广东省中山市华侨中学2020年5月中考数学模拟试卷(含解析)

合集下载

广东省中山市2019-2020学年中考数学五月模拟试卷含解析

广东省中山市2019-2020学年中考数学五月模拟试卷含解析

广东省中山市2019-2020学年中考数学五月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x 名学生,根据题意,列出方程为A .(1)19802x x -=B .x (x+1)=1980C .2x (x+1)=1980D .x (x-1)=1980 2.如图:将一个矩形纸片ABCD ,沿着BE 折叠,使C D 、点分别落在点11,C D 处.若150C BA ∠=︒,则ABE ∠的度数为( )A .15︒B .20︒C .25︒D .30°3.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为( )A .2.8×103B .28×103C .2.8×104D .0.28×1054.某大型企业员工总数为28600人,数据“28600”用科学记数法可表示为( )A .0.286×105B .2.86×105C .28.6×103D .2.86×1045.若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,则正圆锥侧面展开图的圆心角是( ) A .90° B .120° C .150° D .180°6.小带和小路两个人开车从A 城出发匀速行驶至B 城.在整个行驶过程中,小带和小路两人车离开A 城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.有下列结论;①A ,B 两城相距300 km ;②小路的车比小带的车晚出发1 h ,却早到1 h ;③小路的车出发后2.5 h 追上小带的车;④当小带和小路的车相距50 km 时,t =54或t =154.其中正确的结论有( )A .①②③④B .①②④C.①②D.②③④7.已知:二次函数y=ax2+bx+c(a≠1)的图象如图所示,下列结论中:①abc>1;②b+2a=1;③a-b<m(am+b)(m≠-1);④ax2+bx+c=1两根分别为-3,1;⑤4a+2b+c>1.其中正确的项有( )A.2个B.3个C.4个D.5个8.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数0 1 2 3 4人数 4 12 16 17 1关于这组数据,下列说法正确的是()A.中位数是2 B.众数是17 C.平均数是2 D.方差是29.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()动时间(小时) 3 3.5 4 4.5人数 1 1 2 1A.中位数是4,平均数是3.75 B.众数是4,平均数是3.75C.中位数是4,平均数是3.8 D.众数是2,平均数是3.810.如图所示图形中,不是正方体的展开图的是()A.B.C.D.11.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B时,点B所表示的实数是()A.1 B.-6 C.2或-6 D.不同于以上答案12.当ab>0时,y=ax2与y=ax+b的图象大致是()A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,从甲楼底部A 处测得乙楼顶部C 处的仰角是30°,从甲楼顶部B 处测得乙楼底部D 处的俯角是45°,已知甲楼的高AB 是120m ,则乙楼的高CD 是_____m (结果保留根号)14.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?” 译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为_____.15.如图,在Rt ABC ∆中,90ABC ∠=o ,3AB =,4BC = ,Rt MPN ∆,90MPN ∠=o ,点P 在AC 上,PM 交AB 于点E ,PN 交BC 于点F ,当2PE PF =时,AP =________.16.如图,⊙O 的半径为2,AB 为⊙O 的直径,P 为AB 延长线上一点,过点P 作⊙O 的切线,切点为C .若PC=23,则BC 的长为______.17.已知关于x 的方程x 2+mx +4=0有两个相等的实数根,则实数m 的值是______.18.观察以下一列数:3,54,79,916,1125,…则第20个数是_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,抛物线2y ax bx c =++()0a ≠与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x =–1,P 为抛物线上第二象限的一个动点.(1)求抛物线的解析式并写出其顶点坐标;(2)当点P 的纵坐标为2时,求点P 的横坐标;(3)当点P 在运动过程中,求四边形PABC 面积最大时的值及此时点P 的坐标.20.(6分)某校九年级数学测试后,为了解学生学习情况,随机抽取了九年级部分学生的数学成绩进行统计,得到相关的统计图表如下.成绩/分 120﹣111 110﹣101 100﹣91 90以下成绩等级 A B C D请根据以上信息解答下列问题:(1)这次统计共抽取了 名学生的数学成绩,补全频数分布直方图;(2)若该校九年级有1000名学生,请据此估计该校九年级此次数学成绩在B 等级以上(含B 等级)的学生有多少人?(3)根据学习中存在的问题,通过一段时间的针对性复习与训练,若A 等级学生数可提高40%,B 等级学生数可提高10%,请估计经过训练后九年级数学成绩在B 等级以上(含B 等级)的学生可达多少人?21.(6分)如图,已知平行四边形OBDC的对角线相交于点E,其中O(0,0),B(3,4),C(m,0),反比例函数y=kx(k≠0)的图象经过点B.求反比例函数的解析式;若点E恰好落在反比例函数y=kx上,求平行四边形OBDC的面积.22.(8分)如图,已知□ABCD的面积为S,点P、Q时是▱ABCD对角线BD的三等分点,延长AQ、AP,分别交BC,CD于点E,F,连结EF。

2020年广东省中考数学模拟试卷含解析

2020年广东省中考数学模拟试卷含解析

2020年广东省中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列说法正确的是()A.无限小数都是无理数B.没有立方根C.正数的两个平方根互为相反数D.﹣(﹣13)没有平方根2.(3分)下列轴对称图形中,对称轴的数量小于3的是()A.B.C.D.3.(3分)据统计,2019年杭州市区初中毕业生为25000余人,25000用科学记数法表示为()A.25×103B.2.5×103C.2.5×104D.0.25×1054.(3分)在某市举行的“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下表:则在这次活动中,该班同学捐款金额的众数是()金额(元)20303550100学生数(人)20105105A.20元B.30元C.35元D.100元5.(3分)用5个完全相同的小正方体组合成如图所示的立体图形,它的俯视图为()A.B.C.D.6.(3分)如图,是一张长方形纸片(其中AB∥CD),点E,F分别在边AB,AD上.把这张长方形纸片沿着EF折叠,点A落在点G处,EG交CD于点H.若∠BEH=4∠AEF,则∠CHG的度数为()A.108°B.120°C.136°D.144°7.(3分)已知x>y,则下列不等式不成立的是()A.x﹣6>y﹣6B.3x>3yC.﹣2x<﹣2y D.﹣3x+6>﹣3y+68.(3分)若关于x的方程x2+(m+1)x+m2=0的两个实数根互为倒数,则m的值是()A.﹣1B.1或﹣1C.1D.29.(3分)如图,菱形ABCD中,对角线AC,BD相交于点O,M为边AB的M中点,若MO=5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2C.D.2二.填空题(共7小题,满分28分,每小题4分)11.(4分)分解因式:6xy2﹣9x2y﹣y3=.12.(4分)函数y=中,自变量x的取值范围是.13.(4分)小明从P点出发,沿直线前进10米后向右转a,接着沿直线前进10米,再向右转a,…,照这样走下去,第一次回到出发地点P时,一共走了120米,则a的度数是.14.(4分)小明上学经过两个路口,如果每个路口可直接通过或需等待的可能性相等,那么小明上学时在这两个路口都直接通过的概率为.15.(4分)如图,已知⊙O的半径为2,弦AB,CD所对的圆心角分别是∠AOB,∠COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为.16.(4分)如图,点A是双曲线y=在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为.17.(4分)如图,A是正比例函数y=x图象上的点,且在第一象限,过点A作AB⊥y轴于点B,以AB为斜边向上作等腰直角三角形ABC,若AB=2,则点C的坐标为.三.解答题(一)(共3小题,满分18分)18.(6分)计算:2cos30°+()﹣1﹣+2019019.(6分)先化简,再求值:,其中x满足x2+3x﹣1=0.20.(6分)如图,▱ABCD中,(1)作边AB的中点E,连接DE并延长,交CB的延长线于点F;(用尺规作图,保留作图痕迹,不要求写作法):(2)已知▱ABCD的面积为8,求四边形EBCD的面积.四.解答题(二)(共3小题,满分24分)21.(8分)我市正在努力创建“全国文明城市”,2018年梅州已入选“全国文明城市提名城市”.为进一步营造“创文”氛围,我市某学校组织了一次全校2000名学生都参加的“创文知识竞赛”,竞赛题共10题.竞赛活动结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是;在扇形统计图中,m=;n=,“答对8题”所对应扇形的圆心角为度;(2)将条形统计图补充完整;(3)请根据以上调査结果,估算出该校答对不少于8题的学生人数.22.(8分)我市大力发展乡村旅游产业,全力打造客都美丽乡村”,其中“客家美景、客家文化、客家美食”享誉全省,游人络绎不绝.去年我市某村村民抓住机遇,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮收入是住宿收入的2倍还多1万元.(1)求去年该农家乐餐饮和住宿的收入各为多少万元?(2)今年该村村民再投入了10万元,增设了土特产的实体销售和网上销售项目并实现盈利,村民在接受记者采访时说,预计今年餐饮和住宿的收入比去年还会有10%的增长.这两年的总收入除去所有投资外还能获得不少于10万元的纯利润,请问今年土特产销售至少收入多少万元?23.(8分)如图,已知△ABC是等边三角形,E为AC上一点,连接BE.将AC绕点E旋转,使点C落在BC上的点D处,点A落在BC上方的点F处,连接AF.求证:四边形ABDF是平行四边形.五.解答题(三)(共2小题,满分20分)24.(10分)如图,AD是⊙O的直径,弧BA=弧BC,BD交AC于点E,点F在DB的延长线上,且∠BAF=∠C.(1)求证:AF是⊙O的切线;(2)求证:△ABE∽△DBA;(3)若BD=8,BE=6,求AB的长.25.(10分)如图,在平面直角坐标系中,已知抛物线y=ax2+bx+2(a≠0)与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)如图①,若点D是抛物线上一个动点,设点D的横坐标为m(0<m<3),连接CD、BD、BC、AC,当△BCD的面积等于△AOC面积的2倍时,求m的值;(3)若点N为抛物线对称轴上一点,请在图②中探究抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.2020年广东省中考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列说法正确的是()A.无限小数都是无理数B.没有立方根C.正数的两个平方根互为相反数D.﹣(﹣13)没有平方根【分析】根据无理数、立方根、平方根的定义解答即可.【解答】解:A、无限循环小数是有理数,故不符合题意;B、﹣有立方根是﹣,故不符合题意;C、正数的两个平方根互为相反数,正确,故符合题意;D、﹣(﹣13)=13有平方根,故不符合题意,故选:C.2.(3分)下列轴对称图形中,对称轴的数量小于3的是()A.B.C.D.【分析】根据轴对称图形的概念分别确定出各选项图形的对称轴的条数,然后选择即可.【解答】解:A、有4条对称轴,故本选项不符合题意;B、有6条对称轴,故本选项不符合题意;C、有4条对称轴,故本选项不符合题意;D、有2条对称轴,故本选项符合题意.故选:D.3.(3分)据统计,2019年杭州市区初中毕业生为25000余人,25000用科学记数法表示为A.25×103B.2.5×103C.2.5×104D.0.25×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于25000有5位,所以可以确定n=5﹣1=4.【解答】解:25000=2.5×104.故选:C.4.(3分)在某市举行的“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下表:则在这次活动中,该班同学捐款金额的众数是()金额(元)20303550100学生数(人)20105105A.20元B.30元C.35元D.100元【分析】直接根据众数的概念求解可得.【解答】在这次活动中,该班同学捐款金额的众数是20元,故选:A.5.(3分)用5个完全相同的小正方体组合成如图所示的立体图形,它的俯视图为()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:该几何体的主视图为:俯视图为:左视图为:6.(3分)如图,是一张长方形纸片(其中AB∥CD),点E,F分别在边AB,AD上.把这张长方形纸片沿着EF折叠,点A落在点G处,EG交CD于点H.若∠BEH=4∠AEF,则∠CHG的度数为()A.108°B.120°C.136°D.144°【分析】由折叠的性质及平角等于180°可求出∠BEH的度数,由AB∥CD,利用“两直线平行,内错角相等”可求出∠DHE的度数,再利用对顶角相等可求出∠CHG的度数.【解答】解:由折叠的性质,可知:∠AEF=∠FEH.∵∠BEH=4∠AEF,∠AEF+∠FEH+∠BEH=180°,∴∠AEF=×180°=30°,∠BEH=4∠AEF=120°.∵AB∥CD,∴∠DHE=∠BEH=120°,∴∠CHG=∠DHE=120°.故选:B.7.(3分)已知x>y,则下列不等式不成立的是()A.x﹣6>y﹣6B.3x>3yC.﹣2x<﹣2y D.﹣3x+6>﹣3y+6【分析】分别根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:A、∵x>y,∴x﹣6>y﹣6,故本选项错误;B、∵x>y,∴3x>3y,故本选项错误;C、∵x>y,∴﹣x<﹣y,∴﹣2x<﹣2y,故选项错误;D、∵x>y,∴﹣3x<﹣3y,∴﹣3x+6<﹣3y+6,故本选项正确.故选:D.8.(3分)若关于x的方程x2+(m+1)x+m2=0的两个实数根互为倒数,则m的值是()A.﹣1B.1或﹣1C.1D.2【分析】根据根的判别式以及根与系数的关系即可求出答案.【解答】解:由题意可知:△=(m+1)2﹣4m2=﹣3m2+2m+1,由题意可知:m2=1,∴m=±1,当m=1时,△=﹣3+2+1=0,当m=﹣1时,△=﹣3﹣2+1=﹣4<0,不满足题意,故选:C.9.(3分)如图,菱形ABCD中,对角线AC,BD相交于点O,M为边AB的M中点,若MO=5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm【分析】根据菱形的性质可以判定O为BD的中点,结合E是AB的中点可知OM是△ABD的中位线,根据三角形中位线定理可知AD的长,于是可求出四边形ABCD的周长.【解答】解:∵四边形ABCD为菱形,∴BO=DO,即O为BD的中点,又∵M是AB的中点,∴MO是△ABD的中位线,∴AD=2MO=2×5=10cm,∴菱形ABCD的周长=4AD=4×10=40cm,故选:D.10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE===1∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.二.填空题(共7小题,满分28分,每小题4分)11.(4分)分解因式:6xy2﹣9x2y﹣y3=﹣y(3x﹣y)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣y(y2﹣6xy+9x2)=﹣y(3x﹣y)2,故答案为:﹣y(3x﹣y)212.(4分)函数y=中,自变量x的取值范围是x≥2.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.13.(4分)小明从P点出发,沿直线前进10米后向右转a,接着沿直线前进10米,再向右转a,…,照这样走下去,第一次回到出发地点P时,一共走了120米,则a的度数是30°.【分析】根据多边形的外角和与外角的关系,可得答案.【解答】解:由题意,得120÷10=12,图形是十二边形,α=360°÷12=30°,故答案为:30°.14.(4分)小明上学经过两个路口,如果每个路口可直接通过或需等待的可能性相等,那么小明上学时在这两个路口都直接通过的概率为.【分析】根据题意先画出树状图得出所有等可能的结果数和在这两个路口都直接通过的结果数,然后根据概率公式即可得出答案.【解答】解:根据题意画图如下:共有4种等可能结果,其中小明上学时在这三个路口都直接通过的只有1种结果,所以小明上学时在这两个路口都直接通过的概率为;故答案为:.15.(4分)如图,已知⊙O的半径为2,弦AB,CD所对的圆心角分别是∠AOB,∠COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为2.【分析】运用转化的数学思想把∠AOB和∠COD转化为一个平角,再利用勾股定理可求AB的长.【解答】解:把∠COD饶点O顺时针旋转,使点C与D重合,∵∠AOB与∠COD互补,∴∠AOD=180°∵⊙O的半径为2,∴AD=4,∵弦CD=6,∠ABD=90°,∴AB==2.故答案是:2.16.(4分)如图,点A是双曲线y=在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为y=﹣.【分析】连结OC,作CD⊥x轴于D,AE⊥x轴于E,设A点坐标为(a,),利用反比例函数的性质得到点A与点B关于原点对称,则OA=OB,再根据等腰直角三角形的性质得OC=OA,OC⊥OA,然后利用等角的余角相等可得到∠DCO=∠AOE,则根据“AAS”可判断△COD≌△OAE,所以OD=AE=,CD=OE=a,于是C点坐标为(﹣,a),最后根据反比例函数图象上点的坐标特征确定C点所在的函数图象解析式.【解答】解:连结OC,作CD⊥x轴于D,AE⊥x轴于E,如图,设A点坐标为(a,),∵A点、B点是正比例函数图象与双曲线y=的交点,∴点A与点B关于原点对称,∴OA=OB∵△ABC为等腰直角三角形,∴OC=OA,OC⊥OA,∴∠DOC+∠AOE=90°,∵∠DOC+∠DCO=90°,∴∠DCO=∠AOE,∵在△COD和△OAE中∴△COD≌△OAE(AAS),∴OD=AE=,CD=OE=a,∴C点坐标为(﹣,a),∵﹣•a=﹣4,∴点C在反比例函数y=﹣图象上.故答案为y=﹣.17.(4分)如图,A是正比例函数y=x图象上的点,且在第一象限,过点A作AB⊥y轴于点B,以AB为斜边向上作等腰直角三角形ABC,若AB=2,则点C的坐标为(1,4).【分析】根据正比例函数的性质可以求得点A的坐标,再根据题意和等腰三角形的形即可求得点C的坐标.【解答】解:∵A是正比例函数y=x图象上的点,且在第一象限,AB=2,∴点A的横坐标是2,当x=2时,y=3,∴点A的坐标为(2,3),∵过点A作AB⊥y轴于点B,以AB为斜边向上作等腰直角三角形ABC,∴点C到AB的距离为1,AB的一半是1,∴点C的坐标是(1,4)故答案为:(1,4).三.解答题(一)(共3小题,满分18分)18.(6分)计算:2cos30°+()﹣1﹣+20190【分析】直接利用特殊角的三角函数值以及负指数幂的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=2×+2﹣2+1=+1.19.(6分)先化简,再求值:,其中x满足x2+3x﹣1=0.【分析】根据分式的减法和除法可以化简题目中的式子,然后根据x2+3x﹣1=0即可解答本题.【解答】解:====3x2+9x,∵x2+3x﹣1=0,∴x2+3x=1,∴原式=3x2+9x=3(x2+3x)=3×1=3.20.(6分)如图,▱ABCD中,(1)作边AB的中点E,连接DE并延长,交CB的延长线于点F;(用尺规作图,保留作图痕迹,不要求写作法):(2)已知▱ABCD的面积为8,求四边形EBCD的面积.【分析】(1)作线段AB的垂直平分线MN交AB于点E,点E即为所求.(2)求出△ADE的面积即可.【解答】解:(1)作线段AB的垂直平分线MN交AB于点E,点E即为所求.(2)∵四边形ABCD是平行四边形的面积为8,AE=EB,∴S△ADE=S四边形ABCD=2,∴S四边形EBCD=8﹣2=6.四.解答题(二)(共3小题,满分24分)21.(8分)我市正在努力创建“全国文明城市”,2018年梅州已入选“全国文明城市提名城市”.为进一步营造“创文”氛围,我市某学校组织了一次全校2000名学生都参加的“创文知识竞赛”,竞赛题共10题.竞赛活动结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是;在扇形统计图中,m=16;n=30,“答对8题”所对应扇形的圆心角为86.4度;(2)将条形统计图补充完整;(3)请根据以上调査结果,估算出该校答对不少于8题的学生人数.【分析】(1)5÷10%=50(人),,即m=16,1﹣10%﹣16%﹣24%﹣20%=30%,即n=30,360°×24%=86.4°,即“答对8题”所对应扇形的圆心角为86.4度;(2)答对9题的人数:50×30%=15(人),答对10题的人数:50×20%=10(人),据此补充条形统计图;(3)2000×(24%+30%+20%)=1480(人),所以该校答对不少于8题的学生人数是1480人.【解答】解:(1)5÷10%=50(人),,即m=16,1﹣10%﹣16%﹣24%﹣20%=30%,即n=30,360°×24%=86.4°,即“答对8题”所对应扇形的圆心角为86.4度,故答案为16,30,86.4;(2)答对9题的人数:50×30%=15(人),答对10题的人数:50×20%=10(人),所以条形统计图补充如下:(3)2000×(24%+30%+20%)=1480(人),答:该校答对不少于8题的学生人数是1480人.22.(8分)我市大力发展乡村旅游产业,全力打造客都美丽乡村”,其中“客家美景、客家文化、客家美食”享誉全省,游人络绎不绝.去年我市某村村民抓住机遇,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮收入是住宿收入的2倍还多1万元.(1)求去年该农家乐餐饮和住宿的收入各为多少万元?(2)今年该村村民再投入了10万元,增设了土特产的实体销售和网上销售项目并实现盈利,村民在接受记者采访时说,预计今年餐饮和住宿的收入比去年还会有10%的增长.这两年的总收入除去所有投资外还能获得不少于10万元的纯利润,请问今年土特产销售至少收入多少万元?【分析】(1)设去年餐饮收入为x万元,住宿为收入y万元,根据题意列出方程组,求出方程组的解即可得到结果;(2)设今年土特产的收入为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.【解答】解:(1)设去年餐饮收入x万元,住宿收入y万元,依题意得:,解得:,答:去年餐饮收入11万元,住宿收入5万元;(2)设今年土特产m万元,依题意得:16+16×(1+10%)+m﹣20﹣10≥10,解之得,m≥6.4,答:今年土特产销售至少有6.4万元的收入.23.(8分)如图,已知△ABC是等边三角形,E为AC上一点,连接BE.将AC绕点E旋转,使点C落在BC上的点D处,点A落在BC上方的点F处,连接AF.求证:四边形ABDF是平行四边形.【分析】根据已知条件可以判定△ABC、△DCE均为等边三角形,由等边三角形的三个内角相等、三条边相等,进而得到三个三角形△ABC、△AEF、△DCE是等边三角形,可以推知同位角∠CDE=∠ABC,内错角∠CDE=∠EF A.所以利用平行的线的判定定理可以证得四边形ABDF的对边相互平行.【解答】证明:∵△ABC是等边三角形,∴AC=BC=AB,∠ACB=60°;∵将AC绕点E旋转∴ED=CE,EF=AE∴△EDC是等边三角形,∴DE=CD=CE,∠DCE=∠EDC=60°,∴FD=AC=BC,∴△ABC、△AEF、△DCE均为等边三角形,∴∠CDE=∠ABC=∠EF A=60°,∴AB∥FD,BD∥AF,∴四边形ABDF是平行四边形.五.解答题(三)(共2小题,满分20分)24.(10分)如图,AD是⊙O的直径,弧BA=弧BC,BD交AC于点E,点F在DB的延长线上,且∠BAF=∠C.(1)求证:AF是⊙O的切线;(2)求证:△ABE∽△DBA;(3)若BD=8,BE=6,求AB的长.【分析】(1)由圆周角定理得出∠ABD=90°,∠C=∠D,证出∠BAD+∠BAF=90°,得出AF⊥AD,即可得出结论;(2)由圆周角定理得出∠BAC=∠C,∠C=∠D,得出∠BAC=∠D,再由公共角∠ABE =∠DBA,即可得出△ABE∽△DBA;(3)由相似三角形的性质得出=,代入计算即可得出结果.【解答】(1)证明:∵AD是⊙O的直径,∴∠ABD=90°,∴∠BAD+∠D=90°,∵∠BAF=∠C,∠C=∠D,∴∠BAF=∠D,∴∠BAD+∠BAF=90°,即∠F AD=90°,∴AF⊥AD,∴AF是⊙O的切线;(2)证明:∵,∴∠BAC=∠C,∵∠C=∠D,∴∠BAC=∠D,即∠BAE=∠D,又∵∠ABE=∠DBA,∴△ABE∽△DBA;(3)解:由(2)得:△ABE∽△DBA,∴=,即=,解得:AB=4.25.(10分)如图,在平面直角坐标系中,已知抛物线y=ax2+bx+2(a≠0)与x轴交于A (﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)如图①,若点D是抛物线上一个动点,设点D的横坐标为m(0<m<3),连接CD、BD、BC、AC,当△BCD的面积等于△AOC面积的2倍时,求m的值;(3)若点N为抛物线对称轴上一点,请在图②中探究抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.【分析】(1)把A(﹣1,0),B(3,0)代入y=ax2+bx+2即可求解;(2)由S△BCD=2S△AOC得:,即可求解;(3)分BC是平行四边形的边、BC为对角线两种情况,分别求解即可.【解答】解:(1)把A(﹣1,0),B(3,0)代入y=ax2+bx+2中,得:,解得:,∴抛物线解析式为;(2)过点D作y轴平行线交BC于点E,把x=0代入中,得:y=2,∴C点坐标是(0,2),又B(3,0)∴直线BC的解析式为,∵∴∴=,由S△BCD=2S△AOC得:∴,整理得:m2﹣3m+2=0解得:m1=1,m2=2∵0<m<3∴m的值为1或2;(3)存在,理由:设:点M的坐标为:(m,n),n=﹣x2+x+2,点N(1,s),点B(3,0)、C(0,2),①当BC是平行四边形的边时,当点C向右平移3个单位,向下平移2个单位得到B,同样点M(N)向右平移3个单位,向下平移2个单位N(M),故:m+3=1,n﹣2=s或m﹣3=1,n+2=s,解得:m=﹣2或4,故点M坐标为:(﹣2,﹣)或(4,﹣);②当BC为对角线时,由中点公式得:m+1=3,n+3=2,解得:m=2,故点M(2,2);综上,M的坐标为:(2,2)或(﹣2,)或(4,).。

