细胞生物学-物质的跨膜运输(翟中和第四版)-含注释!!!
细胞生物学 名词解释 第五章 物质的跨膜运输
维持细胞内较低的Ca2+浓度
钙泵作用机制
原理与钠钾泵相似,Ca2+泵含有10个α螺旋,Ca2+泵处于非磷酸化状态时,2个α螺旋中断形成胞质侧结合2个Ca2+的空穴,ATP在胞质侧与其结合位点结合,水解使相邻结构域Asp磷酸化,导致跨膜螺旋重排,破坏了Ca2+结合位点并释放Ca2+到膜的另一侧。每分解一个ATP,泵出2个Ca2+,将Ca2+输出细胞或泵入内质网腔中储存起来
膜转运蛋白分为两类:载体蛋白和通道蛋白
载体蛋白
多次跨膜蛋白,能与特定的溶质分子结合,通过改变构象介导跨膜转运,有专一性,介导被动运输,也可以介导主动运输
通道蛋白
3种类型:离子通道、孔蛋白、水孔蛋白
形成选择性和门控性跨膜通道。
离子通道
亲水性跨膜通道,允许适当大小的离子顺浓度梯度通过
离子通道的特征:转运速率高,没有饱和值,并非连续性开放而是门控(可开/关控制其活性)、选择性。
胞吐作用
exocytosis
细胞内合成的生物分子(蛋白质和脂质等)和代谢物以分泌泡的形式与质膜融合,将内容物释放到细胞表面或胞外的过程。分为组成型和调节性胞吐途径
胞吞作用
endocytosis
通过质膜内陷形成膜泡,将细胞外或细胞质膜表面的物质包裹到膜泡内并转运到细胞内以维持细胞正常的代谢活动。(胞饮和吞噬作用)。
细胞生物学
第五章物质的跨膜运输
简单扩散、被动运输(协助扩散)、主动运输、胞吞胞吐中文英Fra bibliotek/备注解释
被动运输
指溶质顺着电化学梯度或浓度梯度,在膜转运蛋白协助下的跨膜转运方式,又叫协助扩散。不需要能量。
简单扩散
小分子的热运动使分子以扩散的方式,从膜的一侧沿浓度梯度降低的方向进入另一侧,也叫自由扩散(无需能量和转运蛋白协助)
第五章物质的跨膜运输翟中和细胞生物学
开放状态,那么足够小得和带有适当电荷得分子或离子就能 通过。
2、 载体蛋白:只容许与载体蛋白上结合部位相适合得溶质
分子通过,而且载体蛋白每次转运都发生自身构象得改变。
二、被动运输与主动运输
物质得跨膜运输就是细胞维持正常生命活动得基础之一 ● 被动运输(passive transport) ● 主动运输(active transport)
第五章物质的跨膜运输翟中和细胞 生物学
一、脂双层得不透性和膜转运蛋白
载体蛋白 通道蛋白 通道蛋白与载体蛋白得异同
㈠、载体蛋白
结构:多次跨膜得整合性膜蛋白
机制:通过构象得改变介导与之结合得溶质分子得跨膜转运
特征:
如同酶具有特异性结合位点,具有高度得选择性 一次只能与膜一侧得一种溶质结合,经构象变化转运溶质 转运过程具有类似于酶与底物作用得饱和动力学特征 与酶不同对转运得溶质分子不作任何得共价修饰
㈡、通道蛋白
通道蛋白得结构 通道蛋白得特征 通道蛋白得类型
结构
通道蛋白形成跨膜得离子选择性通道。 对离子得选择性依赖于通道得直径和形状 以及通道内衬带电荷氨基酸得分布。 她所介导得被动运输不需要与溶质子结 合,只有大小和电荷适宜得离子才能通过。
特征
具有极高得转运速率 驱动带电荷离子得跨膜转运动力来自溶质得浓度梯
因此,人们推测水得跨膜转运除了简单扩散外, 还存在某种特殊得机制, 并提出了水通道得概念。
1988年Agre在分离纯化红细胞膜上得Rh血型抗原时,发现 了 一 个 疏 水 性 跨 膜 蛋 白 , 称 为 CHIP28 (Channel-Forming integral membrane protein)。1991年得到CHIP28得cDNA序 列,Agre将CHIP28得mRNA注入非洲爪蟾得卵母细胞中,在低渗 溶液中,卵母细胞迅速膨胀,并于5分钟内破裂,纯化得CHIP28置 入脂质体,也会得到同样得结果。细胞得这种吸水膨胀现象会被 Hg2+抑制,而这就是已知得抑制水通透得处理措施。这一发现揭 示了细胞膜上确实存在水通道,Agre因此而与离子通道得研究者 共享2003年得诺贝尔化学奖。
