d;(4)设第n届奥运会时2008年,由于每4年举行一次,∴数列{a n}是以1896为首项,4为公差的等差数列,∴a n=2008=1896+4(n-1),解得n=29,故2008年中国北京奥运会是第29届奥运会,令a n=2050,得1896+4(n-1)=2050,,解得n=1382∵n是正整数,∴2050年不会举行奥运会.【点睛】本题考查学生阅读能力和从实际生活中抽象出数学模型,然后建模求得结果,难点从题意构造等差数列,把实际问题转化为数列问题,属基础题.40.为了开展阳光体育活动,七年级二班计划买一些乒乓球和乒乓球拍,体育委员到商店了解到的情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?【答案】(1)当购买乒乓球20盒时,两种优惠办法付款一样;(2)购买15盒乒乓球时,去甲店比较合算.【解析】【分析】(1)设购买x盒乒乓球时,两种优惠办法付款一样,在甲店购买所需的费用=30×乒乓球拍5副+需要花钱的球数×5,在乙店购买所需的费用=30×乒乓球拍5副×90%+球数×5×90%,根据两家的付款一样建立方程,求出其解即可;(2)根据(1)中的代数式,把x=15分别代入计算出钱数即可;【详解】(1)设购买x盒乒乓球时,两种优惠办法付款一样,则在甲店付款为:30×5+(x-5)×5=5x+125(元)在乙店付款为:(30×5+5x)×0.9=135+4.5x(元)由题意,得5x+125=135+4.5x解得:x=20,答:当购买乒乓球20盒时,两种优惠办法付款一样.(2)当购买15盒时:甲店需付款30×5+(15-5)×5=200(元)乙店需付款(30×5+15×5)×0.9=202.5(元)因为200<202.5,所以购买15盒乒乓球时,去甲店比较合算.【点睛】考查一元一次方程的应用,读懂题目中的两店的优惠方案是解题的关键.。
人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题三(含答案) (81)
人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题三(含答案)一、解答题1.七年级学生在4名数学老师的带领下去公园游玩,公园的门票为每人20元,现有两种优惠方案,甲方案:师生都按7.5折收费.乙方案:带队老师免费,学生按8折收费.(1)如有a名学生,用代数式表示两种优惠方案各需多少元?(2)当a=50时,采用哪种方案优惠?(3)当a=120时,采用哪种方案优惠?【答案】(1)甲方案为:15a+60;乙方案为:16a;(2)乙方案优惠;(3)甲方案优惠;【解析】【分析】(1)根据题意分别表示出两种方案的钱数即可;(2)把a=50代入,比较大小即可;(3)把a=120代入,比较大小即可.【详解】(1)若有a名学生,甲方案为:(15a+60)元;乙方案为:16a元;(2)当a=50时,甲方案需810元,乙方案需800元,此时乙方案优惠;(3)当a=120时,甲方案需1860元,乙方案需1920元,此时甲方案优惠.【点睛】此题考查了代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.2.某工厂第一车间有x人,第二车间比第一车间人数的45少30人,那么:()1两个车间共有多少人?()2如果从第一车间调出20人到第二车间后,两车间人数一样多,求原来两个车间各多少人?【答案】原来第一车间50人,原来第二车间10人.【解析】【分析】(1)表示出第二车间的人数,进而表示出两个车间的总人数;(2)根据等量关系:从第一车间调出20人到第二车间后,两车间人数一样多,列出方程求解即可.【详解】(1)根据题意得:两个车间共有x+45x﹣30=(95x﹣30)人;(2)根据题意得:x﹣20=45x﹣30+20解得:x=50.当x=50时,45x﹣30=40﹣30=10.答:原来第一车间50人,原来第二车间10人.【点睛】本题考查了一元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.3.为应对越来越严重的雾霾天气,孔明同学所在班级的家长委员会,准备为该班集资捐赠一台大型的空气净化机,现知道某商场将该型号的空气净化机按标价的八折出售,每台空气净化机仍可获利5%,已知该型号客气净化机的进价为4000元.()1求该空气净化机的标价.()2若该班有50名学生,则该班每位学生家长应平均捐助多少元.【答案】(1)该空气净化机的标价为5250元;(2)该班每位学生家长应平均捐助84元.【解析】【分析】(1)设该空气净化机的标价为x元,根据售价-进价=利润得到方程为0.8x-4000=4000×5%,解方程求出x的值即可;(2)先求出八折后的售价,然后求出平均捐款.【详解】(1) 设该空气净化机的标价为x元则有0.8x-4000=4000×5%,解得:x=5250.答:该空气净化机的标价为5250元;⨯=(元),(2)52500.84200÷=(元).42005084答:该班每位学生家长应平均捐助84元.【点睛】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.4.列方程解应用题:张大叔在承包的10亩地里所种植的黄瓜和西红柿共获利13800元,其中,黄瓜每亩获利1200元,西红柿每亩获利1500元,问黄瓜种植了多少亩?【答案】黄瓜种了4亩.【解析】【分析】设黄瓜种了x亩,则西红柿种了(10-x)亩,由题意得出相等关系为:甲、乙两种蔬菜共10亩和共获利13800元,列方程求解即可.【详解】解:设黄瓜种了x亩,则西红柿种了(10-x)亩,由题意得1200x+1500(10-x)=13800,解得:x=4,则10-x=10-4=6.答:黄瓜种了4亩.【点睛】此题考查的是一元一次方程的应用,关键是确定相等关系列出方程求解.5.某快递员准备送出一批美术用纸共25500包,其中包括素描纸、手工彩色卡纸和水粉纸三种美术用纸,它们的数量比为1:2:14.该快递员准备送出的这三种美术用纸各多少包?【答案】素描纸用纸1500包、手工彩色卡纸3000包和水粉纸用纸21000包【解析】【分析】直接利用已知设它们的数量比为x:2x:14x,进而得出等式求出答案【详解】设素描纸、手工彩色卡纸和水粉纸三种美术用纸,它们的数量比为x:2x:14x,根据题意可得:x+2x+14x=25500,解得:x=1500,则2x=3000,14x=21000,答:素描纸用纸1500包、手工彩色卡纸3000包和水粉纸用纸21000包.【点睛】此题主要考查了一元一次方程的应用,正确得出等式是解题关键6.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过200元后,超过200元的部分按9折收费;在乙商场累计购物超过100元后,超过100元的部分按9.5折收费,顾客到哪家商场购物花费少?【答案】详见解析.【解析】【分析】先设顾客累计花费x元,再根据三种情况进行讨论,当x≤100,100<x≤200,x≥200时,分别进行分析,即可得出答案.【详解】设顾客累计花费x元,根据题意得:(1)当x≤100时,两家商场都不优惠,则花费一样;(2)当100<x≤200时,去乙商场享受优惠,花费少;(3)当x≥200,在甲商场花费200+(x-200)×90%=0.9x+20(元),在乙商场花费100+(x-100)×95%=0.95x+5(元),①到甲商场花费少,则0.9x+20<0.95x+5,解得x>300;①到乙商场花费少,则0.9x+20>0.95x+5,x<300;①到两家商场花费一样多,则0.9x+20=0.95x+5,x=300.【点睛】本题主要考查一元一次方程与不等式的实际应用,设出未知数,根据题意列出所有可能的情况是解此题的关键.7.列方程解应用题.为纪念红军长征胜利80周年,让人们更好地了解历史,开展爱国主义教育,传承和弘扬伟大的长征精神,军事博物馆举办“英雄史诗不朽丰碑–纪念中国工农红军长征胜利80周年主题展览”.展览图片、文物、艺术品共计572件,文物比艺术品的5倍还多27件,图片比文物、艺术品的和少22件,求展出的艺术品有多少件.【答案】展出的艺术品有45件【解析】【分析】由题意找出等量关系:展览图片+文物+艺术品=572件和文物比艺术品的5倍还多27件,图片比文物、艺术品的和少22件,再设展出的艺术品有x件,列出方程求解即可.【详解】设展出的艺术品有x件,根据题意列方程,得(5x+27+x-22)+x+(5x+27)=572,解得:x=45.答:展出的艺术品有45件.【点睛】考查了一元一次方程的应用,读懂题意,找出题目中的等量关系,列出方程是解题的关键,本题的等量关系是:展览图片+文物+艺术品=572件.8.A、B两地相距600千米,一列慢车从A地开出,每小时行驶80千米,一列快车从B地开出,每小时行驶120千米,两车同时开出.()1若相向而行,出发后多少小时相遇?()2若相背而行,多少小时后,两车相距800千米()3若两车同向而行,快车在慢车后面,多少小时后,快车追上慢车?【答案】(1)若相向而行,出发后3小时相遇;(2)若两车同向而行,快车在慢车后面,15小时后,快车追上慢车.【解析】【分析】(1)设出发后x小时两车相遇,根据两地间距=相遇时间×两车速度之和,即可列出关于x的一元一次方程,解方程即可;(2)设y小时后两车相距800千米,根据行驶时间×两车速度和=两车间距-两地间距,即可列出关于y的一元一次方程,解方程即可;(3)设出发后z小时快车追上慢车,根据两地间距=相遇时间×两车速度之差,即可列出关于z的一元一次方程,解方程即可.【详解】(1)设出发后x小时相遇,根据题意,可得(80+120)x=600,解得x=3.答:若相向而行,出发后3小时相遇;(2)设y小时后两车相距800千米,根据题意,可得(80+120)y=800-600,解得y=1.答:若相背而行,1小时后,两车相距800千米;(3)设z小时后快车追上慢车,根据题意,可得(120-80)z=600,解得z=15.答:若两车同向而行,快车在慢车后面,15小时后,快车追上慢车.【点睛】考查了一元一次方程的应用,掌握行程问题中的基本数量关系是解决问题的关键.9.当x 为何值时,代数式2(x+1)与代数式1﹣x 的值互为相反数?【答案】x=﹣3【解析】【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到x 的值.【详解】根据题意得:2(x +1)+1﹣x =0,去括号得:2x +2+1﹣x =0,解得:x =﹣3.【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.10.为节约用水,某市规定三口之家每月标准用水量为15立方米,超过部分加价收费,假设不超过部分水费为1.5元∕立方米,超过部分水费为3元∕立方米.设用户用水量为a 立方米.()1请用代数式表示:①该户用水量不超过标准用水量应缴纳的水费;②该户用水量超过标准用水量应缴纳的水费;()2如果小明家10月份用水20立方米,那么该月应交多少水费?【答案】()1①1.5a 元;②()322.5a -元;()2小明家10月份应交水费为37.5元.【解析】【分析】(1)①不超过部分水费为1.5元∕立方米,用a乘以1.5即可;②水费分两部分:15立方米按1.5元∕立方米收费,超过部分(a-15)按3元∕立方米收费,然后把两者相加即可;(2)把a=20代入②中的代数式中,计算出代数式的值即可.【详解】()1①该户用水量不超过标准用水量应缴纳的水费为1.5a元;②该户用水量超过标准用水量应缴纳的水费为()()⨯+-⨯=-元;a a15 1.5153322.5()2小明家10月份应交水费为32022.537.5⨯-=(元).【点睛】本题考查了列代数式,解题时要注意区分水价。
人教版七年级数学上册第三章从算式到方程复习题3(含答案) (80)
人教版七年级数学上册第三章从算式到方程复习题3(含答案)已知关于x 的方程(m -n )x 2+mx+n=0,你认为:(1)当m 和n 满足什么关系时,该方程是一元二次方程?(2)当m 和n 满足什么关系时,该方程是一元一次方程?【答案】(1)当m ≠n 时,方程是一元二次方程;(2)当m=n 且m ≠0时,方程是一元一次方程【解析】试题分析:(1)一元二次方程要求最高项次数为2且二次项系数不为0,由题,只要0m n -≠ 即可确定方程为一元二次方程.(2)一元一次方程要求最高项次数为1且一次项系数不为0,所以当方程同时满足00m n m -=≠, 时,即可确定方程为一元一次方程.试题解析:(1)根据题意得:m -n ≠0,解得:m ≠n ;(2)根据题意得:00m n m -=⎧⎨≠⎩, 解得:0m n =≠.当m n = 且0m ≠ 时,方程是一元一次方程.点睛:本题考查一元二次方程与一元一次方程的辨析,解题的关键在于清楚一元二次方程的最高项次数为2且二次项系数不为0,而一元一次方程的最高项次数为1且一次项系数不为0.92.根据下列题干设未知数列方程,并判断它是不是一元一次方程.(1)从60cm 的木条上截去2段同样长的木棒,还剩下10cm 长的短木条,截下的每段为多少?(2)小红对小敏说:“我是6月份出生的,我的年龄的2倍加上10,结果正好是我出生的那个月的总天数,你猜我有几岁?”【答案】(1) 60-2x=10,是一元一次方程;(2) 2x+10=30,是一元一次方程.【解析】【分析】(1)根据等量关系:木条截取两段后剩下的长度等于10cm,即可列出方程,(2)根据等量关系:我的年龄的2倍加上10等于我出生的那个月的总天数,即可列出方程.【详解】(1)设截下的每段为x cm,根据题意可列出方程为:60-2x=10,(2)设小红的岁数为x,根据题意可列出方程为:2x+10=30.(1)(2)都是一元一次方程.93.根据“欢欢”与“乐乐”的对话,解决下面的问题:欢欢:我手中有四张卡片,它们上面分别写有8,3x+2,12x-3,1x.乐乐:我用等号将这四张卡片中的任意两张卡片上的数或式子连接起来,就会得到等式或一元一次方程.问题:(1)乐乐一共能写出几个等式?(2)在她写的这些等式中,有几个一元一次方程?请写出这几个一元一次方程.【答案】(1)6个等式(2)有3个一元一次方程,它们分别是:3x +2=8,12x -3=8,12x -3=3x +2 【解析】试题分析:(1)共有4个式子,任意两张构成一个等式,一共可写出6个等式,(2)根据(1)列出的所有等式,根据一元一次方程的定义可以判定.试题解析:(1)乐乐一共能写出6个等式:8=3x +2,1832x =-,18x =,13232x x +=-, 132x x +=,11 32x x-=, (2)在(1)中有3个一元一次方程,它们分别是: 8=3x +2,1832x =-,1 3232x x +=-. 94.设未知数,列方程不解答:(1)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,求男生人数;(2)五一节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,求该电器的成本价;(3)甲、乙两人分别用20元和10元买了一本同样的书,结果营业员找给甲的零钱是找给乙的零钱的6倍,求这本书的价格.【答案】(1)设男生人数为x 元,列方程为:3x +2(20-x)=52(2)设该电器的成本价为x ,列方程为:(1+30%)x ·80%=2080(3)设这本书的价格为x 元,则20-x =6(10-x)【解析】试题分析:(1)根据等量关系:男生植树的棵树加上女生植树的棵树等于总棵树,可列出方程,(2)根据等量关系:成本价乘以(1+30%),再乘以80%,等于售价,可列出方程,(3)根据等量关系:找给甲的零钱是找给乙的零钱的6倍,可列出方程. 试题解析:(1)设男生人数为x 元,列方程为:3x +2(20-x )=52,(2)设该电器的成本价为x ,列方程为:(1+30%)x ·80%=2080,(3)设这本书的价格为x 元,列方程为:20-x =6(10-x ).95.若不等式5(2)86(1)7x x -+≤-+的最小整数解是方程3-3x ax -=的解, 求的值。
