高三数学知识点总结材料大全

合集下载

高三数学知识点总结(3篇)

高三数学知识点总结(3篇)

高三数学知识点总结第一章:集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集:N-或N+整数集:Z有理数集:Q实数集:R1)列举法:{a,b,c……}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实即:①任何一个集合是它本身的子集。

AíA②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)③如果AíB,BíC,那么AíC④如果AíB同时BíA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。

4.子集个数:有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集三、集合的运算运算类型交集并集补集第二章:基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈-.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

高三数学重要知识点总结(4篇)

高三数学重要知识点总结(4篇)

高三数学重要知识点总结1.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的____次幂,____次幂,____次幂,____次幂,…构成数列:-1,1,-1,1,….(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这____个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.2.数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.3.数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,…,由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.再强调对于数列通项公式的理解注意以下几点:(1)数列的通项公式实际上是一个以正整数集N____或它的有限子集{1,2,…,n}为定义域的函数的表达式.(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.(4)有的数列的通项公式,形式上不一定是的,正如举例中的:(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.4.数列的图象对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:序号:1234567项:45678910这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N____(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.数列是一种特殊的函数,数列是可以用图象直观地表示的.数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.5.递推数列一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.①数列①还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1。

高三数学知识点总结范文(4篇)

高三数学知识点总结范文(4篇)

高三数学知识点总结范文1.不等式的定义在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.2.比较两个实数的大小两个实数的大小是用实数的运算性质来定义的,有a-b>0;a-b=0;a-b<0.另外,若b>0,则有>1;=1;<1.概括为:作差法,作商法,中间量法等.3.不等式的性质(1)对称性:a>b;(2)传递性:a>b,b>c;(3)可加性:a>ba+cb+c,a>b,c>da+cb+d;(4)可乘性:a>b,c>0ac>bc;a>b>0,c>d>0;(5)可乘方:a>b>0(n∈N,n≥2);(6)可开方:a>b>0(n∈N,n≥2).1、梳理基础知识以前学过的知识要全面掌握和理解,在心中建立知识网络。

打好基础,首先须重视数学基本概念、基本定理(公式、法则)的复习,在理解上下功夫,整体把握数学知识。

这部分内容的复习要做到不打开课本,能选择适当途径将它们回忆出,它们之间的脉络框图,能在自己大脑中勾画出来。

如函数可以利用框图的形式由粗到细进行回忆。

概念要抓住关键及注意点,公式及法则要理解它们的来源,要理解公式法则中每一个字母的含义,即它们分别表示什么,这样才能正确使用公式。

在平时学习时,不要满足于得到答案就行了,而其他的方法却不去研究,尤其课堂上,老师通过一个典型的例题介绍处理这种问题有哪些方法,可以从哪些不同的角度来思考问题。

方法没有好坏之分,只是在解决具体的问题时才有优劣之分,更重要的是要关注通性、通法的掌握,而不是仅关注此问题特殊的、简单的方法。

2、重视“三基”高考数学学科的考试既考查中学数学的基础知识和方法,又考查考生进人高校继续学习的潜能。

因此,既突出对基础知识、基本技能、基本数学思想方法的考察,又强调能力立意,以数学的基础知识为载体,考察学生的数学能力,同时注意考察学生的创新能力。

高考必背最完整的高中数学知识点

高考必背最完整的高中数学知识点

高考必背最完整的高中数学知识点一、代数1. 一次函数的性质:直线的斜率、截距和方程形式。

2. 二次函数的性质:顶点坐标、对称轴、开口方向和方程形式。

3. 幂函数与指数函数的性质。

4. 对数函数的性质:底数为正数时的定义、性质与常见公式。

5. 三角函数的基本概念:正弦函数、余弦函数和正切函数的周期、定义域、值域和图像。

6. 数列的概念及常见数列的通项公式和求和公式。

二、几何1. 平面几何基本概念:点、直线、平行和垂直关系。

2. 三角形的性质:角的度量、三角形类型和重要定理(如余弦定理和正弦定理)。

3. 圆的性质:圆周角、弧长和面积公式。

4. 球和立体几何的基本概念:体积、表面积和投影等。

三、概率与统计1. 概率的基本概念:事件、样本空间、概率以及概率的性质与计算。

2. 随机变量的概念及其分布函数和密度函数。

3. 统计的基本概念:总体、样本、参数和统计量。

4. 样本调查与统计分析的方法和步骤。

四、解析几何1. 向量的基本概念:向量的表示、向量的运算、向量的模和方向角。

2. 平面的方程:一般式、点法式、两点式和法向量式等。

3. 空间几何基本概念:点、直线、平面的关系与位置。

4. 空间直角坐标系:空间直角坐标系的建立与距离公式。

五、数学思维1. 基本解题方法和思维:分类讨论、递推法、数学归纳法等。

2. 数学证明的基本方法:直接证明、间接证明、反证法等。

3. 数学建模的基本流程和方法。

4. 数学问题的模型转化与解决策略。

以上是高考必背的最完整的高中数学知识点。

希望同学们在备考过程中认真复这些知识,做好各种题型的练,提高自己的数学水平,取得好成绩!加油!。

75个高中数学高考知识点总结

75个高中数学高考知识点总结

75个高中数学高考知识点总结高中数学高考知识点总结(共75个)1.数集与函数:数集的性质,集合的表示方法,集合的运算,函数的定义及性质,一元二次函数的图像与性质,复合函数的概念与性质等。

