2.4 二次函数的应用(第2课时)优秀教学设计

合集下载

二次函数的图象第二课时教案

二次函数的图象第二课时教案

二次函数的图象第二课时教案一、教学目标1. 知识与技能:(1)理解二次函数图象的开口方向、对称轴和顶点的概念;(2)学会如何通过二次函数的系数判断开口方向和对称轴的位置;(3)能够熟练运用二次函数的性质解决实际问题。

2. 过程与方法:(1)通过观察、分析、归纳二次函数图象的性质;(2)利用数形结合的方法,理解二次函数图象与系数的关系。

3. 情感态度与价值观:培养学生对数学的兴趣,提高学生分析问题、解决问题的能力。

二、教学重点与难点1. 教学重点:(1)二次函数图象的开口方向、对称轴和顶点的判断方法;(2)运用二次函数的性质解决实际问题。

2. 教学难点:(1)开口方向与对称轴的判断;(2)二次函数图象与实际问题的结合。

三、教学过程1. 复习导入:(1)回顾一次函数图象的性质;(2)引导学生思考二次函数图象的特点。

2. 新课讲解:(1)介绍二次函数图象的开口方向、对称轴和顶点的概念;(2)讲解如何通过二次函数的系数判断开口方向和对称轴的位置;(3)举例说明二次函数图象与系数的关系。

3. 课堂练习:(1)让学生绘制几个二次函数的图象,观察开口方向、对称轴和顶点的位置;(2)引导学生分析二次函数图象与系数的关系。

四、课后作业2. 选取几个实际问题,运用二次函数的性质进行解答。

五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对二次函数图象的理解和运用能力。

关注学生在课堂上的参与度和思维发展,激发学生的学习兴趣。

六、课堂实践1. 案例分析:分析实际问题,将其转化为二次函数形式;利用二次函数的性质,解答实际问题。

2. 分组讨论:学生分组,讨论如何将实际问题转化为二次函数;每组选取一个实际问题,展示解题过程和答案。

七、拓展与延伸1. 探讨二次函数图象在其他领域的应用;引导学生思考二次函数在物理学、经济学等领域的应用;举例说明二次函数在其他领域的实际应用。

2. 课堂小结:强调二次函数图象在实际问题中的应用价值。

《 二次函数的应用》word版 公开课一等奖教案 (2)

《 二次函数的应用》word版 公开课一等奖教案 (2)

当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料.这些资料因为用的比拟少,所以在全网范围内,都不易被找到.您看到的资料,制作于2021年,是根据最|新版课本编辑而成.我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品.本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最|终形成了本作品.本作品为珍贵资源,如果您现在不用,请您收藏一下吧.因为下次再搜索到我的时机不多哦!第2课时二次函数的应用教学目标1.会用待定系数法求二次函数解析式 ,能根据二次函数图象的特点设出相应的解析式.2.能建立适当的直角坐标系 ,并能设出相应的解析式 ,利用二次函数的知识解决实际问题.3.体会二次函数解决实际问题时 ,应如何建立适当的坐标系从而使解题简便.教学重难点建立适当的坐标系 ,利用二次函数简便地解决实际问题.教学过程导入新课欣赏生活中抛物线的图片 ,回忆二次函数的有关知识.推进新课一、合作探究【问题】有一座抛物线形拱桥 ,如图.当水面在l时 ,拱顶离水面2 m ,水面宽4 m.求这座抛物线形拱桥的解析式.思路分析:这是一座抛物线形拱桥 ,要求它的解析式 ,因为二次函数的图象是抛物线 ,所以只要在这座抛物线形拱桥上建立适当的坐标系 ,就可以求出这条抛物线表示的二次函数.让学生分组合作 ,讨论、交流应如何建立坐标系.此题方法很多 ,要充分发挥学生的优势 ,各抒己见.通过这一道题到达解决一类题的目的.方法一:以抛物线形拱桥的顶点为原点建立直角坐标系 ,可设二次函数的解析式为y=ax 2.然后把其中一点的坐标(2 ,-2)代入解析式 ,即可求出a =-12. 方法二:以水面所在的直线为x 轴 ,抛物线形拱桥的顶点与水面的垂线为y 轴建立直角坐标系 ,此时应设二次函数的解析式为y =ax 2后把点(2,0)代入解析式 ,即可求出a =-12. 方法三:以水面与抛物线形拱桥左边的交点为原点建立直角坐标系 ,因为顶点坐标为(2,2) ,所以可设二次函数的解析式为y =a (x -2)2+2.然后把点(0,0)代入解析式 ,即可求出a =-12. 从以上方法可以看出 ,建立的坐标系不同 ,所求函数的解析式也不同 ,但都是正确的.在具体的实际问题情境中 ,建立适当的坐标系求得的解析式 ,对解决问题可能很简单.二、稳固提高【例题】 见课本例3.由学生求出解析式后 ,试着进行解答.【补例】 如下图 ,公园要建造圆形喷水池 ,在水池(中|央)垂直于水面处安装一个柱子OA ,O 恰在水面中|心 ,OA =1.25米.由柱子顶端A 处的喷头向外喷水 ,水流在各个方向沿形状相同的抛物线落下 ,为使水流形状较为漂亮 ,要求设计成水流在离OA 距离为1米处到达距水面最|大高度.(1)求该抛物线的解析式. (2)如果不计其他因素 ,那么水池的半径至|少要多少米 ,才能使喷出的水流不致落到池外 ?(3)假设水流喷出的抛物线形状与(2)相同 ,水池的半径为米) 此题应先让学生建立适当的坐标系 ,再进行解答.三、达标训练1.在跳大绳时 ,绳甩到最|高处的形状可近似地看作抛物线 ,如图 ,正在甩绳的甲、乙两名学生拿绳的手间距为4米 ,距地面均为1米 ,学生丙、丁分别站在距甲拿绳的手水平距离1米和处 ,绳子甩到最|高处时 ,刚好通过他们的头顶 ,学生丙的身高是.(1)建立直角坐标系 ,求点A 、B 、C 的坐标.(2)求过点A 、B 、C 的抛物线的函数解析式.(3)你能算出丁的身高吗 ?(4)假设现有一身高为1.625 m 的同学也想参加这个活动 ,请问他能参加这个活动吗 ?假设能 ,那么他应从离甲多远的地方进入 ?假设不能 ,请说明理由.假设身高为1.7 m 呢 ?2.有一座抛物线形拱桥 ,在正常水位时水面AB 的宽为20 m ,如果水位上升3米时 ,水面CD 的宽为10 m.(1)建立如图直角坐标系 ,求点B 、D 的坐标.(2)求此抛物线的解析式.(3)现有一辆载有救援物质的货车 ,从甲出发需经此桥开往乙 ,甲距此桥280 km(桥长忽略不计).货车以40 km/h 的速度开往乙;当行驶1小时 ,突然接到通知 ,前方连降暴雨 ,造成水位以每小时0.25 m的速度持续上涨(货车接到通知时水位在CD处 ,当水位到达最|高点E时 ,禁止车辆通行).试问:如果货车按原速行驶 ,能否平安通过此桥 ?假设能 ,请说明理由 ,假设不能 ,要使货车平安通过此桥 ,速度应不小于每小时多少千米 ?本课小结1.根据实际问题的情境建立适当的坐标系 ,求出抛物线的解析式是解决实际问题的关键.2.会借用函数思想方法来解决实际问题,培养学生的"转化〞思想,即实际问题中的某些值,实际上就是二次函数解析式中知道横坐标求纵坐标或知道纵坐标求横坐标.本课教学反思英语教案注重培养学生听、说、读、写四方面技能以及这四种技能综合运用的能力.写作是综合性较强的语言运用形式, 它与其它技能在语言学习中相辅相成、相互促进.因此, 写作教案具有重要地位.然而, 当前的写作教案存在" 重结果轻过程〞的问题, 教师和学生都把写作的重点放在习作的评价和语法错误的订正上,无视了语言的输入.这个话题很容易引起学生的共鸣,比拟贴近生活,能激发学生的兴趣, 在教授知识的同时,应注意将本单元情感目标融入其中,即保持乐观积极的生活态度,同时要珍惜生活的点点滴滴.在教授语法时,应注重通过例句的讲解让语法概念深入人心,因直接引语和间接引语的概念相当于一个简单的定语从句,一个清晰的脉络能为后续学习打下根底.此教案设计为一个课时,主要将安妮的处境以及她的精神做一个简要概括,下一个课时那么对语法知识进行讲解.在此教案过程中,应注重培养学生的自学能力,通过辅导学生掌握一套科学的学习方法,才能使学生的学习积极性进一步提高.再者,培养学生的学习兴趣,增强教案效果,才能防止在以后的学习中产生两极分化.在教案中任然存在的问题是,学生在"说〞英语这个环节还有待提高,大局部学生都不愿意开口朗读课文,所以复述课文便尚有难度,对于这一局部学生的学习成绩的提高还有待研究.。

北师大版九年级数学下册:2.4《二次函数的应用》说课稿

北师大版九年级数学下册:2.4《二次函数的应用》说课稿

北师大版九年级数学下册:2.4《二次函数的应用》说课稿一. 教材分析北师大版九年级数学下册2.4《二次函数的应用》这一节主要介绍了二次函数在实际生活中的应用,通过学习,学生能够理解二次函数在实际生活中的意义,掌握二次函数解决实际问题的方法。

教材通过实例引导学生利用二次函数解决实际问题,培养学生的数学应用能力。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。

但学生在解决实际问题时,往往不知道如何将实际问题转化为二次函数问题,因此,在教学过程中,教师需要引导学生将实际问题抽象为二次函数模型,并运用二次函数的知识解决实际问题。