《细胞生物学》第四版翟中和、王喜忠、丁明孝名词解释
癌基因 oncogene通常表示原癌基因(proto oncogene )的突变体,这些基因编码的蛋白使细胞的生长失去控制,并转变成癌细胞,故称癌基因。
氨酰-tRNA 合成酶 aminoacyl tRNA synthetase将氨基酸和对应的tRNA 的3′端进行共价连接形成氨酰-tRNA 的酶。
不同的氨基酸被不同的氨酰-tRNA 合成酶所识别。
暗反应light independent reaction光合作用中的另外一种反应,又称碳同化反应(carbonassimilation reaction)。
该反应利用光反应生成的ATP 和NADPH 中的能量,固定CO 2生成糖类。
白介素-1β转换酶 interleukin-1β converting enzyme,ICECaspase-1,Caspase 家族成员之一,线虫Ced3在哺乳动物细胞中的同源蛋白,催化白介素-1β前体的剪切成熟过程。
半桥粒 hemidesmosome 位于上皮细胞基底面的一种特化的黏着结构,将细胞黏附到基膜上。
胞间连丝 plasmodesma 相邻植物细胞之间的联系通道,直接穿过两相邻细胞的细胞壁。
胞内体 endosome 动物细胞内由膜包围的细胞器,其作用是转运由胞吞作用新摄取的物质到溶酶体被降解。
胞内体被认为是胞吞物质的主要分选站。
胞吐作用 exocytosis 携带有内容物的膜泡与质膜融合,将内容物释放到胞外的过程。
胞吞作用 endocytosis通过质膜内陷形成膜泡,将细胞外或细胞质膜表面的物质包裹到膜泡内并转运到细胞内(胞饮和吞噬作用)。
胞外基质 extracellular matrix分布于细胞外空间、由细胞分泌的蛋白质和多糖所构成的网络结构,如胶原和蛋白聚糖等,在决定细胞形状和活性的过程中起着一种整合作用。
胞质动力蛋白 cytoplasmic dynein 由多条肽链组成的巨型马达蛋白,利用ATP 水解释放的能量将膜泡或膜性细胞器等沿微管朝负极转运。
细胞生物学(翟4版)复习提纲
一、线粒体的基本形态及动态特征 二、线粒体的超微结构 三、氧化磷酸化 四、线粒体与疾病
外膜、内膜、膜间隙、基质的标志酶; 电子传递链四种复合物的名称和作用; 氧化磷酸化;化学渗透假说的内容;ATP 合酶及其机制; 电子传递体、质子移位体、Q 循环
第二节 叶绿体与光合作用
一、叶绿体的基本形态及动态特征 二、叶绿体的超微结构 三、光合作用
第五节
其他细胞表面受体介导的信号通路
一、Wnt-β-catenin 信号通路 二、Hedgehog 受体介导的信号通路 三、NF-κB 信号通路 四、Nctch 信号通路 五、细胞表面整联蛋白介导的信号转导
第六节
细胞信号转导的整合与控制
一、细胞的应答反应特征 二、蛋白激酶的网络整合信息 三、信号的控制:受体的脱敏与下调
第二节
细胞质膜的基本特征与功能
一、膜的流动性 二、膜的不对称性 三、细胞质膜相关的膜骨架 四、细胞质膜的基本功能
3
流动镶嵌模型、脂筏模型、膜脂的成分与运动方式、脂质体 膜蛋白的类型、膜蛋白与膜脂结合的方式、成斑和成帽现象 膜骨架的概念、血影蛋白、血型糖蛋白、带 3 蛋白 —————————————
一、内质网 二、高尔基体 三、溶酶体 四、过氧化物酶体
2 种类型内质网、微粒体、肌质网;内质网的功能; 磷脂转位因子与磷脂转换蛋白、N-连接与 O-连接糖基化的比较、 KDEL 序列、极性细胞器、 糙面内质网------蛋白质的合成、修饰与加工; 光面内质网------脂类的合成与转运; 高尔基体------糖类合成; 溶酶体------细胞内消化; 异质性细胞器、溶酶体膜的特征 初级溶酶体、次级溶酶体、自噬溶酶体、异噬溶酶体、残余小体 初级溶酶体与过氧化物酶体的特征比较 过氧化物酶体的功能 内质网的标志酶是葡萄糖-6-磷酸酶,高尔基体的标志酶是糖基转移酶, 溶酶体的标志酶是酸性磷酸酶,过氧化物酶体的标志酶是过氧化氢酶。 —————————————