2.数论与代数:整数与有理数的运算性质,整式的运算性质,整式的因式分解与化简,多项式函数的概念与性质,复数的概念与运算性质等。

4.空间几何与立体几何:空间直线及其方程,空间平面及其方程,空间曲线及其方程,球面的定义与性质,空间几何体的表面积与体积等。

5.三角函数与三角恒等式:二次角与辅助角的概念,三角函数的定义及性质,三角函数的图像与变换,三角函数的基本恒等式等。

6.三角函数的应用:三角函数在坐标系中的应用,三角函数在三角恒等式中的应用,三角函数在物理问题中的应用等。

7.数列与数列的极限:数列的概念及性质,数列的极限及其性质,数列极限的运算法则,常用数列的极限等。

8.函数的极限与连续:函数的极限的定义及性质,函数的极限的运算法则,函数的连续性及其性质,连续函数的运算与初等函数的连续性等。

9.导数与导数应用:导数的定义及性质,函数的导数与函数的图像,导数的四则运算法则,函数的单调性与极值点等。

10.积分与定积分:定积分的概念及性质,定积分的计算方法,不定积分的概念与性质,不定积分的计算方法等。

11.微分方程:微分方程的基本概念与解法,可分离变量的微分方程,一阶线性微分方程,二阶齐次线性微分方程等。

12.概率与统计:随机事件与概率,随机变量及其分布,频率与概率的估计,统计图表的绘制与分析等。

13.线性规划:线性规划问题的建模,线性规划的基本概念与性质,线性规划的图形解法与解的存在性等。

14.解析几何:平面解析几何的基本概念与性质,平面曲线的方程与性质,空间解析几何的基本概念与性质等。

15.逻辑与集合论:命题与命题的连接词,逻辑等价命题,简单命题与复合命题,命题的充分必要条件与等价条件等。

以上是高中数学高考的主要知识点总结,包含了数学的基本概念、性质和应用。

2024年高三数学高考知识点总结

2024年高三数学高考知识点总结

2024年高三数学高考知识点总结一、函数与方程1. 函数的概念与性质- 函数的定义及函数关系的表示方法- 函数的定义域、值域和区间- 函数的奇偶性、周期性及单调性2. 一次函数与二次函数- 一次函数的性质及图像- 二次函数的性质及图像- 一次函数与二次函数的应用3. 指数函数与对数函数- 指数函数的性质及图像- 对数函数的性质及图像- 指数函数与对数函数的应用4. 三角函数- 正弦函数、余弦函数、正切函数的性质及图像- 三角函数之间的关系及图像的性质- 三角函数的应用5. 幂函数与反比例函数- 幂函数的性质及图像- 反比例函数的性质及图像- 幂函数与反比例函数的应用6. 方程和不等式- 一元一次方程与一元一次不等式的解法- 一元二次方程与一元二次不等式的解法- 方程与不等式的应用7. 绝对值方程与绝对值不等式- 绝对值方程与绝对值不等式的解法及应用- 带有绝对值的一元二次方程的解法二、数列与数学归纳法1. 数列的概念与性质- 数列的定义及常见数列的形式- 等差数列与等比数列的性质及通项公式2. 数列的通项公式与求和公式- 等差数列的通项公式及前n项和公式- 等比数列的通项公式及前n项和公式- 递推数列的通项公式及前n项和公式3. 数学归纳法- 数学归纳法的基本思想及应用- 利用数学归纳法证明不等式4. 递归数列与逼近法- 递归数列的定义及应用- 逼近法解决数学问题三、三角恒等变换1. 三角函数的和差化积与积化和差- 正弦、余弦、正切的和差化积公式- 正弦、余弦、正切的积化和差公式2. 三角函数的倍角化半角与半角化倍角- 正弦、余弦、正切的倍角化半角公式- 正弦、余弦、正切的半角化倍角公式3. 三角方程的基本解法- 使用三角函数的恒等变换解三角方程- 利用等效代换解三角方程4. 三角函数的图像与性质- 三角函数图像的性质及平移、伸缩、翻转操作- 三角函数图像的综合性质及应用四、平面几何与立体几何1. 二维几何相关知识- 平面几何基本概念及性质- 二维几何形状的性质与判定2. 三角形相关知识- 三角形的内角和与外角和的性质- 三角形的中线、高线、角平分线的性质及应用3. 圆相关知识- 圆的基本概念及性质- 弧长与扇形面积的计算- 切线与切线定理的应用4. 直线与圆的位置关系- 直线与圆的位置关系的判定及性质- 直线与圆的切线与切点的性质与计算5. 空间几何相关知识- 空间几何基本概念及性质- 空间几何形状的性质与判定6. 空间几何立体的计算- 空间几何立体的体积与表面积的计算- 立体的展开图与折叠图的应用五、概率与统计1. 概率的基本概念与性质- 随机事件与样本空间的概念- 概率的定义及性质- 概率的计算方法2. 排列、组合与概率计算- 排列与组合的基本概念与计算方法- 包含条件的排列与组合的计算方法- 概率计算中的排列与组合问题的应用3. 随机变量与概率分布- 随机变量的定义及性质- 离散型和连续型随机变量的概率分布- 随机变量的数学期望与方差的计算4. 概率统计与抽样调查- 总体与样本的概念及表示方法- 抽样调查的基本方法与误差分析- 统计量的计算与应用六、向量与矩阵1. 向量的基本概念与性质- 向量的定义及表示方法- 向量的数量乘法、加法、减法与向量的线性相关性2. 向量的线性组合与线性方程组- 向量的线性组合与线性方程组概念- 线性方程组的解的判定与求解3. 矩阵的基本概念与运算- 矩阵的定义及表示方法- 矩阵的乘法、加法、减法与矩阵的性质4. 矩阵的转置、行列式与逆矩阵- 矩阵的转置运算与性质- 矩阵的行列式及其性质与应用- 矩阵的逆矩阵的定义与求解5. 矩阵的秩与线性方程组- 矩阵的秩的定义及性质- 秩与线性方程组解的存在性与唯一性的关系这只是对____年高三数学高考知识点进行的一个预测总结,具体内容还需要参考教材或高考大纲进行复习和学习。

高三数学知识点总结(15篇)

高三数学知识点总结(15篇)

