新课标高一数学同步测试3(必修2-14套)
高中数学必修2全册课时同步测试卷及答案
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第一章空间几何体§1.1空间几何体的结构第1课时多面体的结构特征一、基础过关1.下列说法中正确的是() A.棱柱的侧面可以是三角形B.由6个大小一样的正方形所组成的图形是正方体的展开图C.正方体的各条棱长都相等D.棱柱的各条棱长都相等2.棱台不具备的特点是() A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点3. 如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体 D.不能确定4.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是() A.1∶2 B.1∶4 C.2∶1 D.4∶15.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm. 6.在下面的四个平面图形中,哪几个是侧棱都相等的四面体的展开图________(填序号).7.如图所示为长方体ABCD—A′B′C′D′,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.8. 如图所示的是一个三棱台ABC—A1B1C1,如何用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.二、能力提升9.下图中不可能围成正方体的是()10.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.11.根据下列对于几何体结构特征的描述,说出几何体的名称.(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其它各面都是矩形;(2)由五个面围成,其中一个面是正方形,其它各面都是有一个公共顶点的全等三角形.三、探究与拓展12.正方体的截面可能是什么形状的图形?答案1.C 2.C 3.A 4.B 5.12 6.①②7.解截面BCFE右侧部分是棱柱,因为它满足棱柱的定义.它是三棱柱BEB′—CFC′,其中△BEB′和△CFC′是底面.EF,B′C′,BC是侧棱,截面BCFE左侧部分也是棱柱.它是四棱柱ABEA′—DCFD′.其中四边形ABEA′和四边形DCFD′是底面.A′D′,EF,BC,AD为侧棱.8.解过A1、B、C三点作一个平面,再过A1、B、C1作一个平面,就把三棱台ABC—A1B1C1分成三部分,形成的三个三棱锥分别是A1—ABC,B—A1B1C1,A1—BCC1.9.D10.①③④⑤11.解(1)该几何体有两个面是互相平行且全等的正六边形,其他各面都是矩形,可满足每相邻两个面的公共边都相互平行,故该几何体是六棱柱.(2)该几何体的其中一个面是四边形,其余各面都是三角形,并且这些三角形有一个公共顶点,因此该几何体是四棱锥.12.解本问题可以有如下各种答案:①截面可以是三角形:等边三角形、等腰三角形、一般三角形;②截面三角形是锐角三角形;③截面可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形;截面为四边形时,这个四边形中至少有一组对边平行;④截面可以是五边形;⑤截面可以是六边形;⑥截面六边形可以是等角(均为120°)的六边形.特别地,可以是正六边形.截面图形举例【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
新人教版高中数学必修3全册同步测试题及解析答案.doc
新人教版高中数学必修3 全册同步测试题及解析答案篇一:高一数学必修3全册各章节课堂同步习题(详解答案)第一章算法初步1.1算法与程序框图1.1.1算法的概念班次姓名[自我认知]:1.下面的结论正确的是().A.一个程序的算法步骤是可逆的B. 一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D. 设计算法要本着简单方便的原则2.下面对算法描述正确的一项是(). A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征()A.抽象性B.精确性C. 有穷性D.唯一性4.算法的有穷性是指()A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(lOmin)、听广播(8min)几个步骤,从下列选项中选最好的一种算法()A.S1洗脸刷牙、S2 刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播 B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播 C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是()A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程x2?l?0有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 7.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c?a,b的值;③输出斜边长c的值,其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③[课后练习]:8.若f?x?在区间?a,b?内单调,且f?a??f?b??O,则f?x?在区间?a,b?内()A.至多有一个根B.至少有一个根C.恰好有一个根D.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取A=89 ,B=96 ,C=99;第二步:①;第三步:②;第四步:输出计算的结果.10.写出求1+2+3+4+5+6+7+100的一个算法.可运用公式l+2+3+?+n= 第一步①;第二步②;第三步输出计算的结果.11.写出Ix2x3x4x5x6的一个算法.12.写出按从小到大的顺序重新排列x,y,z三个数值的算法. n(n?l)直接计算.21.1. 2程序框图[自我认知]:1 •算法的三种基本结构是()A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构D .流程结构、循环结构、分支结构2 .程序框图中表示判断框的是()A.矩形框B.菱形框D.圆形框D.椭圆形框3.如图⑴、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为()(1)33(2)3A.⑴n>1000 ? (2)n<1000 ?B.⑴n<1000 ?⑵n>1000 ?C.(Dn<1000?⑵n>1000 ?D. (l)n<1000 ?(2)n<1000?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是()A.—个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C. 一个算法必须含有上述三种逻辑结构D.—个算法可以含有上述三种逻辑结构的任意组合[课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是()A.求输出a,b,c三数的最大数B.求输出a,b,c三数的最小数3333C.将a,b,c按从小到大排列D.将a,b,c按从大到小排列第5题图第6题图6.右边的程序框图(如上图所示),能判断任意输入的数x 的奇偶性:其中判断框内的条件是A.m?O?B.x?O ?C.x?l ?D.m?l?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构()A.顺序结构B.条件结构和循环结构C.顺序结构和条件结构D.没有任何结构?x2?l(x?0)8.已知函数f?x???,设计一个求函数值的算法,并画出其程序框图(x?0)?2x?l1.1.2程序框图(第二课时)[课后练习]:班次姓名1 . 如图⑴的算法的功能是.输出结果i=,i+2=.2.如图⑵程序框图箭头a指向①处时,输出s=.箭头a指向②处时,输出s=.3.如图⑷所示程序的输出结果为s=132,则判断中应填A、i>10? B、i>ll? C、i<ll?D、i>12? 4.如图⑶程序框图箭头b指向①处时,输出s=.箭头b指向②处时, 输出S= _________5、如图⑸是为求1-1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。
人教新课标版数学高一人教版必修2 模块综合检测
(时间:120分钟;满分150分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线y =3x +1与直线x +By +C =0垂直,则( ) A .B =-3 B .B =3 C .B =-1 D .B =1 解析:选B.y =3x +1即3x -y +1=0 ∴3×1+(-1)×B =0,∴B =3.2.棱长都为1的三棱锥的表面积为( ) A. 3 B .2 3 C .3 3 D .4 3解析:选A.棱长都为1的三棱锥的三个侧面与底面都是全等的正三角形,∴表面积S =4×34×12= 3. 3.空间五点最多可确定的平面个数是( ) A .1个 B .5个 C .10个 D .20个解析:选C.最多的情况是任意三点不共线,此时任意三点可确定一个平面,故共10个. 4.已知直线mx +4y -2=0与2x -5y +n =0互相垂直,垂足为(1,p ),则m -n +p 为( ) A .24 B .20 C .0 D .-4 解析:选B.由两直线垂直,得2m -20=0,∴m =10.将(1,p )代入10x +4y -2=0,得p =-2,再将(1,-2)代入2x -5y +n =0,得n =-12.∴m -n +p =10-(-12)+(-2)=20.5.表面积为36π的一个球,有一个表面积为Q 的外切多面体,则这个多面体的体积是( )A .QB .2Q C.13Q D.43Q 解析:选A.易知球半径为3,将多面体分割成若干个锥体,每个锥体的高为3.∴V =13Q ·3=Q .6.如图所示,在一个封闭的立方体的六个表面各标出A 、B 、C 、D 、E 、F ,现摆成下面三种不同的位置,所看见的表面上的字母已标明,则字母A 、B 、C 的对面的字母分别是( )A .D 、E 、FB .F 、D 、EC .E 、F 、DD .E 、D 、F解析:选D.结合3个图可分析得出.7.将圆x 2+y 2=1沿x 轴正方向平移1个单位后得到圆C ,若过点(3,0)的直线l 与圆C 相切,则直线l 的斜率为( )A. 3 B .±3C.33 D .±33解析:选D.圆心C (1,0),设l :y -0=k (x -3),即kx -y -3k =0,∵l 与圆相切,故圆心到直线的距离等于半径1,∴|k -3k |k 2+1=1,∴k =±33.8.直线y =kx +1与圆x 2+y 2+kx -y -9=0的两个交点关于y 轴对称,则k 的值为( ) A .-1 B .0 C .1 D .任何实数解析:选B.⎩⎪⎨⎪⎧y =kx +1,x 2+y 2+kx -y -9=0,(1+k 2)x 2+2kx -9=0,设两个交点为A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2k1+k 2,由于A 、B 关于y 轴对称,则x 1+x 2=0,∴k =0.9.两条直线y =x +2a ,y =2x +a 的交点P 在圆(x -1)2+(y -1)2=4的内部,则实数a的取值范围是( )A .-15<a <1B .-15≤a <1C .a >1或a <-15D .a ≥1或a ≤-15解析:选A.由题意可得交点为P (a,3a ),∴(a -1)2+(3a -1)2<4.解得-15<a <1.10.若⊙C 1:x 2+y 2-2mx +m 2=4和⊙C 2:x 2+y 2+2x -4my =8-4m 2相交,则m 的取值范围是( )A .(-125,-25) B .(0,2)C .(-125,-25)∪(0,2)D .(-125,2)解析:选C.圆C 1和C 2的圆心坐标及半径分别为C 1(m,0),r 1=2,C 2(-1,2m ),r 2=3.由两圆相交的条件得3-2<|C 1C 2|<3+2,即1<5m 2+2m +1<25,解得-125<m <-25或0<m <2.11.已知Rt △ABO 的三个顶点A (1,0),B (0,2),O (0,0),则其内切圆方程为( ) A .(x -1)2+(y +2)2=4B .(x -12)2+(y -1)2=1C .(x -52)2+(y -52)2=54D .(x -3-52)2+(y -3-52)2=(3-5)24解析:选D. 设内切圆的圆心为(a ,b ),半径为r ,如图所示,则有a =b =r .又∵|OA |=1,|OB |=2,|AB |=5, ∴r =|OA |+|OB |-52=1+2-52=3-52,a =b =3-52.故内切圆的方程为(x -3-52)2+(y -3-52)2=(3-5)24.12.如图所示的几何体是由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现在用一个竖直的平面去截这个几何体,所得的截面的图形可能是( )A .(1)(2)B .(1)(3)C .(1)(4)D .(1)(5)解析:选D.这是圆柱和圆锥构成的组合体.当竖直的平面经过圆柱的轴时得到图(1),当竖直的平面不经过轴时,得到的是图(5).故选D.二、填空题(本大题共4小题,请把答案填在题中横线上)13.P 为△ABC 所在平面外一点,O 为P 在平面ABC 上的射影,连接PA ,PB ,PC . (1)若PA =PB =PC ,则O 为△ABC 的________心;(2)若PA ⊥PB ,PB ⊥PC ,PC ⊥PA ,则O 是△ABC 的 ________心; (3)若P 点到三边AB ,BC ,CA 的距离相等且O 在△ABC 内,则O 是△ABC 的________心;(4)若PA =PB =PC ,∠C =90°,则O 是AB 边的______点; (5)若PA =PB =PC ,AB =AC ,则O 点在________上.解析:结合三角形的外心、内心、垂心的知识判断,外心到各顶点的距离相等,内心到各边的距离相等,垂心是高线的交点.(1)由三角形全等可证得O 为△ABC 的外心.(2)由直线和平面垂直的判定定理可证得O 是△ABC 的垂心. (3)由直线和平面垂直的判定定理可证得O 是△ABC 的内心. (4)由三角形全等可证得O 是AB 边的中点.(5)由(1)知,O 在BC 边的高线上,或者说在∠BAC 的平分线上,或者说在BC 边的中线上.答案:(1)外 (2)垂 (3)内 (4)中 (5)BC 边的高线或∠BAC 的平分线或BC 边的中线 14.如图(1)直三棱柱的侧棱长和底面边长均为2,主视图和俯视图如图(2)、(3)所示,则其左视图的面积为________.解析:其左视图是底为32×2=3,高为2的矩形.所以面积S=2×3=2 3.答案:2 315.与直线x+y-2=0和曲线x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程是________.解析:圆心(6,6)到直线x+y-2=0的距离为52,圆半径为3 2.由图形可分析出,半径最小的圆的半径是2,圆心为(2,2),所以圆方程为(x-2)2+(y -2)2=2.答案:(x-2)2+(y-2)2=2.16.过定点M(1,2)的两直线l1与l2,l1与x轴交于点A,l2与y轴交于点B,且l1⊥l2,则线段AB中点的轨迹方程是____________.答案:2x+4y-5=0三、解答题(本大题共6小题,解答时应写出必要的文字说明、证明过程或演算步骤.)17.自点M(1,3)向圆O:x2+y2=1引切线,求切线方程及切线的长.解:点M(1,3)在圆O:x2+y2=1外,因此过点M向圆引切线有两条.①当直线的斜率不存在时,切线为x=1;②当直线的斜率存在时,设切线方程为y-3=k(x-1),根据切线垂直于过切点的半径,得d=|k-3|1+k2=1,解得k=43,直线为4x-3y+5=0.综上可知,切线方程为x=1或4x-3y+5=0.由于半径、切线段和OM组成直角三角形,故切线长为d′=(1-0)2+(3-0)2-12=3.18.正方形ABCD的边长为1,分别取边BC、CD的中点E、F,连接AE、EF、AF.以AE、EF、FA为折痕,折叠这个正方形,使点B、C、D重合于一点P,得到一个四面体,如图(2)所示.(1)求证:AP⊥EF;(2)求证:平面APE⊥平面APF.证明:(1)∵∠APE=∠APF=90°,PE∩PF=P,∴PA⊥平面PEF.∵EF⊂平面PEF,∴PA⊥EF.(2)∵∠APE =∠EPF =90°, AP ∩PF =P , ∴PE ⊥平面APF . 又PE ⊂平面APE . ∴平面APE ⊥平面APF .19.已知圆C :x 2+y 2-2x +4y -4=0,问是否存在斜率为1的直线l ,使l 被圆C 截得弦AB ,以AB 为直径的圆经过原点O ?若存在,写出直线l 的方程;若不存在,说明理由.解:法一:假设存在且令l 为y =x +m .