2020年广东省中山市中考数学模拟试卷及答案解析

2020年广东省中山市中考数学模拟试卷及答案解析

2020年广东省中山市中考数学模拟试卷
一、选择题(共10小题,每小题3分,满分30分)
1.计算a3•(﹣a)的结果是()
A.a2 B.﹣a2C.a4D.﹣a4
2.已知x=2是方程2x﹣3a+2=0的根,那么a的值是()
A.﹣2 B .C.2 D .
3.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()
A .
B .
C .
D .
4.2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为()
A.1.61×109 B.1.61×1010 C.1.61×1011 D.1.61×1012 5.已知圆锥的底面半径为6cm,高为8cm,则圆锥的侧面积为()A.36πcm2B.48πcm2C.60πcm2D.80πcm2
6.已知,且﹣1<x﹣y<0,则k的取值范围为()
A.﹣1<k <﹣B.0<k <C.0<k<1 D .<k<1
7.如图所示实数a,b在数轴上的位置,以下四个命题中是假命题的是()
A.a3﹣ab2<0 B .
C .D.a2<b2
8.如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且AB∥OP,若阴影部分的面积为9π,则弦AB的长为()
第1 页共29 页。

2020年广东省中山市华侨中学中考数学模拟试卷(5月份)(解析版)

2020年广东省中山市华侨中学中考数学模拟试卷(5月份)(解析版)