高三数学知识点总结(15篇)高三数学知识点总结1考点一:集合与简易逻辑集合部分一般以选择题出现,属容易题。

重点考查集合间关系的理解和认识。

近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。

在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。

简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

考点二:函数与导数函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。

导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面向量一般是2道小题,1道综合解答题。

小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。

大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。

向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型、考点四:数列与不等式不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。

对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查、在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目、考点五:立体几何与空间向量一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求)、在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。

高三数学知识点全集总结

高三数学知识点全集总结

高三数学知识点全集总结一、基本数学概念1. 数与数线数的分类:自然数、整数、有理数、无理数、实数数线上的点与坐标2. 运算与代数四则运算代数表达式与代数式的化简与计算方程与不等式的解与性质3. 几何基础知识点、线、面及其相互关系角度的概念及其相互关系平行线与垂直线的性质二、函数与方程1. 函数的概念与性质函数的定义域和值域奇函数与偶函数函数的图像和性质2. 一次函数线性函数的表示与性质函数方程的解法与应用3. 二次函数二次函数的表示与性质抛物线的图像与性质二次函数方程的解法与应用4. 指数与对数函数指数函数与对数函数的定义与性质对数函数的换底公式指数与对数的运算性质与应用5. 三角函数正弦函数、余弦函数、正切函数的定义与性质三角函数的图像与周期性质三角函数的运算与应用6. 三角方程与三角恒等式的证明与应用三角方程的解法三角恒等式的基本性质与应用三、平面几何1. 三角形的基本性质三角形的分类与性质三角形的内角和定理与外角和定理2. 三角形的相似与共线相似三角形的判定与性质利用相似三角形解决问题共线定理与应用3. 四边形的性质平行四边形的性质矩形、菱形和正方形的性质4. 圆与圆的相交性质圆的性质与定义切线与弦的性质圆内切与外切的性质四、空间几何1. 空间几何体的性质点、直线、平面与空间几何体的性质与关系空间几何体的投影与投影性质2. 空间向量的概念与运算空间向量的线性运算与数量积向量的共线与垂直性质3. 空间几何体的位置关系分析夹角的定义与判定直线与平面的位置关系平面与平面的位置关系五、概率与统计1. 随机事件与概率的概念样本空间、随机事件与概率概率的运算与应用2. 排列与组合排列与组合的定义与性质应用于实际问题的排列组合3. 统计与误差分析数据的收集与整理数据的表达与分析误差的来源与处理以上是高三数学知识点的全集总结,希望对你的学习有所帮助。

请按照自己的学习进度,在每个知识点上进行深入理解和掌握。

高考数学必考知识点归纳全

高考数学必考知识点归纳全

高考数学必考知识点归纳全高考数学是高中阶段学生面临的一次重要考试,它涵盖了多个数学领域的基础知识点。

以下是高考数学必考知识点的归纳:一、集合与函数- 集合的概念:集合的表示、子集、并集、交集、补集。

- 函数的概念:函数的定义、值域、定义域、单调性、奇偶性。

- 函数的表示:函数的图象、函数的解析式。

二、代数基础- 指数与对数:指数函数、对数函数、对数运算法则。

- 幂运算:幂的运算法则、根式。

- 代数方程:一元一次方程、一元二次方程、高次方程、方程组的解法。

三、不等式与不等式组- 不等式的基本性质:不等式的基本解法、不等式组的解集。

- 绝对值不等式:绝对值的定义、绝对值不等式的解法。

四、数列- 等差数列:等差数列的定义、通项公式、求和公式。

- 等比数列:等比数列的定义、通项公式、求和公式。

- 数列的极限:数列极限的概念、极限的运算。

五、三角函数与解三角形- 三角函数:正弦、余弦、正切等基本三角函数的性质和图像。

- 解三角形:正弦定理、余弦定理、三角形的面积公式。

六、解析几何- 直线:直线的方程、直线的位置关系。

- 圆:圆的方程、圆与直线的位置关系。

- 椭圆、双曲线、抛物线:圆锥曲线的性质和方程。

七、立体几何- 空间直线与平面:空间直线的方程、平面的方程、线面关系。

- 多面体与旋转体:多面体的体积、旋转体的表面积和体积。

八、概率与统计初步- 随机事件的概率:概率的定义、概率的计算方法。

- 统计初步:数据的收集、整理、描述。

九、导数与微分- 导数的概念:导数的定义、几何意义。

- 基本导数公式:常见函数的导数公式。

- 微分的概念:微分的定义、微分的应用。

十、积分与应用- 不定积分:不定积分的概念、基本积分公式。

- 定积分:定积分的概念、定积分的计算方法。

- 积分的应用:面积、体积、物理量等的计算。

十一、复数- 复数的概念:复数的定义、复数的运算。

- 复数的几何表示:复平面、复数的模和辐角。

十二、逻辑推理与证明方法- 逻辑推理:命题逻辑、逻辑运算。

高三数学必考知识点总结【五篇】

高三数学必考知识点总结【五篇】

高三数学必考知识点总结【五篇】学习任何一门科目都离不开对知识点的总结,尤其是同学们在学习数学时,更要总结各个方程式知识点,这样也方便同学们日后的复习。

高三数学知识点11、直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α180°2、直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k表示。

即。

斜率反映直线与轴的倾斜程度。

②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

3、直线方程点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

高三数学知识点2a(1)=a,a(n)为公差为r的等差数列通项公式:a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.可用归纳法证明。

n=1时,a(1)=a+(1-1)r=a。

成立。

假设n=k时,等差数列的通项公式成立。

a(k)=a+(k-1)r则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.通项公式也成立。

因此,由归纳法知,等差数列的通项公式是正确的。

求和公式:S(n)=a(1)+a(2)+...+a(n)=a+(a+r)+...+[a+(n-1)r]=na+r[1+2+...+(n-1)]=na+n(n-1)r/2n-1)]r不等于1时,S(n)=a[1-r]/[1-r]r=1时,S(n)=na.同样,可用归纳法证明求和公式。