圆C 化为(x -1)2+(y +2)2=9,圆心C (1,-2),则AB 中点N 是两直线x -y +m =0与y +2=-(x -1)的交点,即N (-m +12,m -12).以AB 为直径的圆过原点,|AN |=|ON |.又CN ⊥AB ,|CN |=|1+2+m |2, 所以|AN |=CA 2-CN 2=9-(3+m )22.又|ON |=(-m +12)2+(m -12)2,由|AN |=|ON |,得m =1或m =-4.所以存在直线l ,方程为x -y +1=0或x -y -4=0. 法二:假设存在,令y =x +m ,由⎩⎪⎨⎪⎧y =x +m ,x 2+y 2-2x +4y -4=0,消去y ,得2x 2+(2m +2)x +m 2+4m -4=0.① 因为以AB 为直径的圆过原点,所以OA ⊥OB .设A (x 1,y 1),B (x 2,y 2),k OA ·k OB =y 1x 1·y 2x 2=-1,即x 1x 2+y 1y 2=0.由方程①,得x 1+x 2=-m -1,x 1x 2=m 2+4m -42.②y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2, 所以x 1x 2+y 1y 2=2x 1x 2+m (x 1+x 2)+m 2=0. 把②代入,m 2+3m -4=0.解得m =1或m =-4. 将m =1和m =-4分别代入方程①,检验得Δ>0, 所以存在直线l ,方程为x -y +1=0或x -y -4=0.20.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,F 为BD 的中点,G 在CD 上,且CG =CD4,H 为C 1G 的中点, 求:(1)FH 的长;(2)三角形FHB 的周长.解:如图,以D 为坐标原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DD 1所在直线为z 轴,建立空间直角坐标系.由于正方体的棱长为1,则有D (0,0,0),B (1,1,0),G (0,34,0),C 1(0,1,1).(1)因为F 和H 分别为BD 和C 1G 的中点,所以F (12,12,0),H (0,78,12).所以FH = (12-0)2+(12-78)2+(0-12)2=418.(2)由(1)可知FH =418,又BH = (1-0)2+(1-78)2+(0-12)2`=98,BF =22,所以三角形FHB 的周长等于42+41+98.21.如图所示几何体是一棱长为4 cm 的正方体,若在它的各个面的中心位置上,各打一个直径为2 cm 、深为1 cm 的圆柱形的孔,求打孔后几何体的表面积是多少.(π=3.14)解:因为正方体的棱长为4 cm ,而孔深只有1 cm ,所以正方体没有被打透.这样一来打孔后所得几何体的表面积,等于原来正方体的表面积,再加上六个完全一样的圆柱的侧面积,这六个圆柱的高为1 cm ,底面圆的半径为1 cm.故正方体的表面积为16×6=96 cm 2, 一个圆柱的侧面积为2π×1×1=6.28 cm 2, 几何体的表面积为96+6.28×6=133.68 cm 2.22.如图所示,一个圆锥形的空杯子上面放着一个半球形的冰淇淋.如果冰淇淋融化了,会溢出杯子吗?解:半球形的冰淇淋的体积与圆锥的体积大小,决定着融化了的冰淇淋是否会溢出杯子.由图形可知半球形的冰淇淋的半径为4 cm,圆锥的高为12 cm,圆锥的底面圆的半径为4 cm,∴冰淇淋的体积V1=23πR3=1283π(cm3).圆锥的体积V2=13πR2·h=1923π(cm3).由于V1<V2,所以冰淇淋融化后不会溢出杯子.。
数学必修三习题答案
数学必修三习题答案【篇一:高一数学必修3全册各章节课堂同步习题(详解答案)】概念班次姓名[自我认知]:1.下面的结论正确的是( ).a. 一个程序的算法步骤是可逆的b. 一个算法可以无止境地运算下去的 c. 完成一件事情的算法有且只有一种 d. 设计算法要本着简单方便的原则 2.下面对算法描述正确的一项是 ( ). a.算法只能用自然语言来描述 b.算法只能用图形方式来表示 c.同一问题可以有不同的算法d.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征( ) a.抽象性 b.精确性 c.有穷性 d.唯一性4.算法的有穷性是指( )a.算法必须包含输出b.算法中每个操作步骤都是可执行的c.算法的步骤必须有限d.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法() a.s1洗脸刷牙、s2刷水壶、s3烧水、s4泡面、s5吃饭、s6听广播 b.s1刷水壶、s2烧水同时洗脸刷牙、s3泡面、s4吃饭、s5听广播 c. s1刷水壶、s2烧水同时洗脸刷牙、s3泡面、s4吃饭同时听广播 d.s1吃饭同时听广播、s2泡面;s3烧水同时洗脸刷牙;s4刷水壶6.看下面的四段话,其中不是解决问题的算法是( )a.从济南到北京旅游,先坐火车,再坐飞机抵达b.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1c.方程x2?1?0有两个实根d.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 7.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c?a,b的值;③输出斜边长c的值,其中正确的顺序是 ( ) a.①②③ b.②③①c.①③②d.②①③[课后练习]:8.若f?x?在区间?a,b?内单调,且f?a??f?b??0,则f?x?在区间?a,b?内( )a.至多有一个根 b.至少有一个根c.恰好有一个根 d.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取a=89 ,b=96 ,c=99;第二步:____①______;第三步:_____②_____;第四步:输出计算的结果.10.写出求1+2+3+4+5+6+?+100的一个算法.可运用公式1+2+3+?+n= 第一步______①_______;第二步_______②________;第三步输出计算的结果.12.写出按从小到大的顺序重新排列x,y,z三个数值的算法.n(n?1)直接计算. 21.1.2程序框图[自我认知]: 1.算法的三种基本结构是()A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构D.流程结构、循环结构、分支结构2.程序框图中表示判断框的是()A.矩形框B.菱形框 d.圆形框 d.椭圆形框3.如图(1)、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为( )⑴333⑵3a.⑴n≥1000 ? ⑵n<1000 ?b. ⑴n≤1000 ?⑵n≥1000 ?c. ⑴n<1000 ? ⑵n≥1000 ?d. ⑴n<1000 ?⑵n<1000 ?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是 ( ) a.一个算法只能含有一种逻辑结构 b.一个算法最多可以包含两种逻辑结构 c.一个算法必须含有上述三种逻辑结构d.一个算法可以含有上述三种逻辑结构的任意组合 [课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是( ) a.求输出a,b,c三数的最大数 b.求输出a,b,c三数的最小数3333c.将a,b,c按从小到大排列d.将a,b,c按从大到小排列第5题图第6题图6.右边的程序框图(如上图所示),能判断任意输入的数x的奇偶性:其中判断框内的条件是( )a.m?0?b.x?0 ?c.x?1 ?d.m?1?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构 ( ) a.顺序结构 b.条件结构和循环结构 c.顺序结构和条件结构 d.没有任何结构?x2?1(x?0)8.已知函数f?x??? ,设计一个求函数值的算法,并画出其程序框图(x?0)?2x?11.1.2程序框图(第二课时)[课后练习]:班次姓名1.如图⑴的算法的功能是____________________________.输出结果i=___,i+2=_____.2.如图⑵程序框图箭头a指向①处时,输出 s=__________. 箭头a指向②处时,输出 s=__________.3.如图⑷所示程序的输出结果为s=132, 则判断中应填a、i≥10?b、i≥11?c、i≤11? d、i≥12?4.如图(3)程序框图箭头b指向①处时,输出 s=__________. 箭头b指向②处时,输出 s=__________5、如图(5)是为求1~1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。
【人教A版】高一数学必修2模块综合测评(三)(Word版,含解析)
模块综合测试一一、选择题(本大题共10个小题;每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1下面四个条件中,能确定一个平面的条件是( )A.空间中任意三点B.空间中两条直线C.一条直线和一个点D.两条平行直线解析:由平面的基本性质知,“不共线的三点;两条相交或平行直线;直线和直线外一点”均能确定一个平面.答案:D2已知直线l 和平面α.下面所给命题中,正确命题的个数是( )①若l 垂直α内两条直线,则l ⊥α②若l 垂直α内所有直线,则l ⊥α③若l 垂直α内两条相交直线,则l ⊥α④若l 垂直α内无数条直线,则l ⊥αA.0B.1C.2D.3解析:由线面垂直的定义及判定定理知若l 垂直α内任意直线,则l ⊥α;若l 垂直α内两条相交直线,则l ⊥α.所以①④错,②③正确,应选C.答案:C3一个长方体共一个顶点的三个面的面积分别是15,10,6r 则这个长方体对角线的长是( )A.6B.10C.23D.30解析:设共一个顶点的三条棱长分别为a,b,c,则⎪⎪⎩⎪⎪⎨⎧===⎪⎪⎩⎪⎪⎨⎧===.5,3,2,15,10,6c b a bc ac ab 解得 ∴长方体对角线的长为10222=++c b a .答案:B4若A(-2,3),B(3,-2),C(21,b)三点共线,则b 的值为( ) A.21 B.2 C.-2 D.-21 解析:若A 、B 、C 三点共线,则k AB =k AC , 即)2(21332)2(3---=----b ,得b=21. 答案:A5有下列命题,其中真命题的个数是( )①若两直线平行,则其斜率必相等②若两直线垂直,则其斜率乘积必等于-1 ③过(-1,1),其斜率为2的直线方程是11+-x y =2 ④同垂直于x 轴的两直线一定都和y 轴平行A.0B.1C.2D.3解析:①错,有可能平行的两直线斜率不存在;②错,若一条直线斜率为0,而另一条斜率不存在,也垂直;③错,直线方程应为y-1=2(x+1);④错,有可能与y 轴重合,应选A. 答案:A6过点(2,1)的直线中,被圆x 2+y 2-2x+4y=0截得的弦长最大的直线的方程为( )A.3x+y-7=0B.3x-y-5=0C.x+3y-5=0D.x-3y+5=0解析:当过点(2,1)的直线经过圆心(1,-2)时,截得的弦长最大,这时直线方程为212121--=---x y 即,3x-y-5=0. 答案:B7P 为△ABC 所在平面外一点,PA 、PB 、PC 两两垂直,则点P 在平面ABC 内的投影是△ABC 的( )A.外心B.内心C.垂心D.重心解析:如右图,设O 为P 在平面ABC 内的投影,则PO ⊥面ABC ,连结AO ,∵PA ⊥PB ,PA ⊥PC ,∴PA ⊥面PBC ,∴BC ⊥PA.又BC ⊥PO ,∴BC ⊥平面PAO ,∴BC ⊥AO.同理可证CO ⊥AB ,∴O 为△ABC 的垂心.答案:C8点M(-3,-2,4)关于坐标平面xOz 的对称点的坐标为( )A.(3,-2,4)B.(-3,2,4)C.(-3,-2,-4)D.(3,2,-4)解析:点M 关于平面xOz 的对称点与点M 的横、纵坐标不变,而纵坐标互为相反数,应选B.答案:B9直线y=kx+1与圆x 2+y 2+kx-y-9=0的两个交点关于y 轴对称,则k 的值为( )A.-1B.0C.1D.任何实数解析:设直线与圆的两个交点为A 、B ,因为A 、B 关于y 轴对称,所以y 轴过圆心(21,2k -),则2k -=0,∴k=0,应选B. 答案:B10在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有( )A.1条B.2条C.3条D.4条解析:⊙A 的圆心为(1,2),半径为1;⊙B 的圆心为(3,1),半径为2.所求直线即为⊙A 和⊙B 的公切线,有两条. 答案:B二、填空题(本大题共4个小题;每小题4分,共16分.把答案填在题中横线上)11存在着正视图,俯视图,侧视图完全相同的几何体,如(只举一个例子即可)_______________. 解析:由于正方体的三视图都是正方形.球的三视图都是圆,因此,可以填正方体或球. 答案:正方体或球12点A(4,5)关于直线l 的对称点为B(-2,7),则直线l 的方程为_________.解析:由条件知l 垂直平分线段AB ,∵A (4,5),B (-2,7),∴AB 中点为(1,6).k AB =31)2(475-=---, ∴l 斜率为3.∴l 方程为y-6=3(x-1),即3x-y+3=0.答案:3x-y+3=013正三角形ABC 边长为a,PA ⊥平面ABC,PA=AB,过A 作AO ⊥平面PBC,O 为垂足,则AO=___________.解析:∵PA ⊥面ABC ,∴PA ⊥PB ,PA ⊥AC ,又PA=AB=AC=BC=a.∴PB=PC=2a ,取BC 中点D ,连PD 、AD ,则PD ⊥BC ,AD ⊥BC ,且|PD|=27)21(222=-a a a. AD=23a.由V A —PBC =V P —ABC 知 31·AO·21·BC·PD=31·PA·21·BC·AD. 即AO·a·27a=a·a·23a. ∴AO=721a. 答案:721a 14若圆x 2+y 2-2mx+4y+(m 2-5)=0与圆x 2+y 2+2x-2my+(m 2-3)=0相交,则m 的取值范围是_____. 解析:配方得,(x-m )2+(y+2)2=9.(x+1)2+(y-m)2=4.则两圆的圆心分别为(m,-2)(-1,m),半径分别为r 1=3,r 2=2.由1<22)2()1(+++m m <5得-1<m <2或-5<m <-2.答案:-1<m <2或-5<m <-2三、解答题(本大题共4个小题,共44分.解答应写出文字说明、证明过程或演算步骤) 15(本小题满分10分)已知:如图,在空间四边形ABCD 中,AB=AD ,CB=CD,求证:AC ⊥BD.证明:取BD 的中点E ,连结AE 、EC,∵AB=AD ,∴AE ⊥BD.又∵BC=DC ,∴CE ⊥BD ,又AE∩EC=E.∴BD ⊥平面AEC.又AC ⊂平面AEC.∴AC ⊥BD.16(本小题满分10分)已知一个圆过P(4,-2),Q(-1,3)两点,且在y 轴上截得的线段长为43,求圆的方程.解析:由题意,可求得PQ 的中垂线方程为∵所求圆的圆心C 在直线①上,故可设其坐标为(a,a-1).又知圆C 的半径r=|CP|=22)1()4(++-a a ② 又已知圆C 截y 轴所得线段长为34,又圆C 的圆心到y 轴的距离为|a|,∴r 2=a 2+(234)2,代入②式得a 2-6a+5=0, 得a 1=1,a 2=5.∴r 1=13,r 2=37.故所求圆的方程为(x-1)2+y 2=13或(x-5)2+(y-4)2=37.17(本小题满分12分)已知一个圆锥的底面半径为R,高为H,在其中有一个高为h 的内接圆柱.(1)求圆柱的侧面积.(2)若高h 变化,当h 为何值时,圆柱的侧面积最大?解析:圆锥及内接圆柱的轴截面如右图,设所求圆柱底面半径为r.(1)由△SA′O′与△SAO 相似,得H h H R r -=. ∴r=(1-Hh )R. ∴S 圆柱侧=2πr·h=2π·(1-Hh )Rh=H Rh 22π-+2πRh. (2)由题意知,0<h<H.又S 圆柱侧=H Rh 22π-+2πRh=H R π2-(h-2H )2+2RH π≤2RH π, 0<2H <H, ∴当h=2H 时圆柱的侧面积最大,最大值为21πRH. 18(本小题满分12分)已知方程x 2+y 2-2x-4y+m=0,(1)若此方程表示的曲线是圆,求m 的取值范围;(2)若(1)中圆与直线x+2y-4=0相交于M 、N 两点,且OM ⊥ON(O 为原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程.解:(1)原方程可化为(x-1)2+(y-2)2=5-m,欲使其表示圆,需有m<5.(2)设M(x 1,y 1),N(x 2,y 2),∴k OM ·k ON =-1, 即2211x y x y ==-1. ∴x 1x 2+y 1y 2=0.又x 1=4-2y 1,x 2=4-2y 2,∴16-8(y 1+y 2)+5y 1y 2=0.又由⎩⎨⎧=+--+-=042,2422m y x y x y x 得5y 2-16y+m+8=0, ∴y 1+y 2=516,y 1y 2=58m +. 代入16-8(y 1+y 2)+5y 1y 2=0,得m=58. (3)以MN 为直径的圆的方程为(x-x 1)(x-x 2)+(y-y 1)(y-y 2)=0, 即x 2+y 2-(x 1+x 2)x-(y 1+y 2)y=0. 而y 1+y 2=516, x 1+x 2=8-2(y 1+y 2)=58, 故所求圆的方程为x 2+y 2-58x-516y=0.。