翟中和-物质的跨膜运输
一、膜转运蛋白和小分子物质跨膜运输脂双层的不透性和膜转运蛋白脂双层对绝大多数极性分子、离子以及细胞代谢产物的通透性都极低,形成了细胞的渗透屏障。
膜转运蛋白分为两种:载体蛋白和通道蛋白。
载体蛋白及其功能载体蛋白几乎在所有类型的生物膜上,属于多次跨膜蛋白。
每种载体蛋白能与特定的溶质分子结合,通过一系列构象改变介导溶质分子的跨膜转运载体蛋白具有与底物特异性结合的位点,所以每种载体蛋白对底物具有高度选择性,通常只转运一种类型的分子。
通道蛋白及其功能通道蛋白有三种:离子通道、孔蛋白和水孔蛋白(AQP)。
大多数通道蛋白以离子通道居多。
通道蛋白形成选择性和门控性跨膜运输。
孔蛋白存在于格兰仕阴性菌的外模和线粒体以及叶绿体的外模上,跨膜区域由β折叠片层形成柱状亲水性通道。
孔蛋白选择性很低,而且能通过较大的分子。
离子通道—因为对离子的选择性取决于通道的直径、形状以及通道内带电荷氨基酸的分布,所以离子通道介导被动运输时不需要与溶质分子结合,只有大小和电荷适宜的离子才能通过。
离子通道三个特征:1.具有极高的转运速率,比已知的任何一种载体蛋白的最高转运速率还要高。
2.离子通道没有饱和值,即使在很高的离子浓度下它们通过的离子量依然没有最大值。
3.离子通道并非连续性开放而是门控的,即通道的开启或关闭受膜电位变化、化学信号或压力刺激的调控。
因此离子通道可分为:电压门通道、配体们通道和应力激活通道。
电压门通道---带电荷的蛋白质结构域会随跨膜电位梯度的改变而发生相应的移动,从而使离子通道开启或关闭。
配体们通道---细胞内外的某些小分子配体与通道蛋白结合继而引起通道蛋白构象改变,从而使离子通道开启或关闭。
应力激活通道---通道蛋白感应应力而改变构象,从而开启通道形生离子流,产生电信号。
小分子物质的跨膜运输类型1、简单扩散小分子物质以热自由运动的方式顺着电化学梯度或浓度直接通过脂双层进出细胞,不需要细胞提供能量,也无需膜转运蛋白的协助。
细胞生物学名词解释(翟中和第四版).
光合作用中的另外一种反应,又称碳同化反应(carbon assimilation reaction)。
该反应利用光反应生成的ATP和NADPH中的能量,固定CO2生成糖类。
各章节概述第1章细胞生物学是研究细胞生命活动基本规律的学科,它是现代生命科学的基础学科之一。
细胞生物学研究的主要方面包括:①生物膜与细胞器;②细胞信号转导;③细胞骨架体系;④细胞核、染色体及基因表达;⑤细胞增殖及其调控;⑥细胞分化及干细胞;⑦细胞死亡;⑧细胞衰老;⑨细胞工程;⑩细胞的起源与进化。
本章回顾了细胞学与细胞生物学发展的简史,阐述了细胞学说的建立及其重要意义,分析了细胞生物学学科形成的基础与条件。
细胞学与细胞生物学发展的历史大致可以划分为以下几个阶段:①细胞的发现;②细胞学说的建立;③细胞学的经典时期;④实验细胞学时期;⑤细胞生物学学科的形成与发展。
当今的细胞生物学是以细胞作为生命活动的基本单位这一概念为出发点,在各层次上探索生命现象的最基本、最核心问题的一门重要的学科。
第2章细胞是一切生命活动的基本单位,包括以下几个方面的涵义:(1)一切有机体都由细胞构成,细胞是构成有机体的形态结构单位。
构成多细胞生物体的细胞虽然是“社会化”的细胞,但它们又保持着形态结构的独立性,每一个细胞具有自己完整的结构体系。
(2)细胞是有机体代谢与执行功能的基本单位,在细胞内的一切生化过程与试管内的生化过程的根本不同点,是细胞有严格自动控制的代谢体系,并且有保证完成生命过程有序性的独立的结构装置。
(3)有机体的生长与发育是依靠细胞增殖、分化与凋亡来实现的。
细胞是研究有机体生长与发育的基础。
(4)细胞是遗传的基本单位,每一个细胞都具有遗传的全能性(除少数特化细胞)。