人教版七年级数学上册第二章整式复习试题三(含答案) (53)
人教版七年级数学上册第二章整式复习试题三(含答案) 在式子222,2,,,,1x a b a c d a d x-=π+>中,代数式有( ) A .6个B .5个C .4个D .3个【答案】C【解析】【分析】利用代数式的定义分别分析进而得出答案.【详解】 在式子222,2,,,,1x a b a c d a d x -=π+>中,代数式有2222x a b a x-,,,,共有4个.故选:C .【点睛】此题主要考查了代数式的定义,正确把握定义是解题关键.22.如图①是一块瓷砖的图案用这种瓷砖来铺设地面如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个,若这样铺成一个15×15的正方形图案,则其中完整的圆共有( )个.A .365B .366C .420D .421【解析】【分析】根据给出的四个图形的规律可以知道,组成大正方形的每个小正方形上有一个完整的圆,因此圆的数目是大正方形边长的平方,每四个小正方形组成一个完整的圆,从而可得这样的圆是大正方形边长减1的平方,从而可得若这样铺成一个15×15的正方形图案,则其中完整的圆共有2×152﹣2×15+1=421个.【详解】解:分析可得:组成大正方形的每个小正方形上有一个完整的圆,因此圆的数目是大正方形边长的平方,即为n 2;又每四个小正方形组成一个完整的圆,这样的圆的个数是大正方形边长减1的平方,即为(n ﹣1)2,∴若这样铺成一个n ×n 的正方形图案,所得到的完整圆的个数共有:n 2+(n ﹣1)2=2n 2﹣2n +1当n =15时,2×152﹣2×15+1=421故选:D .【点睛】此题考查图形的变化类,解题关键在于找出其规律型即可.23.下列说法:① a -一定是负数; ②一个有理数不是整数就是分数;③单项式232x y π的系数是32; ④多项式324x y xy y --是四次三项式.其中正确的个数为( )A .1B .2C .3D .4【解析】【分析】根据负数的定义和有理数的分类可判断①②;根据单项式和多项式的概念可判断③④.【详解】①-a 有可能是正数,也有可能是负数,还有可能是0,故原说法错误; ②一个有理数中不是整数就是分数,正确;③单项式232x y π的系数是32π,故原说法错误; ④多项式324x y xy y --是四次三项式,正确.故选B.【点睛】此题主要考查了负数、有理数的分类,关键是掌握0既不是正数也不是负数.同时还考查了单项式和多项式的有关概念.24.单项式 -23 ab 2 的系数和次数分别为( )A .-2 ,5B .-8 ,3C .-8 ,2D .-2 ,6【答案】B【解析】【分析】根据单项式的系数和次数的定义回答即可.【详解】解:单项式-23ab 2的系数为:-23=-8,次数为:1+2=3,故选:B .本题主要考查了单项式,正确掌握系数和次数的定义是解题关键.25.我国为了解决药品价格过高的问题,决定大幅度降低某些药品价格,其中将原价为a 元的某种常用药降低60%,则降低后的价格为( )A .0.4a 元B .0.6a 元C .0.4a 元D .0.6a 元【答案】C【解析】【分析】根据题意可得:降价后是在a 的基础上减少了60%,价格为:a (1-60%)=40%a=0.4a 元.【详解】解:依题意得:价格为:a (1﹣60%)=40%a =0.4a 元.故选:C .【点睛】本题考查了列代数式表示相关数量关系.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.26.下列各式符合代数式书写规范的是( )A .a bB .a ×3C .21m 个D .215m 【答案】A【解析】【分析】根据代数式书写规范依次进行判断.【详解】A 选项:a b书写规范,所以正确; B 选项:根据字母与数字相乘或数字与括号相乘时,乘号可省略不写,但数字必须写在前面可得:规范书写为3a ,所以错误;C 选项:根据结果中有加号或减号时,要把代数式括起来再加单位可得:规范书写为(2m-1)个,所以错误;D 选项:根据单项式中的系数不能用带分数可得:规范书写为75m,所以错误. 故选:A.【点睛】考查了代数式的规范书写,解题关键有:①字母与数字相乘或数字与括号相乘时,乘号可省略不写,但数字必须写在前面;②结果中有加号或减号时,要把代数式括起来再加单位;③单项式中的系数不能用带分数.27.下列用代数式表示“a 、b 两数差的平方的2倍”正确的是( )A .222a b -B .()22a b -C .222a b -D .()222a b -【答案】B【解析】【分析】根据题意可知先求差,然后平方,再求倍数,列式即可得到答案.【详解】b 的差为:a −b ,那么差的平方为:(a −b)2,差的平方的2倍为()2-,2a b故选B.【点睛】本题考查列代数式,解题的关键是要明确给出文字语言中的运算关系,先求差,然后平方,再求倍数.28.下列图形都是由同样大小的圆按照一定规律摆放而成,其中第①个图形有5个小圆,第②个图形有9个小圆,第③个图形有13个小圆,…,按此规律排列,则第12个图形中小圆的个数为( )A.45 B.48 C.49 D.50【答案】C【解析】【分析】由图形可知:第①个图形有5个小圆,第②个图形有5+4=9个小圆,第③个图形有5+4+4=13个小圆……,由此得出第n个图形中小圆的个数为:()n+,由此进一步求解即可.+-=41n541【详解】∵①个图形有5个小圆,第②个图形有5+4=9个小圆,第③个图形有5+4+4=13个小圆,∴第n 个图形中小圆的个数为:()541n +-=41n +∴第12个图形中小圆的个数为:4×12+1=49所以答案为C 选项.【点睛】本题主要考查了根据图形规律写出代数式,通过图形熟练找出规律是解题关键.29.下列图案是晋商大院窗格的一部分,其中“〇”代表窗纸上所贴的剪纸,第1个图中有5个“〇”,第2个图中有8个“〇”,第3个图中有11个“〇”,则第( )个图中所贴剪纸“〇”的个数为2018.A .671B .672C .670D .673【答案】B【解析】【分析】 观察图形可知从第二个图案开始,每加一扇窗户,就增加3个剪纸.照此规律便可计算出第n 个图形中剪纸的个数.【详解】解:第一个图案为3+2=5个窗花;第二个图案为2×3+2=8个窗花;第三个图案为3×3+2=11个窗花;…从而可以探究:第n个图案所贴窗花数为(3n+2)个,∴3n+2=2018,解答:n=672,故选:B.【点睛】本题考查了规律型:图形的变化,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.30.某商品原价格为a元,为了促销降价20%后,销售额猛增。
人教版七年级数学上册第二章整式复习试题三(含答案) (92)
人教版七年级数学上册第二章整式复习试题三(含答案) 如果4个不等的正整数a、b、c、d满足(6﹣a)(6﹣b)(6﹣c)(6﹣d)=25,则a+b+c+d的值等于()A.28 B.26 C.24 D.18【答案】C【解析】【分析】首先根据题意,得出四个括号内的值分别是:±1,±5,然后设6﹣a=﹣1,6﹣b=1,6﹣c=﹣5,6﹣d=5,进而解得a、b、c、d的值,即可得解.【详解】∵a、b、c、d是四个不等的正整数,∴四个括号内的值分别是:±1,±5,不妨设,6﹣a=﹣1,6﹣b=1,6﹣c=﹣5,6﹣d=5,解得,a=7,b=5,c=11,d=1,∴a+b+c+d,7+5+11+1=24,故选:C.【点睛】此题主要考查对整数乘法的运用,熟练掌握,即可解题.12.如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位,在圆的四等分点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示-1的点重合.再将数轴按逆时针方向环绕在该圆上(如圆周上表示的数字3的点与数轴上表示-2的点重合……),则该数轴上表示-2019的点与圆周上重合的点表示的数字是( )A .0B .1C .2D .3【答案】C【解析】【分析】 结合图和题干可知,每4个数为一个循环组依次循环,所以需要计算2019÷4,看是第几组第几个数字,即可解答.【详解】由图可知,每4个数为一组,依次循环,分别与0、3、2、1重合, 2019÷4=504 (3)所以,表示-2019的点是第505个循环组的第3个数,为2,即表示-2019的点与圆周上重合的点表示的数字是2故选C【点睛】本题考查数轴以及数字变化规律,结合题干和图,找出规律,是解题关键.13.下列说法正确的是( )A .单项式223x y 的系数是-2,次数是3 B .单项式a 的系数是0,次数是0C .-3x 2y +3x -1的常数项是1D .单项式2(3)2ab -的次数是2,系数是92【答案】D【解析】【分析】单项式的系数:单项式中的数字因式;单项式的次数:字母指数和;根据以上概念逐个选项分析判断即可解答.【详解】A. 单项式223x y -的系数是23-,次数是3,故该选项错误; B. 单项式a 的系数是1,次数是1,故该选项错误;C. -3x 2y +3x -1的常数项是-1,故该选项错误;D. 单项式2(3)2ab -的次数是2,系数是92,正确; 故选D【点睛】本题主要考查单项式的系数、次数的判断,熟练掌握相关概念是解题关键.14.下列是单项式的是( )A .xB .2a +C .2x y -D .mn m -【答案】A【解析】【分析】根据单项式的定义逐一判断即可得答案.【详解】A.是单项式,故该选项符合题意,a+不是乘积的形式,不是单项式,故该选项不符合题意,B.2C.2x y-不是乘积的形式,不是单项式,故该选项不符合题意,D.mn m-不是乘积的形式,不是单项式,故该选项不符合题意,故选:A.【点睛】本题考查单项式的定义,由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式;正确理解定义是解题关键.15.下列图形都是由同样大小的长方形按一定的规律组成,其中第(1)个图形的面积为2cm2,第(2)个图形的面积为8cm2,第(3)个图形的面积为18cm2,…,第(10)个图形的面积为()A.196cm2B.200cm2C.216cm2D.256cm2【答案】B【解析】【分析】根据已知图形面积得出数字之间的规律,进而得出答案.【详解】∵第一个图形面积为:2=1×2(cm2),第二个图形面积为:8=22×2(cm2),第三个图形面积为:18=32×2(cm2)…∴第(10)个图形的面积为:102×2=200(cm 2).故选:B .【点睛】此题主要考查了图形的变化类,根据已知得出面积的变化规律是解题关键.16.在下列代数式:a+b ,-3,π,3x y +,-m 2n 3中,单项式有( ) A .2个B .3个C .4个D .5个【答案】B【解析】【分析】利用数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式进行分析即可.【详解】在下列代数式:a+b ,-3,π,3x y +,-m 2n 3中,单项式是-3,π,-m 2n 3,共3个.故选B.【点睛】此题主要考查了单项式,关键是掌握单项式定义.17.边长为a 和2a 的两个正方形按如图所示的样式摆放,则图中阴影部分的面积为( )A .22aB .32aC .42aD .62a【答案】A【解析】【分析】 图中阴影部分的面积为两个正方形面积的和减去空白三角形的面积即可求解.【详解】根据图形,得图中阴影部分的面积=大正方形的面积+小正方形的面积﹣空白三角形的面积.即:4a 2+a 21232a a -⨯⨯ =5a 2﹣3a 2=2a 2.故选A .【点睛】本题考查了列代数式,解决本题的关键是观察图形所给条件并列式.18.下列说法:①-a 一定是负数;②一个有理数不是整数就是分数;③单项式232x y 的系数是32;④多项式324x y xy y --是四次三项式.其中正确的个数为( )A .1B .2C .3D .4【答案】C【解析】【分析】直接利用有理数的定义、单项式的定义以及多项式的次数与项数确定方法分别分析得出答案.【详解】①﹣a 一定是负数,错误;②一个有理数不是整数就是分数,正确;③单项式232x y 的系数是32,正确; ④多项式x 3y ﹣2xy ﹣4y 是四次三项式,正确.故选C .【点睛】本题考查了单项式以及多项式、有理数,正确把握相关定义是解题的关键.19.如图是一组有规律的图案,第①个图中共有1个矩形,第②个图中共有5个矩形,第③个图中共有11个矩形,…,则第8个图中矩形个数为( )CA .55B .71C .89D .109【答案】B【解析】【分析】 根据图案的排列规律,即可得到答案.【详解】∵1×2-1=1,2×3-1=5,3×4-1=11,……,8×9-1=71,∴第8个图中矩形个数为71,故选B.【点睛】本题主要考查图案的排列规律,掌握图案中正方形的个数的规律,是解题的关键.20.如图,下列图形都是由相同的花按照一定的规律摆成的,按照此规律摆下去,第n个的图形中有160朵花,则n的值是()A.40 B.41 C.42 D.43【答案】A【解析】【分析】根据第n个图形可以理解为边长为(n+1)朵花,四个顶点的玫瑰花分别重复一次列方程求解.【详解】解:由题图可得,第n个图形中有玫瑰花4n朵,令4n=160,得n=40.故选A.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,找出题目中图形的变化规律.。