人教新课标版数学高一-高中数学必修2 阶段质量检测3
第三章(时间90分钟,满分120分)一、选择题(共10小题,每小题5分,共50分)1.如图,直线l 1,l 2,l 3的倾斜角分别为α1,α2,α3,则有( )A .α1<α2<α3B .α1<α3<α2C .α3<α2<α1D .α2<α1<α3答案:B2.已知直线l 的方程为y =-x +1,则直线l 的倾斜角为( ) A .30° B .45° C .60° D .135° 答案:D3.点(1,1)到直线x +y -1=0的距离为( ) A .1 B .2 C.22D . 2 答案:C4.若直线l 与直线y =1,x =7分别交于P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13 B .-13C .3D .-3答案:B5.已知P (-1,0)在直线l :ax +by +c =0上的射影是点Q (-2,3),则直线l 的倾斜角是( )A .60°B .30°C .120°D .90°答案:B6.若直线mx +ny +3=0在y 轴上的截距为-3,且它的倾斜角是直线3x -y =33的倾斜角的2倍,则( )A .m =-3,n =1B .m =-3,n =-3C .m =3,n =-3D .m =3,n =1答案:D7.和直线3x -4y +5=0关于x 轴对称的直线方程为( ) A .3x +4y +5=0 B .3x +4y -5=0 C .-3x +4y -5=0 D .-3x +4y +5=0答案:A8.若点A (3,1),B (-2,b ),C (8,11)在同一直线上,则实数b 等于( ) A .2 B .3 C .9 D .-9答案:D9.等腰直角三角形ABC 的直角顶点为C (3,3),若点A 的坐标为(0,4),则点B 的坐标可能是( )A .(2,0)或(4,6)B .(2,0)或(6,4)C .(4,6)D .(0,2)答案:A10.设点A (2,-3),B (-3,-2),直线l 过P (1,1)且与线段AB 相交,则l 的斜率k 的取值范围是( )A.⎩⎨⎧⎭⎬⎫kk ≥34,或k ≤-4B .⎩⎨⎧⎭⎬⎫k -4≤k ≤34C.⎩⎨⎧⎭⎬⎫k -34≤k ≤4D .以上都不对答案:A二、填空题(共4小题,每小题5分,共20分)11.不论a 为何实数,直线(a +3)x +(2a -1)y +7=0恒过定点________. 答案:(-2,1)12.经过点A (1,1)且在x 轴上的截距等于在y 轴上的截距的直线方程是________. 答案:x -y =0或x +y -2=013.过点A (2,1)的所有直线中,距离原点最远的直线方程为____________. 答案:2x +y -5=014.已知点A (4,-3)与B (2,-1)关于直线l 对称,在l 上有一点P ,使点P 到直线4x +3y -2=0的距离等于2,则点P 的坐标是____________.答案:(1,-4)或⎝⎛⎭⎫277,-87 三、解答题(共4小题,共50分,解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)已知直线l 的倾斜角为135°,且经过点P (1,1). (1)求直线l 的方程;(2)求点A (3,4)关于直线l 的对称点A ′的坐标. 解:(1)∵k =tan 135°=-1, ∴l :y -1=-(x -1),即x +y -2=0. (2)设A ′(a ,b ), 则⎩⎪⎨⎪⎧b -4a -3×(-1)=-1,a +32+b +42-2=0,解得a =-2,b =-1,∴A ′的坐标为(-2,-1).16.(本小题满分12分)已知两条直线l 1:x +m 2y +6=0,l 2:(m -2)x +3my +2m =0 ,当m 为何值时,l 1与l 2:(1)相交?(2)平行?(3)重合?解:当m =0时,l 1:x +6=0,l 2:x =0,∴l 1∥l 2. 当m =2时,l 1:x +4y +6=0,l 2:3y +2=0, ∴l 1与l 2相交.当m ≠0且m ≠2时,由1m -2=m 23m 得m =-1或m =3,由1m -2=62m ,得m =3.故(1)当m ≠-1且m ≠3且m ≠0时,l 1与l 2相交. (2)当m =-1或m =0时,l 1∥l 2. (3)当m =3时,l 1与l 2重合.17.(本小题满分12分)如右图所示,已知点A (2,3),B (4,1),△ABC 是以AB 为底边的等腰三角形,点C 在直线l :x -2y +2=0上.(1)求AB 边上的高CE 所在直线的方程; (2)求△ABC 的面积.解:(1)由题意可知,E 为AB 的中点,∴E (3,2),且k CE =-1k AB=1,∴CE 所在直线方程为:y -2=x -3,即x -y -1=0.(2)由⎩⎪⎨⎪⎧x -2y +2=0,x -y -1=0,得C (4,3),∴|AC |=|BC |=2,AC ⊥BC , ∴S △ABC =12|AC |·|BC |=2.18.(本小题满分14分)如右图所示,在△ABC 中,BC 边上的高所在直线l 的方程为x -2y +1=0,∠A 的平分线所在直线的方程为y =0,若点B 的坐标为(1,2),求点A 和点C 的坐标.解:由方程组⎩⎪⎨⎪⎧x -2y +1=0,y =0解得顶点A (-1,0).又AB 的斜率为k AB =1,且x 轴是∠A 的平分线,故直线AC 的斜率为-1,AC 所在直线的方程为y =-(x +1).已知BC 边上的高所在直线的方程为x -2y +1=0,故BC 的斜率为-2,BC 所在直线的方程为y -2=-2(x -1).解方程组⎩⎪⎨⎪⎧y =-(x +1),y -2=-2(x -1).得顶点C 的坐标为(5,-6).所以点A 的坐标为(-1,0),点C 的坐标为(5,-6).。
完整版)高一数学必修2第三章测试题及答案解析
完整版)高一数学必修2第三章测试题及答案解析数学必修二第三章综合检测题一、选择题1.若直线过点 (1,2),(4,2+3),则此直线的倾斜角是()A。
30° B。
45° C。
60° D。
90°2.若三点 A(3,1),B(-2,b),C(8,11)在同一直线上,则实数b 等于()A。
2 B。
3 C。
9 D。
-93.过点 (1,2),且倾斜角为 30°的直线方程是()A。
y+2=(3/2)(x+1) B。
y-2=3(x-1)C。
3x-3y+6-3=0 D。
3x-y+2-3=04.直线 3x-2y+5=0 与直线 x+3y+10=0 的位置关系是()A。
相交 B。
平行 C。
重合 D。
异面5.直线 mx-y+2m+1=0 经过一定点,则该定点的坐标为()A。
(-2,1) B。
(2,1) C。
(1,-2) D。
(1,2)6.已知 ab<0,bc<0,则直线 ax+by+c=0 通过()A。
第一、二、三象限 B。
第一、二、四象限C。
第一、三、四象限 D。
第二、三、四象限7.点 P(2,5) 到直线 y=-3x 的距离 d 等于()A。
(23+5)/2 B。
(-23+5)/2 C。
(-23-5)/2 D。
(22)/38.与直线 y=-2x+3 平行,且与直线 y=3x+4 交于 x 轴上的同一点的直线方程是()A。
y=-2x+4 B。
y=(1/2)x+4C。
y=-2x-(3/2) D。
y=(2/3)x-(3/2)9.两条直线 y=ax-2 与 y=(a+2)x+1 互相垂直,则 a 等于()A。
2 B。
1 C。
-1 D。
-210.已知等腰直角三角形 ABC 的斜边所在的直线是 3x-y+2=0,直角顶点是 C(3,-2),则两条直角边 AC,BC 的方程是()A。
3x-y+5=0.x+2y-7=0 B。
2x+y-4=0.x-2y-7=0C。
2x-y+4=0.2x+y-7=0 D。
【优化方案】高中人教A数学必修1同步测试卷:高中同步测试卷(三)(含答案解析)
高中同步测试卷 (三 )单元检测函数及其表示 (B)(时间: 120 分钟,满分: 150 分)一、选择题 (本大题共 12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.以下说法:①定义域同样,值域也同样的两个函数相等;②定义域同样,对应关系一致的两个函数相等;③值域同样,对应关系一致的两个函数相等;④只需对应关系一致,两个函数就相等;⑤只需值域不一样,两个函数就不相等.此中正确的个数为 ()A . 0B .1C . 2D . 3|2- x| - x - 3 02.函数 f(x) =2 的定义域为 ()x + 2A. -2,3B .( -2,+ ∞) 233 3C. 2,+ ∞D . -2,2 ∪2,+ ∞3.已知会合 A = {1 ,2,m} 与会合 B = {4 ,7,13} ,若 f : x →y= 3x +1 是从 A 到 B 的映照,则 m 的值为 ()A . 22B .8C . 7D . 44.如下图,能够作为函数图象的是 ( )5.已知函数 f(x) =x 2 +1( x<2 )7=(),则 ff ( x - 1)( x ≥2) 229 9A. 4B .413 53 C. 4D . 46.已知 f(x 2 -1)的定义域为 [ - 3, 3],则 f(x) 的定义域为 ( )A . [- 2, 2]B .[0,2]C . [ -1, 2]D .[- 3, 3]1 217.已知 x ≠0,函数 f(x) 知足 f x - x = x + x 2,则 f(x) 的表达式为 ()A . f(x) =x + 1(x ≠ 0) B .f(x) = x 2+ 2xC . f(x) = x 2(x ≠ 0)D . f(x) = x - 12x (x ≠ 0)8.小明和小华进行自行车竞赛( 比胜过程中,两人平均速行驶 ),刚开始小华当先,但重点时辰自行车掉了链子,小明赶超小华,小华修睦车后,急起直追,但为时已晚,小明还是先到了终点.假如用s 1,s 2 分别表示小明和小华所行走的行程, t 表示时间,则以下图中与该事件切合的是 ()1, x ≥09.已知 f(x) = ,则不等式 x +(x +2)f(x + 2) ≤5的解集是 ()- 1, x<033A . (- ∞, 2]B .[ -2, 2]C . ( -∞,- 2)D . (- ∞,+ ∞)10.定义在 R 上的函数 f(x) 知足 f(x + y)=f(x) + f(y) + 2xy(x ,y ∈ R), f(1) = 2,则 f( - 3)等于()A . 2B .3C . 6D . 911.设 f(x) =x - 2, x ≥ 10,则 f(5)的值为 ()f ( x +6), x<10,A . 10B .9C . 12D . 131112.若函数 y = f(x) 的值域是 2,3 ,则函数 F(x) = f(x) + f (x ) 的值域是 ()1 10 A. 2,3 B .2,35, 10 10 C.2 3D . 3,3题号 123456789101112答案二、填空题 (本大题共 4 小题,每题5 分,共 20 分.把答案填在题中横线上 )13.已知函数 f(2x +1) =3x + 2,且 f(a) =4,则 a = ________.bx + 1,此中 a , b 为非零常数,且 ab ≠2,若 f(x) · f 1= k ,k 为常数,14.已知 f(x) = 2x +ax则 k 的值为 ________.15.某在校大学生提早创业,想开一家服饰专卖店,经过估算,店面装饰费为10 000元,每日需要房租水电等花费100 元,受营销方法、经营信用度等因素的影响,专卖店销售1 2总收入 P 与店面经营天数 x 的关系是 P(x)=300x - x , 0≤x<300 ,2则总收益最大时店面经45 000, x ≥300,营天数是 ________.1x , x ≤ 0,16.设函数 f(x) = 2(x + |x|), g(x) = x则 f[g(x)] = ________.2, x>0,三、解答题 (本大题共6 小题,共 70 分.解答应写出文字说明,证明过程或演算步骤 )17.(本小题满分10 分 )长为l 的铁丝弯成下部为矩形、上部为半圆形的框架(如下图),若矩形底边长为2x ,求此框架围成图形的面积y 对于x 的函数.(写出定义域)1( 0<x<1 )18.(本小题满分12 分 )作出函数y=x的图象,并求其值域.x( x≥1)119.(本小题满分12 分 )已知函数y=a x+1(a<0且a为常数)在区间(-∞,1]上存心义,务实数 a 的取值范围.20. (本小题满分12 分 )已知二次函数知足f(3x + 1)= 9x2- 6x+5.(1)求 f(x) 的分析式;(2)求 f(x) 的值域.21.(本小题满分 12 分 )跟着优惠形式的多样化,“可选择性优惠”渐渐被愈来愈多的经营者采纳.一次,小马去“物美”商场购物,一块醒目的牌子吸引了他,上边说该商铺销售茶壸和茶杯,茶壸每个订价 20 元,茶杯每个订价 5 元,在所需茶壸和茶杯一次性购置的状况下,该店推出两种优惠方法:①买一送一 (即买一只茶壶送一只茶杯 );②打九折 (即按购置总价的90%付款 ).此刻小马需购置茶壸 4 个,茶杯若干个 (许多于 4 个),那么小马用哪一种优惠方法付款更省钱呢?x+ 1,x≤- 2,22.(本小题满分12 分 )已知函数f(x) =x2+2x,-2<x<2,2x- 1,x≥ 2.(1)求 f( - 5), f( -3), f f -5的值;2(2)若 f(a) = 3,务实数 a 的值;(3)若 f(m)>m(m ≤- 2 或 m≥ 2),务实数m 的取值范围.参照答案与分析1.【分析】选 C.一次函数 y = x 与 y =- x ,定义域同样,值域也同样,但对于同一个x的值1,对应元素分别为1、- 1,故①不正确;②明显正确;函数y = x 2, x ∈ {2} 与 y = x 2,x ∈ {2 ,- 2} ,值域都是{4},对应关系都是自变量 x 对应着它的平方,但两个函数不相等,故③④不正确;定义域、对应关系和值域是函数的组成因素,值域不一样,自然函数就不一样,故⑤正确.x +2>0 ,332.[导学号 02100016] 【分析】选 D.由3 - 2,得 x> - 2 且 x ≠ ,表示为会合 2 x -2≠0, 2∪ 3,+ ∞.23.【分析】选 D.由 f :x →y= 3x + 1,得 3×1+ 1=4,3× 2+ 1=7,3m + 1= 13,即 m =4.4.【分析】选 D. 函数是一对一、多对一的关系,应选 D.5.【分析】选 C.f 7= f 7-1= f 5 = f 5-1222233 2 13= f 2 =2 +1=4.6. [ 导学号 02100017]【分析】选 C.因为-3≤ x ≤ 2≤ 3.3,因此 0≤x2因此- 1≤x- 1≤2.1 21 1 27.【分析】选 B. 因为 f x - x = x + x 2= x - x+ 2.令 t = x -1x (x ≠ 0),则 t ∈ R , f(t) = t 2+ 2,因此 f(x) = x 2+ 2(x ∈R).8.【分析】选 B.小明匀速至终点,小华开始骑得快,半途修车行程未变,后又迅速骑至终点,此时小明已到终点,只有 B 切合,应选 B.9.【分析】 选 A. 当 x + 2≥0,即 x ≥- 2 时, f(x + 2)= 1.不等式可化为x ≥- 23 ? -2≤ x ≤.2x + 2≤52x< -2? x< -2,当 x +2<0 ,即 x< - 2 时, f(x +2) =- 1,不等式可化为x -( x + 2)≤53故不等式 x + (x +2)f(x + 2) ≤5的解集为 (- ∞,- 2)∪ [- 2,2]= (- ∞,32].10.【分析】选 C.令 x = y = 0,得 f(0) =0;令 x=y= 1,得 f(2) = 2f(1) + 2= 6;令 x=2, y=1,得 f(3) = f(2) + f(1) + 4= 12;令 x=3, y=- 3,得 0=f(3 -3) =f(3) + f(- 3)- 18=12+f( -3) -18,因此 f( - 3)= 6.11.[ 导学号 02100018] 【分析】选 B. 由题意得 f(5) = f(5 +6) =f(11) = 11- 2=9,应选B.11, 3,利用单一性定义知F(x) 在1, 112.【分析】选 B.令 f(x) =t ,则 F(x)= t+t,t∈2210上单一递减,在 [1,3]上单一递加,经计算得F(x) 的值域为 2,3,应选 B.t- 1,13.【分析】设 2x+ 1= t,则 x=2t- 131因此 f(t) = 3×+ 2= t+,222因为 f(a) = 4,因此3a+17 2= 4,因此 a= .23【答案】7314. [导学号 02100019]【分析】当 x≠0时,因为 f(x) =bx+1,2x+ a1b+ 1x+ b x因此 f x=2=ax+ 2,+ ax因此 f(x)1bx + 1x+ b=bx2+( b2+1) x+ b= k,f·=·2ax22x2x + a ax+ 2+( a + 4) x+2a因此 2akx2+ k(a2+ 4)x+ 2ak=bx 2+ (b2+ 1)x+ b,即 (2ak-b)x2+ [k(a 2+ 4)- (b2+ 1)]x + (2ak- b)= 0,2 2 b因此2ak- b= 0,且 k(a + 4)- (b + 1)= 0.