2020年广东省中山市华侨中学中考数学模拟试卷(5月份)一.选择题(共10小题)1.下列各数中,小于﹣4的是()A.﹣3B.﹣5C.0D.12.下列各式计算的结果为a5的是()A.a3+a2B.a10÷a2C.a•a4D.(﹣a3)2 3.2018年精准脱贫,农村贫困人口减少1386万数据1386万,科学记数法表示()A.1.386×108B.1.386×103C.13.86×107D.1.386×1074.下面的几何图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.圆C.平行四边形D.正六边形5.若式子在实数范围内有意义,则x的取值范围是()A.x B.x C.x D.x6.甲、乙、丙三个旅行团的游客人数都相等,且毎团游客的平均年龄都是32岁,这三个团游客年龄的方差分别是S甲2=27,S乙2=19.6,S丙2=1.6,导游小王最喜欢带游客年龄相近的团队,若在三个团中选择一个,则他应选()A.甲团B.乙团C.丙团D.甲或乙团7.如图,直线AD∥BC,若∠1=40°,∠BAC=80°,则∠2的度数为()A.70°B.60°C.50°D.40°8.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40°B.45°C.50°D.55°9.从A城到B城分别有高速铁路与高速公路相通,其中高速铁路全程400km,高速公路全程480km.高铁行驶的平均速度比客车在高速公路行驶的平均速度多120km/h,从A城到B城乘坐高铁比客车少用4小时.设客车在高速公路行驶的平均速度为xkm/h,依题意可列方程为()A.B.C.D.10.函数y=ax2+1与函数y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.二.填空题(共7小题)11.因式分解:4m2﹣16=.12.一组数据:6,9,9,1,12,这组数据的众数是.13.已知x、y满足方程组,则x+y=.14.不等式组的解集是.15.一个袋子中有2个红球,2个黄球,每个球除颜色外都相同,从中摸出2个球,2个球的颜色不同的概率为.16.如图,在菱形ABCD中,AB=2,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB'C'D',其中点C的运动的路径为,则图中阴影部分的面积为.17.如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=F A.下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S,其中正确的是(只填写序号).△CEF三.解答题(共8小题)18.计算:(﹣1)2019+(﹣)﹣2﹣|2﹣|+4sin60°.19.先化简÷(a+1)+,然后a在﹣1,1,2三个数中任选一个合适的数代入求值.20.已知△ABC中,∠A=90°,∠B=30°.(1)作图:作△ABC的高AD交BC于点D(用尺规作图,保留作图痕迹,不写作法);(2)求证:BD=3CD.21.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由.22.如图,反比例函数的图象与一次函数y=kx+5(k为常数,且k≠0)的图象交于A(﹣2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.23.2009年5月17日至21日,甲型H1N1流感在日本迅速蔓延,每天的新增病例和累计确诊病例人数如图所示.(1)在5月17日至5月21日这5天中,日本平均每天新增加甲型H1N1流感确诊病例多少人?如果接下来的5天中,继续按这个平均数增加,那么到5月26日,日本甲型H1N1流感累计确诊病例将会达到多少人?(2)甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?24.如图F为⊙O上的一点,过点F作⊙O的切线与直径AC的延长线交于点D,过圆上的另一点B作AO的垂线,交DF的延长线于点M,交⊙O于点E,垂足为H,连接AF,交BM于点G.(1)求证:△MFG为等腰三角形.(2)若AB∥MD,求证:FG2=EG•MF.(3)在(2)的条件下,若DF=6,tan∠M=,求AG的长.25.如图,在四边形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,点E,F同时从B点出发,沿射线BC向右匀速移动,已知点F的移动速度是点E移动速度的2倍,以EF为一边在CB的上方作等边△EFG,设E点移动距离为x(0<x<6).(1)∠DCB=度,当点G在四边形ABCD的边上时,x=;(2)在点E,F的移动过程中,点G始终在BD或BD的延长线上运动,求点G在线段BD的中点时x的值;(3)当2<x<6时,求△EFG与四边形ABCD重叠部分面积y与x之间的函数关系式,当x取何值时,y有最大值?并求出y的最大值.参考答案与试题解析一.选择题(共10小题)1.下列各数中,小于﹣4的是()A.﹣3B.﹣5C.0D.1【分析】利用负数的大小比较方法:负数小于0和正数,两个负数相比较,绝对值大的反而小,比较选择答案即可.【解答】解:比﹣4小的数是﹣5.故选:B.【点评】此题考查有理数的大小比较,掌握比较的方法是解决问题的关键.2.下列各式计算的结果为a5的是()A.a3+a2B.a10÷a2C.a•a4D.(﹣a3)2【分析】分别根据合并同类项法则,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.【解答】解:A.a3与a2不是同类项,所以不能合并,故本选项不合题意;B.a10÷a2=a8,故本选项不合题意;C.a•a4=a5,故本选项符合题意;D.(﹣a3)2=a6,故本选项不合题意;故选:C.【点评】本题主要考查了同底数幂的乘除法,合并同类项法则以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.3.2018年精准脱贫,农村贫困人口减少1386万数据1386万,科学记数法表示()A.1.386×108B.1.386×103C.13.86×107D.1.386×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1386万=13860000=1.386×107,故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下面的几何图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.圆C.平行四边形D.正六边形【分析】根据轴对称图形与中心对称图形的概念解答.【解答】解:A、等边三角形是轴对称图形,不是中心对称图形,符合题意;B、圆既是轴对称图形,也是中心对称图形,不合题意;C、平行四边形不是轴对称图形,是中心对称图形,不合题意;D、正六边形既是轴对称图形,也是中心对称图形,不合题意.故选:A.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.若式子在实数范围内有意义,则x的取值范围是()A.x B.x C.x D.x【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,2x+1≥0,解得,x≥﹣,故选:B.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.6.甲、乙、丙三个旅行团的游客人数都相等,且毎团游客的平均年龄都是32岁,这三个团游客年龄的方差分别是S甲2=27,S乙2=19.6,S丙2=1.6,导游小王最喜欢带游客年龄相近的团队,若在三个团中选择一个,则他应选()A.甲团B.乙团C.丙团D.甲或乙团【分析】由S甲2=27,S乙2=19.6,S丙2=1.6,得到丙的方差最小,根据方差的意义得到丙旅行团的游客年龄的波动最小.【解答】解:∵S甲2=27,S乙2=19.6,S丙2=1.6,∴S甲2>S乙2>S丙2,∴丙旅行团的游客年龄的波动最小,年龄最相近.故选:C.【点评】本题考查了方差的意义:方差反映了一组数据在其平均数的左右的波动大小,方差越大,波动越大,越不稳定;方差越小,波动越小,越稳定.7.如图,直线AD∥BC,若∠1=40°,∠BAC=80°,则∠2的度数为()A.70°B.60°C.50°D.40°【分析】依据三角形内角和定理,即可得到∠ABC=60°,再根据AD∥BC,即可得出∠2=∠ABC=60°.【解答】解:∵∠1=40°,∠BAC=80°,∴∠ABC=60°,又∵AD∥BC,∴∠2=∠ABC=60°,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.8.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40°B.45°C.50°D.55°【分析】连接OC,由AO∥DC,得出∠ODC=∠AOD=70°,再由OD=OC,得出∠ODC=∠OCD=70°,求得∠COD=40°,进一步得出∠AOC,进一步利用圆周角定理得出∠B的度数即可.【解答】解:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故选:D.【点评】此题考查平行线的性质,等腰三角形的性质,三角形的内角和,圆周角定理,正确作出辅助线是解决问题的关键.9.从A城到B城分别有高速铁路与高速公路相通,其中高速铁路全程400km,高速公路全程480km.高铁行驶的平均速度比客车在高速公路行驶的平均速度多120km/h,从A城到B城乘坐高铁比客车少用4小时.设客车在高速公路行驶的平均速度为xkm/h,依题意可列方程为()A.B.C.D.【分析】设客车在高速公路行驶的平均速度为xkm/h,则高铁行驶的平均速度为(x+120)km/h,根据它们行驶时间差为4小时列出方程.【解答】解:设客车在高速公路行驶的平均速度为xkm/h,则高铁行驶的平均速度为(x+120)km/h,依题意得:故选:A.【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.10.函数y=ax2+1与函数y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】分a>0和a<0两种情况讨论二次函数和反比例函数图象所在的象限,然后选择答案即可.【解答】解:a>0时,y=ax2+1开口向上,顶点坐标为(0,1),y=位于第一、三象限,没有选项图象符合,a<0时,y=ax2+1开口向下,顶点坐标为(0,1),y=位于第二、四象限,D选项图象符合.故选:D.【点评】本题考查了二次函数图象与反比例函数图象,熟练掌握系数与函数图象的关系是解题的关键.二.填空题(共7小题)11.因式分解:4m2﹣16=4(m+2)(m﹣2).【分析】此题应先提公因式4,再利用平方差公式继续分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:4m2﹣16,=4(m2﹣4),=4(m+2)(m﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.一组数据:6,9,9,1,12,这组数据的众数是9.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;【解答】解:众数是一组数据中出现次数最多的数,在这一组数据中9出现了2次,次数最多,故众数是9;故答案为:9.【点评】本题考查了众数的概念,一组数据中出现次数最多的数据叫做众数;13.已知x、y满足方程组,则x+y=2.【分析】方程组两方程左右两边相加,整理即可求出所求.【解答】解:,①+②得:3x+3y=6,则x+y=2.故答案为:2.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.不等式组的解集是﹣1<x≤2.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解不等式①得,x>﹣1,解不等式②得,x≤2,所以不等式组的解集是﹣1<x≤2.故答案为:﹣1<x≤2.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.一个袋子中有2个红球,2个黄球,每个球除颜色外都相同,从中摸出2个球,2个球的颜色不同的概率为.【分析】根据题意画出树状图得出所有等情况数和从中摸出2个球,2个球的颜色不同的情况数,再根据概率公式即可得出答案.【解答】解:根据题意画图如下:共有12种等情况数,其中从中摸出2个球,2个球的颜色不同的有8种,∴从中摸出2个球,2个球的颜色不同的概率为=;故答案为:.【点评】此题考查的是用列表法或树状图法求概率.树状图法适合两步或两步以上完成的事件;注意此题是放回实验还是不放回实验是解题关键.用到的知识点为:概率=所求情况数与总情况数之比.16.如图,在菱形ABCD中,AB=2,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB'C'D',其中点C的运动的路径为,则图中阴影部分的面积为π+6﹣4.【分析】根据菱形的性质以及旋转角为30°,连接CD′和BC′,可得A、D′、C及A、B、C′分别共线,求出扇形面积,再根据AAS证得两个小三角形全等,求得其面积,最后根据扇形ACC′的面积﹣两个小的三角形面积即可.【解答】解:连接CD′和BC′,∵∠DAB=60°,∴∠DAC=∠CAB=30°,∵∠C′AB′=30°,∴A、D′、C及A、B、C′分别共线.∴AC=2,∴扇形ACC′的面积为:=π,∵AC=AC′,AD′=AB∴在△OCD′和△OC'B中,,∴△OCD′≌△OC′B(AAS),∴OB=OD′,CO=C′O∵∠CBC′=60°,∠BC′O=30°∴∠COD′=90°∵CD′=AC﹣AD′=2﹣2,OB+C′O=2,∴在Rt△BOC′中,BO2+(2﹣BO)2=(2﹣2)2解得BO=﹣1,C′O=3﹣,∴S△OC′B=•BO•C′O=2﹣3,∴图中阴影部分的面积为:S扇形ACC′﹣2S△OC′B=π+6﹣4.故答案为:.【点评】本题考查了旋转的性质,菱形的性质,扇形的面积公式,勾股定理,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.17.如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=F A.下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S,其中正确的是①②③⑤(只填写序号).△CEF【分析】由已知得AB=AD,AE=AF,利用“HL”可证△ABE≌△ADF,利用全等的性质判断①②③正确,在AD上取一点G,连接FG,使AG=GF,由正方形,等边三角形的性质可知∠DAF=15°,从而得∠DGF=30°,设DF=1,则AG=GF=2,DG=,分别表示AD,CF,EF的长,判断④⑤的正确性.【解答】解:∵AB=AD,AE=AF=EF,∴△ABE≌△ADF(HL),△AEF为等边三角形,∴BE=DF,又BC=CD,∴CE=CF,∴∠BAE=(∠BAD﹣∠EAF)=(90°﹣60°)=15°,∴∠AEB=90°﹣∠BAE=75°,∴①②③正确,在AD上取一点G,连接FG,使AG=GF,则∠DAF=∠GF A=15°,∴∠DGF=2∠DAF=30°,设DF=1,则AG=GF=2,DG=,∴AD=CD=2+,CF=CE=CD﹣DF=1+,∴EF=CF=+,而BE+DF=2,∴④错误,⑤∵S△ABE+S△ADF=2×AD×DF=2+,S△CEF=CE×CF==2+,∴⑤正确.故答案为:①②③⑤.【点评】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的运用.关键是利用全等三角形的性质,把条件集中到直角三角形中,运用勾股定理求解.三.解答题(共8小题)18.计算:(﹣1)2019+(﹣)﹣2﹣|2﹣|+4sin60°.【分析】首先利用乘方的意义、负整数指数幂的性质、绝对值的性质、特殊角的三角函数值计算,然后再化简二次根式,计算加减即可.【解答】解:原式=﹣1+9﹣(﹣2)+4×,=﹣1+9﹣2+2+2,=10.【点评】此题主要考查了实数运算,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、特殊角的三角函数值、二次根式的性质、绝对值等考点的运算.19.先化简÷(a+1)+,然后a在﹣1,1,2三个数中任选一个合适的数代入求值.【分析】根据分式的运算法则先化简原式,然后将a=2代入化简后的式子求值即可.【解答】解:÷(a+1)+=•+=+=∵a≠1且a≠﹣1,∴当a=2时,原式==5.【点评】本题考查分式的化简求值,因式分解、代数式求值等知识,解答此题的关键是把分式化到最简,然后代值计算.20.已知△ABC中,∠A=90°,∠B=30°.(1)作图:作△ABC的高AD交BC于点D(用尺规作图,保留作图痕迹,不写作法);(2)求证:BD=3CD.【分析】(1)利用尺规即可作△ABC的高AD交BC于点D;(2)根据30度角所对直角边等于斜边一半即可证明BD=3CD.【解答】解:(1)如图,AD即为所求;(2)证明:∵△ABC中,∠BAC=90°,∠B=30°,∴BC=2AC,∠C=60°,∴∠CAD=30°,∴AC=2CD,∴BC=4CD,∴BD=3CD.【点评】本题考查了作图﹣基本作图、含30度角的直角三角形,解决本题的关键是掌握特殊角的性质.21.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由.【分析】(1)由新坡面的坡度为1:,可得tanα=tan∠CAB==,然后由特殊角的三角函数值,求得答案;(2)首先过点C作CD⊥AB于点D,由坡面BC的坡度为1:1,新坡面的坡度为1:.即可求得AD,BD的长,继而求得AB的长,则可求得答案.【解答】解:(1)∵新坡面的坡度为1:,∴tanα=tan∠CAB==,∴∠α=30°.答:新坡面的坡角a为30°;(2)文化墙PM不需要拆除.过点C作CD⊥AB于点D,则CD=6,∵坡面BC的坡度为1:1,新坡面的坡度为1:,∴BD=CD=6,AD=6,∴AB=AD﹣BD=6﹣6<8,∴文化墙PM不需要拆除.【点评】此题考查了坡度坡角的知识.注意根据题意构造直角三角形是关键.22.如图,反比例函数的图象与一次函数y=kx+5(k为常数,且k≠0)的图象交于A(﹣2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.【分析】(1)先利用反比例函数解析式求出b=4,得到A点坐标为(﹣2,4),然后把A点坐标代入y=kx+5中求出k,从而得到一次函数解析式为y=x+5;(2)由于将直线AB向下平移m(m>0)个单位长度得直线解析式为y=x+5﹣m,则直线y=x+5﹣m与反比例函数有且只有一个公共点,即方程组只有一组解,然后消去y得到关于x的一元二次方程,再根据判别式的意义得到关于m的方程,最后解方程求出m的值.【解答】解:(1)把A(﹣2,b)代入,得b=﹣=4,所以A点坐标为(﹣2,4),把A(﹣2,4)代入y=kx+5,得﹣2k+5=4,解得k=,所以一次函数解析式为y=x+5;(2)将直线AB向下平移m(m>0)个单位长度得直线解析式为y=x+5﹣m,根据题意方程组只有一组解,消去y得﹣=x+5﹣m,整理得x2﹣(m﹣5)x+8=0,△=(m﹣5)2﹣4××8=0,解得m=9或m=1,即m的值为1或9.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,若方程组无解,则两者无交点.也考查了一次函数与几何变换.23.2009年5月17日至21日,甲型H1N1流感在日本迅速蔓延,每天的新增病例和累计确诊病例人数如图所示.(1)在5月17日至5月21日这5天中,日本平均每天新增加甲型H1N1流感确诊病例多少人?如果接下来的5天中,继续按这个平均数增加,那么到5月26日,日本甲型H1N1流感累计确诊病例将会达到多少人?(2)甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?【分析】(1)从统计图上可看出5天共增加了多少人,然后可求出平均人数,进而可求出5月26日,日本甲型H1N1流感累计确诊病例将会达到多少人.(2)设平均一个人一天传染x个人,第一天共有x+1人,第二天共传染x(x+1)人,根据经过两天传染后共有9人患了甲型H1N1流感,可列方程求解,进而可求出如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感.【解答】解:(1)(267﹣4)÷5=52.6.267+52.6×5=530.在5月17日至5月21日这5天中,日本平均每天新增加甲型H1N1流感确诊病例52.6人,日本甲型H1N1流感累计确诊病例将会达到530人.(2)设平均一个人一天传染x个人,x(x+1)+x+1=9x=2或x=﹣4(舍去).再5天为:(1+2)7=2187,∴再5天共有2187人患甲型H1N1流感.【点评】本题考查理解题意的能力,和看图的能力,能从图上获得有用的信息,根据传染规律列方程求解.24.如图F为⊙O上的一点,过点F作⊙O的切线与直径AC的延长线交于点D,过圆上的另一点B作AO的垂线,交DF的延长线于点M,交⊙O于点E,垂足为H,连接AF,交BM于点G.(1)求证:△MFG为等腰三角形.(2)若AB∥MD,求证:FG2=EG•MF.(3)在(2)的条件下,若DF=6,tan∠M=,求AG的长.【分析】(1)连接OF,利用等角的余角相等证明∠MFG=∠MGF即可解决问题.(2)连接EF.证明△EGF∽△FGM,可得结论,(3)连接OB.证明∠M=∠FOD,推出tan∠M=tan∠FOD==,由DF=6,推出OF=8,再由tan∠M=tan∠ABH==,假设AH=3k,BH=4k,则AB=BG=5k,GH=k,AG=k,在Rt△OHB中,根据OH2+BH2=OB2,构建方程即可解决问题.【解答】(1)证明:连接OF.∵DM是⊙O的切线,∴DM⊥OF,∴∠MFG+∠OF A=90°,∵BM⊥AD,∴∠AHG=90°,∴∠OAF+∠AGH=90°,∵OF=OA,∴∠OF A=∠OAF,∵∠MGF=∠AGH,∴∠MFG=∠AGF,∴MF=MG,∴△MFG是等腰三角形.(2)证明:连接EF.∵AB∥DM,∴∠MF A=∠F AB,∵∠F AB=∠FEG,∠MFG=∠MGF,∴∠FEG=∠MFG,∵∠EGF=∠MGF,∴△EGF∽△FGM,∴=,∴FG2=EG•GM,∵MF=MG,∴FG2=EG•MF.(3)解:连接OB.∵∠M+∠D=90°,∠FOD+∠D=90°,∴∠M=∠FOD,∴tan M=tan∠FOD==,∵DF=6,∴OF=8,∵DM∥AB,∴∠M=∠ABH,∴tan M=tan∠ABH==,∴可以假设AH=3k,BH=4k,则AB=BG=5k,GH=k,AG=k,在Rt△OHB中,∵OH2+BH2=OB2,∴(8﹣3k)2+(4k)2=82,解得k=,∴AG=.【点评】本题属于圆综合题,考查了切线的性质,等腰三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.25.如图,在四边形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,点E,F同时从B点出发,沿射线BC向右匀速移动,已知点F的移动速度是点E移动速度的2倍,以EF为一边在CB的上方作等边△EFG,设E点移动距离为x(0<x<6).(1)∠DCB=30度,当点G在四边形ABCD的边上时,x=2;(2)在点E,F的移动过程中,点G始终在BD或BD的延长线上运动,求点G在线段BD的中点时x的值;(3)当2<x<6时,求△EFG与四边形ABCD重叠部分面积y与x之间的函数关系式,当x取何值时,y有最大值?并求出y的最大值.【分析】(1)作DH⊥BC于H,则四边形ABHD是矩形.当等边三角形△EGF的高=时,点G想AD上,此时x=2.(2)根据等边三角形的性质和直角三角形的性质解答即可;(3)分图2,图3两种情形解决问题.①当2<x<3时,如图2中,点E、F在线段BC 上,△EFG与四边形ABCD重叠部分为四边形EFNM;②当3≤x<6时,如图3中,点E在线段BC上,点F在射线BC上,重叠部分是△ECP;【解答】解:(1)作DH⊥BC于H,则四边形ABHD是矩形.∵AD=BH=3,BC=6,∴CH=BC﹣BH=3,在Rt△DHC中,CH=3,∠DCH=30°,∴DH=CH•tan30°=,当等边三角形△EGF的高=时,点G在AD上,此时x=2,∠DCB=30°,故答案为:30,2,(2)如图∵AD∥BC∴∠A=180°﹣∠ABC=180°﹣90°=90°在Rt△ABD中∵∴∠ADB=30°∵G是BD的中点∴,∵AD∥BC∴∠ADB=∠DBC=30°∵△GEF是等边三角形∴∠GFE=60°∴∠BGF=90°在Rt△BGF中∴2x=2即x=1;(3)分两种情况:当2<x<3,如图2点E、点F在线段BC上△GEF与四边形ABCD重叠部分为四边形EFNM∵∠FNC=∠GFE﹣∠DCB=60°﹣30°=30°∴∠FNC=∠DCB∴FN=FC=6﹣2x∴GN=x﹣(6﹣2x)=3x﹣6∵∠FNC=∠GNM=30°,∠G=60°∴∠GMN=90°在Rt△GNM中∴==∴当时,当3≤x<6时,如图3,点E在线段BC上,点F在线段BC的延长线上,△GEF与四边形ABCD重叠部分为△ECP∵∠PCE=30°,∠PEC=60°∴∠EPC=90°在Rt△EPC中EC=6﹣x,,∴对称轴为当x<6时,y随x的增大而减小∴当x=3时,综上所述:当时,【点评】本题考查四边形综合题、等边三角形的性质、锐角三角函数、等腰三角形的判定和性质、多边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。