人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题三(含答案) (93)
人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题三(含答案)李红为班级购买笔记本作晚会上的奖品,回来时向生活委员刘磊交账时说:“共买了36本,有两种规格,单价分别为1.80元和2.60元,去时我领了100元,现在找回27.60元”刘磊算了一下说:“你一定搞错了”李红一想,发觉的确不对,因为他把自己口袋里原有的2元钱一起当作找回的钱款交给了刘磊,请你算一算两种笔记本各买了多少?想一想有没有可能找回27.60元,试用方程的知识给予解释.【答案】没有可能找回27.60元,理由见解析【解析】【分析】设购买单价1.80元的笔记本x本,根据李红原来的报价可列出关于x的一个方程,解此方程即可.【详解】设购买单价1.80元的笔记本x本,则购买单价2.60元的笔记本为36-x本,故有:1.8x+2.6×(36-x)=100-25.6解得x=24,36-24=12,从而购买单价1.80元的笔记本24本,单价2.60元的笔记本为12本,故没有可能找回27.60元.【点睛】本题考查的是函数的应用题,根据问题建立数学模型是解决本题的关键.22.售货员:“快来买啦,特价鸡蛋,原价每箱14元,现价每箱12元,每箱有鸡蛋30个.”顾客甲:“我店里买了一些这种特价鸡蛋,花的钱比按原价买同样多鸡蛋花的钱的2倍少96元.”乙顾客:“我家买了两箱相同特价的鸡蛋,结果18天后,剩下的20个鸡蛋全坏了.”请你根据上面的对话,解答下面的问题:(1)顾客乙买的两箱鸡蛋合算吗?说明理由.(2)请你求出顾客甲店里买了多少箱这种特价鸡蛋,假设这批特价鸡蛋的保质期还有18天,那么甲店里平均每天要消费多少个鸡蛋才不会浪费?【答案】(1)顾客乙买的两箱鸡蛋不合算,理由见解析;(2)10个【解析】【分析】已知:原价每箱14元,现价每箱12元,每箱有鸡蛋30个.原价每个鸡蛋元,现价每个12÷30=0.4元.14÷30=715(1)顾客乙买的两箱鸡蛋共花了12×2=24元,18天后坏了20个,实际等于花24元买了30×2-20=40个鸡蛋,则每个鸡蛋24÷40=0.6元个,0.6元>7元,比原价要高,不合算.15(2)设顾客甲买了x箱这种鸡蛋,则花的钱数为12x元,顾客甲花的钱比按原价买同样多鸡蛋花的钱的2倍少96元,由可得方程:2×14x-96=12x,解此方程后,即得买的箱数,进而求得个数及需要每天消费多少个不会浪费.【详解】(1)原价每个鸡蛋14÷30=7元,现价每个12÷30=0.4元.1512×2÷(30×2-20)=24÷(60-20),=24÷40,=0.6(元/个).元.0.6元>715答:原价要高,不合算.(2)设顾客甲买了x箱这种鸡蛋,可得方程:2×14x-96=12x28x-96=12x,16x=96,x=6.30×6÷18=10(个).答:甲店里平均每天要消费10个鸡蛋才不会浪费.【点睛】完成本题认真分析已知条件及顾客所提供的信息,然后进行解答.23.初一学生王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,?请你将这道作业题补充完整并列出方程解答.【答案】两车2小时后相遇【解析】分析:本题较明确的量有:路程,速度,所以应该问的是时间.可根据路程=速度×时间来列等量关系.详解:应补充的内容为:摩托车从甲地,运货汽车从乙地,同时相向出发,两车几小时相遇?设两车x小时相遇,则:45x+35x=160解得:x=2答:两车2小时后相遇.点睛:本题缺少条件,路程问题里只有相遇问题和追及问题,也应根据此来补充条件.需注意在补充条件时应强调时间,方向两方面的内容.24.某地电话拨号上网有两种收费方式,用户可以任选其一:(A)计时制,0.05元∕分;(B)包月制,50元∕分(限一部个人住宅电话上网);此外,每种上网方式都附加通信费0.02元∕分。
人教版七年级数学上册第二章整式复习试题三(含答案) (50)
人教版七年级数学上册第二章整式复习试题三(含答案) 如图,池塘边有一块长为18米,宽为10米的长方形土地,现在将其余三面留出宽都是x米的小路,中间余下的长方形部分做菜地,用代数式表示:(1)菜地的长a=___米,宽b=___米;(2)菜地的面积S=___平方米;(3)求当x=1米时,菜地的面积。
【答案】(1)18-2x,10-x;(2)(18-2x)(10-x);(3)144m2.【解析】【分析】(1)本题可先根据所给的图形,即可得出菜地的长和宽,(2)由(1)根据长方形面积公式即可求出面积;(3)第三问可以直接将x=1代入第二问所求的面积式子中,得出结果.【详解】(1)∵其余三面留出宽都是x米的小路,∴由图可以看出:菜地的长为18-2x米,宽为10-x米;(2)由(1)知:菜地的长为18-2x米,宽为10-x米,所以菜地的面积为S=(18-2x)•(10-x);(3)由(2)得菜地的面积为:S=(18-2x)•(10-x),当x=1时,S=(18-2)(10-1)=144m2.故答案分别为:(1)18-2x,10-x;(2)(18-2x)(10-x);(3)144m2.【点睛】此题考查列代数式和代数式求值.解题关键在于从生活实际中出发,以数学知识解决生活实际中的问题,同时也考查了长方形面积的计算.92.观察下面三行数:-3,9,-27,81…①1,-3,9,-27…②-2,10,-26,82…③(1)按第①行数排列的规律,第5个数是.观察第②行数与第①行数的关系,第②行第n个数是(用含n的式子表示)观察第③行数与第①行数的关系,第③行第n个数是(用含n的式子表示)(2)取每行数的第7个数,计算这三个数的和.【答案】(1)-243;(-3)n-1;(-3)n+1;(2)-3644.【解析】【分析】(1)观察可看出第一行的数分别是-3的1次方,二次方,三次方,四次方…且偶数项是正数,奇数项是负数,用式子表示规律为:(-3)n;(2)观察②,③两行的数与第①行的联系,即可得出答案;(3)分别求得第①②③行的2012个数,得出x,y,z代入求得答案即可.【详解】解:(1)∵-3,9,-27,81,-243,729…;∴第①行数是:(-3)1,(-3)2,(-3)3,(-3)4,…(-3)n;故第5个数是-243.第②行数是第①行数相应的数乘-13,所以第②行第n个数是-13×(-3)n,即(-3)n-1.第③行数的比第①行相应的数大1即(-3)n+1.(2)第①行中第7个数是(-3)7,第②行中第7个数是(-3)6, 第③行中第7个数是(-3)7+1,所以这三个数的和=(-3)7+(-3)6+(-3)7+1=-3644 【点睛】此题主要考查了数字变化规律,观察得出每行之间的关系是解题的关键.93.某种数学资料每本要2 0元,英语资料每本要28元,小明买了x本数学资料,y本英语资料。
人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题三(含答案) (50)
人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题三(含答案)元旦晚会上,准备给班上40位同学一人一件礼物,分别是玩具与文具,班委会花了175元到超市买了玩具和文具共40件,若玩具每2个15元,文具每3个10元,问班委会买了多少个玩具?【答案】班委会买了10个玩具.【解析】【分析】设班委会买了x个玩具,则班委会买了(40-x)个文具,根据总价=文具单价×文具数量+玩具单价×玩具数量即可得出关于x的一元一次方程,解之即可得出结论.【详解】设班委会买了x个玩具,则班委会买了(40﹣x)个文具,根据题意得:152x+103(40﹣x)=175,解得:x=10.答:班委会买了10个玩具.【点睛】本题考查了一元一次方程的应用,根据数量关系列出关于x的一元一次方程是解题的关键.92.在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处的人数与在乙处的人数相等,应调往甲、乙两处各多少人?【答案】应调往甲处6人,调往乙处14人.【分析】设应调往甲处x人,那么调往乙处的人数是(20-x),调动后甲处的人数是27+x,乙处的人数是19+(20-x),根据甲处的人数与在乙处的人数相等,就可以列出方程,解这个方程,可求出应调往甲、乙两处各多少人.【详解】设应调往甲处x人,根据题意列方程得:27+x=19+(20﹣x),解得:x=6.答:应调往甲处6人,调往乙处20﹣6=14人.【点睛】本题主要考查了一元一次方程的应用,列方程解应用题的关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转化为列代数式的问题.93.今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.(1)求该市今年外来和外出旅游的人数;(2)若去年、今年外来旅游平均每人消费分别是4000元、5000元,求外来旅游今年比去年多消费多少元?【答案】(1)该市今年外来人数为130万人,外出旅游的人数为96万人;(2)外来旅游今年比去年多消费25亿元.【分析】(1)设该市去年外来人数为x万人,外出旅游的人数为(x-20)万人,根据总人数为226万人,列方程求解;(2)分别求出去年和今年外来旅游的消费额,进而作差即可.【详解】(1)设该市去年外来人数为x万人,外出旅游的人数为(x﹣20)万人,由题意得,(1+30%)x+(1+20%)(x﹣20)=226,解得x=100,则今年外来人数为:100×(1+30%)=130(万人),今年外出旅游人数为:80×(1+20%)=96(万人).答:该市今年外来人数为130万人,外出旅游的人数为96万人;(2)去年外来消费额为4000×100万=40亿,今年外来消费额为5000×130万=65亿,外来旅游今年比去年多消费25亿元.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.94.某项工作,甲单独做要4天完成,乙单独做要6天完成,若甲先做1天后,然后甲、乙合作完成此项工作,求甲一共做了多少天?【答案】甲一共做了14天.5【解析】设甲一共做了x 天,则乙做了(x-1)天,根据总工作量=甲完成的工作量+乙完成的工作量即可得出关于x 的一元一次方程,解之即可得出结论.【详解】设甲一共做了x 天,则乙做了(x ﹣1)天, 根据题意得:4x +16x =1, 解得:x =145. 答:甲一共做了145天. 【点睛】本题考查了一元一次方程的应用,根据数量关系(工作总量=工作效率×工作时间)列出关于x 的一元一次方程是解题的关键.95.某老板将A 品牌服装每套按进价的1.5倍进行销售,恰逢“元旦”来临,为了促销,他将售价提高了45元再标价,打出了“大酬宾,八折优惠”的牌子,结果每套服装的利润是进价的一半,该老板到底给顾客优惠了吗?说出你的理由.【答案】无优惠,理由详见解析.【解析】【分析】设A 品牌服装每套进价x 元,根据利润=售价-进价列出一元一次方程,求出进价进而作出判断.【详解】老板没有优惠.设A品牌服装每套进价x元,由题意得(1.5x+45)×0.8﹣x=0.5x,解得x=120,原来售价1.5×120=180(元),提价后八折价格(1.5×180+45)×0.8=180(元),因为两者价格相等,所以无优惠.【点睛】本题考查了销售问题的数量关系的运用,列一元一次方程解实际问题的运用,解答时根据利润=售价-进价建立方程求出进价是关键.96.六十四名学生外出参加竞赛,共租车10辆,其中大车每辆可坐8人,小车每辆可坐4人,则大、小车各租多少辆?【答案】大车6辆,小车4辆.【解析】【分析】设大车x辆,则小车(10-x)辆,根据所坐学生为64人可得出方程,解出即可.【详解】解:设大车x辆,则小车(10-x)辆,由题意得,8x+4(10-x)=64,解得:x=6,10-x=4辆.故答案为大车6辆,小车4辆【点睛】本题考查一元一次方程的应用,解答本题的关键是根据学生人数为64得出方程,难度一般.97.一个正方形花圃边长增加2cm,所得新正方形花圃的周长是28cm,则:原正方形花圃的边长是多少?【答案】原正方形花圃的边长是5cm.【解析】【分析】设原来正方形花圃的边长为xcm,则增加之后边长为(x+2)cm,根据新正方形花圃的周长为28m,列方程求解.【详解】解:设原正方形边长为xcm得方程4(x+2)=28解得:x=5答:原正方形花圃的边长是5cm故答案为: 5cm【点睛】本题考查一元一次方程的应用,解答本题的关键是设出未知数,注意掌握正方形的周长公式.98.小新购买了一部手机,到某通讯公司咨询移动电话费情况,准备办理入网手续.该通讯公司工作人员向他介绍了两种不同的资费方案:(1)若小新的月通话时间为x分钟,则他在方案一、二两种收费方式下各应支付的月话费(月租费与通话费总和)是多少元?(2)是否存在某一通话时间,使两种收费方式的费用一样?求出这个通话时间;(3)若小新的月通话时间为200分钟,则他选择哪种资费方案更省钱?【答案】(1)方案一:月话费为(0.2x+10)元,方案二:当x≤80时,月话费为30元,当x>80时,月话费为(0.15x+18)元;(2)当一个月的通话时间为160分钟时,两种收费方式的费用一样;(3)他选择第二种资费方案更省钱.