高三数学知识点大全总结归纳

高三数学知识点大全总结归纳

高三数学知识点大全总结归纳一、函数与方程1. 一次函数1.1 定义与性质1.2 解一次方程1.3 求一次函数的图像2. 二次函数2.1 定义与性质2.2 解二次方程2.3 求二次函数的图像3. 指数与对数函数3.1 定义与性质3.2 指数方程与对数方程3.3 指数函数与对数函数的图像4. 三角函数4.1 基本概念与性质4.2 弧度与角度的转换4.3 常用三角函数图像5. 三角方程5.1 基本概念与性质5.2 解三角方程的基本方法二、数列与数列的表示1. 等差数列1.1 定义与性质1.2 求等差数列的通项公式1.3 求等差数列前n项和2. 等比数列2.1 定义与性质2.2 求等比数列的通项公式2.3 求等比数列前n项和3. 递推数列3.1 定义与性质3.2 求递推数列的通项公式 3.3 求递推数列前n项和三、解析几何1. 直线与平面1.1 直线的方程与性质1.2 平面的方程与性质1.3 直线与平面的位置关系2. 空间几何体2.1 球与球面方程2.2 平行六面体与正方体2.3 圆锥曲线四、概率论1. 随机事件1.1 基本概念与性质1.2 随机事件的运算1.3 条件概率与乘法定理2. 随机变量与概率分布2.1 随机变量及其性质2.2 离散型随机变量与分布律2.3 连续型随机变量与概率密度函数3. 期望与方差3.1 期望的定义与性质3.2 方差的定义与性质3.3 两个随机变量的相关性与协方差五、数理统计1. 样本调查与总体参数估计1.1 样本与样本调查的基本概念1.2 总体参数的估计方法1.3 构造区间估计2. 假设检验2.1 假设检验的基本概念2.2 单总体均值的检验2.3 两个总体均值的检验3. 相关与回归分析3.1 相关分析的基本概念3.2 相关系数的计算与判断3.3 简单线性回归分析的基本原理六、立体几何1. 空间直角坐标系1.1 空间点的坐标1.2 距离公式与中点公式1.3 空间图形的方程2. 球与球面2.1 球的方程与性质2.2 球面上点与球面上线段2.3 球与平面的位置关系3. 空间向量3.1 向量的定义与性质3.2 向量的线性运算与数量积3.3 平面与向量的夹角以上是高三数学知识点的大致分类以及每个知识点的相应内容概要。

高三数学知识点归纳总结(优秀8篇)

高三数学知识点归纳总结(优秀8篇)

高三数学知识点归纳总结(优秀8篇)高三数学知识点归纳篇一高三上册数学知识点整理1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

即:方程有实数根函数的图象与轴有交点函数有零点。

3、函数零点的求法:求函数的零点:(1)(代数法)求方程的实数根;(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。

4、二次函数的零点:二次函数。

1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。

2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。

3)△0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。

人教版高三数学知识点总结1、定义:用符号〉,=,〈号连接的式子叫不等式。

2、性质:①不等式的两边都加上或减去同一个整式,不等号方向不变。

②不等式的两边都乘以或者除以一个正数,不等号方向不变。

③不等式的两边都乘以或除以同一个负数,不等号方向相反。

3、分类:①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

②一元一次不等式组:a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

4、考点:①解一元一次不等式(组)②根据具体问题中的数量关系列不等式(组)并解决简单实际问题③用数轴表示一元一次不等式(组)的解集高三数学知识点归纳总结篇二线线平行常用方法(1)定义:在同一平面内没有公共点的两条直线是平行直线。

(2)公理:在空间中平行于同一条直线的两只直线互相平行。

(3)初中所学平面几何中判断直线平行的方法(4)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面的相交,那么这条直线就和两平面的交线平行。

高三数学复习知识点归纳总结三篇模板

高三数学复习知识点归纳总结三篇模板

高三数学复习知识点归纳总结三篇模板同学们,你们在复习高三数学的时候会不会毫无头绪,不知从何处开始?今天为大家准备了高三数学复习知识点总结,帮助同学们找到复习的方向,下面就是给大家带来的高三数学复习知识点总结,希望能帮助到大家!高三数学复习知识点总结(一)1.数列的定义、分类与通项公式(1)数列的定义:①数列:按照一定顺序排列的一列数.②数列的项:数列中的每一个数.(2)数列的分类:分类标准类型满足条件项数有穷数列项数有限无穷数列项数无限项与项间的大小关系递增数列an+1 an其中n&isin;N_递减数列an+1常数列an+1=an(3)数列的通项公式:如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.2.数列的递推公式如果已知数列{an}的首项(或前几项),且任一项an与它的前一项an-1(n&ge;2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.3.对数列概念的理解(1)数列是按一定“顺序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列.(2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区别.4.数列的函数特征数列是一个定义域为正整数集N_(或它的有限子集{1,2,3,,n})的特殊函数,数列的通项公式也就是相应的函数解析式,即f(n)=an(n&isin;N_).高三数学复习知识点总结(二)(1)先看“充分条件和必要条件”当命题“若p则q”为真时,可表示为p= q,则我们称p为q的充分条件,q是p的必要条件。