构成各种生物机体的细胞的种类繁多,结构与功能各异,但它们都具有基本共性:细胞膜,两种核酸(DNA与RNA),蛋白质合成的机器——核糖体与一分为二的增殖方式,这些是细胞结构与生存不可缺少的基础。
2024版细胞生物学(翟中和第四版)
细胞生物学(翟中和第四版)•细胞生物学概述•细胞的基本结构与功能•细胞的代谢与调控•细胞的生长、分裂与增殖•细胞的分化、衰老与凋亡•细胞工程与应用细胞生物学概述01细胞生物学的定义与研究对象定义细胞生物学是研究细胞结构、功能、生长、分裂、分化、凋亡以及细胞间相互作用的科学。
研究对象包括原核细胞、真核细胞、病毒等所有生物细胞以及细胞的各种组分和细胞器。
细胞生物学的发展历史与现状发展历史从17世纪列文虎克发现细胞到20世纪电子显微镜的发明,细胞生物学逐渐从形态学到生理学、生物化学等多学科交叉融合。
现状随着基因组学、蛋白质组学、代谢组学等组学技术的发展,细胞生物学研究已经进入后基因组时代,更加关注细胞在分子水平上的调控机制和细胞间的相互作用。
揭示生命现象的本质促进医学发展推动生物技术发展探索生物进化机制细胞生物学的研究意义与价值细胞是生物体的基本结构和功能单位,通过研究细胞可以揭示生命现象的本质和规律。
细胞培养、细胞工程、基因编辑等生物技术的发展都离不开细胞生物学的基础研究。
细胞生物学的研究对于理解疾病的发生发展机制、寻找新的治疗方法和药物具有重要作用。
通过研究不同物种细胞的结构和功能差异,可以探索生物进化的机制和规律。
细胞的基本结构与功能0203细胞膜的功能作为细胞的边界,维持细胞内外环境的相对稳定;控制物质进出细胞;进行细胞间的信息交流。
01细胞膜的主要成分脂质、蛋白质和糖类。
02细胞膜的结构磷脂双分子层构成基本支架,蛋白质分子以不同方式镶嵌其中。
水、无机盐、脂质、糖类、氨基酸、核苷酸等。
细胞质的主要成分细胞质的结构细胞质的功能包括基质和细胞器,基质呈胶质状态,细胞器分布于其中。
为细胞新陈代谢提供场所和物质;参与细胞内物质的运输;与细胞分裂、分化等生命活动密切相关。
030201细胞核的主要成分DNA、蛋白质和少量RNA。
细胞核的结构核膜、核仁、染色质和核基质。
细胞核的功能遗传信息库,控制细胞的遗传和代谢活动;细胞代谢和遗传的控制中心。
翟中和第四版细胞生物学1~9章习题及答案
翟中和第四版细胞生物学1~9章习题及答案翟中和第四版《细胞生物学》习题集及答案第一章绪论一、名词解释细胞生物学:是研究和揭示细胞基本生命活动规律的科学,它从显微、亚显微与分子水平上研究细胞结构与功能、细胞增殖、分化、代谢、运动、衰老、死亡,以及细胞信号传导,细胞基因表达与调控,细胞起源与进化等重大生命过程。
二、填空题1、细胞分裂有直接分裂、减数分裂和有丝分裂三种类型。
2、细胞学说、能量转化与守恒和达尔文进化论并列为19世纪自然科学的“三大发现”。
3、细胞学说、进化论和遗传学为现代生物学的三大基石。
4、细胞生物学是从细胞的显微、亚显微和分子三个水平,对细胞的各种生命活动展开研究的科学。
5、第一次观察到活细胞有机体的人是荷兰学者列文虎克。
三、问答题:1、当前细胞生物学研究中的3大基本问题是什么?答:①基因组是如何在时间与空间上有序表达的?②基因表达产物是如何逐级组装成能行使生命活动的基本结构体系及各种细胞器的?这种自组装过程的调控程序与调控机制是什么?③基因及其表达的产物,特别是各种信号分子与活性因子是如何调节诸如细胞的增殖、分化、衰老与凋亡等细胞最重要的生命活动过程?2、细胞生物学的主要研究内容有哪些?答:①生物膜与细胞器②细胞信号转导③细胞骨架体系④细胞核、染色体及基因表达⑤细胞增殖及其调控⑥细胞分化及干细胞生物学⑦细胞死亡⑧细胞衰老⑨细胞工程⑩细胞的起源与进化3、细胞学说的基本内容是什么?答:①细胞是有机体,一切动植物都是由细胞发育而来,并由细胞和细胞产物所构成。
②每个细胞作为一个相对独立的单位,既有它自己的生命,又对与其他细胞共同组成的整体的生命有所助益。