【解析】【分析】(1)根据月话费=月租费+通话费就可以求出结论;(2)直接令方案一,方案二月话费相等时的x值,注意其范围;(3)当x=200分别代入(1)的两个解析式就可以求出结论.【详解】(1)方案一:月话费为(0.2x+10)元.方案二:当x≤80时,月话费为30元,当x>80时,月话费为0.15(x-80)+30=(0.15x+18)元.(2)存在.x≤80时,不符合题意;x>80时,根据题意,令0.2x+10=0.15x+18,解得x=160.答:当一个月的通话时间为160分钟时,两种收费方式的费用一样.(3)当x=200时,0.2x+10=0.2×200+10=50,0.15x+18=0.15×200+18=48.因为48<50,所以他选择第二种资费方案更省钱.【点睛】本题考查的知识点是一次函数的应用,解题的关键是熟练的掌握一次函数的应用.99.超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次付款可节省多少元?【答案】这两次购物合并成一次付款可节省18元或46.8元.【解析】【分析】本题主要考查了分类讨论的思想,解题的关键是考虑到此题有2种情况;第一种情况是若两次都没有享受优惠活动,则两次购物的总价钱为180+288=468(元),则可以节省的钱数为468-468×0.9;第二种情况是第一次购物没有享受优惠活动,第二次购物享受了优惠活动,则可以算出两次在未打折之前的总价格,因此优惠的价钱也就不难求解了.【详解】若第二次购物超过300元,设此次所购物品价格为x元,则90%x=288,解得x=320.两次所购物品价格为180+320=500元>300元.所以享受9折优惠,因此应付500×90%=450(元).这两次购物合并成一次付款可节省180+288-450=18(元).若第二次购物没有超过300元,则两次所购物品价格为180+288=468(元), 这两次购物合并成一次付款可节省468×10%=46.8(元).答:这两次购物合并成一次付款可节省18元或46.8元.【点睛】本题考查的知识点是基础应用题,解题的关键是熟练的掌握基础应用题.100.为了庆祝元旦,学校准备举办一场“经典诵读”活动,某班准备网购一些经典诵读本和示读光盘,诵读本一套定价100元,示读光盘一张定价20元.元旦期间某网店开展促销活动,活动期间向客户提供两种优惠方案:方案A:买一套诵读本送一张示读光盘;方案B:诵读本和示读光盘都按定价的九折付款.现某班级要在该网店购买诵读本10套和示读光盘x张(x>10),解答下列三个问题:(1)若按方案A购买,共需付款元(用含x的式子表示),若按方案B购买,共需付款元(用含x的式子表示);(2)若需购买示读光盘15张(即x=15)时,请通过计算说明按哪种方案购买较为合算;(3)若需购买示读光盘15张(即x=15)时,你还能给出一种更为省钱的购买方法吗?若能,请写出你的购买方法和所需费用.【答案】(1)20x+800; 18x+900;(2)按方案A 购买更合算;(3)方法见解析;【解析】【分析】见解析.【详解】(1)按方案A 购买,需付款:()10100201020800x x ⨯+-=+(元) 按方案B 购买,需付款:()0.9101002018900x x ⨯+=+(元);(2)把x =15分别代入:2080020158001100x +=⨯+=(元), 1890018159001170x +=⨯+=(元)因为1100<1170,所以按方案A 购买更合算;(3)先按方案A 购买10套诵读本(送10张示读光盘),再按方案B 购买(x-10)张示读光盘,共需费用:()101000.9201018820x x ⨯+⨯-=+,当x=15时,18×15+820=1090(元)∴用此方法购买更省钱.【点睛】列示代入比大小是解决这一类题的通法.。
部编七年级上册名著《西游记》复习资料及练习题(含答案)3名著复习
部编七年级上册名著《西游记》复习资料及练习题(含答案)3名著复习一、选择题1.下列关于文学名著内容及常识的表述,不完全正确的一项是()A.《西游记》中,朱紫国的王后被妖怪赛太岁掳去,妖怪的紫金铃厉害无比,让悟空费尽周折,最后还是观音菩萨出面带走了妖怪,悟空才救回王后娘娘。
B.在《西游记》中,孙悟空先后获得的名号依次为:美猴王一孙行者一弼马温一齐天大圣一孙悟空一斗战胜佛。
其中“齐天大圣”是自封的。
C.孙悟空具有超高的斗争艺术,他善于透过迷人的假象认清妖魔鬼怪的本来面目。
比如,白骨夫人多次变化,均被悟空一一识破。
D.《西游记》中,为试探师徒四人的禅心是否坚定,四位菩萨假意要招他们为夫婿。
唐僧不为所动,悟空识破真相,沙僧一心跟随师父,八戒却动了凡心。
2.请根据图意写出《西游记》中相应情节。
(1)(______________)(2)(_______________)(3)(________________)3.阅读下面的语段,按要求作答。
那怪一闻此言,丢了钉耙唱个大诺道:“那取经人在哪里?累烦你引见引见。
”行者道:“你要见他怎的?”那怪道:“我本是观世音菩萨劝善受了他的戒行,这里持斋把素,教我跟随那取经人往西天拜佛求经,将功折罪,还得正果,叫我等他,这几年不闻消息,今日既是你与他做了徒弟,何不早说取经之事,只倚凶强,上门打我?”……那怪要请行者引见取经人,是为了“将功折罪”,他犯了什么罪被贬下天庭?请简述。
4.阅读下图,完成题目。
图片讲述的故事出自古典名著《西游记》,故事名称是_____________。
图A中的行者是_____________变化而成。
5.根据下列各句描写的内容写出相应名著中的人物。
(1)那怪笑道:“睡着,睡着!莫睬他!我有天罡数的变化,九齿的钉钯,怕什么法师、和尚、道士?”(《西游记》)______(2)头裹团花手帕,身穿纳锦云袍。
腰间双束虎筋绦,微露绣裙偏绡。
凤嘴弓鞋三寸,龙须膝裤金销。
人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题三(含答案) (97)
人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题三(含答案)如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.(1)请写出与A,B两点距离相等的点M所对应的数.(2)现有一只电子蚂蚁P从B点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度向右运动,x秒后两只电子蚂蚁在数轴上的C点相遇,请列方程求出x,并指出点C表示的数.(3)若当电子蚂蚁P从B点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度也向左运动,y秒后两只电子蚂蚁在数轴上的D点相遇,请列方程求出y并指出点D表示的数.【答案】(1)40;(2)28;(3)-260;【解析】【分析】(1)根据数轴和题意可以求得点M对应的数;(2)根据题意可以列出相应的方程,求出点C表示的数;(3)根据题意可以得到相应的方程,求得点D表示的数.【详解】解:(1)设到点A和点B的距离相等的点M对应的数为m,|m﹣(﹣20)|=|m﹣100|,解得,m=40,故答案为40;(2)由题意可得,4x+6x=100﹣(﹣20),解得,x=12,∴C点表示的是:100﹣6×12=28,即C点表示的是28;(3)由题意可得,4y+[100﹣(﹣20)]=6y解得,y=60∴D点表示的是:100﹣6×60=﹣260,即D点表示的是﹣260.【点睛】本题考查一元一次方程的应用、数轴,解答本题的关键是明确题意,列出相应的方程,利用数形结合的思想解答.62.某公司共有50名员工,为庆祝“五一”国际劳动节,公司将组织员工参加“海南双飞五日游”活动,旅行社的收费标准是每人2500元,公司提供下列两种方案供员工选择参与:方案一:要参加旅游活动者,对于2500元的旅游费,员工个人支付500元,其余2000元由公司支付;方案二:不参加旅游者,不必交费,每人还能领取公司发放的500元节日费.(1)如果公司有30人参加旅游,其余20人不参加,问公司总共需支付多少元?(2)如果公司共支付5.5万元,问有多少名员工参加旅游活动? 【答案】(1)公司总共需支付70000元;(2)该公司有20名员工参加旅游活动.【解析】分析:(1)参加旅游的公司付2000元,不参加旅游的公司付500元,由此计算出总数;(2)设参加旅游的员工有x 人,根据公司共支付5.5万元列方程求解.详解:(1)()2500500305002070000-⨯⨯+=(元) 答:公司总共需支付70000元.(2)设有x 名员工参加旅游活动,根据题意得:()()25005005005055000x x -⨯-+=解得:20x = 经检验,符合题意.答:该公司有20名员工参加旅游活动.点睛:本题主要考查了一元一次方程的应用,其一般步骤是:①设适当的未知数;②用未知数表示出其中的一些数量关系;③根据题中的相等关系列方程求解.63.甲、乙两人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就可以追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,求两人每秒钟各跑多少米?【答案】甲速6米/秒,乙速4米/秒【解析】分析:设甲速x米/秒,乙速y米/秒,找出题目中的等量关系,列方程求解即可.详解:设甲速度是x米/秒,乙速度是y米/秒,可得:551046x yx y-=⎧⎨=⎩,解得:64 xy=⎧⎨=⎩答:甲的速度是6米/秒,乙速度是4米/秒 .点睛:此题为追赶问题,可根据甲速度×时间-乙速度×时间=甲乙间距来列出方程(组)进行求解.64.某商场开展春节促销活动出售A、B两种商品,活动方案如下两种:(1)某单位购买A商品30件,B商品20件,选用何种方案划算?能便宜多少钱?(2)某单位购买A商品x件(x为正整数),购买B商品的件数是A商品件数的2倍少1件,若两方案的实际付款一样,求x的值.【答案】(1)选用方案一更划算,能便宜170元;(2)某单位购买A商品x件(x为正整数),购买B商品的件数是A商品件数的2倍少1件,若两方案的实际付款一样,x的值为5.【解析】试题分析:(1)分别求出方案一和方案二所付的款数,然后选择省钱的方案,求出所省的钱数;(2)分别表述出方案一和方案二所需付款,根据两方案的实际付款一样,求出x的值.试题解析:(1)方案一付款:30×90×(1﹣30%)+20×100×(1﹣15%)=3590(元),方案二付款:(30×90+20×100)×(1﹣20%)=3760(元),∵3590<3760,3760﹣3590=170(元),∴选用方案一更划算,能便宜170元;(2)设某单位购买A商品x件,则方案一需付款:90(1﹣30%)x+100(1﹣15%)(2x﹣1)=233x﹣85,方案二需付款:[90x+100(2x﹣1)](1﹣20%)=232x﹣80,当x=a件时两方案付款一样可得,233x﹣85=232x﹣80,解得:x=5,答:某单位购买A商品x件(x为正整数),购买B商品的件数是A商品件数的2倍少1件,若两方案的实际付款一样,x的值为5.65.(10分)下表是居民生活用气阶梯价格方案,(1)小明家6口人,2017年全年天然气用量为550m3,小明家需交多少费用?(2)张华家5口人,2017年全年天然气共缴费1251元,请求出张华家2017年共用了多少m3天然气?【答案】(1)小明家需交1265元;(2)张华家2017年共用了520m3天然气.【解析】【分析】(1)根据6口之家生活用气阶梯价格方案,列式求值即可得出结论;(2)设张华家共用了xm3天然气,先求出5口之家用气500m3的费用,与1251比较后可得出x超过500,再根据使用500m3天然气的费用+超出500m3的部分×3.9=应缴费用,即可得出关于x的一元一次方程,解之即可得出结论.【详解】(1)根据题意得:500×2.28+(550﹣500)×2.5=1265(元).答:小明家需交1265元.(2)解:设张华家共用了xm3天然气,∵350×2.28+(500﹣350)×2.5=1173(元),1173<1251,∴x超过500.根据题意得:1173+(x﹣500)×3.9=1251,解得:x=520.答:张华家2017年共用了520m3天然气.66.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2017年4月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:2017年5月份,该市居民甲用电100度,交电费80元;居民乙用电200度,交电费170元.(1)上表中,a=_____,b=_____;(2)试行“阶梯电价”收费以后,该市一户居民2017年8月份平均电价每度为0.9元,求该用户8月用电多少度?【答案】0.8 1【解析】试题分析:(1)当用电100度时,根据总价=单价×数量列方程即可得出a 的值,当用电为200度时,根据150度内电费+150度外电费=170列方程即可得出b的值;(2)设该用户8月用电x度,根据150×0.8+超过150度的部分×1=均价×用电量,即可得出x的一元一次方程,解之即可得出结论.试题分析:解:(1)根据题意得:100a=80,150a+(200−150)b=170 ,解得:a=0.8,b=1.故答案为:0.8;1.(2)设该用户8月用电x度,根据题意得:150×0.8+1×(x-150)=0.9x,解得:x=300.答:该用户8月用电300度.点睛:本题考查了一元一次方程的应用,解题的关键是:(1)根据收费标准,列出关于a、b的方程;(2)找准等量关系,正确列出一元一次方程.67.某工厂第一车间人数比第二车间人数的45少30人,如果从第二车间调10人到第一车间,那么第一车间人数就是第二车间人数的34,求原来每个车间的人数.【答案】原来第一车间的人数为170人,第二车间的人数为250人.【解析】【分析】设原来第二车间有x人,则第一车间的人数为45x-30,等量关系为:调后第一车间人数就是第二车间人数的34,列方程求解即可【详解】解:设原来第二车间有x人,由题意得45x-30+10=34(x-10),解得:x=250,则45×250-30=170(人).答:原来第一车间的人数为170人,第二车间的人数为250人.68.