三. 说教学目标1.让学生理解二次函数在实际生活中的应用,体会数学与生活的联系。

2.培养学生将实际问题转化为二次函数模型,并运用二次函数解决实际问题的能力。

3.提高学生的数学思维能力,培养学生的数学素养。

四. 说教学重难点1.教学重点:让学生掌握二次函数解决实际问题的方法,培养学生的数学应用能力。

2.教学难点:如何引导学生将实际问题转化为二次函数模型,并运用二次函数的知识解决实际问题。

五.说教学方法与手段1.采用问题驱动的教学方法,引导学生从实际问题中发现数学问题,运用数学知识解决实际问题。

2.利用多媒体教学手段,展示二次函数在实际生活中的应用实例,增强学生的直观感受。

3.采用小组合作学习的方式,让学生在讨论中思考,培养学生的团队合作能力。

六. 说教学过程1.导入:通过展示一些实际问题,如抛物线形的物体运动、最大利润问题等,引导学生发现这些问题都可以用二次函数来解决,激发学生的学习兴趣。

2.新课导入:介绍二次函数在实际生活中的应用,引导学生理解二次函数的实际意义。

3.实例讲解:通过具体实例,讲解如何将实际问题转化为二次函数模型,并运用二次函数解决实际问题。

4.课堂练习:让学生尝试解决一些实际问题,巩固所学知识。

5.总结提升:引导学生总结二次函数解决实际问题的方法,提高学生的数学应用能力。

2.4 二次函数的应用 第2课时(教案)-北师大版数九年级下册

2.4 二次函数的应用 第2课时(教案)-北师大版数九年级下册

第2课时利用二次函数解决利润问题1.经历探索T恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.1.经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用.2.发展学生运用数学知识解决实际问题的能力.1.体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心.2.认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和人类发展的作用.【重点】1.探索销售中最大利润问题,从数学角度理解“何时获得最大利润”的意义.2.引导学生将简单的实际问题转化为数学问题,并运用二次函数知识求出实际问题的最大(小)值,从而得到解决某些实际生活中最大(小)值问题的思想方法.【难点】能够分析和表示实际问题中变量之间的二次函数关系,并能利用二次函数知识解决某些实际生活中的最大(小)值问题.【教师准备】多媒体课件.【学生准备】复习关于销售的相关量之间的关系及二次函数最值的求法.导入一:【引入】如果你是某企业老总,你最关心的是什么?是的,当然是利润,因为它是企业生存的根本,并且每个企业都想在限定条件内获得更大利润.本节课我们就来探究形如最大利润的问题.[设计意图]开门见山,直入正题,让学生对本节课所要了解的知识一目了然,使他们的学习更有针对性.导入二:请同学们思考下面的问题:某工厂生产一种产品的总利润L(元)是产量x(件)的二次函数L=-x2+2000x-10000,则产量是多少时总利润最大?最大利润是多少?学生分析数量关系:求总利润最大就是求二次函数L=-x2+2000x-10000的最大值是多少.即L=-x2+2000x-10000=-(x2-2000x+10002-10002)-10000=-(x-1000)2+990000.∴当产量为1000件时,总利润最大,最大利润为99万元.【引入】显然我们可以通过求二次函数最大值来确定最大利润,你能利用这种思路求解下面的问题吗?[设计意图]让学生通过对导入问题的解答,进一步强化将实际问题转化为数学模型的意识,使学生感受到“何时获得最大利润”就是在自变量取值范围内,此二次函数何时取得最大值问题.服装厂生产某品牌的T恤衫成本是每件10元.根据市场调查,以单价13元批发给经销商,经销商愿意经销5000件,并且表示单价每降价0.1元,愿意多经销500件.请你帮助分析,厂家批发单价是多少时可以获利最多?思路一教师引导学生思考下面的问题:1.此题主要研究哪两个变量之间的关系?哪个是自变量?哪个是因变量?生审题后回答:批发价为自变量,所获利润为因变量.2.此题的等量关系是什么?3.若设批发价为x元,该服装厂获得的利润为y元,请完成下面的填空题:(1)销售量可以表示为;(2)每件T恤衫的销售利润可以表示为;(3)所获利润与批发价之间的关系式可以表示为.4.求可以获得的最大利润实质上就是求什么?【师生活动】教师启发学生依次探究问题,根据引导要求学生独立解答后,小组交流,共同解决所发现的问题.解:设批发价为x元,该服装厂获得的利润为y元.由题意得y=(x-10)=(70000-5000x)(x-10)=-5000(x-12)2+20000.∴当x=12时,y=20000.最大∴厂家批发价是12元时可以获利最多.思路二【思考】此题还有其他的解法吗?可以不直接设批发价吗?【师生活动】学生进行小组讨论,师巡视并参与到学生的讨论之中去.组长发言,师生共同订正.解:设降价x元,该服装厂获得的利润为y元.则y=(13-10-x)=(5000+5000x)(3-x)=-5000(x-1)2+20000,=20000.∴当x=1时,y最大13-1=12.∴厂家批发价是12元时可以获利最多.【教师点评】在利用二次函数解决利润的问题时,可以直接设未知数,也可以间接设未知数.[设计意图]让学生回顾列一元二次方程解决“每件商品的销售利润×销售这种商品的数量=总利润”这种类型的应用题,做好知识的迁移,为下一环节的教学做好准备,以便降低学生接受知识的(教材例2)某旅馆有客房120间,每间房的日租金为160元时,每天都客满.经市场调查发现,如果每间客房的日租金增加10元,那么客房每天出租数会减少6间.不考虑其他因素,旅馆将每间客房的日租金提高到多少元时,客房日租金的总收入最高?〔解析〕此题的等量关系是:客房日租金总收入=提价后每间房的日租金×提价后所租出去的房间数.如果设每间房的日租金提高x个10元,那么提价后每间房的日租金为(160+10x)元,提价后所租出去的房间数为(120-6x)间.解:设每间房的日租金提高10x元,则每天客房出租数会减少6x间.设客房日租金总收入为y元,则y=(160+10x)(120-6x),即y=-60(x-2)2+19440.∵x≥0,且120-6x>0,∴0≤x<20.=19440,当x=2时,y最大这时每间客房的日租金为160+10×2=180(元),因此,每间客房的日租金提高到180元时,客房总收入最高,最高收入为19440元.[设计意图]让学生通过对例题的解答,进一步熟悉和掌握本课所学知识,拓宽知识面,使其解题能力和应用能力得到进一步提升.二、利用二次函数图象解决实际问题课件出示:【议一议】还记得本章一开始的“种多少棵橙子树”的问题吗?我们得到表示增种橙子树的数量x(棵)与橙子总产量y(个)的二次函数表达式y=(600-5x)(100+x)=-5x2+100x+60000.问题(1):利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.请同学们在课本第49页图2-11中画出二次函数y=-5x2+100x+60000的图象.要求:同伴合作,画出图象.师课件出示函数图象,供学生参考.问题(2):增种多少棵橙子树,可以使橙子的总产量在60400个以上?看一看:从图象中你们可以发现什么?增种多少棵橙子树,可以使橙子的总产量在60400个以上?请同学们开始小组讨论交流.学生积极思考,合作交流.请代表展示他们的讨论成果:结论1:当x<10时,橙子的总产量随增种橙子树的增加而增加;当x=10时,橙子的总产量最大;当x>10时,橙子的总产量随增种橙子树的增加而减少.结论2:由图象可知,增种6棵、7棵、8棵、9棵、10棵、11棵、12棵、13棵或14棵,都可以使橙子总产量在60400个以上.能力提升:在分析的过程中,用到了什么数学思想方法?学生迅速得出:用到了数形结合的数学思想方法.[设计意图]让学生绘制该二次函数图象,并利用图象进行直观分析,体会数形结合的思想方法,并感受自变量的取值范围.用二次函数知识解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系;(3)用数学的方式表示它们之间的关系;(4)利用二次函数求解;(5)检验结果的合理性.1.某商店经营2014年巴西世界杯吉祥物,已知所获利润y(元)与销售的单价x(元)之间的关系为y=-x2+24x+2956.则获利最多为()A.3144元B.3100元C.144元D.2956元解析:利润y(元)与销售的单价x(元)之间的关系为y=-x2+24x+2956,∴y=-(x-12)2+3100.∵-1<0,∴当x=12时,y有最大值,为3100.故选B.2.某旅社有100张床位,每床每晚收费10元时,床位可全部租出;若每床每晚收费提高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去,为了投资少而获利大,每床每晚收费应提高()A.4元或6元B.4元C.6元D.8元解析:设每床每晚收费应提高x个2元,获得利润为y元,根据题意得y=(10+2x)(100-10x)=-20x2+100x+1000=-20+1125.∵x取整数,∴当x=2或3时,y最大,当x=3时,每床收费提高6元,床位最少,即投资少,∴为了投资少而获利大,每床每晚收费应提高6元.故选C.3.某产品进货单价为90元,按100元一件出售时,能售500件,如果这种商品每涨1元,其销售量就减少10件,为了获得最大利润,其单价应定为.解析:设应涨价x元,则所获利润为y=(100+x)(500-10x)-90×(500-10x)=-10x2+400x+5000=-10(x2-40x+400)+9000=-10(x-20)2+9000,可见当涨价20元,即单价为100+20=120元时获利最大.故填120元.4.(2014·沈阳中考)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30-x)件.若使利润最大,每件的售价应为元.解析:设最大利润为w元,则w=(x-20)(30-x)=-(x-25)2+25.∵20≤x≤30,x为整数,∴当x=25时,w 有最大值,为25.故填25.5.每年六、七月份,南方某市荔枝大量上市,今年某水果商以5元/千克的价格购进一批荔枝进行销售,运输过程中质量损耗5%,运输费用是0.7元/千克,假设不计其他费用.(1)水果商要把荔枝售价至少定为多少才不会亏本?(2)在销售过程中,水果商发现每天荔枝的销售量m(千克)与销售单价x(元)之间满足关系:m=-10x+120,那么当销售单价定为多少时,每天获得的利润w最大?解:(1)设购进荔枝k千克,荔枝售价定为y元/千克时,水果商才不会亏本,由题意,得y·k(1-5%)≥(5+0.7)k.∵k>0,∴95%y≥5.7,∴y≥6.∴水果商要把荔枝售价至少定为6元/千克才不会亏本.(2)由(1)可知,每千克荔枝的平均成本为6元,由题意得w=(x-6)m=(x-6)(-10x+120)=-10(x-9)2+90,∵a=-10<0,∴当x=9时,w有最大值.∴当销售单价定为9元时,每天可获利润w最大.第2课时用二次函数知识解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系;(3)用数学的方式表示它们之间的关系;(4)利用二次函数求解;(5)检验结果的合理性.一、教材作业【必做题】1.教材第49页随堂练习.2.教材第50页习题2.9第1,2题.【选做题】教材第50页习题2.9第3题.二、课后作业【基础巩固】1.学校商店销售一种练习本所获得的总利润y(元)与销售单价x(元)之间的函数关系式为y=-2(x-2)2+48,则下列叙述正确的是()A.当x=2时,利润有最大值48元B.当x=-2时,利润有最大值48元C.当x=2时,利润有最小值48元D.当x=-2时,利润有最小值48元2.一件工艺品进价为100元,按标价135元售出,每天可售出100件.若每降价1元出售,则每天可多售出4件.要使每天获得的利润最大,每件需降价()A.5元B.10元C.12元D.15元3.某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是元.4.(2015·营口中考)某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时,平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.【能力提升】5.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y (单位:万元)与销售量x (单位:辆)之间分别满足:y 1=-x 2+10x ,y 2=2x ,若该公司在甲、乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A.30万元B.40万元C.45万元D.46万元6.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元,为了减少库存,该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低()A.0.2元或0.3元B.0.4元C.0.3元D.0.2元7.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元)与每天销售量y(件)之间满足如图所示的关系.(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式.若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大?最大利润是多少?8.(2015·汕尾中考)九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:售价/(元/100110120130件)…月销量/200180160140件…已知该运动服的进价为每件60元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润;②月销量.(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大?最大利润是多少?【拓展探究】9.(2015·舟山中考)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x 满足下列关系式:y=(1)李明第几天生产的粽子数量为420只?(2)设第x天粽子的成本是p元/只,p与x之间的关系可用如图所示的函数图象来刻画.若李明第x 天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价-成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?【答案与解析】1.A(解析:在y=-2(x-2)2+48中,当x=2时,y有最大值,是48.)2.A(解析:设每件降价x元,利润为y元,每件的利润为(135-100-x)元,每天售出的件数为(100+4x)件,=3600.)由题意,得y=(135-100-x)(100+4x)=-4x2+40x+3500=-4(x-5)2+3600,∵a=-4<0,∴当x=5时,y最大3.160(解析:设每张床位提高x个20元,每天收入为y元.则有y=(100+20x)(100-10x)=-200x2+1000x+10000.当x=-==2.5时,可使y有最大值.又x为整数,则当x=2时,y=11200;当x=3时,y=11200.故为使租出的床位少且租金高,每张床收费100+3×20=160(元).)4.22(解析:设定价为x 元,根据题意得平均每天的销售利润y =(x -15)·[8+2(25-x )]=-2x 2+88x -870,∴y =-2x 2+88x -870=-2(x -22)2+98.∵a =-2<0,∴抛物线开口向下,∴当x =22时,y 最大值=98.故填22.)5.D (解析:设在甲地销售x 辆,则在乙地销售(15-x )辆,根据题意得出:W =y 1+y 2=-x 2+10x +2(15-x )=-x 2+8x +30=-(x -4)2+46,∴最大利润为46万元.)6.C (解析:设应将每千克小型西瓜的售价降低x 元.根据题意,得(3-2-x )-24=200.解这个方程,得x 1=0.2,x 2=0.3.∵要减少库存,且200+>200+,∴应将每千克小型西瓜的售价降低0.3元.)7.解:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0),由所给函数图象可知解得故y 与x 的函数关系式为y =-x +180.(2)∵y =-x +180,∴W =(x -100)y =(x -100)(-x +180)=-x 2+280x -18000=-(x -140)2+1600.∵a =-1<0,∴当x =140时,W 最大=1600,∴售价定为140元/件时,每天获得的利润最大,最大利润为1600元.8.解:(1)①销售该运动服每件的利润是(x -60)元.②设月销量w 与x 的关系式为w =kx +b ,由题意得解得∴w =-2x +400.∴月销量为(-2x +400)件.(2)由题意得y =(x -60)(-2x +400)=-2x 2+520x -24000=-2(x -130)2+9800,∴售价为130元时,当月的利润最大,最大利润是9800元.9.解:(1)设李明第n 天生产的粽子数量为420只,由题意可知30n +120=420,解得n =10.答:第10天生产的粽子数量为420只.(2)由图象得当0≤x ≤9时,p =4.1;当9≤x ≤15时,设p =kx +b ,把点(9,4.1),(15,4.7)代入,得解得∴p =0.1x +3.2.①当0≤x ≤5时,w =(6-4.1)×54x =102.6x ,当x =5时,w 最大=513(元);②当5<x ≤9时,w =(6-4.1)×(30x +120)=57x +228,∵x 是整数,∴当x =9时,w 最大=741(元);③当9<x ≤15时,w =(6-0.1x -3.2)×(30x +120)=-3x 2+72x +336,∵a =-3<0,∴当x =-=12时,w 最大=768元.综上所述,第12天的利润最大,最大利润为768元.(3)由(2)可知m =12,m +1=13,设第13天每只粽子提价a元,由题意得w=[6+a-(0.1×13+3.2)](30×13+120)=510(a+1.5),∴510(a+1.5)-768≥48,解得a≥130.1.答:第13天每只粽子至少应提价0.1元.本节课设计了以生活场景引入问题,通过探索思考解决问题的教学思路.由于本节课较为抽象,学生直接解决比较困难,因此,在导入问题中,让学生初步接触“何时获得最大利润”这一问题,引导学生分析问题,初步掌握数学建模的方法,然后再放手给学生自主解决问题,并充分发挥小组的合作作用,以“兵教兵”的方式突破难点.在教学过程中,重点关注了学生能否将实际问题表示为函数模型,是否能运用二次函数知识解决实际问题并对结果进行合理解释,加强了学生在教师引导下的独立思考和积极讨论的训练,并注意整个教学过程中给予学生适当的评价和鼓励,收到了非常好的教学效果.对学情估计不足.原本认为学生的计算能力不错,但实际在解题过程中却出现了很多问题.今后还要在计算方法和技巧方面对学生多加以指导,加强学生建立函数模型的意识.随堂练习(教材第49页)解:设销售单价为x元(30≤x<50),销售利润为y元,则y=(x-20)[400-20(x-30)]=-20x2+1400x-20000=-20(x-35)2+4500.当x=35时,y=4500.所以当销售单价为35元时,半月内可以获得的利润最大,最大最大利润为4500元.习题2.9(教材第50页)1.解:设旅行团的人数是x人,营业额为y元,则y=[800-10(x-30)]x=-10x2+1100x=-10(x-55)2+30250,当x=55时,y=30250.答:当旅行团的人数为55人时,旅行社可以获得最大的营业额,为30250元.最大值2.解:设销售单价为x(x≥10)元,每天所获销售利润为y元,则y=(x-8)[100-10(x-10)]=-10x2+280x-=360.答:将销售单价定为14元,才能使每天所获销售利润1600=-10(x-14)2+360,所以当x=14时,y最大值最大,最大利润为360元.3.解:y=x2-13x+42.25+x2-11.8x+34.81+x2-12x+36+x2-13.4x+44.89+x2-9x+20.25=5x2-59.2x+178.2=5(x2-11.84x+35.64)=5[(x-5.92)2+0.5936]=5(x-5.92)2+2.968,当x=5.92时,y的值最小,所以大麦穗长的最佳近似长度为5.92cm.利润问题之前已经有所接触,所以学生课前要熟练掌握进价、销售价、利润之间的关系.找出实际问题中的等量关系是前提,会把二次函数的一般式转化为顶点式是保障,而能熟练运用转化的数学思想方法把实际问题转化为数学问题是运用二次函数解决实际应用问题的关键,所以在解题的过程中要及时总结归纳出用二次函数知识解决实际问题的基本思路,并总结出销售利润问题的数学模型,提高解决此类问题的综合能力.某班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x/天1≤x<5050≤x≤90售价/(元/x+4090件)每天销量/200-2x件已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.〔解析〕(1)根据(售价-进价)×数量=利润,可得答案.(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.(3)根据二次函数值大于或等于4800,一次函数值大于或等于4800,可得不等式组,然后解不等式组,可得答案.解:(1)当1≤x<50时,y=(200-2x)(x+40-30)=-2x2+180x+2000.当50≤x≤90时,y=(200-2x)(90-30)=-120x+12000.综上所述,y=(2)当1≤x<50时,二次函数的图象开口向下,二次函数图象的对称轴为直线x=45,=-2×452+180×45+2000=6050.当x=45时,y最大当50≤x≤90时,y随x的增大而减小,=6000.当x=50时,y最大综上所述,销售该商品第45天时,当天销售利润最大,最大利润是6050元.(3)当20≤x≤60时,即共41天,每天销售利润不低于4800元.。