由 2ak- b=0,得 k=,2b( a + 4)222因此-(b + 1)=0,因此 b(a + 4)- 2a(b + 1)=0,即 (ab- 2) ·(a- 2b)= 0,因为 ab≠2,因此 a-2b= 0,得 a= 2b,b b1因此 k=2a=4b=4.【答案】1 415.【分析】设总收益为L(x) ,则 L(x) =-1x2+ 200x- 10 000, 0≤ x<300 ,2-100x+ 35 000, x≥ 300,则 L(x) =-1(x- 200)2+ 10 000, 0≤x<300 ,2-100x+ 35 000, x≥ 300,当0≤x<300时,L(x) max=10 000,当 x≥300时, L(x) max= 5 000,因此总收益最大时店面经营天数是200.【答案】 200x, x>0 ,16.【分析】 f(x) =0, x≤ 0.当 x>0 时, g(x) = x2>0.则 f[g(x)] =f(x 2)= x2.当 x≤0时, g(x) = x≤0,则 f[g(x)] = f(x) = 0.x2, x>0 ,综上可得, f[g(x)] =0, x≤0.【答案】x2,x>00, x≤ 017. [导学号 02100020]︵-πx.【解】由题意知AB = 2x,CD =πx,于是 AC =l-2x2l - 2x-πx12π+ 4 2因此 y= 2x·2+2πx=-2 x + lx.2x>0 ,l又l - 2x-πx解得 0<x<.2>0 ,2+π故所求的函数为π+ 4x20<x<l. y=-2+ lx2+π18.【解】当 0<x<1 时, y=1x的图象是反比率函数图象的一部分;当x≥1时,图象为直线y=x 的一部分.函数的图象如下图.由此可知,值域为 [1,+∞).11 19.【解】要使函数 y=a x+ 1(a<0且 a 为常数 )在区间 (-∞,1]上存心义,一定有ax+ 1≥0, a<0,因此 x≤- a,即函数的定义域为(-∞,- a],因为函数在区间(-∞, 1]上存心义,因此 (-∞,1] ? ( -∞,- a],因此- a≥1,即 a≤- 1,因此 a 的取值范围是(-∞,- 1].20. [导学号 02100021]【解】(1)设f(x)=ax2+bx+c(a≠0),则 f(3x + 1)= a(3x+1)2+b(3x + 1)+ c=9ax2+ (6a+ 3b)x + a+ b+c=9x2-6x + 5.9a= 9,a= 1,比较系数,得6a+ 3b=- 6,解得b=- 4,a+ b+ c= 5,c= 8.因此 f(x) = x2- 4x+ 8.(2)因为函数f(x) 是张口向上,对称轴为x= 2 的抛物线,且极点坐标为(2, 4).因此函数图象如下图,因此函数的值域为[4,+∞).21.【解】设买茶杯x 只,付款 y 元 (x>3 ,且 x∈ N) ,则用第一种方法需付款y1= 4×20+ (x- 4) ×5=5x+ 60;用第二种方法需付款y2= (20 ×4+ 5x) ×90%=4.5x+ 72.设 d=y1- y2= 5x+ 60- (4.5x + 72)=0.5x- 12.当 d>0 时, 0.5x- 12>0,即 x>24 ;当 d=0 时, x=24;当 d<0 时, x<24.综上可知,当所购茶杯多于24 只时,方法②省钱;恰巧购置24 只时,两种方法均可;购置个数在4~ 23 之间时,方法①廉价.22.【解】 (1)由- 5∈( -∞,- 2],-3∈ (- 2,2),- 5∈ (- ∞,- 2],2 知 f( - 5)=- 5+ 1=- 4,f(- 3) =( - 3)2+ 2×(- 3)= 3- 2 3,因为 f -5 5 3 32=- + 1=- ,且- 2<- <2,222因此 f f - 53 3 23= f - = - 2 +2× -22 293 = 4-3=- 4.(2)①当 a ≤- 2 时, a + 1= 3,即 a = 2>-2,不合题意,舍去.22因此 (a -1)(a + 3)=0,得 a = 1,或 a =- 3.因为 1∈ (- 2, 2),- 3?(- 2, 2),因此 a = 1,切合题意.③当 a ≥2时, 2a - 1= 3,因此 a =2,切合题意.综合①②③,当 f(a) = 3 时, a = 1,或 a = 2.(3)因为 f(m)>m ,当 m ≤- 2 时, f(m) = m + 1>m 恒建立,故 m ≤- 2;当 m ≥2时, f(m) = 2m - 1>m ,解得 m>1. 故 m ≥2.因此, m 的取值范围是 (- ∞,- 2]∪ [2,+ ∞).。
(word完整版)新课标高中数学测试题(必修2)全套含答案,推荐文档
(数学2必修)第一章 空间几何体[基础训练A 组]一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A .棱台B .棱锥C .棱柱D .都不对2.棱长都是1的三棱锥的表面积为( )A . 3B . 23C . 33D . 433.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对4.正方体的内切球和外接球的半径之比为( )A .3:1B .3:2C .2:3D .3:35.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周,则所形成的几何体的体积是( )A. 92πB. 72πC. 52πD. 32π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( )A .130B .140C .150D .160二、填空题1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点,顶点最少的一个棱台有 ________条侧棱。
2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。
3.正方体1111ABCD A B C D - 中,O 是上底面ABCD 中心,若正方体的棱长为a ,则三棱锥11O AB D -的体积为_____________。
4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形 E BFD 1在该正方体的面上的射影可能是____________。
主视图 左视图 俯视图C 5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________.三、解答题1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12M ,高4M ,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4M (高不变);二是高度增加4M (底面直径不变)。
(人教A)高一下学期数学必修三单元检测卷 (共12套)(成套下载)
精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。
本资源创作于2020年8月,是当前最新版本的教材资源。
包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
(人教A 版)高一下学期数学必修三(全册)单元检测卷汇总(共12套)单元检测卷(1)算法与程序框图1、下面的结论正确的是( )A.—个程序的算法步骤是可逆的B.—个算法可以无止境地运算下去C.完成一件事情的算法有且只有一种D.设计算法要本着简单方便的原则2、阅读下面的四段话,其中不是解决问题的算法的是( )A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程210x -=有两个实根D.求12345++++的值,先计算123,+=再计算336,6410,10515,+=+=+=最终结果为153、在设计一个算法求12和14的最小公倍数时,设计的算法不恰当的一步是( )A.首先将12因式分解: 21223=⨯B.其次将14因式分解: 1427=⨯C.确定其素因数及素因数的最高指数: 2112,3,7D.其最小公倍数为23742S =⨯⨯=4、下面对算法描述正确的一项是( )A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同5、能设计算法求解下列各式中S 的值的是( ) ①1001111 (2482)S =++++; ②1001111 (2482)S =+++++; ③1111...2482n S =++++ (n 为确定的正整数) A.①② B.①③ C.②③ D.①②③6、下列关于算法的说法,正确的有( )①求解某一类问题的算法是唯一的;②算法必须在有限次之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.A.1个B.2个C.3个D.4个7、现用若干张扑克牌进行扑克牌游戏,小明背对小亮,让小亮按下列四个步骤操作: 第一步,分发左、中、右三堆牌,每堆牌不少于两张, 且各堆牌的张数相同.第二步,从左边一堆拿出两张,放人中间一堆.第三步,从右边一堆拿出一张,放入中间一堆.第四步,左边一堆有几张牌,就从中间一堆拿出几张牌放人左边一堆.这时,小明准确地说出了中间一堆牌现有的张数,则中间一堆牌现有的张数是( )A.4B.5C.6D.88、给出下面的算法:第一步,输入x.x+,否则执行第三步.第二步,判断x是否小于0,若是,则输出2x-.第三步,输出1-时,输出的结果分别为( )当输入的x的值为1,0,1-A. 1,0,1-B. 1,1,0-C. 1,1,0-D. 0,1,1答案以及解析1答案及解析:答案:D解析:算法程序是有序步骤,是不可逆的,算法的程序是有限的,同一个问题的算题也是不唯一的.2答案及解析:答案:C解析:A.从济南到北京旅游,先坐火车,再坐飞机抵达,解决了怎样去的问题,所以A是解决问题的算法;B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1,解决了怎样解一元一次方程的问题,所以B是解决问題的算法; D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3 =6, 6+4 =10,10+5=15,最终结果为15,解决了怎样求这些数的和的问题,所以D是解决问题的算法.故选C.3答案及解析:答案:D解析:最小公倍数为21123784.S =⨯⨯=4答案及解析:答案:C解析:算法的特点:有穷性,确定性,顺序性与正确性,不唯一性,普遍性;算法可以用自然语言、图形语言,程序语言来表示,故A 、B 不对;同一问题可以用不同的算法来描述,但结果一定相同,故D 不对.C 对.故应选C.5答案及解析:答案:B解析:因为算法的步骤是有限的,所以②不能设计算法求解.易知①③能设计算法求解.6答案及解析:答案:C解析:由算法的概念,知②③④正确,而解决某类问题的算法不一定是唯一的,从而①说法不正确.故选C.7答案及解析:答案:B解析:由第一步,知三堆牌的张数一样,设为第二步后,左边一堆牌的张数为2x -,中间一堆牌的张数为2x +;第三步后,中间一堆牌的张数为213x x ++=+;第四步,从中间一堆牌中抽出()2x -张牌,则中间余下5张牌,故选B.8答案及解析:答案:C解析:根据x 值与0的关系,选择执行不同的步骤,当x 的值为1,0,1-时,输出的结果应分别为1,1,0-,故选C.单元检测卷(2)基本算法语句1、根据下列算法语句,当输入为时,输出的值为( )A.25B.30C.31D.612、将232x x y y++用计算机程序表示为( ) A. 3x 2/2y x y ∧++B. 32/2y x y **++C. 32/(2)x y x y ∧**++D. 32(2)x y x y ∧⋅⋅+÷+3、下列说法正确的是( )A.输入语句可以给变量赋值,并且可以同时给多个变量赋值B.输出语句可以输出常量、变量的值和系统信息, 但不能输出有关的表达式的计算结果C.赋值语句"y=x "与"x=y "相同D.语句PRINT "Fribonacci Progression is ";11235813213455的执行结果是112358132134554、有以下程序:程序执行后的结果是( )A.3,5B.5,3C.5,5D.3,35、下列基本算法语句的书写格式正确的是( )A. INPUT a=2010B. PRINT x=5C. y=y*y+1D. 5=x6、阅读下列程序:根据程序提示一次输入4,2,-5,则程序运行结果是( )=A. max maxB. max2=C. max5=-D. max4=7、下列程序的功能是:判断任意输入的数:是否是正数.若是,输出它的平方值;若不是,输出它的相反数.根据此功能可知条件应为( )A. 0x>B. 0x<C. 0x>=D. 0x<=8、下面程序运行后,输出的结果为( )A. 2015 2016B. 2016 2017C. 2017 2018D. 2018 2019答案以及解析1答案及解析:答案 C解析题目所给函数是分段函数,当时,, 当时,.当输入时,.2答案及解析:答案:C解析:注意计算机计算的特殊运算符号.3答案及解析:答案:A解析:4答案及解析:答案:C解析:执行完第一行:A=3,执行完第二行:B=5,执行完第三行:A=5,执行完第四行:B=5,最后输出A,B的值分别为5,5.5答案及解析:答案:C解析:6答案及解析:答案:D解析:此程序的功能是比较三个数的大小,并输出最大值. 7答案及解析:答案:D解析:由题意可知,在条件语句中当条件不满足时,执行输出它的平方值这一语句体.8答案及解析:答案:D解析:选D.依题意知1,0,0i s p ===,第1次循环: ()11112,,22p s i =⨯+===; 第2次循环: ()2216p =⨯+=, 112,3263s i =+==; 第3次循环: ()21333112,,43124p s i =⨯+==+==; …, 第2 018次循环2018:2018 2 019,, 2 0192019p s i =⨯==,循环结束,输出20182019s =单元检测卷(3)算法案例1、下面一段程序的功能是( )(说明: INT(x)表示不超过x 的最大整数)A.求,x y 的最小公倍数B.求,x y 的最大公约数C.求x 被y 整除的商D.求y 除以x 的余数2、在用更相减损术求294与84的最大公约数时,需做减法运算的次数是( )A.2B.3C.4D.53、计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A F ~共16个计数符号,这些符号与十进制数的对应关系如下表:例如,用十六进制表示: 1E D B +=,则A B ⨯等于( )A. 6EB. 72C. 5FD. 0B4、用秦九韶算法求多项式234()1232f x x x x x =++-+当1x =-时的值时, 2v 的结果( )A. 4-B. 1-C. 5D. 65、运行下面的程序,当输入的数据为78,36时,输出的结果为( )A.24B.18C.12D.66、用辗转相除法求294和84的最大公约数时,需要做除法的次数是( )A.1B.2C.3D.47、用秦九韶算法求多项式23456()1235879653f x x x x x x x =+-++++在4x =-的值时, 4V 的值为( )A. 57-B. 220C. 845-D. 33928、阅读下面的算法程序:上述程序的功能是( )A.计算310⨯的值B.计算93的值C.计算103的值D.计算12310⨯⨯⨯⨯的值答案以及解析1答案及解析:答案:B解析:由循环条件m/n<>INT(m/n),知当m 与n 的商不是整数时,执行循环体.循环体为由三个赋值语句构成的顺序结构,不妨令12,8,x y ==第一次循环,121,8≠,执行循环体1284,8, 4.c m n =-===, 第二次循环82,4=结束循环,输出n 的值4. 故该程序是通过辗转相除法求最大公约数.故选B.2答案及解析:答案:C解析:用更相减损术求294与84的最大公约数,列出算式,注意直到两数相等为止.3答案及解析:答案:A解析:A B ⨯用十进制可以表示为1011110⨯=, 而11061614=⨯+,所以用十六进制表示为6E ,故选A.4答案及解析:答案:D解析:此题4n =,42a =,33a =-,21a =,12a =,01a =,由秦九韶算法的递推关系式()01{1,2,,nk k n k v a k n v v x a --===+,得()1032135v v x a =+=⨯--=-()2125116v v x a =+=-⨯-+=,故选D.5答案及解析:答案:D解析:由程序语句知,此程序是用更相减损术求输入的两个不同正整数的最大公约数.因为783642,42366,36630,30624,24618-=-=-=-=-=,181612,1266-=-=,所以78和36的最大公约数为6,所以输出结果为6,故选D.6答案及解析:答案:B解析:294=84342⨯+,84=4220⨯+.7答案及解析:答案:B解析:解析: 0103,57,V V V x ==+=-21628634,V V x =+=+=()32793447957,V V x =+=⨯-+=-()4385748220.V V x =-=-⋅--=8答案及解析:答案:C解析: 该算法中使用了循环语句,在i 不超过10的条件下,反复执行循环体,依次得到3,23,33,...103,所以循环结束时,输出结果为103,因此该程序的功能是计算103的值,故应选C.