某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:按照商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%;方案二:按商铺标价的八折一次性付清铺款,前3年商铺的租金收益归开发商所有,3年后每年可获得的租金为商铺标价的9%(1)问投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=投资收益×100%)实际投资额(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益相差7.2万元.问甲乙两人各投资了多少万元?【答案】(1)投资者选择方案二所获得的投资收益率更高;(2)甲投资60万元,乙投资48万元.【解析】【分析】(1)利用方案的叙述,可以得到投资的收益,即可得到收益率,即可进行比较;(2)利用(1)的表示,根据二者的差是7.2万元,即可列方程求解.【详解】解:(1)设商铺标价为x万元,则:按方案一购买,则可获投资收益(120%﹣1)•x+x•10%×5=0.7x,投资收益率为0.7xx×100%=70%,按方案二购买,则可获投资收益(120%﹣80%)•x+x•9%×(5﹣3)=0.58x,投资收益率为0.580.8xx×100%=72.5%,故投资者选择方案二所获得的投资收益率更高;(2)设商铺标价为y万元,则甲投资了y万元,则乙投资了0.8y万元.由题意得0.7y﹣0.58y=7.2,解得:y=60,乙的投资是60×0.8=48万元故甲投资了60万元,乙投资了48万元.【点睛】本题考查了一元一次方程的实际运用,理解题意,正确表示出两种方案的收益率是解题的关键.69.用正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形.(1)每个盒子需______个长方形,______个等边三角形;(2)硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).现有相同规格的19 张正方形硬纸板,其中的x 张按方法一裁剪,剩余的按方法二裁剪.①用含x 的代数式分别表示裁剪出的侧面个数,底面个数;②若裁剪出的侧面和底面恰好全部用完,求能做多少个盒子.【答案】(1)3,2;(2)30个【解析】试题分析:(1)由图可知每个三棱柱盒子需3个长方形,2个等边三角形;(2)①由x张用A方法,就有()19x-张用B方法,就可以分别表示出侧面个数和底面个数;②由侧面个数和底面个数比为3:2建立方程求出x的值,求出侧面的总数就可以求出结论.试题解析:(1)由图可知每个三棱柱盒子需3个长方形,2个等边三角形;(2)①∵裁剪时x张用A方法,∴裁剪时(19−x)张用B方法,∴侧面的个数为:6x+4(19−x)=(2x+76)个,底面的个数为:5(19−x)=(95−5x)个;②由题意,得2763 9552xx+=-,解得:x=7,经检验,x=7是原分式方程的解,∴盒子的个数为:277630.3⨯+=答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.故答案为3,2.70.如图1,有A、B两动点在线段MN上各自做不间断往返匀速运动(即只要动点与线段MN的某一端点重合则立即转身以同样的速度向MN的另一端点运动,与端点重合之前动点运动方向、速度均不改变),已知A的速度为3米/秒,B的速度为2米/秒(1)已知MN=100米,若B先从点M出发,当MB=5米时A从点M 出发,A出发后经过秒与B第一次重合;(2)已知MN=100米,若A、B同时从点M出发,经过秒A与B第一次重合;(3)如图2,若A、B同时从点M出发,A与B第一次重合于点E,第二次重合于点F,且EF=20米,设MN=s米,列方程求s.【答案】(1)A出发后经过5秒与B第一次重合;(2)经过40秒A与B 第一次重合;(3)s=50米【解析】分析:(1)可设A出发后经过x秒与B第一次重合,根据等量关系:路程差=速度差×时间,列出方程求解即可;(2)可设经过y秒A与B第一次重合,根据等量关系:路程和=速度和×时间,列出方程求解即可;(3)由于若A、B同时从点M出发,A与B第一次重合共走了2个MN,第二次重合共走了4个MN,可得,,根据EF=20米,列出方程求解即可.本题解析:(1)设A出发后经过x秒与B第一次重合,依题意有(3﹣2)x=5,解得x=5.答:A出发后经过5秒与B第一次重合;(2)设经过y秒A与B第一次重合,依题意有(3+2)x=100×2,解得x=40.答:经过40秒A与B第一次重合;(3)由于若A、B同时从点M出发,A与B第一次重合共走了2个MN,第二次重合共走了4个MN,可得ME=23+2×2MN=45MN,MF=2MN﹣23+2×4MN=25 MN,依题意有:45s﹣25s=20,解得s=50.答:s=50米.点睛:考查了一元一次方程的应用和数轴,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。
新人教版七年级上册数学教材配题3.3 解一元一次方程(二)、3章-复习题3
第三章 一元一次方程3.3 解一元一次方程(二)—去括号与去分母P93——问题 1 某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000h kW ∙(千瓦∙时),全年用电15万h kW ∙,这个工厂去年上半年每月平均用电是多少?P93——思考本题还有其他列方程的方法吗?用其他方法列出的方程应该怎么解?P94——例1 解下列方程:(1)2)1(25)10(-+=+-x x x x ;(2)3)3(23)1(7+-=--x x x .例2 一艘船从甲码头到乙码头顺流而行,用了2h ,从乙码头返回甲码头逆流而行,用了2.5h.已知水流的速度是3km/h,求船在静水中的平均速度.P95——练习解下列方程:(1)2(3+x )=5x ; (2)4x +3(2x -3)=12-(x +4);(3)6(421-x )+2x =7-(131-x ); (4)2-3(x +1)=1-2(1+0.5x ).P95——问题2 一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.P97——例3 解下列方程:(1)422121x x -+=-+; (2)3x +312321--=-x x .P98——练习解下列方程:(1))2(1002110019-=x x ; (2)4221x x =-+; (3)32213415x x x --+=-; (4)5124121223+--=-+x x x .P98——习题3.3复习巩固1. 解下列方程:(1)50)42(=-+a a ; (2)29)5(25=--b b ;(3)20)33(27=-+x x ; (4)6)23(38=+-y y .2. 解下列方程:(1))1(3)8(2-=+x x ; (2))4(28+-=x x ;(3)3)3(322+-=+-x x x ; (4))25.1()5.010(2+-=-y y . 3. 解下列方程:(1)312253-=+x x ; (2)154353+=--x x ; (3)6751413-=--y y ; (4)1255241345--=-++y y y . 4. 用方程解下列问题:(1)x 与4之和的1.2倍等于x 与14之差的3.6倍,求x ;(2)y 的3倍与1.5之和的二分之一等于y 与1之差的四分之一,求y .综合运用5. 张华和李明登一座山,张华每分登高10m ,并且先出发30min (分),李明每分登高15m ,两人同时登上山顶.设张华登山用了x min ,如何用含x 的式子表示李明登山所用时间?试用方程求x 得值,由x 的值能求出山高吗?如果能,山高多少米?6. 两辆汽车从相距84km 的两地同时出发相向而行,甲车的速度比乙车的速度快20km/h,半小时后两车相遇,两车的速度各是多少?7. 在风速为24km/h 的条件下,一架飞机顺风从A 机场飞到B 机场要用2.8h ,它逆风飞行同样的航线要用3h ,求:(1)无风时这架飞机在这一航线的平均航速;(2)两机场之间的航程.8. 买两种布料共138m,花了540元,其中蓝布料每米3元,黑布料每米5元,两种布料各买了多少米?拓广探索9. 有一些相同的房间需要粉刷墙面,一天3名一级技工去粉刷8个房间,结果其中有502m 墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的402m 墙面,每名一级技工比二级技工一天多粉刷102m 墙面,求每个房间需要粉刷的墙面面积.10. 王力骑自行车从A 地到B 地,陈平骑自行车从B 地到A 地,两人都沿着同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36km,到中午12时,两人又相距36km ,求A ,B 两地之间的路程.11. 一列火车匀速行驶,经过一条长300m 的隧道需要20s 的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s.(1) 设火车的长度为x m ,用含x 的式子表示:从车头经过灯下到车尾经过灯下火车所走的路程和这段时间内火车的平均速度;(2) 设火车的长度为x m ,用含x 的式子表示:从车头进入隧道到车尾离开隧道火车所走的路程和这段时间内火车的平均速度;(3) 上述问题中火车的平均速度发生了变化吗?(4) 求这列火车的长度.P111——复习题3复习巩固1.列方程表示下列语句所表示的相等关系;(1) 某地2011年9月6日的温差是10C o ,这天最高气温是t C o ,最低气温是32C o ; (2) 七年级学生人数为n,其中男生占45%,女生有110人;(3) 一种商品每件的进价为a 元,售价为进价的1.1倍,现每件又降价10元,现售价为每件210元;(4) 在五天中,小华共植树60棵,小明共植树x (x <60)棵,平均每天小华比小明多种2棵。
人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题一(含答案) (3)
人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题一(含答案)列方程解应用题:我校七年级某班共有学生48人,其中女生人数比男生人数的2倍少12人,则这个班的男生有多少人?【答案】这个班有男生20人.【解析】【分析】设这个班有男生x 人,则有女生(2x -12)人,根据男生人数+女生人数=48列出方程,解方程即可.【详解】解:设这个班有男生x 人,则有女生(2x -12)人,列方程得:21248x x +-=,解得,20x答:这个班有男生20人.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.22.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答会告诉你方法.(1)阅读下列材料:问题:利用一元一次方程将0.7•化成分数.解:设0.7x •=.方程两边都乘以10,可得7.710x •=.由0.7x •=和7.710x •=,可得7.70.710x x ••-=-即710x x =-.(请你体会将方程两边都乘以10起到的作用) 解得79x =,即70.79•=. 填空:将0.4写成分数形式为 .(2)请你仿照上述方法把小数1.3化成分数,要求写出利用一元一次方程进行解答的过程.【答案】(1)49;(2)1.3=113,计算见解析. 【解析】【分析】(1)根据阅读材料设0.4=x ,方程两边都乘以10,转化为4+x=10x ,求出其解即可;(2)设0.3=m ,程两边都乘以10,转化为3+m=10m ,求出其解即可.【详解】解:(1)设0.4=x ,则4+x=10x ,∴x=49. 故答案是49; (2)设0.3=m ,方程两边都乘以10,可得10×0.3=10m .由0.3=0.3333⋅⋅⋅,可知10×0.3=3.3333…=3+0.3333….即3+m=10m可解得m=13,∴1.3=11.3【点睛】本题考查了无限循环小数转化为分数的运用,运用一元一次方程解实际问题的运用,解答时根据等式的性质变形建立方程是解答的关键.23.在抗击新冠状病毒战斗中,有152箱公共卫生防护用品要运到A、B 两城镇,若用大小货车共15辆,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,则恰好能一次性运完这批防护用品求这大小货车各多少辆?【答案】大货车8辆,小货车7辆.【解析】【分析】根据题意,可以先设这15辆车中大货车有a辆,则小货车有(15-a)辆,然后即可得到相应的方程,从而可以求得这15辆车中大小货车各多少辆.【详解】解:设这15辆车中大货车有a辆,则小货车有(15-a)辆,12a+8(15-a)=152解得,a=8,则15-a=7,答:这15辆车中大货车8辆,小货车7辆.【点睛】本题考查一元一次方程的应用,解答本题的关键是明确题意,利用题目中等量关系列出方程正确计算解答.24.2020年新冠肺炎爆发,省疾控中心组织医护人员和防疫药品赶赴湖北救援,装载防疫药品的货运飞机从机场出发,以600千米/小时的速度飞行,半小时后医护人员乘坐客运飞机从同一个机场出发,客运飞机速度是货运飞机速度的1.2倍,结果客运飞机比装载防疫药品的货运飞机迟15分钟到达湖北.(1)设货运飞机全程飞行时间为t 小时,用t 表示出发的机场到湖北的路程s ;(2)求出发的机场到湖北的路程.【答案】(1)s =600t ;(2)900千米.【解析】【分析】(1)根据路程=时间×速度列出关系式即可;(2)根据货运飞机和客运飞机的路程相同列出方程求的t 的值,进而可求得路程s 的值.【详解】解:(1)由题意,得s =600t(2)根据题意可知11600600 1.2()24t t =⨯⨯-+ 解得t =1.5∴s =600t =600×1.5=900答:出发的机场到湖北的路程是900千米【点睛】本题考查了一元一次方程的应用.解决本题的关键是要弄懂题意,找到题中的数量关系,列出方程进行解答.25.甲乙两辆汽车同时从 A 、B 两地相向开出,甲车每小时行 56 千米,乙车每小时行 48 千米,两车在距 A 、B 两地的中点 32 千米处相遇.求甲乙两地相距多少千米?