北师大版初三下册数学 2.4 二次函数的应用 教案(教学设计)

北师大版初三下册数学 2.4  二次函数的应用 教案(教学设计)

2.4.1 二次函数的应用一、教学目标1.掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.2.学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题.二、课时安排1课时三、教学重点掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.四、教学难点运用二次函数的知识解决实际问题.五、教学过程(一)导入新课引导学生把握二次函数的最值求法:(1)最大值:(2)最小值:(二)讲授新课活动1:小组合作如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上.(1)设矩形的一边AB=xm,那么AD 边的长度如何表示?(2)设矩形的面积为ym 2,当x 取何值时,y 的值最大?最大值是多少?解:()31AD bm,b x 30.4==-+设易得 ()2332(30)3044y xb x x x x ==-+=-+()2320300.4x =--+ 24:20,300.24b ac b x y a a-=-===最大值或用公式当时 活动2:探究归纳先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.(三)重难点精讲例题:某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m.当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?解:4715.y x x ++π=由 157.4x x y --π=得 2215722()242x x x x S xy x π--ππ=+=+窗户面积 271522x x =-+ 2715225().21456x =--+ 2b 154ac b 225x 1.07,s 4.02.2a 144a 56-=-=≈==≈最大值当时 即当x≈1.07m 时,窗户通过的光线最多.此时窗户的面积为4.02m 2.(四)归纳小结“最大面积” 问题解决的基本思路:1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性.(五)随堂检测1.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是cm2.2.用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.3.学校计划用地面砖铺设教学楼前的矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米,图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都是小正方形的边长,阴影部分铺设绿色地面砖,其余部分铺设白色地面砖.(1)要使铺设白色地面砖的面积为5 200平方米,那么矩形广场四角的小正方形的边长为多少米?(2)如图铺设白色地面砖的费用为每平方米30元,铺设绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺设广场地面的总费用最少?最少费用是多少?4.如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B,C重合).连接DE,作EF⊥DE,EF与线段BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式.(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12y,要使△DEF为等腰三角形,m的值应为多少?m5.如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x ,面积为y .(1)求y 与x 的函数关系式,并求出自变量x 的取值范围.(2)生物园的面积能否达到210平方米?说明理由.【答案】1.12.52. 根据题意可得:等腰三角形的直角边为2x m 矩形的一边长是2xm,其邻边长为((20422x1022x,2-+=-(121022222S x x x x ⎡⎤=•-++⎣⎦所以该金属框围成的面积 30202,.322x ==-+当时金属框围成的图形面积最大 )((()2x 602m ,1022103210210m .=--+⨯-=此时矩形的一边长为另一边长为 )2S 3002002m .=-最大3.解: (1)设矩形广场四角的小正方形的边长为x 米,根据题意得4x 2+(100-2x )(80-2x )=5 200,整理,得x 2-45x +350=0,解得:x 1=35,x 2=10,经检验x 1=35,x 2=10均适合题意,所以,要使铺设白色地面砖的面积为5 200平方米,则矩形广场四角的小正方形的边长为35米或者10米.(2)设铺设矩形广场地面的总费用为y 元,广场四角的小正方形的边长为x 米,则 y =30[4x 2+(100-2x)(80-2x)]+20[2x(100-2x)+2x(80-2x)]即y =80x 2-3 600x +240 000,配方,得y =80(x -22.5)2+199 500.当x =22.5时,y 的值最小,最小值为199 500.所以当矩形广场四角的小正方形的边长为22.5米时,铺设矩形广场地面的总费用最少,最少费用为199 500元.4. ⑴在矩形ABCD 中,∠B=∠C=90°,∴在Rt△BFE 中, ∠1+∠BFE=90°,又∵EF⊥DE, ∴∠1+∠2=90°,∴∠2=∠BFE,∴Rt△BFE∽Rt△CED, ∴BF BE CE CD =, ∴8y x x m-= 即28x x y m -=.⑵当m=8时,28,8x x y -=化成顶点式: ()21428y x =--+ (3)由12y m =,及28x x y m-=得关于x 的方程: 28120x x -+=,得1226x x ==,.∵△DEF 中∠FED 是直角,∴要使△DEF 是等腰三角形,则只能是EF=ED ,此时, Rt△BFE≌Rt△CED.∴当EC=2时,m=CD=BE=6;当EC=6时,m=CD=BE=2.即△DEF为等腰三角形,m的值应为6或2.5. 解:(1)依题意,得y=(40-2x)x.∴y=-2x2+40x.x的取值范围是0< x <20.(2)当y=210时,由(1)可得,-2x2+40x=210.即x2-20x+105=0.∵ a=1,b=-20,c=105,∴2--⨯⨯<(20)411050,∴此方程无实数根,即生物园的面积不能达到210平方米.六.板书设计2.4.1二次函数的应用探究:例题:“最大面积” 问题解决的基本思路:1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性.2.4.2二次函数的应用一、教学目标1.经历探索T恤衫销售过程中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,感受数学的应用价值.2.掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值.二、课时安排1课时三、教学重点运用二次函数的知识求出实际问题的最大值、最小值.四、教学难点运用二次函数的知识求出实际问题的最大值、最小值.五、教学过程(一)导入新课某超市有一种商品,进价为2元,据市场调查,销售单价是13元时,平均每天销售量是50件,而销售价每降低1元,平均每天就可以多售出10件. 若设降价后售价为x元,每天利润为y元,则y与x之间的函数关系是怎样的?(二)讲授新课活动1:小组合作二次函数y=a(x-h)2+k(a 0),顶点坐标为(h,k),则①当a>0时,y有最小值k;②当a<0时,y有最大值k【探究】某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.请你帮助分析,销售单价是多少时,可以获利最多?【解析】设销售单价为x (x≤13.5)元,那么销售量可以表示为: 件;每件T恤衫的利润为: 元;所获总利润可以表示为: 元;即y=-200x 2+3 700x-8 000=-200(x-9.25)2+9 112.5∴当销售单价为 元时,可以获得最大利润,最大利润是 元.活动2:探究归纳先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.(三)重难点精讲例题2.某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x 元(x 为10的整数倍).(1)设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围.(2)设宾馆一天的利润为w 元,求w 与x 的函数关系式.(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?【解析】(1)y=50-10x ; (2)w=(180+x-20)y=(180+x-20)(50-10x )=2x 34x 8 000.10-++ (3)因为w=2x 34x 8 000,10-++ 所以x=b -2a=170时,w 有最大值,而170>160,故由函数性质知,x=160时,利润最大,此时订房数y=50- 10x =34,此时的利润为10 880元.例题3 某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.(1)现该商场要保证每天盈利1 500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多?【解析】(1)设每千克应涨价x元,列方程,得(5+x)(200-10x)=1 500,解得x1=10,x2=5.因为要顾客得到实惠,5<10,所以x=5. 答:每千克应涨价5元.(2)设商场每天获得的利润为y元,则根据题意,得y=( x +5)(200-10x)= -10x2+150x+1 000,当x=1507.522(10)ba-=-=⨯-时,y有最大值.因此,这种水果每千克涨价7.5元,能使商场获利最多(四)归纳小结“何时获得最大利润” 问题解决的基本思路.1.根据实际问题列出二次函数关系式.2.根据二次函数的最值问题求出最大利润(五)随堂检测1.某广场有一喷水池,水从地面喷出,如图,以水平地面为轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-(x-2)2+4(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米C.2米D.1米2.为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5 000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次性购买100个以上,则购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3 500元/个.乙商家一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1,y2与x之间的函数关系式.(2)若市政府投资140万元,最多能购买多少个太阳能路灯?3.桃河公园要建造圆形喷水池.在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m.由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在距离OA 1m处达到最大高度2.25m.如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?4.某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似地看作一次函数:(1)设李明每月获得利润为w (元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2 000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)【答案】1. 【解析】选A. 抛物线的顶点坐标为(2,4),所以水喷出的最大高度是4米.2. 【解析】(1)由题意可知,当x ≤100时,购买一个需5 000元,故y 1=5 000x当x>100时,因为购买个数每增加一个,其价格减少10元但售价不得低于3 500元/个,所以x ≤ 5 000 3 50010025010-+= 即100<x≤250时,购买一个需5 000-10(x-100)元,故y 1=6 000x-10x 2;当x>250时,购买一个需3 500元,故y 1=3 500x;21 5 000x,y 6 000x 10x ,3 500x,⎧⎪=-⎨⎪⎩所以 0x 100100x 250x 250≤≤<≤> 2500080%4000.y x x =⨯=(2) 当0≤x ≤100时,y 1=5 000x ≤500 000<1 400 000;当100<x ≤250时,y 1=6 000x -10x 2=-10(x -300)2+900 000<1 400 000;∴由35001400000x = 得到x=400由40001400000x = 得到350400x =<故选择甲商家,最多能购买400个太阳能路灯3.【解析】建立如图所示的坐标系,根据题意,得,点A(0,1.25),顶点B(1,2.25).设抛物线的表达式为y=a(x-h)2+k,由待定系数法可求得抛物线表达式为:y=-(x-1)2+2.25. 当y=0时,得点C(2.5,0);同理,点D(-2.5,0).根据对称性,那么水池的半径至少要2.5m,才能使喷出的水流不致落到池外.4.解析:(1)由题意,得:w = (x -20)·y=(x -20)·(-10x+500)=-10x 2+700x-10 000 当352b x a=-=时,w 有最大值. 答:当销售单价定为35元时,每月可获得最大利润.(2)由题意,得21070010 000 2 000.x x -+-=解这个方程,得x 1 = 30,x 2 = 40.答:李明想要每月获得2 000元的利润,销售单价应定为30元或40元.(3)∵10a =-<0∴抛物线开口向下.∴当30≤x≤40时,w≥2 000.∵x≤32,∴当30≤x≤32时,w≥2 000. 设成本为P (元),由题意,得P=20(-10x+500)=-200x+10 000, ∵k=-200<0,∴P 随x 的增大而减小.∴当x = 32时,P 最小=3 600.答:想要每月获得的利润不低于2 000元,每月的成本最少需要3 600元.六.板书设计2.4.2二次函数的应用探究:例题2:例题3:“何时获得最大利润” 问题解决的基本思路.1.根据实际问题列出二次函数关系式;2.根据二次函数的最值问题求出最大利润.。