最新广东中考一模检测《数学卷》含答案解析

最新广东中考一模检测《数学卷》含答案解析

广东中考全真模拟测试数学试卷一、选择题1.2020的相反数是()A. 2020B. ﹣2020C.12020D.120202.如图是由5个大小相同的立方体搭成的几何体,其俯视图是()A. B. C. D.3.华为Mate 30 5G系列是近期相当火爆的5G国产手机,它采用的麒麟990 5G芯片在指甲盖大小的尺寸上集成了103亿个晶体管,将103亿用科学记数法表示为()A. 1.03×109B. 10.3×109C. 1.03×1010D. 1.03×10114.下列图形中,既是中心对称图形又是轴对称图形的是()A. B.C. D.5.如图,下列条件中,能判定DE∥AC的是()A. ∠EDC=∠EFCB. ∠AFE=∠ACDC. ∠3=∠4D. ∠1=∠26.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A. B.C. D.7.不等式组51 23132xx x+⎧⎪-+⎨>⎪⎩的解集为()A. ﹣4<x<﹣1B. ﹣4≤x<﹣1C. ﹣4≤x≤﹣1D. ﹣4<x≤﹣18.一件夹克衫先按成本提高40%标价,再按9折(标价的90%)出售,结果获利38元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A. (140%)90%38x x+⨯=- B. (140%)90%38x x+⨯=+C. (140%)90%38x x+⨯=- D. (140%)90%38x x+⨯=+9.下列哪一个是假命题()A. 五边形外角和为360°B. 圆的切线垂直于经过切点的半径C. (3,﹣2)关于y轴的对称点为(﹣3,2)D. 抛物线y=x2﹣4x+2020的对称轴为直线x=210.对于一组数据:x1,x2,x3,…,x10,若去掉一个最大值和一个最小值,则下列统计量一定不会发生变化的是()A. 平均数B. 中位数C. 众数D. 方差11.如图,山顶一铁塔AB在阳光下投影CD的长为6米,此时太阳光与地面的夹角∠ACD=60°,则铁塔AB的高为()A. 3米B. 63米C.33米D23米12.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为直线x=﹣1,与x轴的交点为(x1,0)、(x2,0),其中0<x2<1,有下列结论:①b2﹣4ac>0;②4a﹣2b+c>﹣1;③﹣3<x1<﹣2;④当m为任意实数时,a﹣b≤am2+bm;⑤3a+c=0.其中,正确的结论有()A. ②③④B. ①③⑤C. ②④⑤D. ①③④二、填空题13.分解因式:a3﹣a=_____.14.已知一组数据x1,x2,x3,x4的方差是0.2,则数据x1+5,x2+5,x3+5,x4+5的方差是______.15.如图,AB是⊙O的直径,点C和点D是⊙O上位于直径AB两侧的点,连结AC,AD,BD,CD,若⊙O 的半径是5,BD=8,则sin∠ACD的值是_______.16.如图,在平面直角坐标系中,边长为1的正方形OABC的顶点O与原点重合,顶点A,C分别在x轴、y轴上,反比例函数y=kx(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点M、N,连接OM、ON、MN.若∠MON=45°,则k的值为_____.三、解答题17.计算:2020-211)()2124sin 602-+---+︒(. 18.先化简,再求值:211(1)22a a a --÷++,在a =±2,±1中,选择一个恰当的数,求原式的值. 19.某中学为了解九年级学生对三大球类运动的喜爱情况,从九年级学生中随机抽取部分学生进行调查问卷,通过分析整理绘制了如下两幅统计图.请根据两幅统计图中的信息回答下列问题:(1)求参与调查的学生中,喜爱排球运动的学生人数,并补全条形图;(2)若该中学九年级共有800名学生,请你估计该中学九年级学生中喜爱篮求运动的学生有多少名?(3)若从喜爱足球运动的2名男生和2名女生中随机抽取2名学生,确定为该校足球运动员的重点培养对象,请用列表法或画树状图的方法求抽取的两名学生为一名男生和一名女生的概率.20.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,AE ⊥BC 交CB 延长线于E ,CF ∥AE 交AD 延长线于点F .(1)求证:四边形AECF 是矩形;(2)连接OE ,若AE=8,AD=10,求OE 的长.21.为抗击新型肺炎疫情,某服装厂及时引进了一条口罩生产线生产口罩,开工第一天生产10万件,第三天生产14.4万件,若每天增长的百分率相同.试回答下列问题:(1)求每天增长的百分率;(2)经调查发现,1条生产线最大产能是20万件/天,若每增加1条生产线,每条生产线的最大产能将减少2万件/天,现该厂要保证每天生产口罩60万件,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?22.如图,已知AB是⊙O的直径,AB=4,点C是AB延长线上一点,且BC=2,点D是半圆的中点,点P 是⊙O上任意一点.(1)当PD与AB交于点E且PC=CE时,求证:PC与⊙O相切;(2)在(1)的条件下,求PC的长;(3)点P是⊙O上动点,当PD+PC的值最小时,求PC的长.23.如图,抛物线y=ax2+bx+2(a<0)与x轴交于点A(﹣1,0)和点B(2,0),与y轴交于点C.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD、CD,OD交BC于点F,当S△COF:S△CDF=2:1时,求点D的坐标;(3)如图2,点E的坐标为(0,﹣1),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.答案与解析一、选择题1.2020的相反数是()A. 2020B. ﹣2020C.12020D.12020【答案】B【解析】【分析】直接利用相反数的定义得出答案.【详解】解:2020的相反数是:﹣2020.故选:B.【点睛】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.如图是由5个大小相同的立方体搭成的几何体,其俯视图是()A. B. C. D.【答案】D【解析】【分析】找到从上面看所得到的图形即可.【详解】解:其俯视图如下:故选:D.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.华为Mate 30 5G系列是近期相当火爆的5G国产手机,它采用的麒麟990 5G芯片在指甲盖大小的尺寸上集成了103亿个晶体管,将103亿用科学记数法表示为()A. 1.03×109B. 10.3×109C. 1.03×1010D. 1.03×1011【答案】C【解析】【分析】根据科学记数法的表示方法解答即可.【详解】解:103亿=103 0000 0000=1.03×1010.故选:C.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.下列图形中,既是中心对称图形又是轴对称图形的是()A. B.C. D.【答案】C【解析】【分析】根据轴对称图形的定义:如果一个平面图形,沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;以及中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形;即可选出答案.【详解】A.不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.不是轴对称图形,是中心对称图形,故此选项不合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C.【点睛】本题考察轴对称图形与中心对称图形的识别,较容易,熟练掌握轴对称图形与中心对称图形的定义是顺利解题的关键.5.如图,下列条件中,能判定DE∥AC是()A. ∠EDC=∠EFCB. ∠AFE=∠ACDC. ∠3=∠4D. ∠1=∠2【答案】C【解析】【分析】可以从直线DE、AC的截线所组成的“三线八角”图形入手进行判断.【详解】解:∠EDC=∠EFC不是两直线被第三条直线所截得到的,因而不能判定两直线平行,A选项错误;∠AFE=∠ACD,∠1=∠2是EF和BC被AC和EC所截得到的同位角和内错角,因而可以判定EF∥BC,但不能判定DE∥AC,B选项和D选项错误;∠3=∠4这两个角是AC与DE被EC所截得到的内错角,可以判定DE∥AC,C选项正确.故选:C.【点睛】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.6.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A. B.C. D.【答案】C【解析】【分析】根据三角形外心的定义得到三角形外心为三边的垂直平分线的交点,然后利用基本作图对各选项进行判断.【详解】三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选C .【点睛】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的外心.7.不等式组5123132x x x +⎧⎪-+⎨>⎪⎩的解集为( ) A. ﹣4<x <﹣1B. ﹣4≤x <﹣1C. ﹣4≤x≤﹣1D. ﹣4<x≤﹣1 【答案】B【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式x+5≥1得x≥﹣4, 解不等式23132x x -+>,得:x <﹣1, 则不等式组的解集为﹣4≤x <﹣1,故选:B .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.一件夹克衫先按成本提高40%标价,再按9折(标价的90%)出售,结果获利38元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( )A. (140%)90%38x x +⨯=-B. (140%)90%38x x +⨯=+C. (140%)90%38x x +⨯=-D. (140%)90%38x x +⨯=+【答案】B【解析】【分析】首先理解题意找出题中存在的等量关系:售价=进价+利润,根据此等式列方程即可.【详解】设这件夹克衫的成本是x 元,则标价是:(1+40%)x 元,以9折(标价的90%)出售则售价是:(1+40%)x×90%元,根据等式列方程得:(140%)90%38x x +⨯=+.故选:B .【点睛】此题考查实际问题抽象出一元一次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.9.下列哪一个是假命题( )A. 五边形外角和为360°B. 圆的切线垂直于经过切点的半径C. (3,﹣2)关于y 轴的对称点为(﹣3,2)D. 抛物线y =x 2﹣4x +2020的对称轴为直线x =2【答案】C【解析】【分析】根据多边形的外角和定理、切线的性质定理、关于y 轴对称的点的坐标特征、二次函数的对称轴是确定方法判断即可.【详解】A .五边形外角和为360°,是真命题;B .圆的切线垂直于经过切点的半径,是真命题;C .(3,﹣2)关于y 轴的对称点为(﹣3,﹣2),原命题是假命题;D .抛物线y =x 2﹣4x +2020的对称轴为直线x =2,是真命题;故选:C .【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉性质定理.10.对于一组数据:x 1,x 2,x 3,…,x 10,若去掉一个最大值和一个最小值,则下列统计量一定不会发生变化的是( )A. 平均数B. 中位数C. 众数D. 方差【答案】B【解析】【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【详解】先去掉一个最高分,去掉一个最低分,再进行统计,则上述四个统计量中,一定不会发生变化的是中位数;平均数、众数、方差都会发生改变;故选:B.【点睛】本题主要考查统计的有关知识,此题关键是了解中位数的定义.11.如图,山顶一铁塔AB在阳光下的投影CD的长为6米,此时太阳光与地面的夹角∠ACD=60°,则铁塔AB的高为()A. 3米B. 63米C. 33米D. 23米【答案】B【解析】【分析】依据平行于三角形一边的直线截其他两边所得的线段对应成比例及60°的正切值联立求解.【详解】设直线AB与CD的交点为点O,∴BO DO AB CD=,∴AB=BO CD DO⨯,∵∠ACD=60°,∴∠BDO=60°,在Rt△BDO中,tan60°=BO DO,∵CD=6,∴AB=BO DO×CD=63. 故选B .【点睛】本题主要考查平行线分线段成比例定理,解题的关键是根据实际问题抽象出几何图形. 12.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,其对称轴为直线x =﹣1,与x 轴的交点为(x 1,0)、(x 2,0),其中0<x 2<1,有下列结论:①b 2﹣4ac >0;②4a ﹣2b +c >﹣1;③﹣3<x 1<﹣2;④当m 为任意实数时,a ﹣b ≤am 2+bm ;⑤3a+c =0.其中,正确的结论有( )A. ②③④B. ①③⑤C. ②④⑤D. ①③④【答案】D【解析】【分析】 根据函数图象和二次函数的性质,可以判断各个小题中的结论是否成立,本题得以解决.【详解】∵二次函数y=ax 2+bx+c (a≠0)的图象与x 轴有两个交点,∴b 2-4ac >0,故①正确;∵该函数图象的对称轴是x=-1,当x=0时的函数值小于-1,∴x=-2时的函数值和x=0时的函数值相等,都小于-1,∴4a-2b+c <-1,故②错误;∵该函数图象的对称轴是x=-1,与x 轴的交点为(x 1,0)、(x 2,0),其中0<x 2<1,∴-3<x ,1<-2,故③正确;∵当x=-1时,该函数取得最小值,∴当m 为任意实数时,a-b ≤am 2+bm ,故④正确;∵-2b a=-1, ∴b=2a ,∵x=1时,y=a+b+c >0,∴3a+c >0,故⑤错误;故选:D.【点睛】此题考查二次函数图象上点的坐标特征、二次函数图象与系数的关系、二次函数的性质,解题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.二、填空题13.分解因式:a3﹣a=_____.【答案】a(a+1)(a﹣1)【解析】【分析】先提取公因式a,再用平方差公式二次分解即可.【详解】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案:a(a+1)(a﹣1).【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.14.已知一组数据x1,x2,x3,x4的方差是0.2,则数据x1+5,x2+5,x3+5,x4+5的方差是______.【答案】0.2【解析】【分析】根据数据x1,x2,x3,x4的方差为0.2,即可得出数据x1+5,x2+5,x3+5,x4+5的方差.【详解】∵数据x1,x2,x3,x4的方差为0.2,当一组数据同时加上一个常数不影响方差,∴数据x1+5,x2+5,x3+5,x4+5的方差是0.2,故答案为0.2.【点睛】此题考查方差,解题关键在于掌握掌握运算法则.15.如图,AB是⊙O的直径,点C和点D是⊙O上位于直径AB两侧的点,连结AC,AD,BD,CD,若⊙O 的半径是5,BD=8,则sin∠ACD的值是_______.【答案】3 5【解析】【分析】利用勾股定理求出AD,再利用圆周角定理解决问题即可.【详解】∵AB是直径,∴∠ADB=90°,∴AD=2222108AB BD-=-=6,∵∠ACD=∠B,∴sin∠ACD=sin∠B=63105 ADAB==,故答案为35.【点睛】此题考查圆周角定理,解直角三角形,解题的关键是熟练掌握基本知识.16.如图,在平面直角坐标系中,边长为1的正方形OABC的顶点O与原点重合,顶点A,C分别在x轴、y轴上,反比例函数y=kx(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点M、N,连接OM、ON、MN.若∠MON=45°,则k的值为_____.2﹣1【解析】【分析】由点M、N都在y=kx的图象上,及正方形的性质可得出CN=AM,将△OAM绕点O逆时针旋转90°,可证出△M'ON≌△MON(SAS),由此即可得出M′N=MN,再由CN=AM,通过边与边之间的关系即可得出BM=BN,设AM=CN=x,则BM=BN=1-x,MN=2x,在Rt△BMN中,利用勾股定理列出x的方程,求得x 的值,便可得出M点的坐标,最后用待定系数法求得k便可.【详解】解:∵点M、N都在y=kx的图象上,∴S△ONC=S△OAM=12|k|.∵四边形ABCO为正方形,∴OC=OA,∠OCN=∠OAM=90°,∴12OC•CN=12OA•AM.∴CN=AM.将△OAM绕点O逆时针旋转90°,点M对应M′,点A对应C,如图所示.∵∠OCM′+∠OCN=180°,∴N、C、M′共线.∵∠COA=90°,∠NOM=45°,∴∠CON+∠MOA=45°.∵△OAM旋转得到△OCM′,∴∠MOA=∠M′OC,∴∠CON+∠COM'=45°,∴∠M'ON=∠MON=45°.在△M'ON与△MON中,OM OMM ON MONON ON=⎧⎪∠=∠'⎨='⎪⎩,∴△M'ON≌△MON(SAS),∴MN=M'N.∵CN=AM.又∵BC =BA ,∴BN =BM .设AM =CN =x ,则BM =BN =1﹣x ,MN =2x ,又∵∠B =90°,∴BN 2+BM 2=MN 2,∴(1﹣x )2+(1﹣x )2=(2x )2,解得,x ﹣1,或x ﹣1(舍去),∴AM ﹣1,∴M (1﹣1),∵M 点在反比例函数y =k x(k ≠0,x >0)的图象上,∴k =1×﹣1)﹣1,﹣1.【点睛】本题考查了全等三角形的判定与性质、旋转的性质、勾股定理以及一元二次方程的解法,解题的关键是找出关于x 的方程,求得点M 坐标,解决该题型题目时,根据全等三角形的性质找出相等的边角关系也是关键.三、解答题17.计算:2020-211)()24sin 602-+--︒(. 【答案】7【解析】【分析】利用幂的乘方,负整数指数幂,绝对值,三角函数值,进行计算即可解答.【详解】原式+2+4×2=7 【点睛】此题考查实数的混合运算,掌握运算法则解题的关键.18.先化简,再求值:211(1)22a a a --÷++,在a =±2,±1中,选择一个恰当的数,求原式的值. 【答案】11a -,1 【解析】【分析】对括号内的分式通分化简、用平方差公式因式分解,再根据整式的乘法和整式的除法法则进行计算,再代入a 的值进行计算. 【详解】211(1)22a a a --÷++ ()()212211a a a a a +-+=++- 11a =- 当2a =时,原式1121==-. 【点睛】本题考查的是分式的混合运算-化简求值,解题的关键是熟练掌握分式的混合运算法则. 19.某中学为了解九年级学生对三大球类运动的喜爱情况,从九年级学生中随机抽取部分学生进行调查问卷,通过分析整理绘制了如下两幅统计图.请根据两幅统计图中的信息回答下列问题:(1)求参与调查的学生中,喜爱排球运动的学生人数,并补全条形图;(2)若该中学九年级共有800名学生,请你估计该中学九年级学生中喜爱篮求运动的学生有多少名?(3)若从喜爱足球运动的2名男生和2名女生中随机抽取2名学生,确定为该校足球运动员的重点培养对象,请用列表法或画树状图的方法求抽取的两名学生为一名男生和一名女生的概率.【答案】(1)60,补全图见解析;(2)360;(3)23【解析】【分析】(1)首先求出总人数,进而可求出喜爱排球运动的学生人数,并补全条形图即可;(2)由总人数乘以喜爱篮球运动的学生的百分数即可得解;(3)画树状图展示12种等可能的结果数,再找出抽取的两人恰好是一名男生和一名女生结果数,然后根据概率公式求解.【详解】解:(1)由题意可知调查的总人数=12÷20%=60(人),所以喜爱排球运动的学生人数=60×35%=21(人) 补全条形图如图所示:(2)∵该中学九年级共有800名学生,∴该中学九年级学生中喜爱篮球运动的学生有800×(1-35%-20%)=360名;(3)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是一名男生和一名女生结果数为8,所以抽取的两人恰好是一名男生和一名女生概率=82123 . 【点睛】此题考查条形统计图,列表法与树状图法,解题关键在于利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率. 20.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,AE ⊥BC 交CB 延长线于E ,CF ∥AE 交AD 延长线于点F . (1)求证:四边形AECF 是矩形; (2)连接OE ,若AE=8,AD=10,求OE 的长. 【答案】(1)见解析;(2)OE=5【解析】 【分析】 (1)根据菱形性质得到AD ∥BC ,推出四边形AECF 是平行四边形,根据矩形的判定定理即可得到结论;(2)根据已知条件得到得到CE=8.求得AC=45,于是得到结论.【详解】(1)证明:∵菱形ABCD,∴AD∥BC.∵CF∥AE,∴四边形AECF是平行四边形.∵AE⊥BC,∴平行四边形AECF是矩形;(2)解:∵AE=8,AD=10,∴AB=10,BE=6.∵AB=BC=10,∴CE=16.∴5∵对角线AC,BD交于点O,∴5∴5【点睛】此题考查矩形的判定和性质,菱形的性质,解直角三角形,正确的识别图形是解题的关键.21.为抗击新型肺炎疫情,某服装厂及时引进了一条口罩生产线生产口罩,开工第一天生产10万件,第三天生产14.4万件,若每天增长的百分率相同.试回答下列问题:(1)求每天增长的百分率;(2)经调查发现,1条生产线最大产能是20万件/天,若每增加1条生产线,每条生产线的最大产能将减少2万件/天,现该厂要保证每天生产口罩60万件,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?【答案】(1)20%;(2)增加4条生产线【解析】【分析】(1)设每天增长的百分率x ,根据题意第一天生产10万件,第三天生产14.4万件,列出方程即可解答. (2)设应该增加y 条生产线,根据题意1条生产线最大产能是20万件/天,若每增加1条生产线,每条生产线的最大产能将减少2万件/天,现该厂要保证每天生产口罩60万件,列出方程即可解答.【详解】(1)设每天增长的百分率x ,可得:10(1+x)2=14.4,解得:x=0.2,答:每天增长20%.(2)设应该增加y 条生产线,根据题意可得:(20-2y )+(20-2y )y=60,解得:y=4,故答案为:4.【点睛】此题考查一元二次方程的应用,解题关键在于根据题意列出方程.22.如图,已知AB 是⊙O 的直径,AB =4,点C 是AB 延长线上一点,且BC =2,点D 是半圆的中点,点P 是⊙O 上任意一点.(1)当PD 与AB 交于点E 且PC =CE 时,求证:PC 与⊙O 相切;(2)在(1)的条件下,求PC 的长;(3)点P 是⊙O 上动点,当PD +PC 的值最小时,求PC 的长.【答案】(1)详见解析;(2)3(365 【解析】【分析】(1)根据点D 是半圆的中点可得,∠APD =45°,根据圆的半径相等和三角形的外角性质可推出∠PEC =90°﹣∠OPE ,根据PC =CE 即可证得;(2)在△OPC 中,由勾股定理即可求出PC 的长;(3)根据两点之间线段最短可知,当点C 、P 、D 三点共线时,PD +PC 最小,根据圆内接四边形的性质和已知条件可证得△CBP '∽△CDA ,利用对应边成比例即可求出答案.【详解】(1)证明:如图1,∵点D是半圆的中点,∴∠APD=45°,连接OP,∴OA=OP,∴∠OAP=∠OP A,∴∠PEC=∠OAP+∠APE=∠OP A+∠APE=∠APE﹣∠OPE+∠APE=2∠APE﹣∠OPE=90°﹣∠OPE,∵PC=EC,∴∠CPE=∠PEC=90°﹣∠APE,∴∠OPC=∠OPE+∠CPE=∠OPE+90°﹣∠OPE=90°,∵点P在⊙O上,∴PC是⊙O的切线;(2)解:由(1)知,∠OPC=90°,∵AB=4,∴OP=OB=12AB=2,∵BC=2,∴OC=OB+BC=4,根据勾股定理得,2223CP OC OP=-=(3)解:连接OD,如图2,∵D 是半圆O 的中点,∴∠BOD =90°,要使PD +PC 的值最小,则连接CD 交⊙O 于P ',即点P 在P '的位置时,PD +PC 最小,由(2)知,OC =4,在Rt △COD 中,OD =OB =2, 根据勾股定理得,2225CD OD OC =+=连接BP ,AD ,则四边形ADP 'B 是⊙O 的内接四边形,∴∠CBP '=∠CDA ,∵∠BCP =∠DCA ,∴△CBP '∽△CDA , ∴CP BC AC CD'=, ∴4225CP '=+, ∴CP '655∴当PD +PC 的值最小时,PC 655 【点睛】本题属于圆的综合题,难度中等,主要考查了圆切线的判定定理,圆的基本性质,相似三角形的判定和性质等知识,切线的判定往往要作的辅助线就是连接圆心和准切点,证半径垂直准切线. 23.如图,抛物线y =ax 2+bx +2(a <0)与x 轴交于点A (﹣1,0)和点B (2,0),与y 轴交于点C .(1)求该抛物线的函数解析式;(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD 、CD ,OD 交BC 于点F ,当S △COF :S △CDF =2:1时,求点D 的坐标;(3)如图2,点E 的坐标为(0,﹣1),在抛物线上是否存在点P ,使∠OBP =2∠OBE ?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.【答案】(1)y =﹣x 2+x +2;(2)D (1,2);(3)(120,39)或(﹣752,39-). 【解析】【分析】(1)利用待定系数法求解析式即可得到答案,(2)过点D 作DH ∥y 轴交BC 于点H ,交x 轴于点G ,利用S △COF :S △CDF =2:1得到OF :DF =2:1,利用相似三角形的性质可得答案,(3)分情况讨论:①当点P 在x 轴上方时,在y 轴上取点G (1,0),连接BG ,则∠OBG =∠OBE ,过点B 作直线PB 交抛物线于点P ,交y 轴于点M ,使∠GBM =∠GBO ,则∠OBP =2∠OBE ,然后求解BM 的解析式,建立方程组求解即可, ②当点P 在x 轴下方时,作点M (0,83)关于x 轴的对称点N (0,83-),求解BN 的解析式,建立方程组求解即可.【详解】解:(1)∵A (﹣1,0),B (2,0),∴把A (﹣1,0),B (2,0)代入y =ax 2+bx +2得,20,4220a b a b -+=⎧⎨++=⎩解得,1,1a b =-⎧⎨=⎩ ∴该抛物线的函数解析式为y =﹣x 2+x +2;(2)如图1,过点D 作DH ∥y 轴交BC 于点H ,交x 轴于点G ,∵抛物线y =﹣x 2+x +2与y 轴交于点C ,∴C (0,2),设直线BC 解析式为y =kx +b ,则20,2k b b +=⎧⎨=⎩解得1,2k b =-⎧⎨=⎩∴直线BC 解析式为y =﹣x +2,∵S △COF :S △CDF =2:1,∴OF :DF =2:1,∵DH ∥OC ,∴△OFC ∽△DFH , ∴2,OF OC DF DH== ∴OC =2DH ,设D (a ,﹣a 2+a +2),则H (a ,﹣a +2),∴DH =﹣a 2+a +2﹣(﹣a +2)=﹣a 2+2a ,∴2=2(﹣a 2+2a ),解得a =1,∴D (1,2).(3)①当点P 在x 轴上方时,在y 轴上取点G (1,0),连接BG ,则∠OBG =∠OBE ,过点B 作直线PB 交抛物线于点P ,交y 轴于点M ,使∠GBM =∠GBO ,则∠OBP =2∠OBE ,过点G 作GH ⊥BM ,∵E (0,﹣1),∴OE =OG =GH =1,设MH =x ,则MG,在Rt △OBM 中,OB 2+OM 2=MB 2,+1)2+4=(x +2)2,解得:x =43,0x =(舍去) 故MG5,3=∴OM =OG +MG =581.33+= ∴点M (0,83), 将点B (2,0)、M (0,83)的坐标代入一次函数表达式y =mx +n , 20,83m n n +=⎧⎪⎨=⎪⎩解得:4383m n ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线BM 的表达式为:48,33y x =-+ ∴248,332y x y x x ⎧=-+⎪⎨⎪=-++⎩ 解得:13x =或x =2(舍去), ∴点P 120(,)39; ②当点P 在x 轴下方时,作点M (0,83)关于x 轴的对称点N (0,83-), 同理可得:直线BN 的解析式为48,33y x =-∴248,332y x y x x ⎧=-⎪⎨⎪=-++⎩ 解得,73x =-或x =2(舍去), ∴点P 752(,)39--; 综合以上可得,点P 的坐标为120(,)39或752(,)39--.【点睛】本题考查的是利用待定系数法求二次函数的解析式,相似三角形的判定与性质,一次函数与二次函数的交点坐标,勾股定理的应用,掌握以上知识是解题的关键.。