单元检测卷(4)章末检测(一)1、如图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入( )A. 1000A >和1n n =+B. 1000A >和2n n =+C. 1000A ≤和1n n =+D. 1000A ≤和2n n =+2、执行两次下图所示的程序框图,若第一次输入的x 值为7,第二次输入的x 值为9,则第一次,第二次输出的a 的值分别为( )A.0,0B.1,1C.0,1D.1,03、根据下面的算法,可知输出的结果S 为( )第一步, 1i =;第二步,判断10i <是否成立,若成立,则2,23i i S i =+=+,重复第二步,否则执行下一步; 第三步,输出S .A.19B.21C.25D.274、下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a ,b 分别为14,18,则输出的a = ( )A. 0B. 2C. 4D. 14n=则输出k的值为( )5、执行如图所示的程序框图,若输入7,A.2B.3C.4D.5t=,则输出的n= ( )6、执行如图所示的程序框图,如果输入的0.01A. 5B. 6C. 7D. 87、执行如图所示的程序框图,如果最后输出的s的值为110,那么判断框中实数a的取值范围是( )A. [)9,10B. (]9,10C. []9,10D.无法确定8、运行如图所示的程序框图,若输出的x的值为0,则输入的x的值为( )A. 27 4B. 63 8C.13516D. 27932答案以及解析1答案及解析:答案:D解析:根据程序框图求321000n n ->的最小正偶数可知,判断框中应填: 1000A ≤,根据初始值0,n n =为偶数可知2n n =+.2答案及解析:答案:D解析:第一次7x =,227<,3b =,237>, 1a =;第二次9x =,229<,3b =,239=,0a =,选D.3答案及解析:答案:C解析:该算法的运行过程是:1,i =110i =<成立,123,i =+=2339,S =⨯+=310i =<成立,325,i =+=25313,S =⨯+=510i =<成立,527,i =+=27317,S =⨯+=710i =<成立,729,i =+=29321,S =⨯+=910i =<成立,9211,i =+=211325,S =⨯+=1110i =<不成立,输出25.S =4答案及解析:答案:B解析:由于14a =,18b =,且a b >不成立,所以4b =,此时a b >成立,故10a =; 由于104>,所以 6a =;由于64>成立,所以2?a =,此时4b =,由于24>不成立,所以2b =.满足a b =,故输出a 的值为2.考点:1. 更相减损术;2.程序框图.5答案及解析:答案:D解析:选D.依题意可知,1,13k n ==;2,25;3,49;4,97;k n k n k n ======5,193100,k n ==>满足条件.故输出k 的值为5.6答案及解析:答案:C解析: 由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.由程序框图可知,11122S =-=,14m =,1n =,10.012>; 111244S=-=,18m =,2n =,10.014>; 111488S=-=,116m =,3n =,10.018>; 11181616S=-=,132m =,4n =,10.0116>; 111163232S=-=,164m =,5n =,10.0132>; 111326464S=-=,1128m =,6n =,10.0164>; 11164128128S =-=,1256m =,7n =,10.01128<. 故选C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.7答案及解析:答案:A解析:11111,2;,3;,4;,5;;,10234510s n s n s n s n s n ========⋯==,故910a ≤<,故选A.8答案及解析:答案:C解析:设原来壶中的酒为m ,执行该程序框图可知,第1次循环: 29,2x m i =-=;第2次循环: ()2299427,3x m m i =--=-=;第3次循环: ()24279863,4x m m i =--=-=;第4次循环: (8639165)135,x m m i =--=-=,此时结束循环,输出结果,此时161350m -=,解得13516m =,故选C.单元检测卷(5)随机抽样1、我国古代数学名著《数学九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A. 134石 B. 169石 C. 338石 D. 1365石2、下列抽样实验中,适合用抽签法的是( ) A.从某工厂生产的3000件产品中抽取600件进行质量检验 B.从某工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验 C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验 D.从某厂生产的3000件产品中抽取10件进行质量检验3、总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A.08B.07C.02D.01 4、将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( )A.26,16,8B.25,17,8C.25,16,9D.24,17,95、某学校高一年级共有480名学生,为了调查高一学生的数学成绩,计划用系统抽样的方法抽取30名学生作为调查对象:将480名学生随机从1~480编号,按编号顺序平均分成30组(1~16号,17~32号,…,465~480号),若从第1组中用抽签法确定的号码为5,则第8组中被抽中学生的号码是( )A.25B.133C.117D.886、某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件、80件、60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n= ( )A.9B.10C.12D.137、某工厂的三个车间在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a、b、c,且2b a c=+,则第二车间生产的产品数为( )A.800B.1000C.1200D.15008、某学校高一、高二、高三年级的学生人数分别为900,900,1200人,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高三年级抽取的学生人数为( )A.15B.20C.25D.30答案以及解析1答案及解析:答案:B解析:设这批米内夹谷的个数为x,则由题意并结合简单随机抽样可知, 282541534x=,即281534169254x=⨯≈,故应选B.2答案及解析:答案:B解析:利用抽签法的概念和步驟可做出判断.A 总体容量较大,样本容量也较大,不适宜用抽签法;B 总体容量较小,样本容量也较小,可用抽签法;C 中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D 总体容量较大,不适宜用抽签法.故选B.3答案及解析: 答案:D解析:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字中小于20的编号依次为08,02,14,07,02,01.其中第2个和第5个都是02重复.则第5个个体的编号为01.4答案及解析: 答案:B 解析:本题主要考查系统抽样的意义.依题意及系统抽样的意义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k 组抽中的号码是()3121k +-.令()3121300k +-≤得1034k ≤,因此第Ⅰ营区被抽中的人数是25;令()3003121495k <+-≤得103424k <≤,因此第Ⅱ营区被抽中的人数是422517-=.结合各选项知,选B.5答案及解析: 答案:C 解析:由系统抽样样本编号的确定方法进行求解.因为第1组抽出的号码为5,所以第8组应抽出的号码是()81165117-⨯+=,故选C.6答案及解析: 答案:D解析:利用分层抽样抽取甲、乙、丙三个车间的产品数量比为120?:?80?:?606?:?4?:?3=,从丙车间的产品中抽取了3件,则3313n ⨯=,得13n =,故选D.7答案及解析: 答案:C解析:由分层抽样可得第二车间应抽取的产品数为: 13600360012003b a bc ⨯=⨯=++8答案及解析: 答案:B解析:三个年级的学生人数比例为3:3:4,按分层抽样方法,在高三年级应该抽取人数为45020334⨯=++ (人).单元检测卷(6)用样本估计总体1、从甲、乙两种玉米苗中各抽6株,分别测得它们的株高如图所示(单位:cm).根据数据估计( )A.甲种玉米比乙种玉米不仅长得高而且长得整齐B.乙种玉米比甲种玉米不仅长得高而且长得整齐C.甲种玉米比乙种玉米长得高但长势没有乙整齐D.乙种玉米比甲种玉米长得高但长势没有甲整齐2、10个小球分别编号为1,2,3,4,其中1号球4个,2号球2个,3号球3个,4号球1个,数字0.4是指1号球占总体的( )A.频数B.频率C.频率/组距D.累积频率 3、一个学校有初中生800人,高中生1200人,则25是初中生占全体学生的( ) A.频数 B.频率 C.概率 D.频率分布4、在一次歌手大奖赛上,七位评委为某歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7.去掉一个最局分和一个最低分后,所剩数据的平均值和方差分别为( )A.9.4,0.484B.9.4,0.016C.9.5,0.04D.9.5,0.0165、如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为( )A.2,5B.5,5C.5,8D.8,86、将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为( )A. 116 9B. 36 7C. 36677、从甲、乙两种玉米苗中各抽10株,测得它们的株高分别如下:(单位:cm)甲25 41 40 37 22 14 19 39 21 42 乙27 16 44 27 44 16 40 40 16 40 根据上表数据估计( )A.甲种玉米比乙种玉米不仅长得高而且长得整齐B.乙种玉米比甲种玉米不仅长得高而且长得整齐C.甲种玉米比乙种玉米长得高但长势没有乙整齐D.乙种玉米比甲种玉米长得高但长势没有甲整齐8、如果数据, 12,,...,n x x x 的平均数是x ,方差是2s , 则1223,23,...,23n x x x +++的平均数和方差分别是( ) A. x 和s B. 23x +和24s C. 23x +和2sD. 23x +和24129s s ++答案以及解析1答案及解析: 答案:D 解析:2答案及解析: 答案:B解析:因为1号球的频数为4,则1号球占总体的频率为40.410=.3答案及解析: 答案:B 解析:4答案及解析: 答案:D 解析:5答案及解析: 答案:C解析:由题中茎叶图及已知得 5x =,又乙组数据的平均数为16.8,即()91510182416.85y +++++=,解得8y =,选C.6答案及解析: 答案:B解析:由题意知去掉一个最高分和一个最低分后,所剩数据为: 87,94,90,91,90,90,91x +,∴这组数据的平均数是34010190917x -+++++++=,得4x =.由方差公式得()()()22222222136431013077s ⎡⎤=-++-++-++=⎣⎦,故选B.7答案及解析: 答案:D 解析:∵()12541403722141939214210=⨯+++++++++130010=⨯()30cm = =()()1127164427441640164031031cm 1010⨯++++++++=⨯= ∴<,即乙种玉米的苗长得高.∵,即甲种玉米的苗长得整齐.综上,乙种玉米的苗长得高,甲种玉米的苗长得整齐. 故选D.8答案及解析: 答案:B解析: ∵数据12,,...,n x x x 的平均数是x ,方差是2s , ∴12...nx x x x n+++=,∴12232 3 (23)23n x x x x n+++++=+∴1223,23,...,23n x x x +++的方差是()()22112323...2323n x x x x n ⎡⎤+--+++--⎢⎥⎣⎦()()22114...4n x x x x n ⎡⎤=-++-⎢⎥⎣⎦24s =.故选B.单元检测卷(7)变量间的线性关系1、对变量有观测数据(,)(1,2,,10),i i x y i =⋅⋅⋅得散点图①;对变量,u v 有观测数据(,)(1,2,,10)ui vi i =⋅⋅⋅,得散点图②,由这两个散点图可以判断( )A.变量x 与y 正相关,u 与v 正相关B.变量x 与y 正相关,u 与v 负相关C.变量x 与y 负相关,u 与v 正相关D.变量x 与y 负相关,u 与v 负相关2、已知回归直线斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )A. 1.234ˆyx =+ B. 1.235ˆyx =+ C. 1.2308ˆ.0yx =+ D. 0.0813ˆ.2yx =+ 3、设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(,)(1,2,,),i i x y i n =⋅⋅⋅,用最小二乘法建立的回归方程为0.8585.71,y x =-,则下列结论中不正确的是( )A.y 与x 具有正的线性相关关系B.回归直线过样本点的中心(,)x yC.若该大学某女生身高增加1cm ,则其体重约增加0.85kgD.若该大学某女生身高为170cm ,则可断定其体重必为58.79kg 4、下列说法正确的是( )①线性回归方程适用于一切样本和总体;②线性回归方程一般都有局限性;③样本取值的范围会影响线性回归方程的适用范围;④线性回归方程得到的预测值是预测变量的精确值. A.①② B.②③ C.③④ D.①③5、某商品的销售量y (件)与销售价格x (元/件)存在线性相关关系,根据一组样本数据()(),1,2,,i i x y i n =,用最小二乘法建立的回归方程为10200ˆyx =-+,则下列结论正确的是( )A. y 与x 具有正的线性相关关系B.若r 表示变量y 与x 之间的线性相关系数,则10r =-C.当销售价格为10元时,销售量为100件D.当销售价格为10元时,销售量为100件左右6、某单位为了了解用电量y (度)与气温()x C ︒之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得回归直线方ˆˆˆybx a =+中ˆ2b ≈-,预测当气温为4C -︒时,用电量的度数约为( )A.68℃B.67℃C.66℃D.65℃ 7、已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测数据算得的线性回归方程可能为( )A. 0.4.3ˆ2yx =+ B. 2 2.4ˆyx =- C. 9ˆ2.5yx =-+ D. 0.3 4.4ˆyx =-+ 8、设有一个回归方程为2 1.5,y x =-当自变量x 增加一个单位时( )A. y 平均增加1.5个单位B. y 平均增加2个单位C. y 平均减少1.5个单位D. y 平均减少2个单位答案以及解析1答案及解析: 答案:C 解析:由图(1)可知, y 随x 的增大而减小,各点呈下降趋势,变量x 与y 负相关, 由图(1)可知, v 随u 的增大而增大,各点呈上升趋势,变量u 与v 正相关,2答案及解析: 答案:C解析:利用斜率的估计值是1.23和回归直线经过样本点的中心,代入验证即可.3答案及解析: 答案 D解析 由线性回归方程0.8585.71y x =-知,0.850,k =>所以与具有正的线性相关关系的,故选项A 正确;由回归直线方程恒过样本点的中心(,)x y 知,选项B 正确;若该大学某女生身高增加1cm ,则由0.8585.71y x =-知其体重约增加0.85kg ,因此C 选项正确;若该大学某女生身高为170cm ,则可预测或估计其体重为58.79kg ,并不一定为58.79kg ,因此选项不正确.故答案为D.4答案及解析: 答案:B 解析:5答案及解析:答案:D解析:y 与x 具有负的线性相关关系,所以A 项错误;当销售价格为10元时,10102001ˆ00y=-⨯+=,即销售量在100件左右,因此C 错误D 正确.B 项中10-是回归直线方程的斜率.6答案及解析:答案:A 解析:由表格得(),x y 为()10,40,又(),x y 在回归方程ˆˆˆybx a =+上且ˆ2b ≈-,所以解得: 60a =所以2ˆ60yx =-+当4x =-时, 2(4)6068ˆy =-⨯-+=.7答案及解析:答案:A解析:变量x 与y 正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程. ∵变量x 与y 正相关,∴可以排除C,D; 样本平均数3x =, 3.5y =,代入A 符合,B 不符合,故选:A.8答案及解析:答案:C解析:单元检测卷(8)章末检测(二)1、如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)。