《百分闯关》2016届九年级数学北师大版下册课件+教案:第二章 二次函数2.4 二次函数的应用(2)

《百分闯关》2016届九年级数学北师大版下册课件+教案:第二章 二次函数2.4 二次函数的应用(2)
(2)∵x=10 为抛物线的对称轴,且(7,16)在抛物线上,∴(13,16)也在 该抛物线上,∴当 7≤x≤13 时,销售利润不低于 16 元
( C)
A.30人 B.40人 C.50人 D.55人
3.教练对小明推铅球的录像进行技术分析,发现铅球行进高度 y(m) 与水平距离 x(m)之间的关系为 y=-112(x-4)2+3,由此可知铅球推出的
距离是( C )
A.2 m B.8 m C.10 m D.12 m 4.将进货单价为 70 元的某种商品按零售价 100 元售出时,每天能 卖出 20 个,若这种商品零售价在一定范围内每降价 1 元,其日销售量就
10.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y= ax2+bx-75,其图象如图所示. (1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多 少元? (2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?
解 : (1) ∵ y = ax2 + bx - 75 的 图 象 经 过 点 (5 , 0) , (7 , 16) , ∴ 2459aa++57bb--7755==016,,解得ab==2-01,,∴y=-x2+20x-75=-(x-10)2+25, ∴当销售价为 10 元时,最大利润为 25 元
增加 1 个,为获得最大利润,应降价( A )
A.5 元 B.10 元 C.15 元 D.20 元
5.科技园电脑销售部经市场调查发现,销售某型号电脑所获利润y(元) 与销售台数x(台)满足y=-x2+40x+15600,则当他卖出___2_0___台时, 所获利润最大.
6.有x人结伴去旅游共需支出y元,若x,y之间满足关系式y=2x2- 20x+1050,则当人数x为___5___时,总支出最少.

《二次函数的应用》(第2课时)示范公开课教学设计【北师大版九年级数学下册】

《二次函数的应用》(第2课时)示范公开课教学设计【北师大版九年级数学下册】

第二章二次函数2.4二次函数的应用第2课时一、教学目标1.经历计算最大利润问题的探索过程,体会二次函数是一类最优化问题的数学模型,并感受数学是应用价值.2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,增强解决问题的能力.二、教学重点及难点重点:1.探索销售中的最大利润问题.2.能分析并表示实际问题中变量之间的二次函数关系,运用二次函数的相关知识解决实际问题中的最大(小)值,提高解决实际问题的能力.难点:运用二次函数的知识解决实际问题.三、教学用具多媒体课件、直尺或三角板。

四、相关资源《生产服装》动画,,.五、教学过程【情境导入】【情景演示】生成服装,描写工厂生产服装的场景。

服装厂生产某品牌的T恤衫成本是每件10元.根据市场调查,以单价13元批发给经销商,经销商愿意经销5000件,并且表示单价每降价0.1元,愿意多经销500件.请你帮助分析,厂家批发单价是多少时可以获利最多?同学们,你们能解决这个问题吗?这就是我们今天要研究的内容——何时获得最大利润.师生活动:教师出示问题,引出本节课所学内容.设计意图:通过问题情境引出本节课要研究的内容,激发学生的学习兴趣.【探究新知】教师引导学生分析问题中的数量关系,设出未知数,将销售量、销售额、获得的利润用含未知数的式子表示出来,然后利用二次函数模型确定获得的最大利润.设厂家批发单价是x元时可以获利最多,获得的最大利润为y元.那么销售量可表示为1350005000.1x-⎛⎫+⨯⎪⎝⎭件.所以销售额为1350005000.1xx-⎛⎫+⨯⎪⎝⎭;所获利润135000500(10)0.1xy x-⎛⎫=+⨯-⎪⎝⎭.整理,得y=-5000(x-14)(x-10)=-5000(x2-24x+140)=-5000(x-12)2+20000.∵a=-5000<0,∴二次函数有最大值.当x=12时,y最大值=20000.答:厂家批发单价是12元时可以获利最多.设计意图:培养学生把文字语言转化为数学符号的能力.议一议在本章开始“种多少棵橙子树”的问题中,我们得到表示增种橙子树的数量x (棵)与橙子总产量y(个)的二次函数表达式y=(600-5x)(100+x)=-5x2+100x+60000.(1)利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.(2)增种多少棵橙子树,可以使橙子的总产量在60400个以上?师生活动:教师出示问题,学生画出函数的图象并回答问题.解:(1)列表:描点、连线,如下图所示,由图象知,当0≤x≤10时,橙子的总产量随橙子树的增种而增加;当x≥10时,橙子的总产量随橙子树的增种而减少.(2)由图象知,当增种6棵、7棵、8棵、9棵、10棵、11棵、12棵、13棵或14棵时,都可以使橙子的总产量在60400个以上.设计意图:进一步用图象刻画橙子的总产量与增种橙子树之间的关系,并利用图象解决问题.通过运用函数模型让学生体会数学的实际价值,通过建模学会用函数的观点认识问题,解决问题,体会数形结合思想,激发学生的探索精神,并提高学生解决问题的自信心.【典例精析】例某旅馆有客房120间,每间房的日租金为160元时,每天都客满.经市场调查发现,如果每间客房的日租金增加10元,那么客房每天出租数会减少6间.不考虑其他因素,旅馆将每间客房的日租金提高到多少元时,客房日租金的总收入最高?旅馆的客房师生活动:教师出示问题,学生小组讨论,师生共同完成解题过程.解:设每间客房的日租金提高10x元,则每天客房出租数会减少6x间.设客房日租金总收入为y元,则y=(160+10x)(120-6x)=-60(x-2)2+19440.∵x≥0,且120-6x>0,∴0≤x<20.当x=2时,y最大=19440.这时每间客房的日租金为160+10×2=180(元).因此,每间客房的日租金提高到180元时,客房总收入最高,最高收入为19440元.设计意图:培养学生分析问题和解决问题的能力.【课堂练习】1.某民俗旅游村为接待游客住宿,开设了有100张床位的旅馆,当每张床位每天收费10元时,床位每天可全部租出,若每张床位每天的收费每提高2元,则相应地每天就减少了10张床位的租出.如果每张床位每天以2元为单位提高收费,为使每天租出的床位少且总租金高,那么每张床位每天最合适的收费是().A.14元B.15元C.16元D.18元2.某产品进货单价为90元,按每个100元售出时,每周能售出500个,如果这种商品的销售单价每上涨1元,其每周的销售量就减少10个,那么为了获得最大利润,其销售单价应定为().A.130元B.120元C.110元D.100元3.某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.销售单价为多少元时,半月内获得的利润最大?4.某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销量就减少10件.(1)请写出每月销售该商品的利润y(元)与单价上涨x(元)间的函数关系式;(2)单价定为多少元时,每月销售该商品的利润最大?最大利润为多少?5.某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月的销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数:y= -10x+500.(1)设李明每月获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元?师生活动:教师先找几名学生板演,然后讲解出现的问题.参考答案1.C.2.B.3.销售单价为35元时,半月内可以获得最大利润4500元.4.解:(1)因为单价上涨x元后,每件商品的利润是(80+x-60)元,每月售出的件数为(300-10x)件,所以y与x之间的函数关系式为y=(x+20)(300-10x)=-10x2+100x+6 000.(2)将y=-10x2+100x+6 000配方,得y=-10(x-5)2+6250.因为a=-10<0,所以y有最大值.因为300-10x≥0,且x≥0,所以0≤x≤30.所以当x=5时,y有最大值,最大值为6 250.所以当单价定为85元时,每月销售该商品的利润最大,最大利润为6 250元.5.解:(1)由题意,得w=(x-20)·y=(x-20)·(-10x+500)= -10x2+700x-10 000.当x=7003522(10)ba-=-=⨯-时,w有最大值,符合题意,所以当销售单价定为35元时,每月可获得最大利润.(2)由题意,得-10x2+700x-10 000=2 000.解这个方程,得x1=30,x2=40.答:李明想要每月获得2 000元的利润,销售单价应定为30元或40元.设计意图:通过本环节的学习,让学生巩固所学知识.六、课堂小结利用二次函数解决实际问题的一般步骤:(1)根据题意,列出二次函数表达式,注意实际问题中自变量x的取值范围;(2)将二次函数表达式配方为顶点式的形式;(3)根据二次函数的图象及其性质,在自变量的取值范围内求出函数的最值.师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:通过小结,使学生梳理本节课所学内容,掌握本节课的核心内容.七、板书设计2.4二次函数的应用(2)1.一般步骤。

2.4二次函数的应用(二)

2.4二次函数的应用(二)