2020年广东省中山市中考数学一模试卷 (含答案解析)

2020年广东省中山市中考数学一模试卷 (含答案解析)

2020年广东省中山市中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−2014的相反数是()A. 2014B. 12014C. −12014D. −20142.一组数据2,4,6,4,8的中位数为()A. 2B. 4C. 6D. 83.在平面直角坐标系中,点(3,−1)关于x轴对称的点的坐标为()A. (3,1)B. (−3,1)C. (1,−3)D. (−3,−1)4.一个多边形的内角和是1440°,求这个多边形的边数是()A. 7B. 8C. 9D. 105.若式子√4−3x在实数范围内有意义,则x的取值范围是()A. x>43B. x<43C. x≥43D. x≤436.如图,在△ABC中,点E、F分别为AB、AC的中点.若△ABC的周长为6,则△AEF的周长为()A. 12B. 3C. 4D. 不能确定7.将抛物线y=(x−1)2+2向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A. y=(x−1)2+4B. y=(x−4)2+4C. y=(x+2)2+6D. y=(x−4)2+68.不等式组{12−2x<203x−6≤0的解集是()A. −4<x≤6B. x≤−4或x>2C. −4<x≤2D. 2≤x<49.如图,正方形ABCD的边长为3,E、F分别是AB、CD上的点,且∠CFE=60°,将四边形BCFE沿EF翻折,得到B′C′FE,C′恰好落在AD边上,B′C′交AB于点G,则GE的长是()A. 3√3−4B. 4√2−5C. 4−2√3D. 5−2√310.如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2−4ac>0;③2a−b=0;④a−b+c=0.其中,正确的结论有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共7小题,共28.0分)11.分解因式:xy+x=______ .12.若单项式5x4y和25x n y m是同类项,则m+n的值为______.13.已知√a−1+|b+2|=0,则(a+b)2011=______ .14.若x−2y=−3,则5−x+2y=______.BC的长为半径作15.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠B=25°,则∠ACB 的度数为______.16.如图,从一块直径是2m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,则圆锥底面圆的半径是__________m.17.如图,在平面直角坐标系中,A(4,0)、B(0,−3),以点B为圆心、2为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为______.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:[(x+2y)2−(x+4y)(3x+y)]÷(2x),其中x=−2,y=1.2四、解答题(本大题共7小题,共56.0分)19.解放中学为了了解学生对新闻、体育、动画、娱乐四类电视节目的喜爱程度,随机抽取了部分学生进行调查(每人限选1项),现将调查结果绘制成如下两幅不完整的统计图,根据图中所给的信息解答下列问题.(1)喜爱动画的学生人数和所占比例分别是多少?(2)请将条形统计图补充完整;(3)若该校共有学生1000人,依据以上图表估计该校喜欢体育的人数约为多少?20.如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB垂足分别是点E,F.若BF=CE,求证:△ABC是等腰三角形.21.已知关于x、y的方程组{2ax+by=4,ax−3by=9与方程组{3x+y=10,x−2y=8有相同的解,求a、b的值.22.如图,AB为半圆⊙O的直径,C为弧AB上一点,CD⊥AB于D,MN经过点C,且∠NCB=∠BCD,BF//MN分别交CD、AC于E、F.(1)求证:MN为⊙O切线;(2)求证:CF·CA=BD·BA;(3)若tan∠A=34,AB=25,求EF值.23.倡导健康生活推进全民健身,某社区去年购进A,B两种健身器材若干件,经了解,B种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件.(1)A,B两种健身器材的单价分别是多少元?(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共50件,且费用不超过21000元,请问:A种健身器材至少要购买多少件?(k>0) 24.在平面直角坐标系中,点A(−3,4)关于y轴的对称点为点B,连接AB,反比例函数y=kx 的图象经过点B,过点B作BC⊥x轴于点C,点P是该反比例函数图象上任意一点,过点P作PD⊥x轴于点D,点Q是线段AB上任意一点,连接OQ、CQ.(1)求k的值;(2)判断△QOC与△POD的面积是否相等,并说明理由.25.如图,在平面直角坐标系中,已知抛物线y=ax2+bx−8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE.已知点A,D的坐标分别为(−2,0),(6,−8).(1)求抛物线的函数表达式,并直接写出点E的坐标;(2)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形?-------- 答案与解析 --------1.答案:A解析:本题主要考查了相反数,解题的关键是熟记相反数的定义.利用相反数的定义求解即可.解:−2014的相反数是2014.故选A.2.答案:B解析:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解:一共5个数据,从小到大排列此数据为:2,4,4,6,8,故这组数据的中位数是4.故选B.3.答案:A解析:本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.解:点P(3,−1)关于x轴对称的点的坐标是(3,1),故选A.4.答案:D解析:解:设这个多边形的边数是n,根据题意得,(n−2)⋅180°=1440°,解得n=10.故选:D.根据多边形的内角和公式(n−2)⋅180°列出方程,然后求解即可.本题考查了多边形的内角和公式,熟记公式并列出方程是解题的关键.5.答案:D解析:此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.根据二次根式有意义的条件可得:4−3x≥0,再解即可.解:由题意得:4−3x≥0,解得:x≤43,故选D.6.答案:B解析:解:∵点E、F分别为AB、AC的中点.∴EF=12BC,EA=12BA,AF=12AC,∵△ABC的周长为6,即AB+AB+BC=6,∴△AEF的周长=AE+AF+EF=12(AB+AC+BC)=3,故选B.根据题意可得出EF=12BC,再根据三角形的周长公式可得出答案.本题考查了三角形的中位线定理,三角形的中位线等于第三边的一半.7.答案:B解析:主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.求出原抛物线的顶点坐标,再根据向左平移横坐标,向下平移纵坐标,求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.解:∵二次函数y=(x−1)2+2的顶点坐标为(1,2)∴图象向上平移2个单位长度,再向右平移3个单位长度后,顶点坐标为(4,4),由顶点式得,平移后抛物线解析式为:y=(x−4)2+4,故选B.8.答案:C解析:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式12−2x<20,得:x>−4,解不等式3x−6≤0,得:x≤2,则不等式组的解集为−4<x≤2.故选:C.9.答案:C解析:本题考查了翻折变换的性质、正方形的性质、勾股定理、含30°角的直角三角形的性质等知识;熟练掌握翻折变换和正方形的性质,根据题意得出方程是解决问题的关键,由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=AD=3,由折叠的性质得出FC′=FC,∠C′FE=∠CFE=60°,∠FC′B′=∠C=90°,B′E=BE,∠B′=∠B=90°,求出∠DC′F=30°,得出FC′=FC=2DF,求出DF=1,DC′=√3DF=√3,则C′A=3−√3,AG=√3(3−√3),设EB=x,则GE=2x,得出方程,解方程即可.解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=AD=3,由折叠的性质得:FC′=FC,∠C′FE=∠CFE=60°,∠FC′B′=∠C=90°,B′E=BE,∠B′=∠B=90°,∴∠DFC′=60°,∴∠DC′F=30°,∴FC′=FC=2DF,∵DF+CF=CD=3,∴DF+2DF=3,解得:DF=1,∴DC′=√3DF=√3,则C′A=3−√3,AG=√3(3−√3),设EB=x,∵∠B′GE=∠AGC′=∠DC′F=30°,∴GE=2x,AG+GE+EB=3,则√3(3−√3)+3x=3,解得:x=2−√3,∴GE=4−2√3;故选C.10.答案:C=1,因此b>0,与y轴交于正半轴,因此解析:解:抛物线开口向下,a<0,对称轴为x=−b2ac>0,于是有:ac<0,因此①正确;=1,得2a+b=0,因此③不正确,由x=−b2a抛物线与x轴有两个不同交点,因此b2−4ac>0,②正确,由对称轴x=1,抛物线与x轴的一个交点为(3,0),对称性可知另一个交点为(−1,0),因此a−b+c= 0,故④正确,综上所述,正确的结论有①②④,故选:C.根据抛物线的开口方向、对称轴、与x轴、y轴的交点,综合进行判断即可.本题考查二次函数的图象和性质,理解二次函数的图象与系数的关系是正确判断的前提.11.答案:x(y+1)解析:解:xy+x=x(y+1).故答案为:x(y+1).直接提取公因式x,进而分解因式得出即可.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:5解析:解:∵单项式5x4y和25x n y m是同类项,∴n=4,m=1,∴m+n=4+1=5.故填:5.根据同类项的定义中相同字母的指数也相同,得出m、n的值,即可求出m+n的值.此题考查了同类项;同类项的定义所含字母相同;相同字母的指数相同即可求出答案.13.答案:−1解析:解:∵√a−1+|b+2|=0,∴a−1=0,b+2=0,∴a=1,b=−2,∴(a+b)2011=−1,故答案为:−1.根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.答案:8解析:解:∵x−2y=−3,∴5−x+2y=5−(x−2y)=5−(−3)=8.故本题答案为8.将已知条件整体代入所求代数式即可.本题考查了代数式的求值,根据已知条件,运用整体代入的思想解题.15.答案:105°解析:解:由题意可得:MN垂直平分BC,则DC=BD,故∠DCB=∠DBC=25°,则∠CDA=25°+25°=50°,∵CD=AC,∴∠A=∠CDA=50°,∴∠ACB=180°−50°−25°=105°.故答案为:105°.利用线段垂直平分线的性质得出DC=BD,再利用三角形外角的性质以及三角形内角和定理得出即可.此题主要考查了基本作图以及线段垂直平分线的性质,得出∠A=∠CDA=50°是解题关键.16.答案:√24解析:本题考查的是圆锥面积的计算,圆周角定理的应用,勾股定理以及弧长的计算.利用勾股定理易得扇形的半径,那么就能求得扇形的弧长,除以2π即为圆锥的底面半径.解:易得扇形的圆心角所对的弦是直径,∴扇形的半径为:√2m,∴扇形的弧长为:90π×√2180=√22πm,∴圆锥的底面半径为:√22π÷2π=√24m,故答案为√2.417.答案:1.5解析:本题考查了图形与坐标的性质、勾股定理、直角三角形斜边上的中线等于斜边的一半的性质、圆的性质、两点之间线段最短,确定出OC最小时点C的位置是解题关键,也是本题的难点.先确定点C的运动路径是:以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC的长最小,先求⊙D的半径为1,说明D是AB的中点,根据直角三角形斜边中线是斜边一半可得OD=2.5,所以OC的最小值是1.5.解:当点P运动到AB的延长线上时,即如图中点P1,C1是AP1的中点,当点P在线段AB上时,C2是中点,取C1C2的中点为D,点C的运动路径是以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC的长最小,设线段AB交⊙B于Q,Rt△AOB中,OA=4,OB=3,∴AB=5,∵⊙B的半径为2,∴BP1=2,AP1=5+2=7,∵C1是AP1的中点,∴AC1=3.5,AQ=5−2=3,∵C2是AQ的中点,∴AC2=C2Q=1.5,C1C2=3.5−1.5=2,即⊙D的半径为1,∵AD=1.5+1=2.5=12AB,∴OD=12AB=2.5,∴OC=2.5−1=1.5,故答案为:1.5.18.答案:解:[(x+2y)2−(x+4y)(3x+y)]÷(2x)=[x2+4xy+4y2−(3x2+xy+12xy+4y2)]÷(2x)=(x2+4xy+4y2−3x2−xy−12xy−4y2)÷(2x)=(−2x2−9xy)÷(2x)=−x−92y,当x=−2,y=12时,原式=2−94=−14.解析:本题主要考查整式的混合运算及求代数式的值,解题的关键是掌握整式的混合运算顺序和运算法则.先根据整式的混合运算顺序和运算法则化简原式,再将x、y的值代入计算可得.19.答案:解:(1)调查人数为20÷10%=200(人),喜欢动画的比例为(1−46%−24%−10%)=20%,喜欢动画的人数为200×20%=40(人);(2)补全图形:(3)该校喜欢体育的人数约有:1000×24%=240(人).解析:此题考查了条形统计图与扇形统计图.注意掌握条形统计图与扇形统计图的有关知识是解此题的关键.(1)首先由喜欢新闻的有20人,占10%,求得总人数;然后由扇形统计图,求得喜爱动画的学生人数所占比例,继而求得喜爱动画的学生人数;(2)由(1)可将条形统计图补充完整;(3)直接利用样本估计总体的方法求解即可求得答案.20.答案:证明:∵点D 是△ABC 的边BC 的中点,∴ BD =CD ,∵ DE ⊥AC 于E ,DF ⊥AB 于F ,∴ ∠BFD =∠CED =90°,∵ BF =CE ,∴ Rt △BFD≌Rt △CED ,∴ ∠B =∠C ,∴ △ABC 是等腰三角形.解析:本题考查直角三角形全等的判定和等腰三角形的判定.根据点D 是△ABC 的BC 边上的中点,得BD =CD ,又DE ⊥AC 于E ,DF ⊥AB 于F ,且BF =CE.利用HL 可证Rt △BFD≌Rt △CED ,可得∠B =∠C ,即可证明△ABC 是等腰三角形.21.答案:解:解方程组{3x +y =10x −2y =8,得{x =4y =−2,把{x =4y =−2代入{2ax +by =4ax −3by =9,得{8a −2b =44a +6b =9, 解得{a =34b =1.解析:本题主要考查了二元一次方程组的解和解二元一次方程组,首先解方程组{3x +y =10x −2y =8,求出x ,y 的值,然后把x ,y 的值代入{2ax +by =4ax −3by =9,即可得到一个关于a ,b 的二元一次方程组,解之即可.22.答案:解:(1)∵AB 为直径,∴∠ACB =90°,又CD ⊥AB ,∴∠BCD=∠A,已知∠NCB=∠BCD,∴∠NCB=∠A,如图,连接OC,则∠A=∠OCA,∴∠NCB+BCO=∠ACO+∠BCO=90°,∴OC⊥MN,∴MN为⊙O切线;(2)∵BF//MN,∴∠NCB=∠FBC,由(1)知∠NCB=∠A,∴∠CBF=∠A,∴△CBF∽△CAB,∴CBCA =CFCB,即CB2=CF·CA,又△CDB∽△ABC,∴CBAB =BDCB,即CB2=BD·BA,∴CF·CA=BD·BA;(3)∵tan∠A=34,AB=25,∴BC=15,AC=20,BD=9,CD=12,由(2)知△CBF∽△CAB,∴CBAC =BFAB,∴BF=CB×ABAC =754;由(2)知∠CBF=∠NCB,已知∠NCB=∠BCD,∴∠BCE=∠CBE,∴EC=EB,即CE为BF边中线,∴EF=12BF=758.解析:本题考查了切线的判定,相似三角形的判定和性质,平行线的性质,解直角三角形等知识.(1)连接OC,证明∠NCO=90°即可;(2)由平行线性质证明△CBF∽△CAB,从而知CB2=CF·CA,又△CDB∽△ABC,得到CB2=BD·BA,等量代换,即可得到结果;(3)由(2)的结果,解直角三角形,得到BF的值,再由中位线的性质即可得到EF的值.23.答案:解:(1)设A种型号健身器材的单价为x元/套,B种型号健身器材的单价为1.5x元/套,根据题意,可得:7200x −54001.5x=10,解得:x=360,经检验x=360是原方程的根,1.5×360=540(元),因此,A,B两种健身器材的单价分别是360元,540元;(2)设购买A种型号健身器材m套,则购买B种型号的健身器材(50−m)套,根据题意,可得:360m+540(50−m)≤21000,解得:m≥3313,因此,A种型号健身器材至少购买34套.解析:(1)设A种型号健身器材的单价为x元/套,B种型号健身器材的单价为1.5x元/套,根据“B 种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件”,即可得出关于x的分式方程,解之即可得出结论;(2)设购买A种型号健身器材m套,则购买B种型号的健身器材(50−m)套,根据总价=单价×数量结合这次购买两种健身器材的总费用不超过21000元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出方程;(2)根据各数量之间的关系,正确列出一元一次不等式.24.答案:解:(1)∵点B与点A关于y轴对称,A(−3,4),∴点B的坐标为(3,4),∵反比例函数y=kx(x>0)的图象经过点B.∴k3=4,解得k=12.(2)相等.理由如下:设点P的坐标为(m,n),其中m>0,n>0,∵点P在反比例函数y=12x(x>0)的图象上,∴n=12m,即mn=12.∴S△POD=12OD⋅PD=12mn=12×12=6,∵A(−3,4),B(3,4),∴AB//x轴,OC=3,BC=4,∵点Q在线段AB上,∴S△QOC=12OC⋅BC=12×3×4=6.∴S△QOC=S△POD.解析:(1)根据点B与点A关于y轴对称,求出B点坐标,再代入反比例函数解析式解可求出k的值;(2)设点P的坐标为(m,n),点P在反比例函数y=12x(x>0)的图象上,求出S△POD,根据AB//x轴,OC=3,BC=4,点Q在线段AB上,求出S△QOC即可.本题考查了反比例函数综合题,涉及反比例函数k的几何意义,反比例函数图象上点的坐标特征等,综合性较强.25.答案:解:(1)将A,D两点的坐标代入得{4a−2b−8=036a+6b−8=−8,解得{a=12b=−3,∴抛物线的函数表达式为y=12x2−3x−8,点E的坐标为(3,−4);(2)需分两种情况进行讨论:①当OP=OQ时,△OPQ是等腰三角形,如图1,,∵点E的坐标为(3,−4),∴OE=√32+42=5,过点E作直线ME//PB,交y轴于点M,交x轴于点H,则OMOP=OEOQ,∴OM=OE=5,∴点M的坐标为(0,−5),设直线ME的函数表达式为y=k1x−5,∵E(3,−4)在直线ME上,∴3k1−5=−4,解得k1=13,∴直线ME的函数表达式为y=13x−5,令y=0,解得x=15,∴点H的坐标为(15,0),又∵MH//PB,∴OPOM =OBOH,即|m|5=815,解得m=−83,,②当QO=QP时,△OPQ是等腰三角形,如图2,∵当x=0时,y=12x2−3x−8=−8,∴点C的坐标为(0,−8),∴CE=√32+(8−4)2=5,∴OE=CE,∴∠1=∠2,又∵QO=QP,∴∠1=∠3,∴∠2=∠3,∴CE//PB,设直线CE交x轴于点N,其函数表达式为y=k2x−8,∵E(3,−4)在直线CE上,∴3k2−8=−4,解得k2=43,∴直线CE的函数表达式为y=43x−8,令y=0,得43x−8=0,解得x =6,∴点N 的坐标为(6,0),∵CN//PB ,∴OP OC =OB ON ,∴|m|8=86,解得m =−323,综上所述,当m 的值为−83或−323时,△OPQ 是等腰三角形.解析:本题主要考查了二次函数的图象,待定系数法求二次函数解析式,一次函数的图象,待定系数法求一次函数解析式,等腰三角形的性质,勾股定理,平行线的性质,平行线分线段成比例,分类讨论及数形结合思想.(1)将A ,D 的坐标代入函数解析式,解二元一次方程即可求出函数表达式;利用抛物线对称性,求出对称轴结合A 点坐标即可求出B 点坐标;E 为直线l 和抛物线对称轴的交点,利用D 点坐标求出l 表达式,令其横坐标为x =3,即可求出点E 的坐标;(2)分分两种情况进行讨论分析,即可得到答案.。