③新的细胞可以通过已存在的细胞繁殖产生。
第二章细胞的统一性与多样性一、名词解释1、细胞:生命活动的基本单位。
2、病毒(virus):非细胞形态生命体,最小、最简单的有机体,必须在活细胞体内复制繁殖,彻底寄生性。
3、原核细胞:没有核膜包裹的和结构的细胞,细菌是原核细胞的代表。
细胞生物学(翟中和)第5章 物质跨膜运输
第二节 离子泵和协同运输
P-型离子泵 V-型离子泵和F-型离子泵 协同运输 离子跨膜转运与膜电位(自学)
主动运输(active transport)是指由载体蛋白介 导的物质逆浓度梯度(或化学梯度)的由浓度低的 一侧向浓度高的一侧的跨膜运输方式。
主动运输的特点是: ①逆浓度梯度(逆化学梯度)运输; ②需要能量; ③都有载体蛋白。
主动运输所需的能量来源主要有: ①ATP驱动的泵通过水解ATP获得能量; ②协同运输中的离子梯度动力; ③光驱动的泵利用光能运输物质,见于细菌。
一、ATP直接提供能量驱动的主动运输
钠钾泵(Na+-K+ -ATP酶)
特点:胞吞物为大分子 和颗粒物质;形成的胞 吞泡大(直径大于 250nm); 信号触发过 程;微丝和结合蛋白。
作用:防御侵染和垃圾 清除工。
2、胞饮作用
细胞吞入液体或极小的颗粒物质。
特点:胞吞物为液体和溶质; 形成的胞吞泡小(直径小于150nm); 连续发生的过程; 网格蛋白和结合素蛋白。
胞吞泡的形成:配体和受体结合
钙泵(Ca2+-ATP酶)
质子泵:P-型质子泵、V-型质子泵、H+-ATP
酶
(或F–型)
1、钠钾泵
构成:由2个大亚基、2个小亚基组成的4聚体, 实际上就是Na+-K+ATP酶,分布于动物细胞的质 膜。
钠钾泵结构
钠钾泵作用机制
Na+-K+ATP pump can catalyze the formation of ATP under laboratory condition
细胞生物学(翟中和,高教四版)
细胞生物学(翟中和,高教四版)第一章绪论 (3)第二章细胞的统一性和多样性 (5)第三章细胞生物学研究方法 (9)第四章细胞质膜 (11)第五章物质的跨膜运输 (13)第六章线粒体和叶绿体 (15)第七章细胞质基质与内膜系统 (17)第八章蛋白质分选与膜泡运输 (20)第九章细胞信号转导 (21)第十章细胞骨架 (25)第十一章细胞核与染色质 (27)第十二章核糖体 (34)第十三章细胞周期与细胞分裂 (35)第十四章细胞增殖调控与癌细胞 (36)第十五章细胞分化与胚胎发育 (37)第十六章细胞死亡与细胞衰老 (39)第十七章细胞的社会联系 (40)第一章绪论第一节细胞生物学研究的内容与现状一、现代生命科学的一门重要的基础前沿学科当前细胞生物学研究的课题归纳起来包括3个根本性问题:(1)基因组是如何在时间与空间上有序表达的?(2)基因表达产物是如何逐级组装成能行使生命活动的基本结构体系及各种细胞器?(3)基因及其表达的产物,特别是各种信号分子与活性因子,是如何调节诸如细胞的增殖、分化、衰老、与凋亡等细胞最重要的生命活动过程的?二、细胞生物学得主要研究内容10个方面:(一)生物膜与细胞器(二)细胞信号转导基本研究内容3个方面:①细胞间信号传递:信号分子-受体作用②受体与信号跨膜转导:G蛋白与一系列受体③细胞内信号传递途径与网络调控-生物学效应(三)细胞骨架体系(四)细胞核、染色体及基因表达(五)细胞增殖及其调控增殖调控研究从两方面进行:①找控制增殖的因子②研究控制增殖的主要检验点相关的周期蛋白与依赖于周期蛋白的激酶的调控机理(六)细胞分化及干细胞生物学(七)细胞死亡(八)细胞衰老(九)细胞工程(十)细胞的起源于进化目前全球最热门的研究方向是:①细胞周期调控②细胞凋亡③细胞衰老④信号转导⑤DNA的损伤修复第二节细胞学与细胞生物学发展简史生物科学发展的3个阶段:①>19世纪形态描述为主-生物科学②20世纪前半个世纪(1950年前)-实验生物学③20世纪50年代后-现代生物学一、细胞的发