共同学习:
例2:行驶中的汽车在刹车后由于惯性的作用,还要继续向前滑 行一段距离才能停止,这段距离称为“刹车距离”,为了测定 某种型号汽车的刹车性能﹙车速不超过110千米/时﹚,对这种汽 车进行测试,数据如下表:
刹车时车速(千米/时) 刹车距离
0 0 10 0.3 20 1.0 30 2.1 40 3.6 50 5.5 60 7.8
用抛物线的知识解决运动场上或者生 活中的一些实际问题的一般步骤:
建立直角坐标系 二次函数 问题求解 找出实际问题的答案
小组合作:
例3:如图,悬索桥两端主塔塔顶之间的主悬钢索,其形状可 近似地看作抛物线,水平桥面与主悬索之间用垂直钢索连接, 若两端主塔之间水平距离这900m,两塔塔顶距桥面的高度为 81.5m,主悬钢索最低点离桥面的高度为0.5m,(1)若以桥 面所在直线为x轴,抛物线的对称轴为y轴,求这抛物线的关 系式;(2)计算距离桥两端主塔分别为100m,50m处垂直钢 索的长(精确到0.1m)
﹙1﹚以车速为x轴,以刹车距离为y轴,在坐标系中描出这些数据 所表示的点,并用平滑的曲线连结这些点,得到函数的大致图象; ﹙2﹚观察图象,估计函数的类型,并确定一个满足这些数据的函 数关系式; ﹙3﹚该型号汽车在国道上发生一次交通事故,现场测得刹车距离 为46.5米,请推测刹车时的车速是多少?请问在事故发生时,汽 车是超速行驶还是正常行驶?
1 a 9
0
4
8
x
20 当x 8时, y 9
如图,建立平面 直角坐标系, 点(4,4)是图中这段抛物 线的顶点,因此可设这段抛 物线对应的函数为:
∵篮圈中心距离地面3米
∴此球不能投中
y ax 4 4
2
(0≤x≤8)

二次函数的应用教案

二次函数的应用教案

二次函数的应用教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN教学目标:1.经历探索T 恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.3.经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力,培养不怕困难的品质,发展合作意识和科学精神.教学重点与难点:重点:探索销售中最大利润问题,能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题中的最大(小)值,发展解决问题的能力.难点:能正确理解题意,找准数量关系,运用二次函数的知识解决实际问题. 课前准备:多媒体课件.教学过程:一、复习回顾,设疑导入活动内容1:复习回顾(多媒体展示)(1)二次函数y =ax 2+bx +c 的对称轴、顶点坐标分别是什么如何确定最值你有几种方法(2)每件商品的利润怎么求总利润呢处理方式:学生思考后,进行举手抢答,培养学生的竞争意识.参考答案:(1)对称轴是直线2b x a =-,顶点坐标(2b a-,244ac b a -),两种方法求最值:配方法、公式法.(2)每件商品的利润=售价-进价,总利润=每件商品的利润×销售量.活动内容2:设疑导入(多媒体展示)服装厂生产某口牌的T恤衫成本是每件10元.根据市场调查,以单价13元批发给经销商,经销商愿意经销5000件,并且表示单价每降价0.1元,愿意经多销500件.你能帮助厂家分析,批发单价是多少时可以获利最多吗?本节课让我们继续共同学习二次函数的应用.【板书课题:§2.4二次函数的应用(2)】设计意图:复习回顾一方面巩固二次函数的相关知识,一方面为本课的学习做好铺垫;问题情境的创设,意在让学生初步感受二次函数在生活中的应用模型,同时通过设置疑问,激发学生的求知欲,培养学生的学习兴趣,感受数学在生活中的应用,增强应用意识.二、问题导学,探究感悟活动内容:解疑释惑(多媒体展示)服装厂生产某口牌的T恤衫成本是每件10元.根据市场调查,以单价13元批发给经销商,经销商愿意经销5000件,并且表示单价每降价0.1元,愿意经多销500件.请你帮助分析,厂家批发单价是多少时可以获利最多?处理方式:引导学生分析引例题意,理解问题情境,同时思考以下问题:(多媒体展示)1.本题反映了哪两个变量之间的关系?2.设批发单价为x(10<x≤13)元,那么(1)每件T恤衫的利润可以表示为;(2)经销量可以表示为 ;(3)厂家获利可以表示为 ;(4)设厂家获利y 元,则y 与x 的关系可以表示为 . 学生自主思考完成后,在小组内交流讨论,然后找一名学生展示,教师适时点拨强调.学生展示后,教师及时追问以下问题:(5)厂家获利y 元与批发单价x 元是什么关系?(6)厂家批发单价是多少时可以获利最多你是如何做的与同伴交流.学生完成后,教师借助多媒体展示学生求解问题(6)的过程,认学生进行互评,教师适时点评强调,对于不同的求解方法要给予表扬鼓励,同时引导学生对比不同计算方法的优劣.参考答案:1.反映了厂家获利与批发单价两个变量之间的关系;2.(1)x -10;(2)5000+135000.1x -⨯; (3)(x -10)(5000+135000.1x -⨯)或-5000x 2+120000 x -700000; (4)y =(x -10)(5000+135000.1x -⨯)或y =-5000x 2+120000 x -700000; (5)厂家获利y 元是批发单价x 元的二次函数;(6)方法一(配方法):y =(x -10)(5000+135000.1x -⨯)=5000(x -10)(14- x )=-5000(x -12)2+20000;方法二(公式法):y =(x -10)(5000+135000.1x -⨯)=-5000x 2+120000 x -700000,1200001222(5000)b a -=-=⨯-,244(5000)(700000)(120000)2000044(5000)ac b a -⨯-⨯--==-. 设计意图:让学生列出利润与单价的函数关系式,将实际问题转化为数学模型.使学生感受到“何时获得最大利润”就是在自变量取值范围内,此二次函数何时取得最大值问题.三、例题解析,应用新知活动内容:例题解析(多媒体展示)例2 某旅馆有客房120间,每间房的日租金为160元时,每天都客满.经市场调查,如果每间客房的日租金增加10元,那么客房每天出租数会减少6.不考虑其它因素,旅店将每间客房的日租金提高到多少元时,客房日租金的总收入最高处理方式:引导学生分析题意,明确本题是利用二次函数求最值的问题,解决本题的关键是找到等量关系,然后根据等量关系列出二次函数关系式求最值.等量关系式为:客房日租金的总收入=每间客房的日租金×客房的间数 学生的设法不同,所列的关系式也不同,教师可以借助多媒体展示不同设法和解题过程,强调解题的步骤及规范性,及时的给予点评,并引导学生去发现不同设法区别.在用所设的未知量表示客房的间数时,教师要及时的给以点拨引导.设法与解题过程预设:(设法一)解:设每间客房的日租金提高10 x元,则每天客房出租数会减少6 x间.设客房的日租金总收入为y元,则y=(160+10 x)(120-6 x)= -60(x-2)2+19440.∵x≥0且120-6 x>0,∴0≤x<20.当x =2时,y最大=19440.这时每间客房的日租金为160+102=180(元).因此,每间客房的日租金提高到180元时,客房总收入最高,最高收入为19440元.(设法二)解:设每间客房的日租金为 x元,则每天客房出租数会减少x-×6)间.设客房的日租金总收入为y元,则(120-16010x-×6)= -0.6 (x-180)2+19440.y= x (120-16010因此,每间客房的日租金提高到180元时,客房总收入最高,最高收入为19440元.设计意图:通过这个实际问题,让学生进一步感受到二次函数是一类最优化问题的数学模型,并感受数学的应用价值.在这里帮助学生分析和表示实际问题中变量之间的关系,帮助学生领会有效的思考和解决问题的方法,学会思考、学会分析.四、拓展延伸,展示交流活动内容:议一议(多媒体展示)还记得本章一开始的“种多少棵橙子树”的问题吗?我们得到表示增种橙子树的数量x(棵)与橙子总产量y (个)的二次函数表达式:(6005)(100)y x x =-+2510060000x x =-++.(1)利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.(2)增种多少棵橙子树,可以使橙子的总产量在60400个以上?处理方式:学生思考并尝试解决,根据所给的函数关系式在课本49页的直角坐标系中画出函数图象,教师适时提醒学生函数图象只能在第一象限,5分钟后各小组同学分组交流、讨论. 然后借助实物投影展示学生的画图情况及时的评价,同时引导学生利用函数图象分析增种多少棵橙子树,可以使橙子的总产量在60400个以上,并说明理由.解题过程预设:(1)图象如下图:当x <10时,橙子的总产量随增种橙子树的增加而增加;当x =10时,橙子的总产量最大;当x >10时,橙子的总产量随增种橙子树的增加而减小.(2)由图可知,增种6棵、7棵、8棵、9棵、10棵、11棵、12棵、13棵或14棵,都可以使橙子总产量在60400个以上.想一想:在利用二次函数解决生活实际最值问题时的步骤是什么?处理方式:学生思考后在小组内交流,然后再全班展示说出自己的想法.教师给予点评鼓励.二次函数解决生活实际问题时的步骤是:(1)审清题意;(2)找出题中的两个变量,并列出等量关系;(3)设出两个变量,根据等量关系列出函数关系式;(4)根据函数关系式,采用配方法、公式法或图象法求出最值;(5)写出结论.设计意图:实际问题的解决难点在于建立数学模型. 让学生进一步用图象刻画橙子的总产量与增种橙子树之间的函数关系,将实际问题转化为数学模型.五、巩固训练,应用提升活动内容:做一做(多媒体展示)某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可以售出400件.根据销售经验,提高销售单价会导致销售量减少,即销售单价每提高1元,销售量相应减少20件,销售单价为多少元时,半月内获得利润最大?参考答案:(方法一)解:设销售单价为x元,则销售量[400-20(x-30)]件.设半月内获得利润为y元,则y=(x-20) [400-20(x-30)]=-20(x-35)2+4500.因此,当销售单价为35元时,半月内可以获得最大利润4500元.(方法二)解:设售价提高x元时,半月内获得的利润为y元,则y=(x+30-20)(40-20x)=-20x2+200x+400=-20(x-5)2+4500.∴当x=5时, y最大=4500.因此,当售价提高5元,即销售单价为35元时,半月内可获最大利润4500元.设计意图:在学生初步掌握一定技能之后,将技能训练寓于问题的解决过程中.培养学生应用数学意识,增强学习数学的兴趣和信心,使其解题能力和应用能力得到进一步提升.六、课堂小结,纳入系统通过这节课的学习,你有哪些收获有何感想学会了哪些方法先想一想,再分享给大家.处理方式:学生畅谈自己的收获!教师强调:二次函数解决生活实际问题时的步骤.设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.七、达标检测,反馈矫正1.某单位商品的利润y与变化的单价数x之间的关系为:y=-5x2+10x,当1.5≤x≤2时,最大利润是.2.出售某种手工艺品,若每个获利x元,一天可售出(8-x)个,则当x=元,一天出售该种手工艺品的总利润y最大.3.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=-(t-1)2+6,则小球距离地面的最大高度是.4.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.当一个旅行团的人数是多少时,旅行社可以获得最大营业额?处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.参考答案:1.3.75 ; 2.4 ; 3.6米;4.解:设一个旅行团有x人时,旅行社营业额为y元.则y=x[800-10(30-x)]=-10x2+1100=-10(x-55)2+30250.∴当x=55时,y最大=30250.因此,一个旅行团有55人时,旅行社可获最大利润30250元.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.八、布置作业,课堂延伸必做题:课本第50页习题2.9 第2题.选做题:课本第50页习题2.9 第3题.设计意图:必做题做为作业题让学生课后练习、巩固,选做题供学有余力的同学再提高.板书设计:11二次函数的性质: 对称轴:顶点坐标:确定最值:每件商品的利润= 总利润= 引例 解: 例2 解:投 影学生活动区。