中山市2020年中考数学模拟试题及答案

中山市2020年中考数学模拟试题及答案

中山市2020年中考数学模拟试题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。

2.考生必须把答案写在答题卡上,在试卷上答题一律无效。

考试结束后,本试卷和答题卡一并交回。

3.本试卷满分120分,考试时间120分钟。

一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

)1.下列计算正确的是()A.x2﹣3x2=﹣2x4B.(﹣3x2)2=6x2C.x2y•2x3=2x6y D.6x3y2÷(3x)=2x2y22.据统计,截止2019年2月,我市实际居住人口约4210000人,4210000这个数用科学记数法表示为()A.42.1×105B.4.21×105C.4.21×106D.4.21×1073.如右图是某个几何体的侧面展开图,则该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱4.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3 B.3,2 C.2,1 D.1,05.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20 B.300 C.500 D.8006.下列图形中既是轴对称图形,又是中心对称图形的是()A. B.C. D.7.关于一次函数y=5x﹣3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.函数的图象与x轴的交点坐标是(0,﹣3)D.图象经过点(1,2)8.如右图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=()A.20°B.25°C.35°D.40°9.下列计算正确的有()个。

①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6 ③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.310.小李双休日爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t分钟,所走的路程为s米,s与t之间的函数关系式如图所示,下列说法错误的是()A.小李中途休息了20分钟B.小李休息前爬山的速度为每分钟70米C.小李在上述过程中所走的路程为6600米D.小李休息前爬山的平均速度大于休息后爬山的平均速度11. 如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A. 110°B. 90°C. 70°D. 50°12.图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4 B.6 C.4﹣2 D.10﹣4二、填空题(本题共6小题,满分18分。

广东省中山市2020版数学中考模拟试卷(I)卷

广东省中山市2020版数学中考模拟试卷(I)卷

广东省中山市2020版数学中考模拟试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)(2020·新乡模拟) 2020新型冠状病毒是目前已知的第7种可以感染人的冠状病毒,病毒颗粒的平均直径约为100纳米.已知1纳米米,则100纳米用科学记数法表示为()米.A .B .C .D .2. (2分) (2018九上·柯桥期末) 下列扑克牌中,中心对称图形有A . 1张B . 2张C . 3张D . 4张3. (2分) (2020·雅安) 如果关于x的一元二次方程有两个实数根,那么的取值范围是()A .B . 且C . 且D .4. (2分)下列说法正确的是()A . 要了解一批灯泡的使用寿命,采用全面调查的方式B . 要了解全市居民对环境的保护意识,采用抽样调查的方式C . 一个游戏的中奖率是1%,则做100次这这样的游戏一定会中奖D . 若甲组数据的方差S甲2=0.05,乙组数据的方差S乙2=0.1,则乙组数据比甲组数据稳定5. (2分) (2019七下·锡山月考) 观察下面图案,在A、B、C、D四幅图案中,能通过图案(1)的平移得到的是()A .B .C .D .6. (2分)(2017·埇桥模拟) 如图,在△ABC中,AC=BC=10,AB=12,D是AB上的一点(不与A、B重合),DE⊥BC,垂足为点E,设BD=x,四边形ACED的周长为y,则下列图象大致反映y与x之间的函数关系的是()A .B .C .D .二、填空题 (共10题;共14分)7. (1分)若 = = ,则 =________.8. (5分)(2011·扬州) 因式分解:x3﹣4x2+4x=________.9. (1分)(2019·朝阳模拟) 如图,某人从点A出发,前进5m后向右转60°,再前进5m后又向右转60°,这样一直走下去,当他第一次回到出发点A时,共走了________m.10. (1分)小莉与小明一起用A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)玩游戏,以小莉掷的A立方体朝上的数字为x,小明掷的B立方体朝上的数字为y,来确定点P(x,y),那么他们各掷一次所确定的点P(x,y)落在已知抛物线y=﹣x2+3x上的概率为________.11. (1分)已知方程x2﹣2x﹣5=0的两个根是m和n,则2m+4n﹣n2的值为________.12. (1分)(2019·桂林模拟) 一组数据:16,5,11,9,5的中位数是________.13. (1分) (2018八上·右玉月考) 已知P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,则(a+b)2018的值为________.14. (1分)(2018·青羊模拟) 如图,已知四边形ABCD的一组对边AD、BC的延长线相交于点E.另一组对边AB、DC的延长线相交于点F,若cos∠ABC=cos∠ADC= ,CD=5,CF=ED=n,则AD的长为________(用含n的式子表示).15. (1分) (2019九上·克东期末) 如图,若直线与轴、轴分别交于点、,并且,,一个半径为的,圆心从点开始沿轴向下运动,当与直线相切时,运动的距离是________.16. (1分)(2019·润州模拟) 已知,函数y=ax2﹣6ax+9a+1与线段AB有交点,且已知点A(0,1)与点B (2,3)的坐标,则a的取值范围________.三、解答题 (共10题;共94分)17. (10分) (2018八上·双城期末) 解下列方程(1)(2)18. (11分)(2020·南山模拟) 某社区踊跃为“抗击肺炎”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但工作人员不小心把墨水滴在统计表上,部分数据看不清楚.捐款人数0~50元51~100元101~150元151~200元6200元以上4(1)共有多少人捐款?(2)如果捐款0~50元的人数在扇形统计图中所占的圆心角为72°,那么捐款51~100元的有多少人?19. (6分)(2019·信丰模拟) 如图,三张“黑桃”扑克牌,背面完全相同将三张扑克牌背面朝上,洗匀后放在桌面上甲,乙两人进行摸牌游戏,甲先从中随机抽取一张,记下数字再放回洗匀,乙再从中随机抽取一张.(1)甲抽到“黑桃”,这一事件是________事件(填“不可能“,“随机“,“必然”);(2)利用树状图或列表的方法,求甲乙两人抽到同一张扑克牌的概率.20. (10分)(2020·舟山模拟) 如图,一次函数y=k1x+b(k1≠0)与反比例函数y=(k2≠0)的图象交于点A(﹣1,2),B(m,﹣1).(1)求这两个函数的表达式;(2)在x轴上是否存在点P(n,0)(n>0),使△ABP为等腰三角形?若存在,求n的值;若不存在,说明理由.21. (5分) (2020九上·长春期末) 某药品经过两次降价,每瓶零售价由56元降为31.5元.已知两次降价的百分比相同,求每次降价的百分率是多少.22. (10分)(2019·南城模拟) 在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)①依题意补全图1;②若∠PAB=20°,求∠ADF的度数;(2)若设∠PAB=a,且0°<a<90°,求∠ADF的度数(直接写出结果,结果可用含a的代数式表示)(3)如图2,若45°<∠PAB<90°,用等式表示线段AB、FE、FD之间的数量关系,并证明.23. (2分) (2018九上·下城期末) 如图,汽车在一条南北走向的公路上以每小时60千米的速度匀速向北行驶.当汽车在A处时,某信号塔C在它的北偏西30°方向,汽车前行2分钟.到达B处,此时信号塔C在它的北偏西45°方向.(1)求AB的距离.(2)求信号塔C到该公路的距离.(,结果精确到0.1千米)24. (10分)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,12),点C的坐标为(﹣4,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标;(3)在x轴上求点E,使△ACE为直角三角形.(直接写出点E的坐标)25. (15分) (2017九上·上城期中) 如图(1)如图,是形内的高,是的外接圆⊙ 的直径.①求证:.②若,,,⊙ 的直径长.③如图,在边长为的小正方形组成的网格之中有一个格点三角形,请你从上面两小题中获得经验,直接写出此格点三角形的外接圆面积.(2)如图,是形外的高,若,,,()题中②的结论是否还成立?成立与否都要说明理由.26. (15分) (2019八上·昭通期末) 已知,抛物线y=mx2+(1﹣2m)x+1﹣3m(m是常数).(Ⅰ)当m=1时,求该抛物线与x轴的公共点的坐标;(Ⅱ)抛物线与x轴相交于不同的两点A,B.①求m的取值范围;②无论m取何值,该抛物线都经过非坐标轴上的定点P,当<m≤8时,求△PAB面积的最大值,并求出相对应的m的值.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共14分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共94分)17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、22-1、22-2、22-3、23-1、23-2、24-1、25-1、25-2、26-1、。