2020学年高一数学上学期同步测试 第3.4单元 新人教版必修2
2020学年度上学期单元测试高一数学试题【新人教】第3.4单元必修2全卷满分150分,用时150分钟。
第Ⅰ卷(共76分)一、选择题(60分)1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是( )A.30° B.45° C.60° D.90°2.如果AB >0,BC >0,那么直线Ax —By —C=0不经过的象限是 ( )A .第一象限;B .第二象限;C .第三象限;D .第四象限3.直线06:1=++ay x l 与023)2(:2=++-a y x a l 平行,则a 的值等于 ( ) A .-1或3 B .1或3 C .-3 D .-14.以A (1,3),B (-5,1)为端点的线段的垂直平分线的方程是 ( )A .083=+-y xB .043=++y xC .083=++y xD .062=--y x5.已知点(a ,2)(a >0)到直线l :x —y+3=0的距离为1,则a 等于( )A .2B .22-C .12-;D .12+ 6.若A(-2,3),B(3,-2),C(21,m)三点共线,则m为 ( ) A.21 B.21- C.-2 D.27.直线,31k y kx =+-当k 变动时,所有直线都通过定点 ( )A .(0,0)B .(0,1)C .(3,1)D .(2,1)8.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a .b .c 的值依次为 ( )A .2.4.4B .-2.4.4C .2.-4.4D .2.-4.-49.直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为 ( )A .22B .4C .24D .210.圆x 2+2x+y 2+4y-3=0上到直线x+y+1=0的距离为2的点共有 ( )A .1个B .2个C .3个D .4个11.已知圆C 与直线x-y=0 及x-y-4=0都相切,圆心在直线x+y=0上,则圆C 的方程为 ( )A .22(1)(1)2x y ++-=B .22(1)(1)2x y -++= C .22(1)(1)2x y -+-= D .22(1)(1)2x y +++=12.在空间直角坐标系中,点A (1,2,3)与点B (1,3,5)之间的距离为( )A .1B C .D .2 二、填空题(16分) 13.若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于14.直线5x+12y+3=0与直线10x+24y+5=0的距离是15.圆2262150x y x y +---=的圆心坐标为____________16.过点P(-1,6)且与圆4)2()3(22=-++y x 相切的直线方程是________第二卷(74分)三 解答题(18.21题各13分,其余各题12分)17.一条直线经过点M (2,-3),倾斜角α=1350,求这条直线方程。
北师大版数学高一-14-15高中必修3练习 本册综合测试2
本册综合测试(二)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
时间120分钟,满分150分。
第Ⅰ卷(选择题 共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.某学校共有20个班级,每班各有40名学生,其中男生25人,女生15人,若从全校800人中利用简单随机抽样的方法抽出80人,则下列选项中正确的是( )A .每班至少会有一人被抽中B .抽出来的男生人数一定比女生人数多C .已知甲是男生,乙是女生,则甲被抽中的概率大于乙被抽中的概率D .每位学生被抽中的概率都是110[答案] D[解析] 由简单随机抽样的特点知每位学生被抽中的概率都是110.2.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A.91.5和91.5 C .91和91.5 D .92和92[答案] A[解析] 数据从小到大排列后可得其中位数为91+922=91.5,平均数为87+89+90+91+92+93+94+968=91.5.3.(2014·天津理,3)阅读下边的程序框图,运行相应的程序,输出S 的值为( )A .15B .105C .245D .945[答案] B[解析] 本题考查循环框图的输出问题. 第一次运行结果T =3,S =3,i =2; 第二次运行结果T =5,S =15,i =3; 第三次运行结果T =7,S =105,i =4; 输出S =105.选B.注意,准确写出每次运行结果再结合判断框条件写出结果.4.已知变量x 与y 正相关,且由观测数据算得样本平均数x -=3,y -=3.5,则由该观测数据算得线性回归方程可能为( )A .y =0.4x +2.3B .y =2x -2.4C .y =-2x +9.5D .y =-0.3x +4.4[答案] A[解析] 本题考查了线性回归方程,将点(3,3.5)代入个方程中可知,选项A 成立,所以选A ,线性回归方程一定经过点(x ,y ).5.一箱产品中有正品4件,次品3件,从中任取2件,其中事件: ①恰有1件次品和恰有2件次品; ②至少有1件次品和全是次品; ③至少有1件正品和至少有1件次品; ④至少有1件次品和全是正品. 四组中是互斥事件的有( )A .1组B .2组C .3组D .4组[答案] B[解析] 是互斥事件的为①与④这2组;②中至少有1件次品包括“1件次品”“2件次品”两种情况,而全是次品指的是“2件次品”,故可能同时发生,故②不是互斥事件;③中至少有1件正品包括“一正一次”,“两正”两种情况,而至少有一件次品包括“一正一次”“两次”两种情况,故③中两事件不互斥.6.假设△ABC 为圆的内接正三角形,向该圆内投一点,则点落在△ABC 内的概率( ) A.334π B .2πC.4π D .33π4[答案] A[解析] 设圆O 的半径为R ,“所投点落在△ABC 内”为事件A ,则P (A )=34AB 2πR 2=34(3R )2πR 2=334π. 7.在样本的频率分布直方图中,一共有n 个小矩形,若中间一个小矩形的面积等于其余n -1个小矩形面积和的14,且样本容量为160,则中间一组的频数是( )A .32B .20C .40D .25 [答案] A[解析] 频率分布直方图中所有小矩形的面积和等于1,设中间一个小矩形的面积为S ,则其余n -1个小矩形的面积为4S .∴S +4S =1,S =15,所以频数为15×160=32.8.从所有的两位数中任取一个数,则这个数能被2或3整除的概率是( ) A.56 B .45C.23 D .12[答案] C[解析] 设在10~99中能被2,3,6整除的整数分别为2k,3m,6n ,其中k ,m ,n ∈Z ,令10≤2k ≤99,10≤3m ≤99,10≤6n ≤99,解得5≤k ≤4912,313≤m ≤33,123≤n ≤1612,所以有45个被2整除的整数,30个被3整除的整数,15个被6整除的整数,共有45+30-15=60(个)能被2或3整除的整数,10~99中只有99-10+1=90(个)整数,故所求事件的概率P =6090=23. 9.(2014·重庆理,5)执行如图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )A .s >12B .s >35C .s >710D .s >45[答案] C[解析] 本题考查了算法与程序框图,第一次循环k =9,S =1×910=910,第二次循环k=8,S =910×89=45 ,第三次循环,k =7,S =710循环后k =6,即可输出,所以满足条件的S >710.所以选C.计算程序框图有关的问题要注意判断框中的条件,同时要注意循环节中各个量的位置.10.设集合A ={1,2},B ={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P (a ,b ),记“点P (a ,b )落在直线x +y =n 上”为事件C n (2≤n ≤5,n ∈N ),若事件C n 的概率最大,则n 的所有可能值为( )A .3B .4C .2和5D .3和4[答案] D[解析] 点P (a ,b )共有(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)6种情况,得x +y 分别等于2,3,4,3,4,5,∴出现3与4的概率最大. ∴n =3或n =4.第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5个小题,每小题5分,共25分,将正确答案填在题中横线上) 11.(2014·湖北文,11)甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.[答案] 1800[解析] 本题考查分层抽样.设乙厂生产的总数为n 件,则80-50n =804800,解得n =1800.分层抽样也叫等比例抽样,解决与分层抽样有关的问题,要紧扣等比例.12.从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492,497,496,503,494,506,495,508,498,507,497,492,501,496,502,500,504,501,496,499.根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5 g ~501.5 g 之间的概率约为________.[答案] 0.25.[解析] 由已知质量在497.5~501.5 g 的样本数为5袋,故质量在497.5~501.5 g 的概率为520=0.25.13.阅读下图所示的程序框图,运行相应的程序,输出的s 值等于________.[答案] -3[解析] 本题考查了程序框图中的循环结构.第1次循环k =1,k =1<4,s =2×1-1=2,k =1+1=2; 第2次循环k =2<4,s =2×1-2=0,k =1+1=3; 第3次循环k =3<4,s =2×0-3=-3,k =3+1=4; 当k =4时,k <4不成立,循环结束,此时s =-3. 在循环次数不多的情况下,逐一循环检验即可.14.对一个作直线运动的质点的运动过程观测了8次,第i 次观测得到的数据为a i ,具体如下表所示:i 1 2 3 4 5 6 7 8 a i4041434344464748在对上述统计数据的分析中,一部分计算见如图所示的算法流程图(其中a 是这8个数据的平均数),则输出的S 的值是________.[答案] 7[解析] ∵a =44,∴由已知S 为数据的方差,等于18[(40-44)2+(41-44)2+(43-44)2+(43-44)2+(44-44)2+(46-44)2+(47-44)2+(48-44)2]=7.15.设b 和c 分别是先后抛掷一枚骰子得到的点数,则方程x 2+bx +c =0有实根的概率为________.[答案]1936[解析] 基本事件总数为6×6=36,若使方程有实根,则Δ=b 2-4c ≥0,即b ≥2c .当c=1时,b=2,3,4,5,6;当c=2时,b=3,4,5,6;当c=3时,b=4,5,6;当c=4时,b=4,5,6;当c==5时,b=5,6;当c=6时,b=5,6,目标事件个数为5+4+3+3+2+2=19,因此方程x2+b+c=0有实根的概率为1936.三、解答题(本大题共6个小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分12分)为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:(1)估计该校男生的人数;(2)估计该校学生身高在170~185 cm之间的频率.[解析](1)样本中男生人数为40,由分层抽样比例为10%估计全校男生人数为400.(2)由统计图知,样本中身高在170~185 cm之间的学生有14+13+4+3+1=35人,样本容量为70,所以样本中学生身高在170~185 cm之间的频率f=35=0.5.70 17.(本小题满分12分)根据下面的程序,仔细观察后画出其算法的流程框图.输入nS=0For i=1 To nS=S+(i+1)/iNext输出S[解析]流程框图如图所示.18.(本小题满分12分)(2014·山东文,16)海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示. 工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区 A B C数量50150100(1)求这6件样品中来自(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.[解析]按分层抽样在各层中所占比例确定出来自A、B、C各地区商品的数量,列举6个选2个的不同取法,找出对应事件的基本事件数.用古典概型的概率公式去求.(1)A、B、C各地区商品的数量之比为50∶150∶100=1∶3∶2.=1件,故从A地区抽取样本6×16故从B地区抽取样本6×3=3件,6=2件.故从C地区抽取样本6×26(2)将这6件样品分别编号a1,b1,b2,b3,c1,c2,随机选取2件,不同的取法共有{(a1,b1)(a1,b2)(a1,b3)(a1,c1)(a1,c2)(b1,b2)(b1,b3)(b1,c1)(b1,c2)(b2,b3)(b2,c1)(b2,c2)(b3,c1)(b3,c2)(c1,c2)}15种.设“2件商品来自相同地区”为事件A,则A含有{(b1,b2)(b1,b3)(b2,b3)(c1,c2)}共4种,故所求概率P(A)=415.19.(本小题满分12分)假定以下数据是甲、乙两个供货商的交货天数:甲:10,9,10,10,11,11,9,11,10,10乙:8,10,14,7,10,11,10,8,15,12估计两个供货商的交货情况,并指出哪个供货商的交货时间短一些,哪个供货商的交货时间比较具有一致性与可靠性?[解析]x甲=110(10+9+10+10+11+11+9+11+10+10)=10.1(天).s2甲=110[(10-10.1)2+(9-10.1)2+(10-10.1)2+(10-10.1)2+(11-10.1)2+(11-10.1)2+(9-10.1)2+(11-10.1)2+(10-10.1)2+(10-10.1)2]=0.49.x乙=110(8+10+14+7+10+11+10+8+15+12)=10.5(天),s2乙=110[(8-10.5)2+(10-10.5)2+(14-10.5)2+(7-10.5)2+(10-10.5)2+(11-10.5)2+(10-10.5)2+(8-10.5)2+(15-10.5)2+(12-10.5)2]=6.05.从交货天数的平均数来看,甲供货商的供货天数短一些;从方差来看,甲供货商的交货天数较稳定,因此甲供货商的交货时间比较具有一致性与可靠性.20.(本小题满分13分)(2014·重庆文,17)20名学生某次数学考试成绩(单位:分)的频率分布直方图如下:(1)求频率分布直方图中a的值;(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.[解析]由频率之和为1,求a,然后求出落在[50,60)和[60,70)中的人数,最后用列举法求古典概型的概率.解:(1)∵组距为10,∴(2a+3a+6a+7a+2a)×10=200a=1,∴a=1200=0.005.(2)落在[50,60)中的频率为2a×10=20a=0.1,∴落在[50,60)中的人数为2.落在[60,70)中的学生人数为3a ×10×20=3×0.005×10×20=3.(3)设落在[50,60)中的2人成绩为A 1,A 2,落在[60,70)中的3人为B 1,B 2,B 3.则从[50,70)中选2人共有10种选法,Ω={(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3)}其中2人都在[60,70)中的基本事件有3个:(B 1,B 2),(B 1,B 3),(B 2,B 3),故所求概率p =310. 21.(本小题满分14分)对甲、乙两种商品的重量的误差进行抽查,测得数据如下(单位:mg):甲:13 15 14 9 14 21 9 10 11 14 乙:10 14 9 12 15 14 11 19 22 16(1)画出样本数据的茎叶图,并指出甲,乙两种商品重量误差的中位数; (2)计算甲种商品重量误差的样本方差;(3)现从重量误差不低于15的乙种商品中随机抽取2件,求重量误差为19的商品被抽中的概率.[解析] (1)茎叶图如图所示(2)x甲=13+15+14+14+9+14+21+11+10+910=13.∴甲种商品重量误差的样本方差为110[(13-13)2+(15-13)2+(14-13)2+(14-13)2+(9-13)2+(14-13)2+(21-13)2+(11-13)2+(10-13)2+(9-13)2]=11.6.(3)设重量误差为19的乙种商品被抽中的事件为A .从重量误差不低于15的乙种商品中随机抽取两件共有(15,16),(15,19),(15,22),(16,19),(16,22),(19,22)6个基本事件,其中事件A 含有(15,19),(16,19),(19,22)3个基本事件.∴P (A )=36=12.打印版高中数学。