沪科版数学九年级上册21.4《二次函数的应用》教学设计2

沪科版数学九年级上册21.4《二次函数的应用》教学设计2

沪科版数学九年级上册21.4《二次函数的应用》教学设计2一. 教材分析《二次函数的应用》是沪科版数学九年级上册第21.4节的内容。

本节主要让学生了解二次函数在实际生活中的应用,学会用二次函数解决实际问题。

教材通过实例引导学生理解二次函数的图像和性质,以及如何将实际问题转化为二次函数模型,进一步解决实际问题。

二. 学情分析九年级的学生已经学习了二次函数的基本概念、图像和性质,对二次函数有一定的认识。

但学生在解决实际问题时,往往不知道如何将实际问题转化为二次函数模型,对二次函数在实际生活中的应用还不够了解。

因此,在教学本节内容时,需要引导学生将所学知识与实际生活相结合,提高学生解决实际问题的能力。

三. 教学目标1.让学生了解二次函数在实际生活中的应用,提高学生学习数学的兴趣。

2.培养学生运用数学知识解决实际问题的能力。

3.帮助学生理解二次函数的图像和性质,加深对二次函数知识的理解。

四. 教学重难点1.重点:让学生了解二次函数在实际生活中的应用,学会用二次函数解决实际问题。

2.难点:如何将实际问题转化为二次函数模型,以及对二次函数图像和性质的理解。

五. 教学方法采用案例教学法、问题驱动法和小组合作法。

通过实例引导学生了解二次函数在实际生活中的应用,激发学生学习兴趣。

通过问题驱动,引导学生思考和探索,提高学生解决问题的能力。

利用小组合作,让学生在讨论中加深对知识的理解。

六. 教学准备1.准备相关案例,用于引导学生了解二次函数在实际生活中的应用。

2.设计问题,用于引导学生思考和探索。

3.准备PPT,用于展示二次函数的图像和性质。

七. 教学过程1.导入(5分钟)通过一个实际案例,如抛物线形的跳板,让学生了解二次函数在实际生活中的应用。

引导学生思考:如何用数学模型来描述这个实际问题?2.呈现(10分钟)呈现二次函数的图像和性质,让学生观察和分析,引导学生发现二次函数的规律。

同时,给出二次函数的一般式,让学生了解二次函数的构成。

九年级数学下册二次函数的应用教案

九年级数学下册二次函数的应用教案

课题:2.4二次函数的应用教学目标:1.经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学知识的应用价值.2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值问题.3.能够对解决问题的基本策略进行反思,形成个人解决问题的风格.进一步体会数学与人类社会的密切联系.教学重点与难点:重点:经历探究矩形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值.难点:能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题.课前准备:导学案,多媒体课件.教学过程:一、创设情境,导入新课活动内容:(利用导学案)探究活动:以小组为单位,用长1米的绳子围成不同的图形,看哪个小组围成的图形最多,并估算出所围成的这些图形中,哪个图形的面积最大?处理方式:学生先把答案写在导学案上,然后小组内交流,班级内比较的到当场合款相等时面积最大.设计意图:增加学生的动手能力和小组合作探究能力,同时也为了复习图形的面积公式,会用估算的方法比较这些图形的面积大小,探究其中的规律,为本节课学习最大面积问题做好铺垫.二、探究学习,感悟新知活动内容:(多媒体展示)问题一:探究两边在直角三角形直角边上内接矩形的最大面积 如图,在一个直角三角形的内部作一个长方形ABCD ,其中AB 和AD 分别在两直角边上.(1)设长方形的一边AB =x m ,那么AD 边的长度如何表示?(2)设长方形的面积为y m 2,当x 取何值时,y 的值最大?最大值是多少?解:(1)∵BC ∥AD , ∴△EBC ∽△EAF .∴EB BCEA AF=. 又AB =x ,BE =40-x , ∴404030x BC-=.∴BC =34(40-x ). ∴AD =BC =34(40-x )=30-34x . (2)y =AB ·AD =x (30-34x )=-34x 2+30x =-34(x 2-40x +400-400) =-34(x 2-40x +400)+300 =-34(x -20)2+300. 当x =20时,y 最大=300.即当x 取20m 时,y 的值最大,最大值是300m 2.处理方式:学生讨论交流,在导学案上完成后,学生之间互相展示结果讨论补充,教师适时点评,并在多媒体上展示正确结果.设计意图:从矩形的面积公式入手,利用相似三角形的性质表示出另外一条边,才能列出函数表达式,这一过程先由学生独立思考后,分组合作探究、交流,帮助个别存在困难的同学解决.此题的思路也是解决矩形最大面积问题最常用的方法.问题二:探究一边在直角三角形斜边上内接矩形的最大面积(多媒体展示)如图,在一个直角三角形的内部作一个矩形ABCD ,其中BC 在斜边上,,A D 在直角边上.如果设矩形的一边m AD x =,那么AB 边的长度如何表示?当x 取何值时,矩形面积y 的值最大?最大值是多少?解:设矩形的一边m AD x =,由GAD ∆GFD ∆,得AD GMEF GN=, 即5024x GM=, ∴1225GM x =.∴122425AB MN GN GM x ==-=-. 21212(24)242525ABCDS AD AB x x x x ==-=-+矩形.当24251222()25b x a =-=-=⨯-时,y 有最大值,最大值为224300124()25y -==⨯-最大值 处理方式:在有了前面解答问题的经验之后,让学生自主探究,寻求变量与不变量之间的关系,仿照第一种情况,再一次体验解决此类问题的步骤和方法,本环节相当于对问题1的巩固练习,学生在认真听讲的前提下完成应该没有问题,提醒学生计算要认真. 设计意图:在上一道题的基础上,利用相似三角形的性质表示出矩形的另一条边长,列出二次函数表达式,但此题上了难度,难度在于利用的是相似三角形对应高的比等于相似比这一性质,而且还要用到等积法求直角三角形斜边上的高.充分发挥学生的主动探究能力,并由个别程度较好的学生讲解,最后再板书进行反思总结.三、例题解析,新知应用 活动内容:(多媒体出示例题)某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m .当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?解:∵7x +4y +πx =15, ∴y =1574x xπ--.设窗户的面积是S (m 2),则S =12πx 2+2xy=12πx 2+2x ·1574x x π-- =12πx 2+(157)2x x x π-- =-3.5x 2+7.5x=-3.5(x 2-157x ) =-3.5(x -1514)2+1575392. ∴当x =1514≈1.07时, S 最大=1575392≈4.02. 即当x ≈1.07m 时,S 最大≈4.02m 2,此时,窗户通过的光线最多. 答案:.02.407.12m S m x =≈最大时,处理方式:本题含有两个图形的面积计算,主要是想进一步提高学生分析问题和解决问题的能力,巩固训练列二次函数表达式和求最值的方法.让学生理解通过窗户光线多少与窗户面积大小有关.此题处理起来比较繁琐,教师要给予学生及时的指导和帮助,同时也告诉学生数学基本运算也是培养大家做事严谨、有耐心的一个很好的途径.设计意图:在学生已有的探究“面积最大值”经验获取的体会中,让学生继续沿着这条探究路线走下去,既能巩固前面的探究方法,又能让学生再次感受“数学来源于生活”.方法提炼:我们已经做了不少用二次函数知识解决实际问题的例子,现在大家能否根据前面的例子作一下总结,解决此类问题的基本思路是什么呢?与同伴进行交流.(学生讨论,教师多媒体展示)(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系; (3)用数学的方式表示它们之间的关系; (4)做函数求解;(5)检验结果的合理性,拓展等.设计意图:趁热打铁,及时进行小结,总结做题的方法及思路,抓住这种题目的本质,达到举一反三的目的和效果.四、拓展提升,学以致用一养鸡专业户计划用116m 长的竹篱笆靠墙围成一个长方形鸡舍,怎样设计才能使围成的长方形鸡舍的面积最大?最大为多少?解:设AB 长为x m ,则BC 长为(116-2x )m ,长方形面积为S m 2. 根据题意得S =x (116-2x )=-2x 2+116x=-2(x 2-58x +292-292)=-2(x -29)2+1682.当x =29时,S 有最大值1682,这时116-2x =58.即设计成长为58m ,宽为29m 的长方形时,能使围成的长方形鸡舍的面积最大,最大面积为1682m 2.处理方式:学生通过思考并交流讨论,探索出需要利用本节课学的知识解决题目,教师利用多媒体展示答案. 活动的设计意在通过问题的变式促使学生灵活运用知识,在解决实际问题中,重视知识的发展,有利于后续学习兴趣的培养.设计意图:让同学们通过刚才的学习和体验后进行练习,深入浅出地对题目进行分析和理解并解决问题,虽然并不要求他们在以后都用这样的方法解题,但对于培养他们形成良好的心理素质和培养他们分析问题、解决问题的能力是很有帮助的.五、回顾反思,提炼升华师:同学们,通过这节课的学习,你有哪些收获?那些疑惑?有何感想?学会了哪些方法?先想一想,再分享给大家.(1)通过本节课掌握了利用相似三角形的性质表示矩形的另一边,是列矩形面积函数关系式的关键.(2)图形最大面积问题,实质上是二次函数的最值问题.(3)解决此类问题,首先要理解问题,分析问题中的变量和常量,以及它们之间的关系是难点,用数学的方式表示它们间的关系是关键,化归为二次函数运用公式求解是易错点,要做对做全需要我们一定基本功扎实,养成良好的数学素养!处理方式:学生畅谈自己的收获,教师补充.设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,进一步培养学生总结归纳的能力与合作互助的意识.六、达标检测,反馈提高师:通过本节课的学习,同学们的收获真多!收获的质量如何呢?请完成导学案中的达标检测题.(同时多媒体出示)1.如图,已知△ABC 是一等腰三角形铁板余料,其中AB=AC=20cm,BC=24cm.若在△ABC 上截出一矩形零件DEFG,使EF 在BC 上,点D 、G 分别在边AB 、AC 上.问矩形DEFG 的最大面积是多少?2.如图,△ABC 中,∠B=90°,AB=6cm,BC=12cm.点P 从点A 开始,沿AB 边向点B 以每秒1cm 的速度移动;点Q 从点B 开始,沿着BC 边向BQCAF E BG D C A点C 以每秒2cm 的速度移动.如果P,Q 同时出发,问经过几秒钟△PBQ 的面积最大?最大面积是多少?参考答案1.过A 作AM⊥BC 于M,交DG 于N,则AM=222012-=16cm. 设DE=x cm,S 矩形=y cm 2,则由△ADG∽△ABC,故AN DG AM BC =,即161624x DG-=,故DG=32(16-x ). ∴y =DG ·DE=32(16-x )x =-32(x 2-16x)=-32(x -8)2+96,从而当x =8时,y 有最大值96.即矩形DEFG 的最大面积是96cm 2.2.设第t 秒时,△PBQ 的面积为y cm 2.则∵AP=t cm,∴PB=(6-t )cm;又BQ=2t.∴y =12PB ·BQ=12(6-t )·2t =(6-t )t =-t 2+6t =-(t -3)2+9,当t =3时,y 有最大值9.故第3秒钟时△PBQ 的面积最大,最大值是9cm 2.处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.七、布置作业,课堂延伸必做题:课本47页,习题2.8第1、2、3题. 选做题:课本48页,习题2.8第4题. 结束语:师:同学们,本节课的学习你们给我留下了深刻的印象,同时也给了我太多的感动与惊喜,谢谢你们!就让我把这份感动与惊喜埋在心底“一生一世”,相信你们的明天会更美好!祝愿同学们:象雄鹰一样飞的更高,飞的更远!(多媒体播放歌曲“飞的更高”结束本课)2.4.1二次函数的应用一、教学目标1.掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.2.学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题.二、课时安排 1课时 三、教学重点掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值. 四、教学难点运用二次函数的知识解决实际问题. 五、教学过程 (一)导入新课引导学生把握二次函数的最值求法: (1)最大值: (2)最小值: (二)讲授新课 活动1:小组合作如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上. (1)设矩形的一边AB=xm,那么AD 边的长度如何表示?(2)设矩形的面积为ym 2,当x 取何值时,y 的值最大?最大值是多少?解:()31AD bm,b x 30.4==-+设易得 ()2332(30)3044y xb x x x x==-+=-+()2320300.4x =--+ 24:20,300.24b ac b x y a a-=-===最大值或用公式当时活动2:探究归纳先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.(三)重难点精讲例题:某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m.当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?解:4715.yx x ++π=由 157.4x x y --π=得2215722()242x x x x S xy x π--ππ=+=+窗户面积271522x x =-+ 2715225().21456x =--+2b 154ac b 225x 1.07,s 4.02.2a 144a 56-=-=≈==≈最大值当时即当x ≈1.07m 时,窗户通过的光线最多.此时窗户的面积为4.02m 2. (四)归纳小结“最大面积” 问题解决的基本思路: 1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性.(五)随堂检测1.(包头·中考)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm2.2.(芜湖·中考)用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.3.(潍坊·中考)学校计划用地面砖铺设教学楼前的矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米,图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都是小正方形的边长,阴影部分铺设绿色地面砖,其余部分铺设白色地面砖.(1)要使铺设白色地面砖的面积为5 200平方米,那么矩形广场四角的小正方形的边长为多少米?(2)如图铺设白色地面砖的费用为每平方米30元,铺设绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺设广场地面的总费用最少?最少费用是多少?4.(南通·中考)如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B,C重合).连接DE,作EF⊥DE,EF与线段BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式.(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?5.(河源·中考)如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x ,面积为y .(1)求y 与x 的函数关系式,并求出自变量x 的取值范围. (2)生物园的面积能否达到210平方米?说明理由.【答案】 1.12.52. 2x m 矩形的一边长是2xm,其邻边长为((20422x1022x,2-+=-(121022222S x x x x ⎡⎤=•-++⎣⎦所以该金属框围成的面积302,.322x ==-+当时金属框围成的图形面积最大 )((()2x 60402m ,10221032210210m .=--⨯-=此时矩形的一边长为另一边长为()2S3002002m.=-最大3.解; (1)设矩形广场四角的小正方形的边长为x米,根据题意得:4x2+(100-2x)(80-2x)=5 200,整理得x2-45x+350=0,解得x1=35,x2=10,经检验x1=35,x2=10均适合题意,所以,要使铺设白色地面砖的面积为5 200平方米,则矩形广场四角的小正方形的边长为35米或者10米.(2)设铺设矩形广场地面的总费用为y元,广场四角的小正方形的边长为x米,则y=30[4x2+(100-2x)(80-2x)]+20[2x(100-2x)+2x(80-2x)] 即y=80x2-3 600x+240 000,配方得y=80(x-22.5)2+199 500,当x=22.5时,y的值最小,最小值为199 500,所以当矩形广场四角的小正方形的边长为22.5米时,铺设矩形广场地面的总费用最少,最少费用为199 500元.4. ⑴在矩形ABCD中,∠B=∠C=90°,∴在Rt△BFE中,∠1+∠BFE=90°,又∵EF⊥DE,∴∠1+∠2=90°,∴∠2=∠BFE,∴Rt△BFE∽Rt△CED,∴BF BECE CD=, ∴8y xx m-=即28x x ym-=⑵当m=8时,28,8x x y -=化成顶点式: ()21428y x =--+ (3)由12y m =,及28x x y m -=得关于x 的方程:28120x x -+=,得1226x x ==,∵△DEF 中∠FED 是直角,∴要使△DEF 是等腰三角形,则只能是EF=ED , 此时, Rt △BFE ≌Rt △CED ,∴当EC=2时,m=CD=BE=6;当EC=6时,m=CD=BE=2. 即△DEF 为等腰三角形,m 的值应为6或2. 5. 解:(1)依题意得:y=(40-2x)x . ∴y=-2x 2+40x .x 的取值范围是0< x <20.(2)当y=210时,由(1)可得,-2x 2+40x=210. 即x 2-20x+105=0. ∵ a=1,b=-20,c=105, ∴2(20)411050,--⨯⨯<∴此方程无实数根,即生物园的面积不能达到210平方米. 六.板书设计2.4.1二次函数的应用探究: 例题:“最大面积” 问题解决的基本思路: 1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性. 七、作业布置 课本P47练习练习册相关练习八、教学反思课题:2.4.2二次函数的应用教学目标:知识与技能1.经历探索T恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.过程与方法经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力.情感态度与价值观1.体会数学与人类社会的密切联系,了解数学的价值。