这里由p= q,得出p为q的充分条件是容易理解的。

但为什么说q是p的必要条件呢?事实上,与“p= q”等价的逆否命题是“非q=非p”。

高三数学知识点总结全提纲

高三数学知识点总结全提纲

高三数学知识点总结全提纲第一章代数与方程1.1 一元一次方程及其应用1.1.1 一元一次方程的定义与性质1.1.2 解一元一次方程的基本方法1.1.3 一元一次方程的应用1.2 一元二次方程及其应用1.2.1 一元二次方程的定义与性质1.2.2 解一元二次方程的基本方法1.2.3 一元二次方程的应用1.3 不等式1.3.1 一元一次不等式的定义与解法1.3.2 一元二次不等式的定义与解法1.3.3 不等式组的解法与应用第二章几何与三角形2.1 点、线、面及其关系2.1.1 点、线、面的基本概念2.1.2 平行与垂直关系2.1.3 点、线、面之间的位置关系2.2 三角形与相关概念2.2.1 三角形的定义与性质2.2.2 直角三角形的性质与应用2.2.3 等腰三角形的性质与应用2.2.4 等边三角形的性质与应用2.3 三角形的三心与圆2.3.1 三角形的外心与外接圆2.3.2 三角形的内心与内切圆2.3.3 三角形的重心与重心连线第三章空间与向量3.1 空间几何与立体图形3.1.1 空间几何的基本概念与公理3.1.2 空间几何中的平行关系3.1.3 空间几何中的垂直关系3.2 空间向量与向量运算3.2.1 空间向量的定义与性质3.2.2 空间向量的加法与减法3.2.3 空间向量的数量积与向量积3.3 空间几何中的位置关系3.3.1 点与直线的位置关系3.3.2 点与平面的位置关系3.3.3 直线与平面的位置关系第四章概率与统计4.1 随机事件与概率4.1.1 随机事件的定义与性质4.1.2 概率的基本概念与性质4.1.3 概率计算与应用4.2 统计与统计量4.2.1 数据的收集与整理4.2.2 统计量的计算与应用4.2.3 抽样调查与样本估计4.3 概率与统计的应用4.3.1 随机变量与概率分布4.3.2 统计推断与假设检验4.3.3 概率与统计的实际应用第五章排列组合与数列5.1 排列与组合5.1.1 排列与组合的基本概念与性质5.1.2 排列与组合的计算与应用5.1.3 Pn原理与鸽巢原理5.2 等差数列与等比数列5.2.1 等差数列的概念与性质5.2.2 等差数列的通项与求和公式5.2.3 等比数列的概念与性质5.2.4 等比数列的通项与求和公式5.3 递推数列与特殊数列5.3.1 递推数列的定义与性质5.3.2 斐波那契数列与裴波那契数列5.3.3 序数与序列的应用总结:以上是高三数学知识点的全提纲,涵盖了高中数学课程的所有重要内容。