现二、细胞学说的建立及其意义当时“细胞学说”的基本内容:①细胞是有机体,一切动植物都是有细胞发育而来,并有细胞产物所构成②每个细胞作为一个相对独立的单位,既有它自己的生命,又对其他细胞共同组成的整体的生命有所助益③新的细胞可以通过已存在的细胞繁殖产生三、细胞学的经典时期(一)原生质理论的提出(二)细胞分裂的研究(三)细胞器的发现四、实验细胞学与细胞学的分支及其发展(一)细胞遗传学(二)细胞生理学(三)细胞化学五、细胞生物学学科的形成与发展这个新阶段的基本特点可归纳如下:(1)研究对象:细胞(及社会),尤其活细胞(2)研究内容:细胞重大生命活动(3)研究重点:细胞信号调控网络,作为揭示生命活动分子机制方面(4)研究目标:多层次上特别是纳米层次揭示生命活动本质(5)研究特征:多领域、多学科交叉结构&流程示意图1.细胞重大生命活动及其相互关系示意图思考题1.根据细胞生物学研究的内容与你所掌握的生命科学知识,恰当地评价细胞生物学在生命科学中所处的地位及它与其它学科的关系。
(新)细胞生物学课件(翟中和第四版2)
(新)细胞⽣物学课件(翟中和第四版2)细胞⽣物学教学课件第⼋章~~~~~~第⼗⼆章第⼋章蛋⽩质分选与膜泡运输第⼀节细胞内蛋⽩质的分选第⼆节细胞内膜泡运输第⼀节细胞内蛋⽩质的分选真核细胞中除线粒体和植物细胞叶绿体中能合成少量蛋⽩质外,绝⼤多数蛋⽩质都是由核基因编码,起始合成均发⽣在游离核糖体上,然后或在细胞质基质(游离核糖体)中完成翻译过程,或在粗⾯内质⽹膜结合核糖体上完成合成。
然⽽,蛋⽩质发挥结构或功能作⽤的部位⼏乎遍布细胞的各种区间或组分。
因此必然存在不同的机制以确保蛋⽩质分选,转运⾄细胞的特定部位,也只有蛋⽩质各就各位并组装成结构与功能的复合体,才能参与实现细胞的各种⽣命活动。
这⼀过程称蛋⽩质分选(protein sorting)或蛋⽩质寻靶(protein targeting)。
蛋⽩质分选不仅保证了蛋⽩质的正确定位,也保证了蛋⽩质的⽣物学活性。
实际上,蛋⽩质分选主要依靠蛋⽩质⾃⾝信号序列,从蛋⽩质起始合成部位转运到其功能发挥部位的过程。
⼀、信号假说与蛋⽩质分选信号⼆、蛋⽩质分选转运的基本途径与类型三、蛋⽩质向线粒体、叶绿体和过氧化酶体的分选⼀、信号假说与蛋⽩质分选信号?细胞质的游离核糖体产⽣⾮分泌蛋⽩,内质⽹附着核糖体产⽣分泌蛋⽩。
核糖体没有结构差异,假设存在于蛋⽩质本⾝。
?信号假说(signal hypothesis):分泌蛋⽩可能携带N端短信号序列,⼀旦该序列从核糖体翻译合成,结合因⼦和蛋⽩结合,指导其转移到内质⽹膜,后续翻译过程将在内质⽹膜上进⾏。
现在已知,信号假说是解释分泌性蛋⽩在糙⾯内质⽹上合成的重要理论,该过程是包括蛋⽩质N端的信号肽、信号识别颗粒和内质⽹膜上信号识别颗粒的受体(⼜称停泊蛋⽩)等因⼦共同协助完成的。
信号肽(signal peptide):信号肽位于蛋⽩质的N端,⼀般由16~26个氨基酸残基组成,其中包括信号肽疏⽔核⼼区、N端和C端等3部分;原核细胞某些分泌性蛋⽩的N端也具有信号序列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动物、植物细胞主动运输比较
三、ABC 超家族
• ABC 超家族也是一 类ATP 驱动泵 • 广泛分布于从细菌 到人类各种生物中, 是最大的一类转运 蛋白 • 通过ATP 分子的结 合与水解完成小分 子物质的跨膜转运
(一)ABC转运蛋白的结构与工作模式
• 4 个“核心”结构域
– 2 个跨膜结构域,分别含6 个跨
H+/K+ ATPase Control of acid secretion in the stomach
二、V 型质子泵和 F 型质子泵
• V 型质子泵广泛存在 于动物细胞的胞内体 膜、溶酶体膜,破骨 细胞和某些肾小管细 胞的质膜,以及植物、 酵母及其他真菌细胞 的液泡膜上 (V 为 vesicle) • 转运 H+ 过程中不形成 磷酸化的中间体