2.4 二次函数的应用(2)——抛物线形问题 教案 2021—2022学年北师大版数学九年级下册

2.4 二次函数的应用(2)——抛物线形问题 教案 2021—2022学年北师大版数学九年级下册

2.4 二次函数的应用(2)——抛物线形问题教案一、教学目标1.理解抛物线形问题的概念及其应用背景;2.掌握通过二次函数求解抛物线形问题的方法;3.能够运用二次函数解决实际问题。

二、教学重点1.理解抛物线形问题的概念;2.掌握通过二次函数求解抛物线形问题的方法。

三、教学难点1.运用二次函数解决实际问题;2.分析问题中所给条件,建立数学模型。

四、教学过程1. 引入•引导学生思考下面的问题:–什么是二次函数?–二次函数有什么特点?•解答学生的问题,简要介绍二次函数。

2. 了解抛物线形问题•通过实际例子,引入抛物线形问题的概念。

•解释抛物线形问题与二次函数的关系。

3. 运用二次函数求解抛物线形问题•通过示例,详细讲解如何运用二次函数解决抛物线形问题。

•引导学生思考步骤,并进行示范。

4. 实践练习•给学生提供一些实际问题,并要求他们运用二次函数解决。

•分组讨论,学生之间相互交流思路。

•点名让各组发表他们的解题思路和答案。

5. 拓展延伸•引导学生思考更复杂的抛物线形问题,并让他们自己尝试解决。

•鼓励学生进行积极思考和探索,提高问题解决能力。

6. 小结•对本课所学内容进行总结和归纳。

7. 作业布置•布置作业:要求学生完成课本上的相关练习题,并要求写出详细解题思路。

五、教学反思通过本节课的教学,学生对抛物线形问题有了更深入的了解,并能够熟练运用二次函数解决相关问题。

课堂上进行了实践练习,有利于学生独立思考和解决问题的能力的培养。

在拓展延伸环节,带领学生探索更复杂的问题,提高了学生的解决问题的灵活性。

整体而言,本节课教学效果良好。

北师大版九年级数学下册:第二章2.4.1《二次函数的应用》精品说课稿

北师大版九年级数学下册:第二章2.4.1《二次函数的应用》精品说课稿

北师大版九年级数学下册:第二章 2.4.1《二次函数的应用》精品说课稿一. 教材分析北师大版九年级数学下册第二章《二次函数的应用》是学生在学习了二次函数的图象与性质的基础上进行的一节实践活动课。

本节课通过实例让学生了解二次函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。

教材中给出了两个实例:制作轴对称图案和确定顶点式二次函数的图象,教师可以在此基础上进行拓展,让学生更好地理解二次函数的应用。

二. 学情分析九年级的学生已经掌握了二次函数的基本知识,对二次函数的图象与性质有了初步的了解。

但学生在应用二次函数解决实际问题时,往往因为不能将实际问题与数学知识很好地结合起来而遇到困难。

因此,在教学过程中,教师需要引导学生将实际问题转化为数学问题,培养学生运用二次函数解决实际问题的能力。

三. 说教学目标1.让学生了解二次函数在实际生活中的应用,培养学生的应用意识。

2.使学生掌握利用二次函数解决实际问题的方法,提高学生的数学素养。

3.培养学生合作学习、交流分享的习惯,增强学生的团队意识。

四. 说教学重难点1.教学重点:让学生了解二次函数在实际生活中的应用,培养学生运用二次函数解决实际问题的能力。

2.教学难点:如何将实际问题转化为数学问题,如何利用二次函数解决实际问题。

五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生主动探究二次函数在实际生活中的应用。

2.利用多媒体课件展示实例,直观地展示二次函数的图象与性质。

3.学生进行小组讨论,培养学生合作学习的能力。

4.教师进行适时点拨,帮助学生突破思维瓶颈。

六. 说教学过程1.导入新课:通过展示生活中的实例,引发学生对二次函数应用的思考,激发学生的学习兴趣。

2.探究新知:让学生自主探究教材中的实例,理解二次函数在实际生活中的应用。

3.小组讨论:让学生分组讨论,分享各自的想法,培养学生的合作意识。

4.教师讲解:针对学生的讨论,教师进行讲解,引导学生正确运用二次函数解决实际问题。

浙教版数学九年级上册2.4《二次函数的应用》教案

浙教版数学九年级上册2.4《二次函数的应用》教案

浙教版数学九年级上册2.4《二次函数的应用》教案一. 教材分析《二次函数的应用》是浙教版数学九年级上册第2.4节的内容,主要目的是让学生掌握二次函数在实际问题中的应用。

本节内容是在学生已经学习了二次函数的图象和性质的基础上进行的,通过本节内容的学习,使学生能够运用二次函数解决一些实际问题,提高他们的数学应用能力。

二. 学情分析九年级的学生已经掌握了二次函数的基本知识,对二次函数的图象和性质有一定的了解。

但是,将二次函数应用于实际问题中,解决实际问题,对他们来说还是一个新的领域。

因此,在教学过程中,教师需要引导学生将已知的二次函数知识与实际问题相结合,通过解决实际问题,提高他们的数学应用能力。

三. 教学目标1.知识与技能:使学生能够理解二次函数在实际问题中的应用,能够将实际问题转化为二次函数问题,并通过二次函数解决实际问题。

2.过程与方法:通过解决实际问题,培养学生运用数学知识解决实际问题的能力,提高他们的数学素养。

3.情感态度与价值观:使学生能够体验到数学在生活中的应用,增强他们对数学的兴趣和信心。

四. 教学重难点1.重点:使学生能够理解二次函数在实际问题中的应用。

2.难点:如何将实际问题转化为二次函数问题,并通过二次函数解决实际问题。

五. 教学方法采用问题驱动的教学法,通过解决实际问题,引导学生运用二次函数知识,提高他们的数学应用能力。

同时,采用小组合作学习的方式,培养学生的合作精神和团队意识。

六. 教学准备1.教师准备:教师需要准备一些实际问题,用于引导学生运用二次函数知识解决实际问题。

2.学生准备:学生需要复习二次函数的基本知识,对二次函数的图象和性质有一定的了解。

七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,引导学生思考如何利用二次函数知识解决这些问题。

2.呈现(10分钟)教师呈现一些实际问题,并与学生一起分析这些问题,将实际问题转化为二次函数问题。

3.操练(10分钟)教师引导学生运用二次函数知识解决呈现的实际问题,学生进行练习,巩固所学知识。

《二次函数的应用2》教学设计

《二次函数的应用2》教学设计

《二次函数的应用2》教学设计
一、教学内容及内容解析
分析实际变量中的二次函数的关系,运用二次函数求出最大(小)值问题.二、教学目标
1.知识与技能:经历探索销售中最大利润等问题的过程,体会用二次函数解决最优化问题的过程,并感受数学的应用价值.
2.过程与方法:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.
3.情感、态度与价值观:经历销售中最大利润问题的探究过程,发展学生运用数学知识解决实际问题的能力,培养不怕困难的品质,发展合作意识和科学精神.三、教学问题诊断分析
根据教学目标确定重难点如下:
重点:探索销售中最大利润问题,能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题中的最大(小)值,发展解决问题的能力.
难点:能正确理解题意,找准数量关系,运用二次函数的知识解决实际问题.四、教学过程设计(脚本)。

北师大版九年级数学下册:2.4《二次函数的应用》教案

北师大版九年级数学下册:2.4《二次函数的应用》教案

北师大版九年级数学下册:2.4《二次函数的应用》教案一. 教材分析北师大版九年级数学下册第2.4节《二次函数的应用》主要介绍了二次函数在实际生活中的应用,包括二次函数图像的识别和利用二次函数解决实际问题。

这部分内容是学生在学习了二次函数的性质和图像后,对二次函数知识的进一步拓展,使学生能够将所学知识应用到实际生活中,提高解决实际问题的能力。

二. 学情分析九年级的学生已经学习了二次函数的基本知识和图像,对二次函数有一定的理解。

但学生在解决实际问题时,可能会对将理论知识和实际问题相结合感到困难。

因此,在教学过程中,教师需要引导学生将所学知识与实际问题相结合,提高学生的应用能力。

三. 教学目标1.理解二次函数在实际生活中的应用;2.学会利用二次函数解决实际问题;3.提高学生的数学应用能力。

四. 教学重难点1.二次函数在实际生活中的应用;2.利用二次函数解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过设置问题,引导学生思考;通过案例分析,使学生理解二次函数在实际生活中的应用;通过小组合作,让学生在讨论中解决问题,提高学生的合作能力和解决问题的能力。