高三数学重要知识点总结大全

高三数学重要知识点总结大全

高三数学重要知识点总结大全在高三数学学习过程中,有一些重要的知识点需要掌握和理解。

这些知识点对于高考的准备至关重要。

本文将对这些知识点进行全面总结,以帮助同学们进行复习和备考。

一、函数与导数1. 函数基本概念:函数的定义域、值域、奇偶性等概念要了解清楚。

2. 导数的概念与计算:熟练掌握导数的定义,瞬时速度与导数的关系等。

3. 导数的应用:掌握导数在切线、法线方程及最值问题中的应用。

二、数列与数学归纳法1. 数列的基本概念:了解数列的定义、通项公式、递推公式等概念。

2. 数列的性质:熟悉等差数列、等比数列等常见数列的性质及特点。

3. 数学归纳法的理解与应用:掌握数学归纳法的基本原理,并能熟练运用于证明题目中。

三、解三角形和向量1. 三角形基本概念:了解三角形的边、角及周长、面积等基本概念。

2. 三角函数与三角恒等式:掌握正弦定理、余弦定理及相关的应用。

3. 向量的运算:了解向量的加法、减法、数量积、向量积等运算法则。

四、平面几何与立体几何1. 图形的性质与判定:熟悉平面图形的性质,如三角形的内心、外心、垂心等。

2. 圆的性质与判定:掌握圆的定义、切线方程及相关的应用。

3. 空间几何体的性质与判定:了解平行四边形、正方体、棱柱、棱锥等立体几何体的性质。

五、概率与统计1. 概率的基本概念:掌握事件、样本空间、随机事件等基本概念。

2. 概率计算:熟悉概率的计算方法,如加法原理、乘法原理等。

3. 统计指标与图表的应用:了解平均数、方差、直方图、折线图等统计指标与图表的表示方法和应用。

六、数学证明与解题策略1. 数学证明的基本方法:掌握数学证明的基本方法,如数学归纳法、反证法、递推法等。

2. 数学问题的解题策略:了解不同类型数学问题的解题思路及解题技巧。

七、复数与指数对数1. 复数的基本概念与运算:了解复数的定义、共轭复数、复数的运算法则。

2. 指数与对数的基本概念:熟悉指数与对数的定义及基本公式,如指数函数和对数函数的性质。

高三的数学知识点大全

高三的数学知识点大全

高三的数学知识点大全一、集合论集合的概念:集合是指具有某种特定性质的对象的总体或者一定范围内的元素的集合。

集合的表示方法:列举法、描述法、符号法等。

常见集合运算:并集、交集、补集、差集等。

二、数与代数实数的性质:实数的四则运算、实数的比较、实数的性质等。

代数式的展开和因式分解:根据代数式的性质进行展开和因式分解。

一次函数与二次函数:一次函数与二次函数的性质、图像、方程等。

三、平面几何平面几何中的基本概念:点、线、面、角等。

平面图形的性质:三角形、四边形、多边形等的性质。

平面几何的证明方法:直接证明、间接证明、反证法等。

四、空间几何空间几何中的基本概念:点、直线、平面、曲线等。

空间图形的性质:球、圆柱、圆锥等的性质与计算。

空间几何的运算与计算:体积、表面积的计算,运用解析几何解决问题。

五、数列和数列的极限数列的概念:数列的定义、常见数列的特点与性质。

数列的极限:数列的极限定理、数列极限的性质与计算。

六、函数与导数函数的概念:函数的定义、函数的性质与四则运算。

基本初等函数:常量函数、幂函数、指数函数、对数函数、三角函数等。

导数的概念与计算:导数的定义、导数的四则运算、使用导数解决问题。

七、概率论与数理统计随机事件与概率:随机事件的基本概念、概率的定义与计算。

概率分布与统计:离散型随机变量、连续型随机变量的概率分布。

统计的基本概念与方法:样本、总体、抽样与统计量的计算与应用。

八、三角函数与三角恒等式三角函数的基本概念:正弦函数、余弦函数、正切函数等。

三角恒等式与三角方程:基本恒等式的运用、解三角方程的方法。

九、解析几何向量的基本概念:向量的定义、向量的加法、数量积与向量积。

空间中的直线与平面:点线面的位置关系、直线与平面之间的关系。

空间解析几何的计算问题:点到直线的距离、直线的方程、平面的方程等。

以上是高三数学的知识点大全,通过掌握这些知识点,可以帮助同学们更好地备战高考,并取得优异的成绩。

希望同学们能够认真学习,坚持练习,相信自己的能力,相信一切都会有收获。

高三数学基础知识点大全

高三数学基础知识点大全

高三数学基础知识点大全一、代数与函数1. 数与式- 实数与复数- 四则运算与整式- 代数式的运算与等式辨识2. 方程与不等式- 一元一次方程与不等式- 一元二次方程与不等式- 绝对值方程与不等式- 分式方程与不等式3. 函数与图像- 一次函数与二次函数- 幂函数与指数函数- 对数函数与指数方程4. 等差数列与等比数列- 基本性质与通项公式- 求和公式与应用二、几何与实数1. 平面图形- 直线与角度- 三角形与四边形- 圆与圆内接正多边形2. 立体图形- 空间几何体的性质与计算- 空间坐标与向量3. 合作的基本原理- 合作原理与比例- 合作原理与百分数4. 推理与证明- 相似三角形与比例应用- 数列的应用问题三、概率与统计1. 概率与事件- 随机事件与概率- 事件的运算与应用2. 随机变量与概率分布- 随机变量的概念与性质- 离散型随机变量与分布3. 统计与抽样- 数据的收集与整理- 统计指标与样本均数四、数学思维与方法1. 分析与综合- 问题分析与解决方法- 综合应用与技巧2. 探究与证明- 探究问题与数学模型- 数学证明与思维方法3. 推理与推断- 数学推理与推断- 数学归纳与猜想4. 沟通与交流- 数学沟通与表达- 数学交流的方法和技巧五、考试与应试技巧1. 高考数学命题规律- 高考命题特点与基本规律- 高考数学试题类型概述2. 高考数学答题技巧- 高考数学常见题型解题技巧- 高考数学复习与备考建议六、数学知识的应用领域1. 自然科学与工程技术- 数学在物理、化学、生物等领域的应用- 数学在工程技术中的应用2. 经济与金融- 数学模型与经济问题- 数学在金融领域的应用3. 计算机与信息技术- 数学在计算机科学中的应用- 数学在信息技术中的应用4. 社会与统计学- 数学在社会科学中的应用- 数学在统计学中的应用以上是高三数学基础知识点的大全,通过掌握这些知识,将能够更好地应对数学考试,并将数学知识运用到实际生活和各个领域中。

高三数学知识点全总结大全

高三数学知识点全总结大全

高三数学知识点全总结大全一. 函数与方程1.一次函数1.1 定义与性质1.2 求解一次方程2. 二次函数2.1 定义与性质2.2 求解二次方程3. 指数函数与对数函数3.1 指数函数的定义与性质3.2 对数函数的定义与性质4. 复合函数与反函数4.1 复合函数的概念4.2 反函数的概念与性质5. 三角函数5.1 正弦函数、余弦函数、正切函数的定义与性质5.2 三角恒等式的运用6. 方程与不等式6.1 一元二次方程与不等式6.2 绝对值方程与不等式7. 线性规划与整式卷积7.1 线性规划的概念与解法7.2 整式卷积的概念与运算二. 三角学1. 三角函数与三角恒等式1.1 三角函数的图像与性质1.2 三角恒等式的证明与运用2. 三角函数的应用2.1 三角函数在几何中的应用2.2 三角函数在物理中的应用3. 平面直角坐标系3.1 平面直角坐标系的引入与性质3.2 向量的概念与运算4. 复数与平面向量4.1 复数的定义与运算4.2 平面向量的定义与运算5. 解析几何5.1 点、直线、圆的方程5.2 曲线的方程与性质三. 空间解析几何1. 空间直角坐标系1.1 空间直角坐标系的引入与性质1.2 距离与中点公式的运用2. 空间中的直线2.1 直线的方程与性质2.2 直线与平面的位置关系3. 空间中的平面3.1 平面的方程与性质3.2 平面与平面的位置关系4. 空间中的曲线与曲面4.1 曲线的方程与性质4.2 曲面的方程与性质5. 空间中的向量5.1 向量的概念与运算5.2 平面与向量的关系四. 数列与数学归纳法1. 数列的概念与性质1.1 通项与递推式1.2 数列的极限与收敛性2. 数学归纳法2.1 数学归纳法的基本思想 2.2 数学归纳法的应用五. 概率与统计1. 事件与概率1.1 事件的定义与性质1.2 概率的定义与运算2. 排列与组合2.1 排列的定义与性质2.2 组合的定义与性质3. 随机变量与概率分布3.1 随机变量与概率分布的概念3.2 常见离散与连续概率分布的特点与应用4. 统计与抽样4.1 统计的概念与性质4.2 抽样技术与统计推断以上就是高三数学知识点的全面总结大全。