导兴奋)
B. 配体门通道(胞外配体)
(突触后膜接收乙酰胆碱的
受体)
C. 配体门通道(胞内配体)
D. 应力激活通道(内耳的 听毛细胞)
含羞草“害羞”的机制
• 估计细胞膜上与物质转运有关的蛋白占核基因编码蛋白的 15~30%,细 胞用在物质转运方面的能量达细胞总消耗能量的2/3。
• 两类主要转运蛋白:
P型泵的主要特点:都是跨膜蛋白,并且是由一条多肽完成 所有与运输有关的功能,包括ATP的水解、磷酸化和离子 的跨膜运输。
Na+-K+ATP酶的分子结构:
α β 两种亚基组成的二聚体。
α 亚基具有ATP酶的活性;
β 亚基是具有组织特异性的糖蛋白。
(一)Na+-K+ 泵(Na+-K+ ATPase)
Figure 11-14 Molecular Biology of the Cell (© Garland Science 2008)
resistance protein )是第一个被发现的真核细胞ABC转运器, 是多药抗性蛋白,约40%患者的癌细胞内该基因过度表达。
(二)ABC 转运蛋白与疾病
multidrugresistance, MDR
cystic fibrosis transmembrane conductance regulator,CFTR
F型
V型
只是H+
多个跨膜亚基, 亚基的细胞质部 ①植物、酵母和其它真菌的液泡膜; 分可将ATP水解, 并利用释放的 ②动物细胞的溶酶体和内体的膜;③ 能量将H+运输到囊泡中,使之成 某些分泌酸性物质的动物细胞质膜 为酸性环境。 (如破骨细胞和肾管状细胞)。
ABC型
离子和各种 两个膜结构域形成水性通道,两 ①细菌质膜(运输氨基酸、糖和肽);② 小分子 个细胞质ATP结合结构域与ATP 哺乳动物内质网膜(运输与MHC 蛋白 水解及物质运输相偶联。不同结 相关的抗原肽);③哺乳动物细胞质膜 构域可以位于同一个亚基,也可 (运输小分子、 磷脂、小的类脂分子) 位于不同的亚基。
• 载体蛋白所介导、逆着电化学梯度或浓度梯度
• 3种类型
– ATP 驱动泵(ATP直接供能) – 协同转运或偶联转运(ATP间接提供能量)
– 光驱动泵(细菌细胞膜上的菌紫红质蛋白)
第二节 ATP驱动泵与主动运输
• ATP 驱动泵通常又称为转运ATPase,分为4类
– P型泵、V型质子泵、F型质子泵和ABC超家族 前三种只转运离子,后一种主要转运小分子
• 顺着电化学梯度或浓度梯度 • 协助扩散 (facilitated diffusion) • 膜转运蛋白协助
– 载体蛋白介导 – 通道蛋白介导
1. 葡萄糖转运蛋白
• 12 次跨膜α 螺旋 • 通过构象改变完成葡萄糖的 协助扩散 • 转运方向取决于葡萄糖浓度 梯度
2. 水孔蛋白:水分子的跨膜通道 (2003诺奖) • 水分子借助质膜上的水孔蛋白实现快速跨膜转运
• 维持细胞质基质 pH 中 性和细胞器内 pH 酸性
二、V 型质子泵和 F 型质子泵
• F 型质子泵存在于细菌质膜、 线粒体内膜和叶绿体类 囊 体膜上(F 为factor 的第一 个字母) • 转运 H+ 过程中不形成磷酸 化的中间体
• F 型质子泵常利用质子动力 势合成ATP,又称作 H+ATP合成酶
– 载体蛋白(carrier protein,
transporter)
– 通道蛋白(channel protein)
(一)载体蛋白及其功能
• 多次跨膜;通过构象改变介导溶质分子跨膜转运 • 与底物(溶质)特异性结合;具有高度选择性;具有类似 于酶与底物作用的饱和动力学特征;但对溶质不做任何共 价修饰
Fig. Xenopus oocytes microinjected with AQP1 mRNA swell rapidly when placed in a hypo-osmotic medium, in contrast to noninjected oocytes.