【新高考】高一期末检测卷3-(人教A版2019必修第二册)(解析版)
【新高考题型】2020-2021学年高一数学下学期期末考前冲刺刷题卷(人教A 版2019必修第二册)检测卷3一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知a 为实数,复数(2)i z a a =-+(i 为虚数单位),复数z 的共轭复数为z ,若20z <,则1z -=( ) A .12i - B .12i + C .2i + D .2i -【答案】B【解析】(2)i z a a =-+,∴()()()()22222i 222i z a a a a a a =-+=--+-,∴20z <,∴()()2222020a a a a -=⎧⎪⎨--<⎪⎩,解得2a =,∴2i z =,∴()112i =1+2i z -=--.故选:B. 2.已知平行四边形ABCD 中,12DE DC =,若AC BD AE λμ=+,则λμ-=( )A .32B .32-C .53D .53-【答案】D【解析】因为四边形ABCD 为平行四边形,所以AC AB AD =+, 又1122DE DC AB ==, 所以()()()2AC BD AE AD AB AD AD A DE B λμλμμλμλ⎛⎫==-+=+-+++⎪⎝⎭, 因此112λμμλ+=⎧⎪⎨-=⎪⎩,解得1343λμ⎧=-⎪⎪⎨⎪=⎪⎩,所以53λμ-=-.故选:D.3.已知向量,a b 满足||||||1a b a b ==+=,则2a b +=( ) A .3 BC .7D【答案】B【解析】∴向量,a b 满足||||||1a b a b ==+=,222||||2||221a b a a b b a b ∴+=+⋅+=+⋅=,21a b ∴⋅=-,222|2|4||4||4213a b a a b b ∴+=+⋅+=-+=,23a b ∴+=,故选:B4.在ABC 中内角,,A B C 所对的边分别为,,ab c,若cos cos A B c +==,则当sin sin A B +取最大值时,ABC 外接圆的面积为( )A .2π B C .πD .2π【答案】C【解析】由题意,在ABC 中,满足cos cos A B +=因为()()22cos cos sin sin A B A B +++22(sin sin cos cos )2cos()A B A B A B =++=+-, 所以当0A B -=时,即A B =时,上式取得最大值,此时sin sin A B +取最大值,又由cos cos A B +=cos cos ==A B , 因为,(0,)A B π∈,所以6A B π==,则23C π=,又因为c =22sin c R C ===,所以1R =, 所以ABC 外接圆的面积为2S R ππ==.故选:C .5.已知直线m ,n 是平面α,β外的两条直线,且m //α,n ⊥β,α⊥β,则( ) A .m //n B .m ⊥nC .n //αD .n ⊥α【答案】C【解析】如图,做出长方体ABCD ﹣A 1B 1C 1D 1,在长方体ABCD ﹣A 1B 1C 1D 1中,令面ADD 1A 1为α,面ABCD 为β, 对于A ,若直线CB 1为m ,则m //α,若CC 1为n ,则n ⊥β,显然m //n 是假命题; 对于B ,此命题和上一命题是一样的,所以也是假命题; 对于C . 设l αβ=,在平面α内任取一点P (P l ∉),在平面α内,过点P 作直线b l ⊥ ,则由αβ⊥,可得b β⊥,又n β⊥,则//b n 由,b n αα⊂⊄,所以//n α ,故C 正确.对于D ,若直线CB 1为m ,则m //α,若CC 1为n ,则n ⊥β,显然n ⊥α是假命题; 故选:C .6.如图所示,在正方体ABCD -A 1B 1C 1D 1中,四棱锥S -ABCD 的体积占正方体体积的( )A .12B .13C .14D .不确定【答案】B【解析】令正方体棱长为a ,则V 正方体=a 3,231133S ABCD V a a a -=⨯⨯=,∴V 四棱锥S -ABCD =13V 正方体.故选:B7.某市有15个旅游景点,经计算,黄金周期间各个景点的旅游人数平均为20万,标准差为s ,后来经核实,发现甲、乙两处景点统计的人数有误,甲景点实际为20万,被误统计为15万,乙景点实际为18万,被误统计成23万;更正后重新计算,得到标准差为s 1,则s 与s 1的大小关系为( ) A .s =s 1 B .s <s 1 C .s >s 1 D .不能确定【答案】C【解析】由已知,两次统计所得的旅游人数总数没有变,即两次统计的各景点旅游人数的平均数是相同的,设为x ,则s =1s =, 若比较s 与1s 的大小,只需比较()()221523x x -+-与()()222018x x -+-的大小即可,而()()2221523754762x x x x -+-=-+,()()2222018724762x x x x -+-=-+,所以()()221523x x -+->()()222018x x -+-,从而1s s >.故选:C8.天气预报说,在今后的三天中,每一天下雨的概率均为40%,用数字0,1,2,3表示下雨,数字4,5,6,7,8,9表示不下雨,由计算机产生如下20组随机数: 977,864,191,925,271,932,812,458,569,683, 431,257,394,027,556,488,730,113,537,908. 由此估计今后三天中至少有一天下雨的概率为( ) A .0.6 B .0.7C .0.75D .0.8【答案】B【解析】代表今后三天都不下雨的随机数有977,864,458,569,556,488,共6组,记“今后三天中至少有一天下雨”为事件A ,“今后三天都不下雨”为事件B ,则A 与B 为对立事件.所以67()1()10.72010P A P B =-=-==,故选:B.二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的.全部选对得5分,有选错得0分,部分选对得2分. 9.已知i 为虚数单位,以下四个说法中正确的是( ) A .2340i i i i +++= B .复数3z i =-的虚部为i -C .若2(12)z i =+,则复平面内z 对应的点位于第二象限D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线 【答案】AD【解析】A 选项,234110i i i i i i +++=--+=,故A 选项正确. B 选项,z 的虚部为1-,故B 选项错误.C 选项,214434,34z i i i z i =++=-+=--,对应坐标为()3,4--在第三象限,故C 选项错误.D 选项,()111z z z -=+=--表示z 到1,0A 和()1,0B -两点的距离相等,故z 的轨迹是线段AB 的垂直平分线,故D 选项正确.故选:AD10.如图,在正方体1111ABCD A B C D -中,点P 在线段1B C 上运动,则( )A .直线1BD ⊥平面11AC DB .二面角1B CD B --的大小为2πC .三棱锥11P ACD -的体积为定值D .异面直线AP 与1A D 所成角的取值范围是,42ππ⎡⎤⎢⎥⎣⎦【答案】AC【解析】如图,在A 中,∴A 1C 1∴B 1D 1,A 1C 1∴BB 1,B 1D 1∩BB 1=B 1, ∴A 1C 1∴平面BB 1D 1,∴A 1C 1∴BD 1,同理,DC 1∴BD 1, ∴A 1C 1∩DC 1=C 1,∴直线BD 1∴平面A 1C 1D ,故A 正确;在B 中,由正方体可知平面1B CD 不垂直平面ABCD ,故B 错误; 在C 中,∴A 1D ∴B 1C ,A 1D ∴平面A 1C 1D ,B 1C ∴平面A 1C 1D , ∴B 1C ∴平面 A 1C 1D ,∴点P 在线段B 1C 上运动,∴P 到平面A 1C 1D 的距离为定值,又∴A 1C 1D 的面积是定值,∴三棱锥P ﹣A 1C 1D 的体积为定值,故C 正确;在D 中,当点P 与线段1B C 的端点重合时, 异面直线AP 与1A D 所成角取得最小值为3π,故异面直线AP 与A 1D 所成角的取值范用是[,]32ππ,故D 错误.故选:AC 11.某公司生产三种型号的轿车,产量分别为1500辆,6000辆和2000辆为检验该公司的产品质量,公司质监部门要抽取57辆进行检验,则下列说法正确的是( ) A .应采用分层随机抽样抽取 B .应采用抽签法抽取C .三种型号的轿车依次应抽取9辆,36辆,12辆D .这三种型号的轿车,每一辆被抽到的概率都是相等的 【答案】ACD【解析】因为是三种型号的轿车,个体差异明显,所以选择分层抽样,选项A 正确.因为个体数目多,用抽取法制签难,搅拌不均匀,抽出的样本不具有好的代表性,故选项B 正确. 抽样比为573150060002000500=++ ,三种型号的轿车依次应抽取9辆,36辆,12辆,选项C 正确.分层抽样种,每一个个体被抽到的可能性相同. 故选项D 正确.故答案为:ACD12.甲乙两个质地均匀且完全一样的四面体,每个面都是正三角形,甲四个面上分别标有数字1,2,3,4,乙四个面上分别标有数字5,6,7,8,同时抛掷这两个四面体一次,记事件A 为“两个四面体朝下一面的数字之和为奇数”,事件B 为“甲四面体朝下一面的数字为奇数”,事件C 为“乙四面体朝下一面的数字为偶数”,则下列结论正确的是( )A .()()()P A PB PC == B .()()()P BC P AC P AB == C .1()8P ABC =D .1()()()8P A P B P C ⋅⋅=【答案】ABD【解析】由已知22221()44442P A =⨯+⨯=,21()()42P B P C ===, 由已知有1()()()4P AB P A P B ==,1()4P AC =,1()4P BC =, 所以()()()P A P B P C ==,则A 正确;()()()P BC P AC P AB ==,则B 正确;事件A 、B 、C 不相互独立,故1()8P ABC =错误,即C 错误 1()()()8P A P B P C ⋅⋅=,则D 正确;综上可知正确的为ABD.故选:ABD .三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置. 13.已知向量,a b 满足||1b =,210103a ab -⋅+=,则(2)b a b ⋅+的取值范围是_________. 【答案】5,73⎡⎤⎢⎥⎣⎦【解析】||||cos ||cos a b a b a θθ⋅==210103a a b ∴-⋅+=可得210||||cos 103a a θ-+=可变形为2||1cos 10||3a a θ+=由1cos θ1可知,2||11110||3a a +-≤≤,解得1||33a ≤≤ 2385(2)21,7553b a b a b a ⎡⎤∴⋅+=⋅+=+∈⎢⎥⎣⎦,故答案为:5,73⎡⎤⎢⎥⎣⎦14.早期的毕达哥拉斯学派学者注意到:用等边三角形或正方形为表面可构成四种规则的立体图形,即正四面体、正六面体、正八面体和正二十面体,它们的各个面和多面角都全等.如图,正二十面体是由20个等边三角形组成的正多面体,共有12个顶点,30条棱,20个面,是五个柏拉图多面体之一.如果把sin36︒按35计算,则该正二十面体的表面积与该正二十面体的外接球表面积之比等于___________.【解析】由图知正二十面体的外接球即为上方正五棱锥的外接球, 设外接球半径为R ,正五边形的外接圆半径为r ,正二十面体的棱长为l ,则3sin 3652lr =︒=,得56lr =,所以正五棱锥的顶点到底面的距离是6h l ===,所以222()R r R h =+-,即222566l R R ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪⎝⎭⎝⎭,解得11R =.所以该正二十面体的外接球表面积为22236441111S R l πππ⎛⎫==⨯= ⎪ ⎪⎝⎭球,而该正二十面体的表面积是2120sin 602S l l =⨯⨯⨯⨯︒=正二十面体,.. 15.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行第5列的数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为______. 7816 6572 0802 6314 0702 4369 9728 0198 3204 9234 4935 8200 3623 4869 6938 7481 【答案】01【解析】从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字开始向右读, 第一个数为65,不符合条件,第二个数为72,不符合条件, 第三个数为08,符合条件,以下符合条件依次为:08,02,14,07,01, 故第5个数为01.故答案为: 0116.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为45,35,25,且各轮问题能否正确回答互不影响,则该选手被淘汰的概率为_________. 【答案】101125【解析】记“该选手能正确回答第i 轮的问题”为事件(1,2,3)i A i =,则()()()123432,,555P A P A P A ===. 该选手被淘汰的概率:112123112123()()()()()()()P P A A A A A A P A P A A P A A A =++=++142433101555555125=+⨯+⨯⨯=故答案为:101125四、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且3B π=.(1)若3,2BA BC b ⋅==a c +的值; (2)求2sin sin A C -的取值范围.【解析】∴3,2BA BC b ⋅==∴3cos ,2ac B =即3ac =.又b =2222cos b a c ac B =+-,∴223a c ac +-= 配方得:()212a c +=,所以a c += (2)∴3B π=,∴23A C π+=,∴23A C π=-, ∴22sin sin =2sin sin 3A C C C π⎛⎫---⎪⎝⎭22=2sincos 2cos sin sin 33C C C ππ--C ∴20,3C π⎛⎫∈ ⎪⎝⎭,∴1cos ,12C ⎛⎫∈-⎪⎝⎭∴2sin sin A C -的取值范围是2⎛- ⎝18.如图所示,甲船以每小时.当甲船位于A 1处时,乙船位于甲船的南偏西75°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的南偏西60°方向的B 2处,此时两船相距.乙船每小时航行多少海里?【解析】连接A 1B 2,如下简图,由题意知,A 1B 1=20,A 2B 2=,A 1A 2=2060=A 2B 2, 又∴∴B 2A 2A 1=180°-120°=60°,∴∴A 1A 2B 2是等边三角形, 故∴B 1A 1B 2=105°-60°=45°,12A B =, 在∴A 1B 2B 1中,由余弦定理得22212121112112cos 45B B A B A B A B A B =+-⨯⨯︒(22202202002=+-⨯⨯=,故12B B =海里),时间为201603=(小时)因此乙船的速度大小为13=(海里/小时). 19.如图,在正方体1111ABCD A B C D -中,点E 为棱1DD 的中点.(1)求证:1//BD 平面ACE ;(2)求异面直线AE 与1BD 所成角的余弦值. 【解析】(1)如图所示:,连接BD 与AC 交于点O , 因为O ,E 为为中点,所以1//OE BD ,又OE ⊂平面ACE ,1BD ⊄平面ACE , 所以1//BD 平面ACE ;(2)由(1)知1//OE BD ,则AEO ∠异面直线AE 与1BD 所成的角, 在正方体1111ABCD A B C D -中, 因为1,AC BD AC DD ⊥⊥,且1BDDD D =,所以AC ⊥平面11B BDD ,又因为OE ⊂平面11B BDD , 所以AC OE ⊥ ,所以AOE △是直角三角形, 设正方体的棱长为a ,则2AO a =,2OE a =, 所以AE ,所以cos OE AEO AE ∠===,20.如图所示,P是四边形ABCD所在平面外的一点,四边形ABCD是∠DAB=60°且边长为a的菱形,∠PAD为正三角形,其所在平面垂直于底面ABCD,G为AD的中点.求证:(1)BG∠平面PAD;(2)AD∠PB.【解析】(1)由题意知∴P AD为正三角形,G是AD的中点,∴PG∴AD.又平面P AD∴平面ABCD,平面P AD∩平面ABCD=AD,PG∴平面P AD,∴PG∴平面ABCD,又BG∴平面ABCD,∴PG∴BG.又∴四边形ABCD是菱形且∴DAB=60°,∴∴ABD是正三角形,∴BG∴AD.又AD∩PG=G,AD,PG∴平面P AD,∴BG∴平面P AD.(2)由(1)可知BG∴AD,PG∴AD,BG∩PG=G,BG,PG∴平面PBG,∴AD∴平面PBG,又PB∴平面PBG,∴AD∴PB.21.某学校为培养学生的兴趣爱好,提高学生的综合素养,在高一年级开设各种形式的校本课程供学生选择(如书法讲座、诗歌鉴赏、奥赛讲座等).