高三数学知识点总结全提纲

高三数学知识点总结全提纲

高三数学知识点总结全提纲一、函数与方程1.一次函数与二次函数- 线性函数与仿射函数的概念- 一次函数与二次函数的图像特征- 一次函数与二次函数的性质及应用2.指数与对数函数- 指数函数与对数函数的定义与性质- 指数方程与对数方程的解法- 指数函数与对数函数在实际问题中的应用二、数列与数列的极限1.等差数列与等比数列- 等差数列与等比数列的概念及性质- 等差数列与等比数列的通项公式与求和公式 - 等差数列与等比数列的应用2.数列的极限- 数列极限的定义与性质- 数列收敛与发散的判定- 数列极限的计算方法与应用三、三角函数与立体几何1.三角函数- 三角函数的定义与性质- 求解三角方程与三角不等式 - 三角函数的应用2.立体几何- 空间几何体的基本概念与性质 - 空间几何体的计算与应用- 空间几何体的投影与旋转四、概率与统计1.基本概念与统计图- 概率与统计的基本概念与方法- 统计图的绘制与分析- 频率与概率的关系2.样本与抽样- 样本与总体的概念与表示 - 不同抽样方法的特点与应用 - 样本统计量的计算与推断五、微积分1.导数与微分- 导数的定义与性质- 导数的计算方法与应用- 微分的概念与微分法的应用 2.不定积分与定积分- 不定积分的概念与性质- 不定积分的计算与定义- 定积分的概念与性质- 定积分的计算与应用六、平面几何与圆锥曲线1.平面几何- 平面几何中的基本概念与性质- 平面几何中的直线和圆的性质- 平面几何中的相似与全等2.圆锥曲线- 椭圆、双曲线、抛物线的定义与性质 - 圆锥曲线的参数方程与一般方程- 圆锥曲线的应用七、数论与离散数学1.数与式的整除性- 整数的性质与分类- 整除、最大公因数与最小公倍数- 素数与素数分解2.离散数学- 集合论与命题逻辑- 排列与组合- 图论与网络优化综上所述,高三数学知识点总结全提纲包括了函数与方程、数列与数列的极限、三角函数与立体几何、概率与统计、微积分、平面几何与圆锥曲线以及数论与离散数学等方面的内容。

高三知识点总结数学

高三知识点总结数学

高三知识点总结数学一、函数。

1. 函数的概念与性质。

- 定义域:使函数有意义的自变量的取值范围。

对于分式函数,分母不为0;对于根式函数,偶次根式下的表达式非负等。

- 值域:函数值的集合。

求值域的方法有配方法(对于二次函数)、换元法(如复合函数)、判别式法等。

- 单调性:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x_1,x_2,当x_1 < x_2时,都有f(x_1)(f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增(减)函数。

判断单调性的方法有定义法、导数法。

- 奇偶性:对于函数y = f(x)的定义域内的任意一个x,都有f(-x)= - f(x)(f(-x)=f(x)),那么函数y = f(x)就叫做奇(偶)函数。

奇函数的图象关于原点对称,偶函数的图象关于y轴对称。

- 周期性:对于函数y = f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,f(x + T)=f(x)都成立,那么就把函数y = f(x)叫做周期函数,T叫做这个函数的周期。

2. 基本初等函数。

- 一次函数y = kx + b(k≠0),图象是一条直线,k为斜率,b为截距。

- 二次函数y = ax^2+bx + c(a≠0),其图象是抛物线。

对称轴为x =-(b)/(2a),顶点坐标为(-(b)/(2a),frac{4ac - b^2}{4a})。

- 幂函数y = x^α(α∈ R),当α>0时,函数在[0,+∞)上单调递增;当α<0时,函数在(0,+∞)上单调递减。

- 指数函数y = a^x(a>0,a≠1),当a > 1时,函数在R上单调递增;当0 < a < 1时,函数在R上单调递减。

- 对数函数y=log_ax(a > 0,a≠1),当a > 1时,函数在(0,+∞)上单调递增;当0 < a < 1时,函数在(0,+∞)上单调递减。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学知识点总结大全高中数学重难点高中数学(文)包含5本必修、2本选修,(理)包含5本必修、3本选修,每学期学**两本书。

必修一:1、集合与函数的概念 (这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用 (比较抽象,较难理解)必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。

这部分知识高考占22---27分2、直线方程:高考时不单独命题,易和圆锥曲线结合命题3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。

09年理科占到5分,文科占到13分必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。

高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

文科:选修1—1、1—2选修1--1:重点:高考占30分1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)选修1--2:1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)理科:选修2—1、2—2、2—3选修2--1:1、逻辑用语 2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)选修2--2:1、导数与微积分2、推理证明:一般不考3、复数选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。

高考必考,10分2、随机变量及其分布:不单独命题3、统计:高考的知识板块集合与简单逻辑:5分或不考函数:高考60分:①、指数函数②对数函数③二次函数④三次函数⑤三角函数⑥抽象函数(无函数表达式,不易理解,难点) 平面向量与解三角形立体几何:22分左右不等式:(线性规则)5分必考数列:17分 (一道大题+一道选择或填空)易和函数结合命题平面解析几何:(30分左右)计算原理:10分左右概率统计:12分----17分复数:5分推理证明一般高考大题分布1、17题:三角函数2、18、19、20 三题:立体几何、概率、数列3、21、22 题:函数、圆锥曲线成绩不理想一般是以下几种情况:做题不细心,(会做,做不对)基础知识没有掌握解决问题不全面,知识的运用没有系统化(如:一道题综合了多个知识点)心理素质不好总之学**数学一定要掌握科学的学**方法:1、笔记:记老师讲的课本上没有的知识点,尤其是数列性质,课本上没有,但做题经常用到 2、错题收集、归纳总结高一年级必修一第一章集合与函数概念第二章基本初等函数(Ⅰ)第三章函数的应用必修二第一章空间几何体第二章点、直线、平面之间的位置关系第三章直线与方程必修三第一章算法初步第二章统计第三章概率必修四第一章三角函数第二章平面向量第三章三角恒等变换(二)教学要求在教学中,由于集合、函数等内容比较抽象,三角函数在高考中占据重要地位,平面向量又是高考中数学必考内容,教师在备课组协作的基础上应注意对各章知识的重难点的讲解和释疑,减轻学生自学的压力,增强学生学好数学的信心。