【答案】甲乙两地相距832千米【解析】【分析】设甲乙两地相距x 千米,根据两车相遇,所用时间相等即可列出一元一次方程,求解方程即可.【详解】甲乙两地相距x 千米,根据题意得,3232225648x x +-= 解得,x=832所以,甲乙两地相距832千米【点睛】此题考查了列一元一次方程解决问题,关键是找出等量关系.26.“雷神山”病床安装突击队有 22 名队员,按要求在规定时间内要完成 340 张病床安装,其中高级工每人能安装 20 张,初级工每人能安装 15 张. 问该突击队高级工与初级工各多少人?【答案】该突击队有高级工2人,初级工20人.【解析】【分析】设该突击队高级工有x 人,则初级工有y 人,根据高级工+初级工=22人,x 名高级工安装的病床数+y 名初级工安装的病床数=340即可列出方程组,解方程组即得结果.【详解】解:设该突击队高级工有x 人,则初级工有y 人,根据题意,得:222015340x y x y +=⎧⎨+=⎩,解得:220x y =⎧⎨=⎩, 答:该突击队有高级工2人,初级工20人.【点睛】本题考查了二元一次方程组的应用,属于基本题型,正确理解题意、找准相等关系是解题关键.27.已知,两正方形在数轴上运动,起始状态如图所示.A 、F 表示的数分别为-2、10,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,两正方形同时出发,相向而行,小正方形的速度是大正方形速度的两倍,两个正方形从相遇到刚好完全离开用时2秒.完成下列问题:(1)求起始位置D、E表示的数;(2)求两正方形运动的速度;(3)M、N分别是AD、EF中点,当正方形开始运动时,射线MA开始以15°/s的速度顺时针旋转至MD结束,射线NF开始以30°/s的速度逆时针旋转至NE结束,若两射线所在直线互相垂直时,求MN的长.....【答案】(1)0,6;(2)小正方形速度2个单位/秒,大正方形速度1个单位/秒;(3)t=2,MN=3,t=6,MN=9【解析】【分析】(1)利用图象和正方形的边长即可得出;(2)设小正方形的速度是2x个单位/秒,大正方形的速度是x个单位/秒,然后列方程计算即可;(3)由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°两种情况,根据两种情况分别讨论即可.【详解】(1)∵A、F表示的数分别为-2、10,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,∴D表示的数为:-2+2=0,E表示的数为:10-4=6;(2)解:设小正方形的速度是2x个单位/秒,大正方形的速度是x个单位/秒,则有2(2x+x)=2+4,解得:x=1,∴小正方形的速度是2个单位/秒,故小正方形速度2个单位/秒,大正方形速度1个单位/秒;(3)设运动时间为t,由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°,①15°t+30°t=90°,解得t=2,此时小正方形运动了4个单位,D点在数字4的位置,大正方形运动了2个单位,E点也在数字4的位置,即D,E重合,∵M、N分别是AD、EF中点,∴MN=3;②15°t+30°t=270°,解得t=6,此时小正方形运动了12个单位,D点在数字12的位置,大正方形运动了6个单位,E点在数字0的位置,∵M、N分别是AD、EF中点,∴此时M点位于数字11的位置,N点位于数字2的位置,∴MN=11-2=9;综上:当t=2时,MN=3;当t=6时,MN=9.【点睛】本题考查了数轴的动点问题,一元一次方程的应用,根据题意推出对应情况是解题关键.28.姐妹两人在50米的跑道上进行短路比赛,两人从出发点同时起跑,姐姐到达终点时,妹妹离终点还差3米,已知姐妹两人的平均速度分别为a米/秒、b米/秒.(1)如果两人重新开始比赛,姐姐从起点向后退3米,姐妹同时起跑,两人能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.(2)如果两人想同时到达终点,应如何安排两人的起跑位置?请你设计两种方案.【答案】(1)姐姐用时5350k 秒,妹妹用时5047k秒,所以不能同时到,姐姐先到;(2)姐姐后退15047米或妹妹前进3米【解析】【分析】(1)先求出姐姐和妹妹的速度关系,然后求出再次比赛时两人用的时间,从而得出结论;(2)2种方案,姐姐退后或者妹妹向前,要想同时到达终点,则比赛用时相等,根据这个关系列写等量关系式并求解.【详解】(1)∵姐姐到达终点是,妹妹距终点还有3米∴姐姐跑50米和妹妹跑47米的时间相同,设这个时间为:1k即:50471a b k == ∴a=50k ,b=47k 则再次比赛,姐姐的时间为:50350k +=5350k秒 妹妹的时间为:5047k秒 ∵532491502350k k =,502500472350k k= ∴5350k <5047k,即姐姐用时短,姐姐先到达终点 (2)情况一:姐姐退后x 米,两人同时到达终点 则:5050x k +=5047k,解得:x=15047 情况二:妹妹向前y 米,两人同时到达终点 则:5050k =5047y k -,解得:y=3 综上得:姐姐退后15047米或妹妹前进3米,两人同时到达终点 【点睛】本题考查行程问题,解题关键是引入辅助元k ,用于表示姐姐和妹妹的速度关系.29.玲玲和牛牛相约在小区笔直的步行道上健步走锻炼身体.两人都从步行道起点A 向终点B 走去.牛牛出发2分钟后,玲玲出发.又过了2分钟,牛牛停下来接了5分钟的电话,玲玲则以原速继续步行,与牛牛相遇后,玲玲的速度减少到原来的4走向终点B.牛牛接完电话后,提高速度向终点B走去,1.4分5钟后刚好追上玲玲,到达终点B后立即调头以提速后的速度返回起点A(调头时间忽略不计),玲玲、牛牛两人相距的路程y(米)与牛牛出发的时间x(分钟)之间的关系如图所示.(1)牛牛开始健步走的速度为_______米/分;(2)求玲玲开始健步走的速度和牛牛提速后的速度;(3)玲玲走到终点B后,停下来休息了一会儿.牛牛回到起点A后,立即调头仍以提速后的速度走向终点B,玲玲休息1分钟后以减速后的速度调头走向起点,A两人恰好在AB中点处相遇,求步行道AB的长度.【答案】(1)70;(2)玲玲开始健步走的速度为50米/分,牛牛提速后的速度为80米/分;(3)步行道AB的长度为624米.【解析】【分析】(1)根据第1段图像即可求得牛牛开始健步走的速度;(2)根据第2段图像即可求得玲玲开始健步走的速度,根据牛牛停下接了5分钟电话及需要1.4分钟刚好追上玲玲结合玲玲的速度可求得牛牛提速后的速度;(3)设AB的长度为a米,根据两人相遇后所用时间相同列出方程求解即可.【详解】解:(1)根据第1段图像可知,牛牛开始健步走的速度为:140÷2=70(米/分),故答案为:70;(2)根据第2段图像可知,玲玲开始健步走的速度比牛牛慢,且两人的速度差为:(180-140)÷2=20(米/分),∴玲玲开始健步走的速度为:70-20=50(米/分),根据题意可知第3段图像为牛牛接电话时玲玲追赶牛牛,则,追赶时间为180÷50=3.6(分),∵牛牛停下接了5分钟电话,∴第4段图像对应的时间是:5-3.6=1.4(分),此时玲玲的速度变为:50×45=40(米/分), ∵牛牛需要1.4分钟刚好追上玲玲∴牛牛提速后的速度为:40×(1.4+1.4)÷1.4=80(米/分),答:玲玲开始健步走的速度为50米/分,牛牛提速后的速度为80米/分;(3)由(2)可知牛牛追上玲玲时,两人的已行路程为:70×4+40×2.8=392(米)设AB 的长度为a 米,根据题意可知:113923922218040a a a a a -++-+=+解得624a =答:步行道AB 的长度为624米.【点睛】本题考查了一次函数图像的实际应用,读懂题意并结合图像正确理解两人的运动过程是解决本题的关键.30.通讯员骑摩托车要在规定的时间内把文件送到.他骑摩托车的速度是每小时36千米结果早到20分钟,若每小时30千米,就迟到12分钟.求规定时间是多少.【答案】3小时【解析】【分析】设规定时间为x 小时,两次行驶路程分别表示为1363x ⎛⎫- ⎪⎝⎭和1305x ⎛⎫+ ⎪⎝⎭,列方程,解方程即可.【详解】解:设规定时间为x 小时,由题意得11363035x x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭ 解得3x =答:规定时间是3小时.【点睛】本题考查了一元一次方程的应用,解题的关键是根据行程问题的数量关系“路程=速度×时间”两次表示出路程,由此列方程解决问题.。
人教版七年级数学上册第三章解一元一次方程——去括号去分母复习试题3(含答案) (98)
人教版七年级数学上册第三章解一元一次方程——去括号去分母复习试题3(含答案)解方程:2(x +1)12-(x -1)=2(x -1)12+(x +1) 【答案】x =4.【解析】【分析】先把(x+1)和(x-1)当做一个整体进行移项、合并同类项,然后再去括号解方程即可.【详解】移项,得2(x+1)12-(x+1)=2(x-1)12+(x-1), 合并同类项,得32(x+1)=52(x-1), 去括号,得32x+32=52x-52, 移项,得32x-52x=5322--, 合并同类项,得-x=-4,系数化为1,得x=4.【点睛】本题考查了解一元一次方程,根据方程的特点灵活选取解题的方法是关键.72.解下列方程:(1)212132x x +++= (2)0.430.20.5x x ---=1.6 【答案】(1) x=﹣2;(2) x=5.2.【解析】【分析】(1)根据解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1依次计算可得;(2)根据解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1依次计算可得.【详解】(1)去分母,得:2(2x+1)+6=3(x+2),去括号,得:4x+2+6=3x+6,移项,得:4x ﹣3x=6﹣2﹣6,合并同类项,得:x=﹣2;(2)去分母,得:5(x ﹣4)﹣2(x ﹣3)=1.6,去括号,得:5x ﹣20﹣2x+6=1.6,移项,得:5x ﹣2x=1.6+20﹣6,合并同类项,得:3x=15.6,系数化为1,得:x=5.2.【点睛】本题主要考查解一元一次方程,解题的关键是熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.73.解方程131148x x ---=. 【答案】x=-9【解析】【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】原方程可变为()()21318x x ---=,去括号,得:2x-2-3x+1=8,移项得,2x-3x=8+2-1,合并同类项,得,-x=9,解得9x =-.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.74.解方程(组): ①352x +=213x -. ①415323x y x y +=⎧⎨-=⎩【答案】①x =-175;①33x y =⎧⎨=⎩. 【解析】【分析】(1)根据去分母、去括号、移项、合并同类项、系数化为1解方程;(2)应用加减法×2+,可进一步求解.【详解】解:(1)去分母,得()3352(21)x x +=-,去括号,得91542x x +=-,移项,得94215x x -=--,合并同类项,得517x =-,系数化为1,得175x =-.(2)415323x y x y +=⎧⎨-=⎩①②, 由×2+,得11x=33解得x=3.把x=3代入①,得4×3+y=15,解得,y=3.所以方程组的解是:33x y =⎧⎨=⎩【点睛】本题考核知识点:(1)解一元一次方程;(2)解二元一次方程组.解题关键点:要牢记解方程和方程组的一般方法,按步骤求解.75.某人共收集邮票若干张,其中14是2000年以前的国内外发行的邮票,18是2001年国内发行的,119是2002年国内发行的,此外尚有不足100张的国外邮票.求该人共有多少张邮票.【答案】152张【解析】【分析】设该人共有x 张邮票,则2000年以前的国内外发行的邮票数是14x ,2001年国内发行的是18x ,2002年国内发行的是119x ,根据题意列不等式求得x 的范围,然后根据x 一定是4,8,19的倍数即可确定x 的值.【详解】该人共有x 张邮票, 根据题意列方程得:14x+18x+119x >x-100, 解得:x <167391. ∵其中14是2000年以前的国内外发行的邮票,18是2001年国内发行的,119是2002年国内发行的,∴x 一定是4,8,19的倍数,这三个数的最小公倍数是:152.故该人共有邮票约152张.【点睛】列方程解应用题的关键是正确找出题目中的不等关系,用代数式表示出不等关系中的各个部分,把列不等式的问题转化为列代数式的问题.76.老师在黑板上出了一道解方程的题212134x x -+=-,小明马上举手,要求到黑板上做,他是这样做的:4(21)13(2)x x -=-+……………… …① 84136x x -=--…………………… …①83164x x +=-+…………………… …①111x =-………………………………… ①111x =-………………………………… ① 老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误,请你指出他错在_________(填编号);然后,你自己细心地解下面的方程:(1)211163x x +-+= (2)2157146y y ---= 【答案】①(1)x=-3.4;(2)y=-0.25【分析】小明第①步去分母时出错;(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【详解】小明错在①;故答案为:①;(1)去括号得:9x+15=4x-2,移项合并得:5x=-17,解得:x=-3.4;(2)去分母得:3(2y-1)-2(5y-7)=12,去括号得:6y-3-10y+14=12,移项合并得:-4y=1,解得:y=-0.25.【点睛】此题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解本题的关键.77.