现统计了某班50名学生一周用在兴趣爱好方面的学习时间(单位:h)的数据,按照[0,2),[2,4),[4,6),[6,8),[8,10]分成五组,得到了如下的频率分布直方图.(1)求频率分布直方图中m的值及该班学生一周用在兴趣爱好方面的平均学习时间;(2)从[4,6),[6,8)两组中按分层抽样的方法抽取6人,再从这6人中抽取2人,求恰有1人在[6,8)组中的概率.【解析】(l )由直方图可得:0.0620.0820.222m 0.0621⨯+⨯+⨯++⨯=,所以m 0.1=,学生的平均学习时间:10.1230.1650.470.290.12 5.08⨯+⨯+⨯+⨯+⨯=;(2)由直方图可得:[)4,6中有20人,[)6,8中有10人,根据分层抽样,需要从[)4,6中抽取4人分别记为1234A A A A 、、、,从[)6,8中抽取2人分别记为12B B 、,再从这6人中抽取2人,所有的抽取方法有12131411122324A A A A A A A B A B A A A A 、、、、、、、2122343132414212A B A B A A A B A B A B A B B B 、、、、、、、共15种,其中恰有一人在[)6,8组中的抽取方法有1112212231A B A B A B A B A B 、、、、、324142A B A B A B 、、共8种,所以,从这6人中抽取2人,恰有1人在[)6,8组中的概率为815. 22.袋中有9个大小相同颜色不全相同的小球,分别为黑球、黄球、绿球,从中任意取一球,得到黑球或黄球的概率是59,得到黄球或绿球的概率是23,试求: (1)从中任取一球,得到黑球、黄球、绿球的概率各是多少?(2)从中任取两个球,得到的两个球颜色不相同的概率是多少?【解析】(1)从中任取一球,分别记得到黑球、黄球、绿球为事件A ,B ,C ,由于A ,B ,C 为互斥事件,根据已知,得()()()()()()()()()()59231P A B P A P B P B C P B P C P A B C P A P B P C ⎧+=+=⎪⎪⎪+=+=⎨⎪++=++=⎪⎪⎩, 解得()()()132949P A P B P C ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩, 所以,任取一球,得到黑球、黄球、绿球的概率分别是13,29,49. (2)由(1)知黑球、黄球、绿球个数分别为3,2,4,从9个球中取出2个球的样本空间中共有36个样本点,其中两个是黑球的样本点是3个,两个黄球的是1个,两个绿球的是6个,于是,两个球同色的概率为3165 3618 ++=,则两个球颜色不相同的概率是513 11818 -=.。
2024-2025学年高一人教A版数学必修三配套练习-3
课时提能演练(十八)/课后巩固作业(十八)(30分钟 50分)一、选择题(每小题4分,共16分)1.从装有红球、白球和黑球各2个的口袋内一次取出2个球,给出以下事务:①两球都不是白球;②两球中恰有一白球;③两球中至少有一个白球,其中与事务“两球都为白球”互斥而非对立的事务是()(A)①②(B)①③(C)②③(D)①②③2.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是()(A)0.42 (B)0.28 (C)0.3 (D)0.7 3.从装有2个红球和2个白球的口袋内任取2个球,那么互斥但不对立的两个事务是()(A)至少有1个白球,都是白球(B)至少有1个白球,至少有1个红球(C)恰有1个白球,恰有2个白球(D)至少有1个白球,都是红球4.(2024·临汾高一检测)给出以下三个命题:(1)将一枚硬币抛掷两次,记事务A:“二次都出现正面”,事务B:“二次都出现反面”,则事务A与事务B是对立事务;(2)在命题(1)中,事务A与事务B是互斥事务;(3)在10件产品中有3件是次品,从中任取3件,记事务A:“所取3件中最多有2件是次品”,事务B:“所取3件中至少有2件是次品”,则事务A与事务B是互斥事务,其中真命题的个数是()(A)0 (B)1 (C)2 (D)3二、填空题(每小题4分,共8分)5.(易错题)若A,B为互斥事务,P(A)=0.4,P(A∪B)=0.7,则P(B)=_________6.(2024·合肥高一检测)为维护世界经济秩序,我国在亚洲经济论坛期间主动提倡反对地方贸易爱护主义,并承诺包括汽车在内的进口商品将最多在5年内把关税全部降低到世贸组织所要求的水平,其中21%的进口商品恰好5年关税达到要求,18%的进口商品恰好4年关税达到要求,其余进口商品将在3年或3年内达到要求,则进口汽车在不超过4年的时间内关税达到要求的概率为_______.三、解答题(每小题8分,共16分)7.(2024·洛阳高一检测)某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别是0.3,0.2,0.1,0.4,求:(1)他乘火车或乘飞机去的概率;(2)他不乘轮船去的概率;(3)假如他乘交通工具去的概率为0.5,请问他有可能是乘何种交通工具去的?8.(2024·台州高一检测)某医院一天派出医生下乡医疗,派出医生人数及其概率如下:(1)若派出医生不超过2人的概率为0.56,求x的值;(2)若派出医生最多4人的概率为0.96,最少3人的概率为0.44,求y,z的值.【挑战实力】(10分)猎人在相距100 m处射击一野兔,命中的概率为1,假如第2一次未击中,则猎人进行其次次射击,但距离已是150 m,假如又未击中,则猎人进行第三次射击,但距离已是200 m,已知此猎人命中的概率与距离的平方成反比,求射击不超过三次击中野兔的概率.答案解析1.【解析】选A.从口袋内一次取出2个球,当事务A“两球都为白球”发生时,①②不行能发生,且A不发生时,①不肯定发生,②不肯定发生,故非对立事务;而A发生时,③可以发生,故不是互斥事务.2.【解析】选C.摸出红球、白球、黑球是互斥事务,所以摸出黑球的概率是1-0.42-0.28=0.3.【变式训练】从一批羽毛球产品中任取一个,其质量小于4.8 g的概率为0.3,质量小于4.85 g的概率为0.32,那么质量在[4.8,4.85)(g)范围内的概率是()(A)0.62 (B)0.38 (C)0.02 (D)0.68【解析】选C.质量小于4.85 g包含质量小于4.8 g,所以质量在[4.8,4.85)(g)范围内的概率是0.32-0.3=0.02.3.【解析】选C. A,B选项中的两个事务不互斥,当然也不对立;C 选项中的两个事务互斥,但不对立;D选项中的两个事务不但互斥,而且对立,所以正确答案应为C.4.【解析】选B.命题(1)是假命题,命题(2)是真命题,命题(3)是假命题.对于(1)(2),因为抛掷两次硬币,除事务A,B外,还有“第一次出现正面,其次次出现反面”和“第一次出现反面,其次次出现正面”两种事务,所以事务A和事务B不是对立事务,但它们不会同时发生,所以是互斥事务;对于(3),若所取的3件产品中恰有2件次品,则事务A和事务B同时发生,所以事务A和事务B不是互斥事务.5.【解析】∵A,B为互斥事务,∴P(A∪B)=P(A)+P(B),∴P(B)=P(A∪B)-P(A)=0.7-0.4=0.3.答案:0.36.【解析】设“进口汽车恰好4年关税达到要求”为事务A,“不到4年达到要求”为事务B,则“进口汽车在不超过4年的时间关税达到要求”是事务A+B,而A,B互斥,∴P(A+B)=P(A)+P(B)=0.18+(1-0.21-0.18)=0.79.答案:0.79【一题多解】设“进口汽车在不超过4年的时间内关税达到要求”为事务M,则M为“进口汽车恰好5年关税达到要求”,所以P(M)=1-P(M)=1-0.21=0.79.答案:0.79【方法技巧】求多个事务至少一个发生的概率的两种方法:(1)分解成若干个互斥事务的和事务,利用概率加法公式求解;(2)利用对立事务求解,转换为对立事务的概率问题.7.【解析】设乘火车去开会为事务A,乘轮船去开会为事务B,乘汽车去开会为事务C,乘飞机去开会为事务D,它们彼此互斥. (1)P(A+D)=P(A)+P(D)=0.3+0.4=0.7.(2)P=1-P(B)=1-0.2=0.8.(3)因为0.5=0.2+0.3=0.1+0.4,所以他有可能乘的交通工具为:①火车或轮船;②汽车或飞机.8.【解析】(1)由派出医生不超过2人的概率为0.56, 得0.1+0.16+x =0.56,∴x =0.3.(2)由派出医生最多4人的概率为0.96,得0.96+z =1,∴z =0.04.由派出医生最少3人的概率为0.44,得y +0.2+z =0.44,∴y =0.44-0.2-0.04=0.2.【挑战实力】【解析】设距离为d ,命中的概率为P , 则有2k P d =,将d =100,P =12代入, 得k =Pd 2=5 000,所以25 000P d =. 设第一、二、三次击中野兔分别为事务A 1,A 2,A 3,则P (A 1)=12,P (A 2)=25 00021509=,P (A 3)=25 0001.2008=所以P (A 1+A 2+A 3)=P (A 1)+P (A 2)+P (A 3) =12161.29872++=故射击不超过三次击中野兔的概率为6172.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标高一数学同步测试(3)—1.1空间几何体
本试卷分第Ⅰ卷和第Ⅱ卷两部分.共150分.
第Ⅰ卷(选择题,共50分)
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代
号填在题后的括号内(每小题5分,共50分).
1.过正三棱柱底面一边的截面是 ( )
A .三角形
B .三角形或梯形
C .不是梯形的四边形
D .梯形
2.若正棱锥底面边长与侧棱长相等,则该棱锥一定不是 ( ) A .三棱锥 B .四棱锥 C .五棱锥 D .六棱锥
3.球的体积与其表面积的数值相等,则球的半径等于 ( )
A .2
1 B .1 C .
2 D .
3 4.将一个边长为a 的正方体,切成27个全等的小正方体,则表面积增加了 ( ) A .26a B .12a 2 C .18a 2 D .24a 2
5.直三棱柱各侧棱和底面边长均为a ,点D 是CC ′上任意一点,连结A ′B ,BD ,A ′D ,
AD ,则三棱锥A —A ′BD 的体积
( ) A .361a B .363a C .312
3a D .3121a 6.两个球体积之和为12π,且这两个球大圆周长之和为6π,那么这两球半径之差是( ) A .21 B .1 C .2 D .3
7.一个球与它的外切圆柱、外切等边圆锥(圆锥的轴截面为正三角形)的体积之比( )
A .2:3:5
B .2:3:4
C .3:5:8
D .4:6:9
8.直径为10cm 的一个大金属球,熔化后铸成若干个直径为2cm 的削球,如果不计损耗,可 铸成这样的小球的个数为 ( )
A .5
B .15
C .25
D .125
9.与正方体各面都相切的球,它的表面积与正方体的表面积之比为
( ) A .2π B .6π C .4π D .3
π 10.中心角为135°的扇形,其面积为B ,其围成的圆锥的全面积为A ,则A :B 为( )
A .11:8
B .3:8
C .8:3
D .13:8
第Ⅱ卷(非选择题,共100分)
二、填空题:请把答案填在题中横线上(每小题6分,共24分).
11.直平行六面体的底面是菱形,两个对角面面积分别为Q Q 12,,直平行六面体的侧面积
为_____________.
12.正六棱锥的高为4cm ,最长的对角线为34cm ,则它的侧面积为_________.
13.球的表面积扩大为原来的4倍,则它的体积扩大为原来的___________倍.
14.已知正三棱锥的侧面积为183 cm 2
,高为3cm. 求它的体积 .
三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分).
15.(12分)
①轴截面是正方形的圆柱叫等边圆柱.
已知:等边圆柱的底面半径为r ,求:全面积;
②轴截面是正三角形的圆锥叫等边圆锥.
已知:等边圆锥底面半径为r ,求:全面积.
16.(12分)四边形ABCD A B C D ,,,,(,)(,)(,)(,)00102103,绕y 轴旋转一周,求所得
旋转体的体积.
17.(12分)如图,圆锥形封闭容器,高为h ,圆锥内水面高为h h h 113,
,若将圆锥倒置后,
圆锥内水面高为h h 22,求.
18.(12分)如图,三棱柱 ABC A B C P AA -''''中,为上一点,求 V V P BB C C ABC A B C -''-''':.
19.(14分)如图,在正四棱台内,以小底为底面。
大底面中心为顶点作一内接棱锥. 已知
棱台小底面边长为b ,大底面边长为a ,并且棱台的侧面积与内接棱锥的侧面面积相等,求这个棱锥的高,并指出有解的条件.
20.(14分)已知:一个圆锥的底面半径为R ,高为H ,在其中有一个高为x 的内接圆柱.
(1)求圆柱的侧面积;
(2)x 为何值时,圆柱的侧面积最大.
参考答案(三)
一、BDDBC BDDBA
二、11.22212Q Q +; 12.330
cm 2; 13.8; 14.39cm 3. 三、15.①解: 母线l r =2
2222624422r r r S r r r l c S πππππ=+=∴=⋅=⋅=∴全侧
②解: 母线l r =2
22223222r r r S r r r rl S ππππππ=+=∴=⋅==∴全侧
16.解:V r h 圆锥
=132πππ3822312=⨯⨯= V h r R Rr 圆台=++1322π()ππ37)1212(13122=⨯++⨯⨯= π5=+=∴圆台圆锥V V V
17.分析:圆锥正置与倒置时,水的体积不变,另外水面是平行于底面的平面,此平面截得的小圆锥与原圆锥成相似体,它们的体积之比为对应高的立方比.
解: 278)32(3==--h h V V CD S AB S h h h h h V V V V 31927192719::271933
132332=⎪⎭⎫ ⎝⎛=∴===∴锥水锥水
倒置后:
小结:此题若用 V V 水台=计算是比较麻烦的,因为台体的上底面半径还需用h h 113=导出来,我们用 V V V V V 水锥空空锥,而与=-的体积之间有比例关系,可以直接求出.
18.解法一:设
S S AA BB C C BB C C ''=''',到平面的距离为 h V Sh P BB C C ,则-''=13 把三棱柱 ABC A B C DD C C BB C C -'''''''接补成以和为相邻侧面的平行六面体,此平行六面体体积为原三棱柱体积的两倍.
V Sh ABC A B C -'''=12∴==-''
-'''V V Sh Sh P BB CC ABC A B C 1312
23
解法二: V V V V P BB C C ABC A B C P ABC P A B C -''-'''--'''=-- n m n m S ABC ⋅==∆,则三棱柱的体积,棱柱的高为设 3
2:32)(31=∴=⋅-=--='''-''-'''--'''-''-C B A ABC C C B A P C B A P ABC P C B A ABC C C B B P V V m n n P n m m n V V V V 到两底距离之和为
小结:把三棱柱接补成平行六面体是重要的变换方法,平行六面体的每一个面都可以当作柱体的底,有利于体积变换.
19.分析:这是一个棱台与棱锥的组合体问题,也是立体几何常见的问题,这类问题的图形往往比较复杂,
要认真分析各有关量的位置和大小关系,因为它们的各量之间的关系较密切,所以常引入方程、函数的知识去解.
解:如图,过高OO AD 1和的中点E 作棱锥和棱台的截面,得棱台的斜高EE 1和棱锥的斜高为EO 1,设OO h 1=,所以 ()②,由勾股定理有,是直角梯形,其中由于①台侧锥侧2
221222111111111112222222)(2)44(2
12421⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-+===+=∴⋅+=⋅+==⋅⋅=
b h EO b a h EE a E O b OE E E OO EE b a bEO EE b a EE b a S bEO EO b S ①式两边平方,把②代入得: ()b h b a b h a b h a b a a a b h a b a a b 2222222
222224222421222+⎛⎝ ⎫⎭⎪=++-⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥=-+=-+解得所以()()()
显然,由于a b >>00,,所以此题当且仅当a b <2时才有解.
小结:在棱台的问题中,如果与棱台的斜高有关,则常应用通过高和斜高的截面,如果和棱台的侧棱有关,则需要应用通过侧棱和高的截面,要熟悉这些截面中直角梯形的各元素,进而将这些元素归结为直角三角形的各元素间的运算,这是解棱台计算问题的基本技能之一.
20.解:(1)设内接圆柱底面半径为r .
②①圆柱侧)(2x H H R r H x H R r x r S -=∴-=⋅= π
②代入① ()
)0(2)(22H x Hx x H R x H H R x S <<+-=-⋅=ππ圆柱侧 (2)()S R H x Hx 圆柱侧=-+22π⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛--=42222H H x H R π 22RH S H
x π==∴圆柱侧最大时。