首先,在高中数学中,集合的初步知识以及与其它内容的密切联系。

它们是学**、掌握和使用数学语言的基础,是高中数学学**的出发点。

在教学中,应注重引导学生更好的理解数学中出现的集合语言,使学生更好的使用集合语言表述数学问题,并且可以使学生运用集合的观点,研究、处理数学问题。

因此集合的基本概念、函数等有关内容是教师重点讲解的内容。

其次,函数作为中学数学中最重要的基本概念之一,教师应注意运用有关的概念和函数的性质,培养学生的思维能力;通过指数与对数,指数函数与对数函数之间的内在联系,对学生进行辩证唯物主义观点的教育;通过联系实际的引入问题和解决带有实际意义的某些问题,培养学生的实践能力和创新意识。

第三,通过对三角函数的学**,学生将进一步了解符号与变元、集合与对应、数形结合等基本的数学思想在研究三角函数时所起的重要作用,在式子与图形的变化中,教师应引导学生通过分析、探索、划归、类比、平行移动、伸长和缩短等常用的基本方法的学**,使学生在学**数学和应用数学方面达到一个新的层次。

第四,学**平面向量,不但应注意平面向量基本知识的讲解,更要充分挖掘平面向量的工具作用,提高学生应用数学知识解决实际问题的能力和实际操作的能力,使学生学会提出问题,明确研究方向,使学生学会交流,体验数学活动的过程,培养创新精神和应用能力。

第五、在学**空间几何体、点、直线、平面之间的位置关系时,重点要帮助学生逐步形成空间想象能力,严格遵循从整体到局部,从具体到抽象的原则,逐步掌握解决空间几何体的相关问题。

第六、要在平面解析几何初步教学中,帮助学生经历如下的过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。

这种思想应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。

第七、在学**算法初步、统计等内容的时候,要注意顺序渐进,不可追求一步到位,特别要注意其思想的重要性。

高二年级必修五第一章解三角形第二章数列第三章不等式选修1-1第一章常用逻辑用语第二章圆锥曲线与方程第三章导数及其应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修2-1第一章常用逻辑用语第二章圆锥曲线与方程第三章空间向量与立体几何选修2-2第一章导数及其应用第二章推理与证明第三章数系的扩充与复数的引入选修2-3第一章计数原理第二章随机变量及其分布第三章统计案例(二)教学要求高二上必修5学生将在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,并认识到运用它们可以解决一些与测量和几何计算有关的实际问题。

数列作为一种特殊的函数,是反映自然规律的基本数学模型。

在本模块中,学生将通过对日常生活中大量实际问题的分析,建立等差数列和等比数列这两种数列模型,探索并掌握它们的一些基本数量关系,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题。

不等关系与相等关系都是客观事物的基本数量关系,是数学研究的重要内容。

建立不等观念、处理不等关系与处理等量问题是同样重要的。

在本模块中,学生将通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用二元一次不等式组表示平面区域,并尝试解决一些简单的二元线性规划问题;认识基本不等式及其简单应用;体会不等式、方程及函数之间的联系。

选修1—1(文科)在本模块中,学生将在义务教育阶段的基础上,学**常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,更好地进行交流。

在必修课程学**平面解析几何初步的基础上,在本模块中,学生将学**圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用,进一步体会数形结合的思想。

在本模块中,学生将通过大量实例,经历由平均变化率到瞬时变化率的过程,刻画现实问题,理解导数的含义,体会导数的思想及其内涵;应用导数探索函数的单调、极值等性质及其在实际中的应用,感受导数在解决数学问题和实际问题中的作用,体会微积分的产生对人类文化发展的价值。

选修2-1(理科)在本模块中,学生将学**常用逻辑用语、圆锥曲线与方程、空间中的向量(简称空间向量)与立体几何。

在本模块中,学生将在义务教育阶段的基础上,学**常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,从而更好地进行交流。

在必修阶段学**平面解析几何初步的基础上,在本模块中,学生将学**圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。

结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。

在本模块中,学生将在学**平面向量的基础上,把平面向量及其运算推广到空间,运用空间向量解决有关直线、平面位置关系的问题,体会向量方法在研究几何图形中的作用,进一步发展空间想像能力和几何直观能力。

高二下(文科)在必修课程学**统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。

“推理与证明”是数学的基本思维过程,也是人们学**和生活中经常使用的思维方式。

推理一般包括合情推理和演绎推理。

合情推理是根据已有的事实和正确的结论、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程。

归纳、类比是合情推理常用的思维方法。

在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有利于创新意识的培养。

演绎推理是根据已有的事实和正确的结论,按照严格的逻辑法则得到新结论的推理过程,培养和提高学生的演绎推理或逻辑证明的能力是高中数学课程的重要目标。

合情推理和演绎推理之间联系紧密、相辅相成。

证明通常包括逻辑证明和实验、实践证明,但是数学结论的正确性必须通过演绎推理或逻辑证明来保证,即在前提正确的基础上,通过正确使用推理规则得出结论。

在本模块中,学生将通过对已学知识的回顾,进一步体会合情推理、演绎推理以及二者之间的联系与差异;体会数学证明的特点,了解数学证明的基本方法,包括直接证明的方法(如分析法、综合法)和间接证明的方法(如反证法),感受逻辑证明在数学以及日常生活中的作用,养成言之有理、论证有据的**惯。

数系扩充的过程体现了数学的发现和创造过程,同时体现了数学发生、发展的客观需求,复数的引入是中学阶段数系的又一次扩充。

在本模块中,学生将在问题情境中了解数系扩充的过程以及引入复数的必要性,学**复数的一些基本知识,体会人类理性思维在数系扩充中的作用。

框图是表示一个系统各部分和各环节之间关系的图示,它的作用在于能够清晰地表达比较复杂的系统各部分之间的关系。

相关文档
最新文档