已知等式2-++=是关于x的一元一次方程(即x未知),求a x ax(2)10这个方程的解.【答案】1x=-2【解析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a ,b 是常数且a ≠0).高于一次的项系数是0.据此可得出关于a 的方程,继而可得出a 的值.【详解】由一元一次方程的特点得a-2=0,解得:a=2;故原方程可化为2x+1=0,解得:x=−12. 【点睛】本题主要考查了一元一次方程的一般形式,未知数的指数是1,一次项系数不是0,特别容易忽视的一点就是系数不是0的条件,高于一次的项系数是0.78.解下列方程(1)76163x x +=-;(2)2(3)4(5)x x -=-+(3)758143x x -+-= (4)1122(1)(1)223x x x x ⎡⎤---=-⎢⎥⎣⎦ 【答案】(1)1x =;(2)13x =-;(3)6517-;(4)-513【解析】【分析】(1)移项合并后化系数为1即可.(2)先去括号,然后再进行移项合并.(3)按解一元一次方程的一般步骤进行解答即可.(4)此题比较麻烦,要根据步骤一步一步的进行.【详解】(1)解:移项合并同类项得,10x=10,系数化为得,x=1;(2)解:去括号得,6-2x=-4x-20,移项合并同类项得,2x=-26,系数化为1得,x=-13;(3)解:去分母得,3(x-7)-4(5x+8)=12,去括号得,3x-21-20x-32=12,移项合并同类项得,-17x=65,系数化为1得,x=−6517;(4)解:去括号得,2x-12x+14x-14=23x-23,去分母得,24x-6x+3x-3=8x-8,移项合并同类项得,13x=-5,系数化为1得,x=-513.【点睛】本题考查解一元一次方程的知识,题目难度不大,但是出错率很高,是失分率很高的一类题目,同学们要在按步骤解答的基础上更加细心的解答.79.解下列方程:(1)3x(7-x)=18-x(3x-15);(2)0.170.210.70.03x x --=. 【答案】(1)x=3(2)x=1417 【解析】【分析】(1)按照去括号,移项,合并同类项,系数化为1的步骤求解;(2)先根据分数的基本性质把分子、分母化整,再按照去分母,去括号,移项,合并同类项,系数化为1的步骤求解.【详解】(1)去括号,得21x-3x 2=18-3x 2+15x.移项、合并同类项,得6x=18,解得x=3.(2)将分母转化为整数,得101720=173x x -- 方程两边同乘21,得30x-7(17-20x)=21.去括号,得30x-119+140x=21.移项、合并同类项,得170x=140.系数化为1,得x=1417. 【点睛】本题考查了一元一次方程的解法,解一元一次方程的基本步骤为:①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数化为1. 去括号时,一是注意不要漏乘括号内的项,二是明确括号前的符号;去分母时,一是注意不要漏乘没有分母的项,二是去掉分母后把分子加括号.80.已知()2310a b -++=,代数式22b a m -+的值比12b a m -+多1,求m .【答案】0m =.【解析】【分析】先根据|a-3|+(b+1)2=0求出a ,b 的值,再根据代数式22b a m -+的值比12b −a +m 的值多1列出方程22b a m -+=12b −a +m +1,把a ,b 的值代入解出x 的值.【详解】∵|a-3|≥0,(b+1)2≥0,且|a-3|+(b+1)2=0,∴a-3=0且b+1=0,解得:a=3,b=-1. 由题意得:22b a m -+=12b −a +m +1, 即:513122m m -+--++=, 5522m m --=, 解得:m=0,∴m 的值为0.【点睛】考查了非负数的和为0,则非负数都为0.要掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为.注意移项要变号.。
人教版七年级数学上册高分突破单 课件 七年级上册数学期末复习综合题(三)
③由-x-3=0,得-x=3;④由 m=n,得mn =1.
A.1 个
B.2 个
C.3 个
D.4 个
7.若关于 x 的方程 2x+a-4=0 的解是 x=2,则 a 的值等于
( B)
A.-8
B.0
C.2
D.8
8.如图,∠BAC 和∠DAE 都是直角,∠BAE=108°,则 ∠DAC 的度数为( B )
(2)由(1)知,∠AOE=180°-∠BOE=180°-2α°, ∵OF 是∠AOE 的平分线, ∴∠FOE=∠AOF=12∠AOE=90°-α°. ∴∠COF=∠COE-∠FOE=90°-(90°-α°)=α°. 故答案为:α°
25.已知单项式-2x2y 的系数和次数分别是 a,b. (1)求 ab-ab 的值; (2)若|m|+m=0,求|b-m|-|a+m|的值. 解:(1)由题意,得 a=-2,b=2+1=3, 故 ab-ab=(-2)3-(-2)×3=-8+6=-2. (2)由|m|+m=0,得 m≤0, 故|b-m|-|a+m|=b-m+(a+m)=b+a=3+(-2)=1.
解:由题意得 AP=5t,CQ=2t,如图,
因为 M 为 AP 中点,所以 AM=12AP=52t, 所以在数轴上点 M 表示的数是-13+52t.
因为点 N 在 CQ 上,CQ=3CN,所以 CN=23t, 所以在数轴上点 N 表示的数是 7-23t, 所以 MN=7-23t--13+52t=20-169t.
二、填空题(共 5 小题,每小题 2 分,共 10 分)
11.-(-6)的相反数是 -6 .
12.计算:(2x-3y)-(5x-4y)= -3x+y .
4 13.当 x= 3
时,代数式 3x-2 的值与12互为倒数.
初中语文七年级上册《闻王昌龄左迁龙标遥有此寄》《次北固山下》复习试题(含答案) (3)
初中语文七年级上册《闻王昌龄左迁龙标遥有此寄》复习试题(含答案)阅读下面的诗歌,回答小题。
夜雨寄北君问归期未有期,巴山夜雨涨秋池。
何当共剪西窗烛,却话巴山夜雨时。
闻王昌龄左迁龙标遥有此寄杨花落尽子规啼,闻道龙标过五溪。
我寄愁心与明月,随君直到夜郎西。
15.《夜雨寄北》和《闻王昌龄左迁龙标遥有此寄》的作者依次是________和________。
16.这两首诗中都有表示时令的词语,它们对表现诗人情感起着一定的作用。
试选择一首诗中的这类词语,分析其作用。
【答案】15.李商隐,李白16.示例1:“涨秋池”点明时令“秋”,衬托出诗人内心的孤独凄凉。
示例2:“杨花落尽”既表示暮春时令,又烘托出与好友离别悲伤、不舍的心情。
【解析】【分析】15.本题考查学生对文学常识的识记能力。
《夜雨寄北》的作者是唐代诗人李商隐,《闻王昌龄左迁龙标遥有此寄》的作者是唐代诗人李白。
16.本题考查学生的炼字能力。
“巴山夜雨涨秋池”是诗人告诉妻子自己身居的环境和心情。
秋山夜雨,总是唤起离人的愁思,诗人用这个寄人离思的景物来表了他对妻子的无限思念。
仿佛使人想象在一个秋天的某个秋雨缠绵的夜晚,池塘涨满了水,诗人独自在屋内倚床凝思。
想着此时此刻妻子在家中的生活和心境,回忆他们从前在一起的共同生活,咀嚼着自己的孤独。
“杨花落尽子规啼”它一开头便择取两种富有地方特征的事物——杨花、子规,“杨花落尽”描绘出南国的暮春景象,烘托出一种哀伤愁恻的气氛。
漂泊无定的杨花、叫着“不如归去”的子规,即含有飘零之感、离别之恨在内,切合当时情事,也就融情入景。
闻王昌龄左迁龙标遥有此寄杨花落尽子规啼,闻道龙标过五溪。
我寄愁心与明月,随风直到夜郎西。
17.诗人表达离别伤感的愁绪时,写到了哪些景物?18.下列对本诗的理解和分析,不正确的一项是( )A.诗歌首句写景,次句叙事,后两句抒情。
B.“过五溪”说明诗人旅途之艰难,也包含了诗人对友人的牵挂和痛惜之情。
C.诗中将无知无情的明月当成善解人意的人,寄托了诗人对友人思念之情。
厦门市第一中学初中英语七年级上册Unit 3复习题(含答案)
一、选择题1.— Thank you for your help.— ________.A.I’m fine, thanks B.Excuse me C.Nice to meet you D.You’re welcome D 解析:D【详解】句意:-----谢谢你的帮助。
-----不客气。
考查情景交际。
A. I’m fine, thanks好,谢谢;B. Excuse me对不起,打扰了;C. Nice to meet you见到你很高兴;D. You’re welcome不用谢,不客气。
根据上文“谢谢你的帮助。
”可知回答是“不用谢。
”故选D。
2.-Is it the twins’ bedroom?-Yes,it is. It’s ________ bedroom.A.Lily’s and Lucy’s B.Lily’s and LucyC.Lily and Lucy’s D.Lilys’ and Lucys C解析:C【详解】句意:——这是双胞胎的卧室吗?——是的。
这是Lily和Lucy共同的卧室。
考查名词所有格。
A. Lily’s and Lucy’s意为“Lucy的和Lily的”;B. Lily’s and Lucy意为“Lucy的和Lily”;C. Lily and Lucy’s意为“Lucy和Lily的”;D. Lilys’ and Lucys 表述错误。
从题干中“is”可知,是两个人共同的卧室(一个卧室),故答案选C。
【点睛】s'与's的区别s'一般是在名词复数后面加的,表示“……的”,如:the teachers' books 老师们的书;'s一般是在名词单数后面加的,表示“……的”,如:her teacher's book 她老师的书。
总结:这是用在名词后,表示“……的”,如果这个名词本身是复数形式,且是加s的复数,那么它只要加个',就表示“……的”(不规则的名词复数除外);如果这个名词本身是单数形式,那么它需要加's,来表示“……的”。
【七年级】2021人教版七年级英语上册Unit 3基础知识复习题(附答案)
【七年级】2021人教版七年级英语上册Unit 3基础知识复习题(附答案)【七年级】2021人教版七年级英语上册unit3基础知识复习题(附答案)第三单元是你的铅笔基础知识巩固ⅰ词汇知识a)。
重新排列以形成拼写正确的单词。
1.odgl2.ginr3.emga4.dfnuo5.pocetmurb)。
根据每个单词的意思填空1.what’sthisine__________?2.howdoyous_______pen?3.isthatapencilc___________________。
他的名字是约翰。
5.thatismyd________ .ⅱ. 用方框中正确的单词填空。
?lostandfoundannoinenglishcallit’spleaseschoolidcardisn’tasetofat?1.你叫什么名字?2.what’sthis________ ?3.请厕所。
他的电话号码是236-0582。
4.found:keys.callmike______ 582-3678.5.这个主义.7.―what’sthis?―______ 阿彭西尔案。
8.―isthat________eraser?―_______ ,它. 这是萨沙普纳。
ⅲ.单项选择。
()1.请玛丽。
她的电话号码是7782079。
a.tellb.sayc.talkd.call()2.―这是你的金戒指吗―_____ .pleasecalljohn.a、是的,是的b、不,不是c、是的,不是d、不,是的()3.is__________ yourbagoverthere?a、这个b、它c、那d、这些()4.yourbackpackisinthe________ case.a、失物招领b、失散c、失物招领d、找到并失去()5.―isthatyourwatch?―------ . 这是手表。
a.yes,itisb.no,itisn’tc.yes,itisn’td.no,itis()6.这是你的书吗.a.it’sabook.b.no,itis.c.yes,itis.d.no,itisn’tyourbook.()7.什么是希斯汀英语.a.p-e-nb.herpenc.hispend.apen()8.是她的阴茎病a.thatb.hisc.whatd.it’s()9.这是英语老师,汤姆。
人教版七年级数学上册第二章整式复习试题三(含答案) (20)
人教版七年级数学上册第二章整式复习试题三(含答案) 现有若干根长度相同的火柴棒,用a根火柴棒,按如图①摆放时可摆成m 个正方形,用b根火柴棒,按如图②摆放时可摆成2n个正方形.(m、n是正整数)(1)如图①,当m=4时,a=______;如图②,当b=52时,n=______;(2)当若干根长度相同的火柴棒,既可以摆成图①的形状,也可以摆成图②的形状时,m与n之间有何数量关系,请你写出来并说明理由;(3)现有61根火柴棒,用若干根火柴棒摆成图①的形状后,剩下的火柴棒刚好可以摆成图②的形状.请你直接写出一种摆放方法.【答案】(1)a=13,n=10;(2)3m+1=5n+2;(3)如图①摆放1个正方形,如图②摆放11个正方形【解析】【分析】(1)根据每多一个正方形多用2根火柴棒写出摆放m个正方形所用的火柴棒的根数,然后把m=4代入进行计算即可得解;(2)根据a相等列出关于m、n的关系式;(3)可以摆出图①说明a是比3的倍数多1的数,可以摆出图②说明2a 是比5的倍数多2的数,所以,2a取5与6的倍数大2的数,并且现有61根火柴棒进而得出答案.【详解】(1)由图可知,图①每多1个正方形,多用3根火柴棒,所以,m个小正方形共用3m+1根火柴棒,图②每多2个正方形,多用5根火柴棒,所以,2n个小正方形共用5n+2根火柴棒,当m=4时,a=3×4+1=13,图②可以摆放5n+2=52个小正方形,∴n=10.(2)∵都用a根火柴棒,∴3m+1=5n+2,整理得,3m=5n+1;(3)∵3m+1+5n+2=61,∴3m+5n=58,当m=1,n=11,是方程的根,∴第一个图形摆放3×1+1=4根火柴棒,第二个图形摆放5×11+2=57根火柴棒,如图,∵4+57=61,∴符合题意(答案不唯一).【点睛】本题是对图形变化规律的考查,观察出正方形的个数与火柴棒的根数之间的变化关系是解题的关键.92.如图是用长度相等的小棒按一定规律摆成的一组图案(1)填写下表:(2)请填写出第n个图案中小棒的数量(用含n的代数式表示);(3)第30个图案中小棒有多少根?【答案】(1)16,41;(2)5n+1;(3)第30个图案中小棒有151根.【解析】【分析】(1)观察图形可知,图案中小棒的个数依次增加5根,然后计算即可;(2)总结规律可得第n个图案中小棒的数量为:5n+1;(3)将n=30代入5n+1计算即可.【详解】解:(1)由图可知:第①个图案有6根小棒,第②个图案中有11根小棒,第③个图案中有16根小棒……∴图案中小棒的个数依次增加5根,可得第⑧个图案中有41根小棒,故答案为:16,41;(2)∵第①个图案有6=1+5×1根小棒,第②个图案中有11=1+5×2根小棒,第③个图案中有16=1+5×3根小棒……∴第n个图案中小棒的数量为:5n+1;(3)当n=30时,5n+1=151(根),∴第30个图案中小棒有151根.【点睛】本题考查了规律型-图形的变化类,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点.93.某工厂第一季度的电费为a元,水费比电费的2倍多40元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册复习题Unit51.have “有”之意,一般指某人有某物,侧重于所属关系。