/nobel_prizes/chemistry/laureates/2003/popular.html
2003年,美国科学家彼得· 阿格雷和罗德里克· 麦金农,分别因对细胞膜水通道, 离子通道结构和机理研究而获诺贝尔化学奖。
Peter Agre
Roderick MacKinnon
2. 水孔蛋白:水分子的跨膜通道 (2003诺奖)
• 调节细胞渗透压以及生理与病理作用
Fig . Passage of water molecules through the aquaporin AQP1. Because of the positive charge at the center of the channel, positively charged ions such as
物
Na+/K+ 泵具有三个重要作用: 一是维持了细胞Na+离子的平衡,抵消了Na+离子的 渗透作用; 二是在建立细胞质膜两侧Na+离子浓度梯度的同时, 为葡萄糖协同运输泵提供了驱动力; 三是Na+泵建立的细胞外电位,为神经和肌肉电脉冲 传导提供了基础。
地高辛、乌本苷等强心剂抑制其活性;Mg2+和少量膜脂有助
– 载体蛋白:又称做载体、通透酶和转运器。介导被动运输与主动运 输
– 通道蛋白:能形成亲水的通道,允许特定的溶质通过。只介导被动
运输
两者区别:以不同方式辨别溶质。通道蛋白主要根据溶质大小和电荷和进 行辨别,假如通道处于开放状态,则足够小和带有适当电荷的分子或离子 就能通过;而载体蛋白只允许与其结合部位相适应的溶质分子通过,并且 每次转运都发生自身构象的变化。
提高于其活性。
(二)Ca2+ 泵及其他 P 型泵
• 细胞质基质中低 Ca2+ 浓度的维持 主要得益于质膜
或细胞器膜上的
钙泵 • 每消耗1 分子 ATP 从细胞质基 质泵出 2 个Ca2+
1. Ca2+ 泵的结构与功能
钙离子泵
• 作用:维持细胞内较低的钙离子浓度(胞内钙浓度 10-7M
,胞外10-3M)。
• 位置:质膜、内质网膜。
• 类型:P型离子泵,每分解一个ATP分子,泵出2个Ca2+。
位于肌质网上的钙离子泵占肌质网膜蛋白质的90%。
2. P 型 H+ 泵
• 植物细胞、真菌(包括酵母)和细菌细胞质膜上虽然没有Na+K+ 泵, 但有P 型H+ 泵(H+-ATPase) • P 型H+ 泵将 H+ 泵出细胞,建立和维持跨膜 H+ 电化学梯度
翟中和 王喜忠 丁明孝 主编
细胞生物学(第4版)
第5章 物质的跨膜运输
本章主要内容
• 膜转运蛋白与小分子物质的跨膜运输 • ATP驱动泵与主动运输 • 胞吞作用与胞吐作用
第一节 膜转运蛋白与小分子物质的跨膜运输
一、脂双层的不透性和膜转运蛋白
• 脂双层疏水对绝大多数极
性分子、离子以及细胞代 谢产物的通透性极低,形 成了细胞的渗透屏障 • 膜转运蛋白可分为两类:
一、P 型泵 (P-type pump)
• 2 个α 催化亚基,具有ATP 结合位点;2 个β 调节亚基 • 至少有一个α 催化亚基发生 磷酸化和去磷酸化反应,改 变转运泵的构象,实现离子
(phosphorylation)
的跨膜转运
• 转运泵水解ATP 使自身形 成磷酸化的中间体
■ P-型离子运输泵的作用机理
2. Na+-K+ 泵主要生理功能
A. 维持细胞膜电位 B. 维持动物细胞渗透
平衡
2. Na+-K+ 泵主要生理功能 C. 吸收营养
动物细胞对葡萄糖或氨基酸等 有机物吸收的能量由蕴藏在 Na+ 电化学梯度中的势能提供 植物细胞、真菌和细菌通常利 用质膜上的H+-ATPase 形成 的H+ 电化学梯度来吸收营养
H3O+, are deflected. This
prevents proton leakage through the channel.
/nobel_prizes/chemistry/laureates/2003/chempub3high.jpg
(三)主动运输(active transport)
CFTR:囊性纤维化跨膜转导调节因子
四种运输ATPase在结构、存在部位和功能上有什么不同?
四类ATP驱动的离子和小分子运输泵的比较
类型 P型 运输物质 结构与功能特点 存在的部位
H+,Na+, 通常有大小两个亚基,大亚基被 H+泵:存在于植物、真菌和细菌的质 K+,Ca2+ 磷酸化,小亚基调节运输。 膜;Na+/K+:动物细胞的质膜;H+/K+泵: 哺乳动物胃细胞表层质膜;Ca2+泵:所 有真核生物的质膜; 肌细胞的肌质网 膜。 只是H+ 有多个跨膜亚基,建立H+的电化 细菌的质膜、线粒体内膜、叶绿体的 学梯度,合成ATP。 类囊体膜。