广东省中山市2019-2020学年中考五诊数学试题含解析

广东省中山市2019-2020学年中考五诊数学试题含解析

广东省中山市2019-2020学年中考五诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列事件中,必然事件是( ) A .若ab=0,则a=0 B .若|a|=4,则a=±4C .一个多边形的内角和为1000°D .若两直线被第三条直线所截,则同位角相等2.将抛物线2y x =向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )A .2(2)3y x =+-B .2(2)3y x =++C .2(2)3y x =-+D .2(2)3y x =--3.下列图案是轴对称图形的是( )A .B .C .D .4.在△ABC 中,∠C =90°,AC =9,sinB =35,则AB =( ) A .15B .12C .9D .65.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38 C .40、42 D .42、40 6.不等式组73357x x x -+<+⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .7.如图,在ABC ∆中,点D 为AC 边上一点,,6,3DBC A BC AC ∠=∠==则CD 的长为( )A .1B .12C .2D .328.已知x ﹣2y=3,那么代数式3﹣2x+4y 的值是( )A .﹣3B .0C .6D .99.魏晋时期的数学家刘徽首创割圆术.为计算圆周率建立了严密的理论和完善的算法.作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用正多边形的周长圆的直径来求得较为精确的圆周率.祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是( )A .0.5B .1C .3D .π10.如图,在ABCD Y 中,E 为边CD 上一点,将ADE V 沿AE 折叠至AD'E △处,'AD 与CE 交于点F ,若52B ∠=︒,20DAE ∠=︒,则'FED ∠的大小为( )A .20°B .30°C .36°D .40°11.已知圆锥的侧面积为10πcm 2,侧面展开图的圆心角为36°,则该圆锥的母线长为( ) A .100cmB .10cmC .10cmD .10cm 12.如图所示的几何体,它的左视图是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,点A 1、A 2、A 3在x 轴上,且OA 1=A 1A 2=A 2A 3,分别过点A 1、A 2、A 3作y 轴的平行线,与反比例函数y=kx(x >0)的图象分别交于点B 1、B 2、B 3,分别过点B 1、B 2、B 3作x 轴的平行线,分别与y 轴交于点C 1、C 2、C 3,连接OB 1、OB 2、OB 3,若图中三个阴影部分的面积之和为499,则k= .14.化简11-(1)1m m ⎛⎫⋅-= ⎪-⎝⎭__________. 15.如图,利用图形面积的不同表示方法,能够得到的代数恒等式是____________________(写出一个即可).16.已知二次函数2y ax bx c =++中,函数y 与x 的部分对应值如下: ... -1 0 1 2 3 ......105212...则当5y <时,x 的取值范围是_________.17.在平面直角坐标系中,智多星做走棋的游戏,其走法是:棋子从原点出发,第1步向上走1个单位,第2步向上走2个单位,第3步向右走1个单位,第4步向上走1个单位……依此类推,第n 步的走法是:当n 被3除,余数为2时,则向上走2个单位;当走完第2018步时,棋子所处位置的坐标是_____ 18.如图所示,D 、E 之间要挖建一条直线隧道,为计算隧道长度,工程人员在线段AD 和AE 上选择了测量点B ,C ,已知测得AD =100,AE =200,AB =40,AC =20,BC =30,则通过计算可得DE 长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)解方程:2(x-3)=3x(x-3).20.(6分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.①若该公司当月卖出3部汽车,则每部汽车的进价为万元;②如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)21.(6分)(1)解方程:11322xx x--=---.(2)解不等式组:312215(1)xxx x-⎧<-⎪⎨⎪+≥-⎩22.(8分)先化简,后求值:22321113x x xx x-++⋅---,其中21x=+.23.(8分)﹣(﹣1)2018+4﹣(13)﹣124.(10分)A粮仓和B粮仓分别库存粮食12吨和6吨,现决定支援给C市10吨和D市8吨.已知从A 粮仓调运一吨粮食到C市和D市的运费分别为400元和800元;从B粮仓调运一吨粮食到C市和D市的运费分别为300元和500元.设B粮仓运往C市粮食x吨,求总运费W(元)关于x的函数关系式.(写出自变量的取值范围)若要求总运费不超过9000元,问共有几种调运方案?求出总运费最低的调运方案,最低运费是多少?25.(10分)如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD=BD.(2)探究证明将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明(3)拓展延伸在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写BD的长.26.(12分)如图,AB 是⊙O 的直径,C 是弧AB 的中点,弦CD 与AB 相交于E .若∠AOD =45°,求证:CE =2ED ;(2)若AE =EO ,求tan ∠AOD 的值.27.(12分)如图,矩形ABCD 中,点P 是线段AD 上一动点, O 为BD 的中点, PO 的延长线交BC 于Q .(1)求证: OP OQ =;(2)若=8AD cm ,6AB cm =,P 从点A 出发,以l /cm s 的速度向D 运动(不与D 重合).设点P 运动时间为()t s ,请用t 表示PD 的长;并求t 为何值时,四边形PBQD 是菱形.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】 【分析】直接利用绝对值的性质以及多边形的性质和平行线的性质分别分析得出答案. 【详解】解:A 、若ab=0,则a=0,是随机事件,故此选项错误; B 、若|a|=4,则a=±4,是必然事件,故此选项正确;C 、一个多边形的内角和为1000°,是不可能事件,故此选项错误;D 、若两直线被第三条直线所截,则同位角相等,是随机事件,故此选项错误; 故选:B . 【点睛】此题主要考查了事件的判别,正确把握各命题的正确性是解题关键. 2.A先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【详解】抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.故选A.3.C【解析】解:A.此图形不是轴对称图形,不合题意;B.此图形不是轴对称图形,不合题意;C.此图形是轴对称图形,符合题意;D.此图形不是轴对称图形,不合题意.故选C.4.A【解析】【分析】根据三角函数的定义直接求解.【详解】在Rt△ABC中,∠C=90°,AC=9,∵sinACBAB =,∴935 AB=,解得AB=1.故选A5.D【解析】【分析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,故选D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数. 6.C分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,在数轴上表示时由包括该数用实心点、不包括该数用空心点判断即可.【详解】解:解不等式﹣x+7<x+3得:x>2,解不等式3x﹣5≤7得:x≤4,∴不等式组的解集为:2<x≤4,故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.C【解析】【分析】根据∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB=代入求值即可.【详解】∵∠DBC=∠A,∠C=∠C,∴△BCD∽△ACB,∴CD BC BC AC=,3=∴CD=2.故选:C.【点睛】主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键. 8.A【解析】【详解】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;9.C 【解析】 【分析】连接OC 、OD ,根据正六边形的性质得到∠COD =60°,得到△COD 是等边三角形,得到OC =CD ,根据题意计算即可. 【详解】 连接OC 、OD ,∵六边形ABCDEF 是正六边形, ∴∠COD =60°,又OC =OD , ∴△COD 是等边三角形, ∴OC =CD ,正六边形的周长:圆的直径=6CD :2CD =3, 故选:C . 【点睛】本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式是解题的关键. 10.C 【解析】 【分析】由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,由三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小. 【详解】∵四边形ABCD 是平行四边形, ∴D B 52∠∠==︒,由折叠的性质得:D'D 52∠∠==︒,EAD'DAE 20∠∠==︒,∴AEF D DAE 522072∠∠∠=+=︒+︒=︒,AED'180EAD'D'108∠∠∠=︒--=︒, ∴FED'1087236∠=︒-︒=︒; 故选C . 【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF 和∠AED′是解决问题的关键. 11.C 【解析】 【分析】圆锥的侧面展开图是扇形,利用扇形的面积公式可求得圆锥的母线长. 【详解】 设母线长为R ,则圆锥的侧面积=236360R π=10π, ∴R=10cm , 故选C . 【点睛】本题考查了圆锥的计算,熟练掌握扇形面积是解题的关键. 12.D 【解析】分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线, 故选D .点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.1. 【解析】 【分析】先根据反比例函数比例系数k 的几何意义得到112233OB C OB C OB C 11S S S |k |k 22∆====V V ,再根据相似三角形的面积比等于相似比的平方,得到用含k 的代数式表示3个阴影部分的面积之和,然后根据三个阴影部分的面积之和为4918,列出方程,解方程即可求出k 的值. 【详解】解:根据题意可知,112233OB C OB C OB C 11S S S |k |k 22∆====V V 11223112233,//////OA A A A A A B A B A B y ==Q 轴,设图中阴影部分的面积从左向右依次为123,,S S S ,则112s k =, 11223OA A A A A ==Q ,222333:1:4,:1:9OB C OB C S S S S ∴==V V2311,818S k S k ∴==11149281818k k k ∴++= 解得:k=2. 故答案为1.考点:反比例函数综合题. 14.2-m 【解析】 【分析】根据分式的运算法则先算括号里面,再作乘法亦可利用乘法对加法的分配律求解. 【详解】 解:法一、()11-11m m ⎛⎫⋅- ⎪-⎝⎭=(11m m --- 11m -) ()1m ⋅- =21m m -- ()1m ⋅- = 2-m .故答案为:2-m .法二、原式=()1111m m ⎛⎫+⋅- ⎪-⎝⎭= =1-m+1 =2-m .故答案为:2-m . 【点睛】本题考查分式的加减和乘法,解决本题的关键是熟练运用运算法则或运算律. 15.(a+b )2=a 2+2ab+b 2 【解析】 【分析】完全平方公式的几何背景,即乘法公式的几何验证.此类题型可从整体和部分两个方面分析问题.本题从整体来看,整个图形为一个正方形,找到边长,表示出面积,从部分来看,该图形的面积可用两个小正方形的面积加上2个矩形的面积表示,从不同角度思考,但是同一图形,所以它们面积相等,列出等式.【详解】解:,a b Q 从整体来看,大正方形的边长是+()2,a b ∴+大正方形的面积为2Q 从部分来看,该图形面积为两个小正方形的面积加上个矩形的面积和,222a ab b 该图形面积为,∴++ ,Q 同一图形()2222.a b a ab b ∴+=++()2222.a b a ab b +=++故答案是【点睛】此题考查了完全平方公式的几何意义,从不同角度思考,用不同的方法表示相应的面积是解题的关键. 16.0<x<4【解析】【分析】根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案.【详解】由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x 的取值范围为0<x<4.故答案为0<x<4.【点睛】此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值得取值范围,同学们应熟练掌握.17.(672,2019)【解析】分析:按照题目给定的规则,找到周期,由题意可得每三步是一个循环,所以只需要计算2018被3除,就可以得到棋子的位置.详解:解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右1个单位,向上3个单位, ∵2018÷3=672…2,∴走完第2018步,为第673个循环组的第2步,所处位置的横坐标为672,纵坐标为672×3+3=2019, ∴棋子所处位置的坐标是(672,2019).故答案为:(672,2019).点睛:周期问题解决问题的核心是要找到最小正周期,然后把给定的数(一般是一个很大的数)除以最小正周期,余数是几,就是第几步,特别余数是1,就是第一步,余数是0,就是最后一步.18.1.【解析】【分析】先根据相似三角形的判定得出△ABC ∽△AED ,再利用相似三角形的性质解答即可.【详解】 ∵401201,20051005AB AC AE AD ====, ∴AB AC AE AD =, 又∵∠A=∠A ,∴△ABC ∽△AED , ∴15BC AB DE AE ==, ∵BC=30,∴DE=1,故答案为1.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.1223,3x x ==. 【解析】【分析】先进行移项,在利用因式分解法即可求出答案.【详解】 ()()2333x x x -=-,移项得:()()23330x x x ---=,整理得:()()3230x x --=,30x -=或230x -=,解得:13x =或223x =.【点睛】本题考查了解一元一次方程-因式分解,熟练掌握因式分解的技巧是本题解题的关键.20.解:(1)22.1.(2)设需要售出x 部汽车,由题意可知,每部汽车的销售利润为:21-[27-0.1(x -1)]=(0.1x +0.9)(万元),当0≤x≤10,根据题意,得x·(0.1x +0.9)+0.3x=12,整理,得x 2+14x -120=0,解这个方程,得x 1=-20(不合题意,舍去),x 2=2.当x >10时,根据题意,得x·(0.1x +0.9)+x=12,整理,得x 2+19x -120=0,解这个方程,得x 1=-24(不合题意,舍去),x 2=3.∵3<10,∴x 2=3舍去.答:要卖出2部汽车.【解析】一元二次方程的应用.(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:27-0.1×2=22.1.,(2)利用设需要售出x 部汽车,由题意可知,每部汽车的销售利润,根据当0≤x≤10,以及当x >10时,分别讨论得出即可.21.(1)无解;(1)﹣1<x≤1.【解析】【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解; (1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】(1)去分母得:1﹣x+1=﹣3x+6,解得:x=1,经检验x=1是增根,分式方程无解;(1)()3122151x x x x -⎧<-⎪⎨⎪+≥-⎩①②,由①得:x >﹣1,由②得:x≤1,则不等式组的解集为﹣1<x≤1.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.21x - 【解析】 分析:先把分值分母因式分解后约分,再进行通分得到原式=21x -,然后把x 的值代入计算即可. 详解:原式=311x x x -+-()()•213x x ()+-﹣1 =11x x +-﹣11x x -- =21x -当时,原式. 点睛:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值. 23.-1.【解析】【分析】直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案.【详解】原式=﹣1+1﹣3=﹣1.【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.24.(1)w =200x+8600(0≤x≤6);(2)有3种调运方案,方案一:从B 市调运到C 市0台,D 市6台;从A 市调运到C 市10台,D 市2台;方案二:从B 市调运到C 市1台,D 市5台;从A 市调运到C 市9台,D 市3台;方案三:从B 市调运到C 市2台,D 市4台;从A 市调运到C 市8台,D 市4台;(3)从A 市调运到C 市10台,D 市2台;最低运费是8600元.【解析】【分析】(1)设出B 粮仓运往C 的数量为x 吨,然后根据A ,B 两市的库存量,和C ,D 两市的需求量,分别表示出B 运往C ,D 的数量,再根据总费用=A 运往C 的运费+A 运往D 的运费+B 运往C 的运费+B 运往D的运费,列出函数关系式;(2)由(1)中总费用不超过9000元,然后根据取值范围来得出符合条件的方案;(3)根据(1)中的函数式以及自变量的取值范围即可得出费用最小的方案.【详解】解:(1)设B 粮仓运往C 市粮食x 吨,则B 粮仓运往D 市粮食6﹣x 吨,A 粮仓运往C 市粮食10﹣x 吨,A 粮仓运往D 市粮食12﹣(10﹣x )=x+2吨,总运费w =300x+500(6﹣x )+400(10﹣x )+800(x+2)=200x+8600(0≤x≤6).(2)200x+8600≤9000解得x≤2共有3种调运方案方案一:从B 市调运到C 市0台,D 市6台;从A 市调运到C 市10台,D 市2台;方案二:从B 市调运到C 市1台,D 市5台;从A 市调运到C 市9台,D 市3台;方案三:从B 市调运到C 市2台,D 市4台;从A 市调运到C 市8台,D 市4台;(3)w =200x+8600k >0,所以当x =0时,总运费最低.也就是从B 市调运到C 市0台,D 市6台;从A 市调运到C 市10台,D 市2台;最低运费是8600元.【点睛】本题重点考查函数模型的构建,考查利用一次函数的有关知识解答实际应用题,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.25.(1;(2)AD ﹣BD ;(3)+1.【解析】【分析】(1)根据全等三角形的性质求出DC ,AD ,BD 之间的数量关系(2)过点B 作BE ⊥BD ,交MN 于点E .AD 交BC 于O ,证明CDB AEB ∆∆≌,得到CD AE =,EB BD =,根据BED ∆为等腰直角三角形,得到DE =,再根据DE AD AE AD CD =-=-,即可解出答案.(3)根据A 、B 、C 、D 四点共圆,得到当点D 在线段AB 的垂直平分线上且在AB 的右侧时,△ABD 的面积最大.在DA 上截取一点H ,使得CD=DH=1,则易证CH AH ==由BD AD =即可得出答案.【详解】解:(1)如图1中,由题意:BAE BCD ∆∆≌,∴AE=CD ,BE=BD ,∴CD+AD=AD+AE=DE ,∵BDE ∆是等腰直角三角形,∴DE=2BD ,∴DC+AD=2BD ,故答案为2.(2)2AD DC BD -=.证明:如图,过点B 作BE ⊥BD ,交MN 于点E .AD 交BC 于O .∵90ABC DBE ∠=∠=︒,∴ABE EBC CBD EBC ∠+∠=∠+∠,∴ABE CBD ∠=∠.∵90BAE AOB ∠+∠=︒,90BCD COD ∠+∠=︒,AOB COD ∠=∠,∴BAE BCD ∠=∠,∴ABE DBC ∠=∠.又∵AB CB =,∴CDB AEB ∆∆≌,∴CD AE =,EB BD =,∴BD ∆为等腰直角三角形,2DE BD =.∵DE AD AE AD CD =-=-,∴2AD DC BD-=.(3)如图3中,易知A、B、C、D四点共圆,当点D在线段AB的垂直平分线上且在AB的右侧时,△ABD 的面积最大.此时DG⊥AB,DB=DA,在DA上截取一点H,使得CD=DH=1,则易证2CH AH==,∴21BD AD==+.【点睛】本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.26.(1)见解析;(2)tan∠AOD=3 4 .【解析】【分析】(1)作DF⊥AB于F,连接OC,则△ODF是等腰直角三角形,得出OC=OD=2DF,由垂径定理得出∠COE=90°,证明△DEF∽△CEO得出22ED OC DFCE DF===,即可得出结论;(2)由题意得OE=12OA=12OC,同(1)得△DEF∽△CEO,得出12EF EODF OC==,设⊙O的半径为2a(a>0),则OD=2a,EO=a,设EF=x,则DF=2x,在Rt△ODF中,由勾股定理求出x=35a,得出DF=65a,OF=EF+EO=85a,由三角函数定义即可得出结果.【详解】(1)证明:作DF⊥AB于F,连接OC,如图所示:则∠DFE=90°,∵∠AOD =45°,∴△ODF 是等腰直角三角形,∴OC =OD DF ,∵C 是弧AB 的中点,∴OC ⊥AB ,∴∠COE =90°,∵∠DEF =∠CEO ,∴△DEF ∽△CEO ,∴ED OC CE DF ===∴CE ;(2)如图所示:∵AE =EO ,∴OE=12OA=12OC , 同(1)得:,△DEF ∽△CEO , ∴12EF EO DF OC ==, 设⊙O 的半径为2a (a >0),则OD =2a ,EO =a ,设EF =x ,则DF =2x ,在Rt △ODF 中,由勾股定理得:(2x )2+(x+a )2=(2a )2,解得:x =35a ,或x =﹣a (舍去), ∴DF =65a ,OF =EF+EO =85a , ∴DF 3tan AOD OF 4∠==. 【点睛】本题考查了等腰直角三角形的判定与性质、相似三角形的判定与性质、勾股定理、垂径定理、三角函数等知识,熟练掌握相似三角形的判定与性质、勾股定理是关键.27. (1)证明见解析;(2) PD=8-t ,运动时间为74秒时,四边形PBQD 是菱形. 【解析】【分析】(1)先根据四边形ABCD 是矩形,得出AD ∥BC ,∠PDO=∠QBO ,再根据O 为BD 的中点得出△POD ≌△QOB ,即可证得OP=OQ ;(2)根据已知条件得出∠A 的度数,再根据AD=8cm ,AB=6cm ,得出BD 和OD 的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t 的值,判断出四边形PBQD 是菱形.【详解】(1)∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠PDO=∠QBO ,又∵O 为BD 的中点,∴OB=OD ,在△POD 与△QOB 中,PDO QBO OD OBPOD QOB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△POD ≌△QOB ,∴OP=OQ ;(2)PD=8-t ,∵四边形PBQD 是菱形,∴BP=PD= 8-t ,∵四边形ABCD 是矩形,∴∠A=90°,在Rt △ABP 中,由勾股定理得:AB 2+AP 2=BP 2,即62+t 2=(8-t)2,解得:t=74, 即运动时间为74秒时,四边形PBQD 是菱形. 【点睛】本题考查了矩形的性质,菱形的性质,全等三角形的判定与性质,勾股定理等,熟练掌握相关知识是解题关键.注意数形结合思想的运用.。

2020届广东省中山市中考数学一模试卷((有答案))(已审阅)

2020届广东省中山市中考数学一模试卷((有答案))(已审阅)