其第三人称用has。
其他人称用have。
Eg: I have a new computer. 我有一台新电脑。
He has a white jacket. 他有一件白色的上衣。
have 的其他用法:1)意为“吃、喝”与表示一日三餐、食品、饮料等的名词或代词连用。
Eg: I want to have some milk. 我想喝一些牛奶。
You have lunch at noon. 你在中午吃午饭。
He has an egg every day. 他每天吃一只鸡蛋。
含有have的句子结构:肯定句:主语+have/has +宾语。
They have some books.He has a baseball.否定句:主语+don’t/doesn’t +have + 宾语。
You don’t have a basketball.She doesn’t have a soccer ball.一般疑问句:Do /Does +主语+have + 其他。
Do you have a volleyball?Does he have a map?练习:1)I have a basketball.(改为否定句和一般疑问句)I _______ _________ a basketball.________ you ________ a basketball.2) Tony has a brother. (改为否定句和一般疑问句)Tony ______ _______ a brother.______ Tony ______ a brother.语法总结:一般现在时:表示经常性、习惯性的动作或表示一个人的爱好、能力等。
句子结构:1.主语+be+名词/形容词/介词短语。
(这种结构叫系表结构)句意为“主语是什么;主语怎么样;”其中be叫系动词。
句中的名词、形容词和介词短语在句中做表语,表示主语的名称、身份、特征和状态。
)Eg: It is a book. 它是一本书。
(表示它的名称)I am a teacher. 我是一位教师。
(表示我的身份)The watch is nice. 这块手表是漂亮的。
(表示这块手表的特征)These pens are on the desk. 这些钢笔在书桌上。
(表示这些钢笔所处的状态)(在系表结构中,因为如有be动词,变为否定句时,在be后加not 即可。
变为一般疑问句时,把be动词放于句首即可。
)2.主语+ 实义动词(谓语)+ 名词(宾语)。
= sb.(某人)+ do/does(做)+ sth.(某事)。
(句意为“某人做某事”)其中do表示动词原形;does表示第三人称单数。
肯定句:1) I play basketball. 否定句:I do n’t play basketball.2)You have a bike.(自行车) You don’t have a bike.(自行车)3)They like English. They don’t like English.4)He plays soccer ball. He doesn’t play soccer ball.5)Mary has a ring. Mary doesn’t have a ring.一般疑问句:1)Do you play basketball?2)Do you have a bike?3)Do they like English?4)Does he play soccer ball?5)Does Mary have a ring?练习:1)You ______(喜欢) math. 2) She ______(有) a set of keys.3) I play volleyball.(变成否定句和一般疑问句并做肯定回答)I _______ _______ volleyball.______ _______ play volleyball? ______, ______ _______.4) He likes playing baseball. (变成否定句和一般疑问句并做否定回答)He ______ _______ playing basketball._______ he _______ playing basketball. ______, _______ _______.2. let “允许”,“让”是使役动词,引导的祈使句,常用于向别人提出建议。
肯定结构:Let sb. do sth. “让某人做某事。
”否定结构:Don’t let sb. do sth. “别让某人做某事。
”Let’s play basketball. 让我们打篮球吧!Don’t let him come in. 别让他进来。
练习:1)_________ (让我们) go to school.2) Let him play computer games.(变为否定句)_____ _____ him play computer games.2.play “玩”, “打”行为动词,后接球类或游戏类名词时,名词前一般不加任何冠词。
如:play basketball 打篮球;play computer games 玩电子游戏play cards 打牌play “弹奏”,后接各种乐器类名词,此时名词前要加定冠词the 。
如:play the piano 弹钢琴play the guitar. 弹吉他练习:1) We (打排球)__________________every day.2) He (打网球) _______________ every morning.3.That sounds good.那听起来不错。
sound“听起来,听上去”属于连系动词,后面通常接形容词,意为“听起来怎么样?”上句中的主语是that,指代上述的建议,单数指示代词,所以sound 用第三人称单数形式sounds.------Let’s play computer games. ------That/It sounds great.4.many “许多的”,“大量的”为形容词,后接可数名词的复数形式。
同义词为much (后接不可数名词);a lot of/lots of (后接可数名词或不可数名词)。
如:many apples 许多苹果much salad 大量沙拉a lot of/lots of books 很多书 a lot of /lots of money 很多钱5.interesting有趣的;boring令人厌烦的;fun搞笑的,幽默的;difficult困难的relaxing令人放松的以上5个都是形容词,它们经常用来修饰,说明人或事物,在句中做定语或与连系动词连用,在句中做表语,构成系表结构。
an interesting book一本有趣的书 a boring lesson 一堂令人厌烦的课This is a relaxing sport. 这是一种有趣的运动。
(relaxing做定语,修饰sport)The math is difficult. 数学是困难的。
(difficult做表语,说明math是怎么样的)That sounds fun. 听起来有趣。
(fun做表语)6.play sports “参加体育运动”I often(经常) play sports.7. sports collection“体育收藏”Tom has a great sports collection. 汤姆有一个很棒的体育收藏。
8.sports club “体育俱乐部”We have many sports clubs in our school. 在我们学校,我们有很多俱乐部。
9. every day“每天”常做时间状语,放于句末。
用于一般现在时。
I go to school every day. 我每天都上学。
everyday “每天的”,“日常的”,做形容词,其后要跟名词。
You learn (学习) everyday English every day. 你每天学习日常英语。
一、将下列短语翻译成英语。
1.运动俱乐部____________________2.听起来有趣____________________2.看电视___________________ 4.八个网球拍____________________ 5.体育收藏品_________________ 6.每天_____________________7.进行体育运动_______________ 8.玩电脑游戏____________________9.三个排球___________________ 10.打篮球_______________________二、根据句意及首字母或汉语提示完成单词。
1.-----Let’s play volleyball. -----That s_______ good.2.-----Do you like _______(运动)?------Yes, I like it very much.3. Do you have _________(大量的) photos at home?4. I have a ________(英式足球) ball under the bed.5. _______(让) me have a look at your notebook.三、用所给词的适当形式填空。
1.We have many ________(西红柿) in the bag.2.______ your brother _______ (have) a tennis?3.My parents ________ (not play ) sports.4.The book is very _________ (interest).5.The girl _______(have) some CDs.6.He ________ (not have) a basketball.7.Does your father have a _______ (sport) collection.8.Let me _______ (take) these CDs to your grandparents.四、选择填空。
()1.-----Let’s play ping-pong.-----_____________.A. No, I don’t.B. That sounds interestingC. OK! It’s boringD. That sound interesting.()2.They _______ some clubs at school.A. haveB. hasC. areD. do()3.Mr Black doesn’t like the lecture(演讲). It is ________.A. interestingB. boringC. funD. relaxing()4.I have _______ good friends in our class.A. notB. manyC. moreD. much()5.Do they play _______ soccer?A. theB. aC. /D. an()6.My brother has a great ______ collection?A. sportB. sport’sC. sports Sports()7.We need one ping-pong ball and two _______.A. ping-pong batsB. ping-pong batC. ping-pong batsD. ping-pong()8.The music(音乐) sounds ________. I like it very much.A. difficultB. boringC. relaxingD. interesting()9.-----Do you have a TV? ------ ___________.A. Yes, it isB. Yes, we haveC. Yes, we doD. Yes, we don’t()10. Let’s ______ baseball.A. playsB. playingC. playD. played()11.Tony plays sports ______.A. everydayB. every daysC. every dayD. everydays()12.------Does Tom _______ any ruler ?------ Yes, he _____ some.A. have; haveB. has; hasC. have; hasD. has; have()13.-----Let’s play ping-pong!-----Good idea,_____ I don’t have a bat.A. soB. orC. andD. but()14. He can play _____ basketball well, but he can’t play _____ guitar (吉他)。