六. 教学准备1.准备相关的案例和问题;2.准备多媒体教学设备。

七. 教学过程1.导入(5分钟)通过一个实际问题引出二次函数的应用,例如:一个农场计划种植两种作物,种植面积为固定的10亩。

如果种植苹果树,每亩收益为2000元;如果种植梨树,每亩收益为3000元。

请问如何分配种植苹果树和梨树的面积,才能使总收益最大?2.呈现(10分钟)呈现教材中的案例,让学生了解二次函数在实际生活中的应用。

例如,教材中有一个关于抛物线形跳板的问题,通过二次函数来求解跳板的长度。

3.操练(10分钟)让学生根据教材中的案例,尝试解决实际问题。

例如,教材中有一个关于二次函数图像的问题,让学生根据图像信息,求解相关参数。

4.巩固(10分钟)通过小组合作,让学生解决一些实际问题。

§2.4.2二次函数的性质教学设计

§2.4.2二次函数的性质教学设计

§2.4.2二次函数的性质教学设计一、教材分析本节内容是北师大版高中数学必修一第二章第四节二次函数的性质,两课时内容,本节是第二课时。

通过实例进行具体分析、观察、归纳,由具体到抽象,得出二次函数的性质的概念。

通过本节课的学习要求学生理解二次函数的性质的概念,会判断和证明简单二次函数的性质。

二次函数的性质是函数的重要性质,它是通过数形结合研究其性质的。

二次函数的性质是学生在初中学习了二次函数的图像的基础上,总结出二次函数的性质。

在高中阶段,用数学语言刻画二次函数性质,有利于培养学生的理性思维。

此外在比较数的大小、探究出二次函数的性质中蕴涵诸多数学思想方法,对于进一步探索、研究其他函数性质有很强的启发与示范作用。

二、学情分析高一学生在初中已经学习了二次函数的图像,对二次函数的图像有了一定的认识,有具备了一定的观察、发现、分析、抽象、概括能力,为二次函数的性质的学习做好了准备,但是从直观到抽象的转变对高一的学生来说比较困难。

三、教学目标1.知识与技能(1)掌握二次函数的定义域、值域、单调性、最值等性质及其图象的开口方向和顶点坐标;2.过程与方法(1)通过对二次函数的性质的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;(2)通过对二次函数的性质的证明,提高学生的推理论证能力.3.情感、态度与价值观(1)由合适的例子引发学生探求数学知识的欲望,突出学生的主观能动性,激发学生学习数学的兴趣.(2)通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程.四、教学重点、难点重点:掌握二次函数的定义域、值域、单调性、最值等性质及其图象的开口方向和顶点坐标。

难点:二次函数的应用。

五、教学方法本节课是二次函数的性质的第二节课,根据教学内容、教学目标和学生认知水平,主要采取教师启发讲授,学生探究的教学方法.六、 教学手段教学中采用多媒体辅助教学,目的是充分发挥其“快捷、生动、形象”的特点为学生提供直观感性的材料,有助于学生对问题的理解和认识.七、学法指导(1)让学生利用图形直观感受;(2)让学生“设问、尝试、归纳、总结、运用”,重视学生的主动参与,重视信息反馈,通过引导学生多思,多说多练,使认识得到深化。

二次函数的应用教学教案

二次函数的应用教学教案

二次函数的应用教学教案第一章:二次函数的图像与性质1.1 了解二次函数的一般形式:y = ax^2 + bx + c1.2 学习二次函数的图像:开口方向、顶点、对称轴、判别式1.3 掌握二次函数的增减性和奇偶性1.4 了解二次函数的图像与x轴的交点:解二次方程第二章:二次函数的图像变换2.1 了解图像的平移:上移、下移、左移、右移2.2 学习图像的伸缩:扩大、缩小2.3 掌握图像的旋转:顺时针旋转、逆时针旋转2.4 应用图像变换解决实际问题第三章:二次函数与几何图形3.1 了解二次函数与圆的关系3.2 学习二次函数与抛物线的关系3.3 掌握二次函数与三角形的关系3.4 应用二次函数与几何图形解决实际问题第四章:二次函数的顶点公式4.1 学习顶点公式:顶点坐标、对称轴、开口方向4.2 掌握顶点公式的应用:求最值、求对称轴、判断开口方向4.3 应用顶点公式解决实际问题4.4 了解顶点公式的拓展:配方法第五章:二次函数与方程的解法5.1 学习二次方程的解法:因式分解、公式法、配方法5.2 掌握二次方程的应用:求解实际问题中的未知数5.3 了解二次方程的根的判别式:判别式的计算与解释5.4 应用二次方程解决实际问题第六章:二次函数在实际问题中的应用6.1 学习将实际问题转化为二次函数模型6.2 掌握实际问题中二次函数的解析和解法6.3 了解二次函数在生活中的应用实例:如抛物线运动、光学成像等6.4 应用二次函数解决实际问题第七章:二次函数图像的描绘7.1 学习使用描点法描绘二次函数图像7.2 掌握坐标轴的绘制和标注7.3 了解二次函数图像的绘制技巧7.4 应用描绘的二次函数图像解决实际问题第八章:二次函数图像的解析8.1 学习二次函数图像的切线和渐近线8.2 掌握二次函数图像的凹凸性和拐点8.3 了解二次函数图像的面积和积分8.4 应用二次函数图像的解析解决实际问题第九章:二次函数与线性函数的组合9.1 学习二次函数和线性函数的组合形式9.2 掌握组合函数的图像和性质9.3 了解组合函数的应用实例9.4 应用组合函数解决实际问题第十章:二次函数的综合应用10.1 学习二次函数在不同领域的应用实例10.2 掌握二次函数的综合解题策略10.3 了解二次函数在高级数学中的应用10.4 应用二次函数的综合知识解决实际问题重点和难点解析六、二次函数在实际问题中的应用将实际问题转化为二次函数模型:学生需要学会识别实际问题中的变量和常数,并将它们转化为二次函数的一般形式。

北师大版九年级数学下册:2.4《二次函数的应用》教学设计

北师大版九年级数学下册:2.4《二次函数的应用》教学设计

北师大版九年级数学下册:2.4《二次函数的应用》教学设计一. 教材分析《二次函数的应用》是北师大版九年级数学下册第2.4节的内容。

这部分内容主要介绍了二次函数在实际生活中的应用,通过具体实例使学生了解二次函数在实际问题中的重要性。

教材内容安排合理,由浅入深,环环相扣,有利于学生掌握二次函数的应用方法。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。

但将二次函数应用于实际问题中,解决实际问题,对学生来说还是一个新的领域。

因此,在教学过程中,要注重引导学生将理论知识与实际问题相结合,提高学生解决实际问题的能力。

三. 教学目标1.知识与技能:使学生掌握二次函数在实际问题中的应用方法,能够将二次函数知识应用于解决实际问题。

2.过程与方法:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极向上的学习态度。

四. 教学重难点1.重点:二次函数在实际问题中的应用方法。

2.难点:如何将实际问题转化为二次函数模型,并求解。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置实际问题,引导学生主动探究,合作解决问题,提高学生运用二次函数解决实际问题的能力。

六. 教学准备1.准备相关的实际问题,如生产成本问题、最大利润问题等。

2.准备多媒体教学设备,如投影仪、计算机等。

七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如抛物线形的物体运动、生产成本问题等,引导学生思考这些问题与二次函数的关系。

2.呈现(10分钟)呈现一个具体的实际问题,如最大利润问题,引导学生将其转化为二次函数模型。

讲解如何根据实际问题设定二次函数的参数,并求解。

3.操练(10分钟)学生分组讨论,每组选取一个实际问题,尝试将其转化为二次函数模型,并求解。

教师巡回指导,解答学生遇到的问题。

4.巩固(10分钟)选取几组学生的解题结果,进行讲解和分析,总结解决实际问题的方法和技巧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章二次函数
《二次函数的应用(第2课时)》
教学设计说明
一、学生知识状况分析
通过本章前三节的学习,学生已对二次函数的概念、二次函数的图像及其性质、如何确定二次函数的解析式等问题有了明确的认识.二次函数应用的第一课时是“何时面积最大”,学生初步感受到数学模型思想及数学的应用价值.本节课将进一步利用二次函数解决实际问题.
二、教学任务分析
“何时获得最大利润”似乎是商家才应该考虑的问题,但是这个问题的数学模型正是我们研究的二次函数的范畴.二次函数化为顶点式后,很容易求出最大或最小值.而何时获得最大利润就是当自变量取何值时,函数值取最大值的问题.因此本节课中关键的问题就是如何使学生把实际问题转化为数学问题,从而把数学知识运用于实践.即是否能把实际问题表示为二次函数,是否能利用二次函数的知识解决实际问题,并对结果进行解释.
教学目标
(一)知识与技能
1、经历探索T恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.
2、能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.
(二)过程与方法
经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力.
(三)情感态度与价值观
1、体会数学与人类社会的密切联系,了解数学的价值.增进对数学的理解和
学好数学的信心.
2、认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.
教学重点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值
教学难点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值
三、教学过程分析
本节课以探究活动一、探究活动二及议一议这三个环节为主体,展开对二次函数应用的研究与探讨.
第一环节 探究活动一
活动内容:(有关利润的问题)
服装厂生产某品牌的T 恤衫成本是每件10元,根据市场调查,以单价13元批发给经销商,经销商愿意经销5000件,并且表示每件降价0.1元,愿意多经销500件.
请你帮助分析,厂家批发单价是多少时可以获利最多?
回顾:在学习一元二次方程的应用时遇到过有关销售利润的问题,常用相等关系是: 销售利润=单件利润×销售量
若设批发单价为x 元,则:
单件利润为 ; 降价后的销售量为 ; 销售利润用y 元表示,则
)14024(5000-2+-=x x
20000)12(50002+--=x
)元(10-x 件)5001
.0-135000(⨯+x )5001
.0135000)(10(⨯-+-=x x y
∵-5000<0
∴抛物线有最高点,函数有最大值.
当x =12元时,y 最大= 20000元.
答:当批发单价是12元时,厂家可以获得最大利润,最大利润是20000元. 若设每件T 恤衫降a 元,则:
单件利润为 ; 降价后的销售量为 ; 销售利润用y 元表示,则
)32(5000-2--=a a
20000)1(50002+--=a
∵-5000<0
∴抛物线有最高点,函数有最大值.
当x =1元时,即批发单价是12元时,y 最大= 20000元.
答:当批发单价是12元时,厂家可以获得最大利润,最大利润是20000元. 想一想:解决了上述关于服装销售的问题,请你谈一谈怎样设因变量更好? 第二环节 探究活动二
活动内容:
某旅社有客房120间,每间房的日租金为160元时,每天都客满,经市场调查发现,如果每间客房的日租金每增加10元时,那么客房每天出租数会减少6间.不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?
分 析:相等关系是
客房日租金的总收入=每间客房日租金×每天客房出租数
解:设每间客房的日租金提高x 个10元,则每天客房出租数会减少6x 间,若客房日租金的总收入为y 元,则:
=19440)260
-2+-x ( )元(1013--a 件)5001
.05000(⨯+a )(5001
.05000)(1013⨯+--=a a y )
6120)(10160(x x y -+=
∵0
x且
≥x
,0>
6
-
120
∴20
≤x
0<
当x=2时,y有最大值 19440.
这时每间客房的日租金为180

+元,客房总收入最高为19440元.
10
2
160=
随堂练习:课本P49练习1
某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?
解:设销售单价提高x元,销售利润为y元,则
y=(30-20+x)(400-20x)
=-20x2+200x+4000
=-20(x-5)2+4500.
答:当销售单价提高5元时,可在半月内获得最大利润4500元.
第三环节议一议
活动内容:解决本章伊始,提出的“橙子树问题”
本章一开始的“种多少棵橙子树”的问题,我们得到了表示增种橙子树的数量x(棵)与橙子总产量y(个)的函数关系是:二次函数表达式y=(600-5x)(100+x)=-5x2+100x+60000.
(1)利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.
(2)增种多少棵橙子树,可以使橙子的总产量在60400个以上?
(要求学生画出二次函数的图象,并根据图象回答问题)
实际教学效果:
学生可以顺利解决这个问题,答案如下
(1)当x<10时,橙子的总产量随增种橙子树的增加而增加;当x>10时,橙子的总产量随增种橙子树的增加而减小.
(2)由图可知,增种6棵、7棵、8棵、9棵、10棵、11棵、12棵、13棵或14棵,都可以使橙子总产量在60400个以上.
课堂小结:
请你结合本节课的内容谈谈你对二次函数应用的认识.
课后作业:
习题2.9 1、2、3。

相关文档
最新文档