广东省中山市中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.|﹣2|=()A.0B.﹣2C.2D.12.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10134.已知y=0是关于y的一元二次方程(m﹣1)y2+my+4m2﹣4=0的一个根,那么m的值是()A.0B.1C.﹣1D.±15.由五个相同的立方体搭成的几何体如图所示,则它的左视图是()A.B.C.D.6.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°7.如图是根据某班40 名同学一周的体育锻炼情况绘制的统计图,该班40 名同学一周参加体育锻炼时间的中位数,众数分别是()A.10.5,16B.8.5,16C.8.5,8D.9,88.如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为()A.(﹣a,﹣2b)B.(﹣2a,﹣b)C.(﹣2a,﹣2b)D.(﹣b,﹣2a)9.小芳在本学期的体育测试中,1分钟跳绳获得了满分,她的“满分秘籍”如下:前20秒由于体力好,小芳速度均匀增加,20秒至50秒保持跳绳速度不变,后10秒进行冲刺,速度再次均匀增加,最终获得满分,反映小芳1分钟内跳绳速度y(个/秒)与时间t(秒)关系的函数图象大致为()A.B.C.D.10.如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么,有下列说法:①△EBD是等腰三角形,EB=ED;②折叠后∠ABE和∠CBD一定相等;③折叠后得到的图形是轴对称图形;④△EBA 和△EDC一定是全等三角形.其中正确的是()A.①②③B.①③④C.①②④D.①②③④二.填空题(共6小题,满分24分,每小题4分)11.分解因式:m3﹣m=.12.将直线y=2x+4沿y轴向下平移3个单位,则得到的新直线所对应的函数表达式为.13.已知x﹣=3,则x2+=.14.如图,将半径为4,圆心角为90°的扇形BAC绕A点逆时针旋转60°,点B、C的对应点分别为点D、E且点D刚好在上,则阴影部分的面积为.15.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan∠BOC=,则点A′的坐标为.16.如图,抛物线y=﹣2x2+2与x轴交于点A、B,其顶点为E.把这条抛物线在x轴及其上方的部分记为C1,将C1向右平移得到C2,C2与x轴交于点B、D,C2的顶点为F,连结EF.则图中阴影部分图形的面积为.三.解答题(共3小题,满分18分,每小题6分)17.计算:||+2﹣1﹣cos60°﹣(1﹣)0.18.先化简代数式1﹣÷,并从﹣1,0,1,3中选取一个合适的代入求值.19.作图题:如图,已知点A,点B,直线l及l上一点M.(1)连接MA,并在直线l上作出一点N,使得点N在点M的左边,且满足MN=MA;(2)请在直线l上确定一点O,使点O到点A与点O到点B的距离之和最短,并写出画图的依据.四.解答题(共3小题,满分21分,每小题7分)20.如图,甲、乙两座建筑物的水平距离BC为78m,从甲的顶部A处测得乙的顶部D处的俯角为48°,测得底部C处的俯角为58°,求甲、乙建筑物的高度AB和DC(结果取整数).参考数据:tan48°≈l.ll,tan58°≈1.60.21.中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”某中学为了解学生对四大名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.请根据以上信息,解决下列问题(1)本次调查所得数据的众数是部,中位数是部;(2)扇形统计图中“4部”所在扇形的圆心角为度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,求他们恰好选中同一名著的概率.22.如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.五.解答题(共3小题,满分27分,每小题9分)23.如图,在平面直角坐标系中A点的坐标为(8,m),AB⊥x轴于点B,sin∠OAB=,反比例函数y =的图象的一支经过AO的中点C,且与AB交于点D.(1)求反比例函数解析式;(2)求四边形OCDB的面积.24.如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.(1)求证:△PFA∽△ABE;(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件:.25.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.广东省中山市中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据绝对值的定义进行填空即可.【解答】解:|﹣2|=2,故选:C.【点评】本题考查了绝对值,掌握绝对值的定义是解题的关键.2.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.【分析】把解代入所给的方程,求出m的值.【解答】解:把y=0代入(m﹣1)y2+my+4m2﹣4=0得:4m2﹣4=0,即m2﹣1=0解得:m1=1,m2=﹣1当m=1时,关于y的方程由于二次项系数为0不再是一元二次方程,所以m=﹣1.故选:C.【点评】本题考查了一元二次方程的定义和一元二次方程的解法,难度不大.本题易错,容易出现求出m就作答,忽略需满足方程是一元二次方程的条件.5.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是三个小正方形,第二层左边一个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.【分析】依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.【解答】解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.7.【分析】根据中位数、众数的概念分别求解即可.【解答】解:将这组数据从小到大的顺序排列后,处于中间位置的那个数,由中位数的定义可知,这组数据的中位数是9;众数是一组数据中出现次数最多的数,即8;故选:D.【点评】考查了中位数、众数的概念,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.8.【分析】先找一对应点是如何变化,那么所求点也符合这个变化规律.【解答】解:小鱼最大鱼翅的顶端坐标为(5,3),大鱼对应点坐标为(﹣10,﹣6);小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为(﹣2a,﹣2b).故选:C.【点评】此题主要考查了位似变换,解决本题的关键是找到所给图形中象限内的一对对应点的变化规律.9.【分析】根据前20秒匀加速进行,20秒至40秒保持跳绳速度不变,后10秒继续匀加速进行,得出速度y随时间x的增加的变化情况,即可求出答案.【解答】解:随着时间的变化,前20秒匀加速进行,所以小芳同学1分钟内跳绳速度y随时间x的增加而增加,再根据20秒至50秒保持跳绳速度不变,所以小芳同学1分钟内跳绳速度y随时间x的增加而不变,再根据后10秒继续匀加速进行,所以小芳同学1分钟内跳绳速度y随时间x的增加而增加,故选:D.【点评】此题考查了函数的图象;正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.10.【分析】根据矩形的性质得到∠BAE=∠DCE,AB=CD,再由对顶角相等可得∠AEB=∠CED,推出△AEB≌△CED,根据等腰三角形的性质即可得到结论,依此可得①③④正确;无法判断∠ABE和∠CBD是否相等.【解答】解:∵四边形ABCD为矩形,∴∠BAE=∠DCE,AB=CD,在△AEB和△CED中,,∴△AEB≌△CED(AAS),∴BE=DE,∴△EBD为等腰三角形,∴折叠后得到的图形是轴对称图形,无法判断∠ABE和∠CBD是否相等.故其中正确的是①③④.故选:B.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.二.填空题(共6小题,满分24分,每小题4分)11.【分析】先提取公因式m,再对余下的多项式利用平方差公式继续分解.【解答】解:m3﹣m,=m(m2﹣1),=m(m+1)(m﹣1).【点评】本题考查提公因式法分解因式和利用平方差公式分解因式,关键在于需要进行二次分解因式.12.【分析】根据函数的平移规律,可得答案.【解答】解:将直线y=2x+4向下平移3个单位,得y=2x+4﹣3,化简,得y=2x+1,故答案为:y=2x+1.【点评】本题考查了一次函数图象与几何变换,利用函数图象的平移规律:上加下减,左加右减是解题关键.13.【分析】将原式两边平方即可得.【解答】解:∵x﹣=3,∴x2+﹣2=9,∴x2+=11,故答案为:11.【点评】本题主要考查分式的混合运算,解题的关键是掌握完全平方公式和分式的运算法则. 14.【分析】直接利用旋转的性质结合扇形面积求法以及等边三角形的判定与性质得出S阴影=S扇形ADE﹣S弓形AD=S 扇形ABC ﹣S 弓形AD ,进而得出答案.【解答】解:连接BD ,过点B 作BN ⊥AD 于点N ,∵将半径为4,圆心角为90°的扇形BAC 绕A 点逆时针旋转60°, ∴∠BAD =60°,AB =AD , ∴△ABD 是等边三角形, ∴∠ABD =60°, 则∠ABN =30°, 故AN =2,BN =2,S 阴影=S 扇形ADE ﹣S 弓形AD =S 扇形ABC ﹣S 弓形AD =﹣(﹣×4×)=.故答案为:.【点评】此题主要考查了扇形面积求法以及等边三角形的判定与性质,正确得出△ABD 是等边三角形是解题关键.15.【分析】如图,作辅助线;根据题意首先求出AB 、BC 的长度;借助面积公式求出A ′D 、OD 的长度,即可解决问题.【解答】解:如图,过点A ′作A ′D ⊥x 轴与点D ; 设A ′D =λ,OD =μ; ∵四边形ABCO 为矩形,∴∠OAB =∠OCB =90°;四边形ABA ′D 为梯形; 设AB =OC =γ,BC =AO =ρ; ∵OB =,tan ∠BOC =,∴,解得:γ=2,ρ=1;由题意得:A ′O =AO =1;△ABO ≌△A ′BO ; 由勾股定理得:λ2+μ2=1①, 由面积公式得:②;联立①②并解得:λ=,μ=. 故答案为(,).【点评】该题以平面直角坐标系为载体,以翻折变换为方法构造而成;综合考查了矩形的性质、三角函数的定义、勾股定理等几何知识点;对分析问题解决问题的能力提出了较高的要求. 16.【分析】由S 阴影部分图形=S 四边形BDFE =BD ×OE ,即可求解. 【解答】解:令y =0,则:x =±1,令x =0,则y =2, 则:OB =1,BD =2,OB =2,S 阴影部分图形=S 四边形BDFE =BD ×OE =2×2=4. 故:答案为4.【点评】本题考查的是抛物线性质的综合运用,确定S 阴影部分图形=S 四边形BDFE 是本题的关键. 三.解答题(共3小题,满分18分,每小题6分)17.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=2﹣+﹣﹣1=1﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.【分析】根据分式的混合运算法则把原式化简,根据分式有意义的条件确定x 的值,代入计算即可. 【解答】解:原式=1﹣×=1﹣=﹣=﹣, 由题意得,x ≠﹣1,0,1,当x=3时,原式=﹣【点评】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.19.【分析】(1)连接AM,以M为圆心,MA为半径画弧交直线l于N,点N即为所求;(2)连接AB交直线l于点O,点O即为所求;【解答】解:(1)作图如图1所示:(2)作图如图2所示:作图依据是:两点之间线段最短.【点评】本题考查作图﹣复杂作图,两点之间线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.四.解答题(共3小题,满分21分,每小题7分)20.【分析】首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应用其公共边构造关系式,进而可求出答案.【解答】解:如图作AE⊥CD交CD的延长线于E.则四边形ABCE是矩形,∴AE=BC=78,AB=CE,在Rt△ACE中,EC=AE•tan58°≈125(m)在Rt△AED中,DE=AE•tan48°,∴CD=EC﹣DE=AE•tan58°﹣AE•tan48°=78×1.6﹣78×1.11≈38(m),答:甲、乙建筑物的高度AB为125m,DC为38m.【点评】本题考查的是解直角三角形的应用,首先构造直角三角形,再借助角边关系、三角函数的定义解题.21.【分析】(1)先根据调查的总人数,求得1部对应的人数,进而得到本次调查所得数据的众数以及中位数;(2)根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“4部”所在扇形的圆心角;(3)根据1部对应的人数为40﹣2﹣10﹣8﹣6=14,即可将条形统计图补充完整;(4)根据树状图所得的结果,判断他们选中同一名著的概率.【解答】解:(1)∵调查的总人数为:10÷25%=40,∴1部对应的人数为40﹣2﹣10﹣8﹣6=14,∴本次调查所得数据的众数是1部,∵2+14+10=26>21,2+14<20,∴中位数为2部,故答案为:1、2;(2)扇形统计图中“4部”所在扇形的圆心角为:×360°=54°;故答案为:54;(3)条形统计图如图所示,(4)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,画树状图可得:共有16种等可能的结果,其中选中同一名著的有4种,故P(两人选中同一名著)==.【点评】此题考查了树状图法与列表法求概率,以及条形统计图与扇形统计图的知识.注意平均条数=总条数÷总人数;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.22.【分析】(1)由四边形ABCD为平行四边形,利用平行四边形的性质得到对边平行且相等,对角相等,再由垂直的定义得到一对直角相等,利用等式的性质得到一对角相等,利用ASA即可得证;(2)过D作DH垂直于AB,在直角三角形ADH中,利用30度所对的直角边等于斜边的一半得到AD =2DH,在直角三角形DEB中,利用斜边上的中线等于斜边的一半得到EB=2DH,易得四边形EBFD为平行四边形,利用平行四边形的对边相等得到EB=DF,等量代换即可得证.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,AD∥CB,AB∥CD,∴∠ADB=∠CBD,∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,在△AED和△CFB中,,∴△AED≌△CFB(ASA);(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,∴AD=2DH,在Rt△DEB中,∠DEB=45°,∴EB=2DH,∵ED⊥DB,FB⊥BD.∴DE∥BF,∵AB∥CD,∴四边形EBFD为平行四边形,∴FD=EB,∴DA=DF.【点评】此题考查了平行四边形的判定与性质,全等三角形的判定与性质,以及含30度直角三角形的性质,熟练掌握平行四边形的判定与性质是解本题的关键.五.解答题(共3小题,满分27分,每小题9分)23.【分析】(1)根据A横坐标确定出OB的长,利用锐角三角函数定义及勾股定理求出AB的长,确定出C坐标,代入反比例解析式求出k的值即可;(2)四边形OCDB的面积等于三角形AOB面积减去三角形ACD面积,求出即可.【解答】解:(1)∵A点的坐标为(8,y),AB⊥x轴,∴OB=8,∵Rt△OBA中,sin∠OAB=,∴OA=8×=10,AB==6,∵C是OA的中点,且在第一象限,∴C(4,3),∴反比例函数的解析式为y=;(2)连接BC,∵D在双曲线y=上,且D点横坐标为8,∴D(8,),即BD=,又∵C(4,3),∴S四边形OCDB =S△BOC+S△BDC=×8×3+××4=15.【点评】此题考查了待定系数法求反比例解析式,以及反比例的性质,熟练掌握待定系数法是解本题的关键.24.【分析】(1)根据正方形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:①当∠PEF=∠EAB时,则得到四边形ABEP为矩形,从而求得x的值;②当∠PEF=∠AEB时,再结合(1)中的结论,得到等腰△APE.再根据等腰三角形的三线合一得到F是AE的中点,运用勾股定理和相似三角形的性质进行求解.(3)首先计算圆D与线段相切时,x的值,在画出圆D过E时,半径r的值,确定x的值,半径比这时大时符合题意,根据图形确定x的取值范围.【解答】(1)证明:∵矩形ABCD,∴∠ABE=90°,AD∥BC,∴∠PAF=∠AEB,又∵PF⊥AE,∴∠PFA=90°=∠ABE,∴△PFA∽△ABE.…(2)解:分二种情况:①若△EFP∽△ABE,如图1,则∠PEF=∠EAB,∴PE∥AB,∴四边形ABEP为矩形,∴PA=EB=3,即x=3.…②若△PFE∽△ABE,则∠PEF=∠AEB,∵AD∥BC∴∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点,Rt△ABE中,AB=4,BE=3,∴AE=5,∴EF=AE=,∵△PFE∽△ABE,∴,∴,∴PE=,即x=.∴满足条件的x的值为3或.…(3)如图3,当⊙D与AE相切时,设切点为G,连接DG,∵AP=x,∴PD═DG=6﹣x,∵∠DAG=∠AEB,∠AGD=∠B=90°,∴△AGD∽△EBA,∴,∴=,x=,当⊙D过点E时,如图4,⊙D与线段有两个公共点,连接DE,此时PD=DE=5,∴AP=x=6﹣5=1,∴当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,x满足的条件:x=或0≤x<1;故答案为:x=或0≤x<1.…(12分)【点评】本题是矩形和圆的综合题,考查了矩形的性质、相似三角形的判定和性质.特别注意和线段有一个公共点,不一定必须相切,也可以相交,但其中一个交点在线段外.25.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a 的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH 与抛物线只有一个公共点时,t 的值,再确定当线段一个端点在抛物线上时,t 的值,可得:线段GH 与抛物线有两个不同的公共点时t 的取值范围.【解答】解:(1)∵抛物线y =ax 2+ax +b 有一个公共点M (1,0), ∴a +a +b =0,即b =﹣2a ,∴y =ax 2+ax +b =ax 2+ax ﹣2a =a (x +)2﹣,∴抛物线顶点D 的坐标为(﹣,﹣);(2)∵直线y =2x +m 经过点M (1,0), ∴0=2×1+m ,解得m =﹣2, ∴y =2x ﹣2, 则,得ax 2+(a ﹣2)x ﹣2a +2=0, ∴(x ﹣1)(ax +2a ﹣2)=0, 解得x =1或x =﹣2,∴N 点坐标为(﹣2,﹣6), ∵a <b ,即a <﹣2a , ∴a <0,如图1,设抛物线对称轴交直线于点E , ∵抛物线对称轴为x =﹣=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6), 设△DMN 的面积为S ,∴S =S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=,(3)当a =﹣1时,抛物线的解析式为:y =﹣x 2﹣x +2=﹣(x +)2+, 有,﹣x 2﹣x +2=﹣2x , 解得:x 1=2,x 2=﹣1,∴G(﹣1,2),∵点G、H关于原点对称,∴H(1,﹣2),设直线GH平移后的解析式为:y=﹣2x+t,﹣x2﹣x+2=﹣2x+t,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.。

2020年广东省中山市中考数学模拟卷(三)

2020年广东省中山市中考数学模拟卷(三)

广东省中山市中考数学模拟卷(三)一、选择题(本大题共10小题,每小题3分,满分30分) 1、下列六个数π-,-0.1,21,3,14.3,045cos 中为无理数个数为( ) A 、1个 B 、2个 C 、 3个 D 、 4个 2、下面的计算正确的是( )A 、222)(n m n m -=- B 、)0(122≠=-m mm C 、422)(mn n m =⋅ D 、642)(m m = 3、将图1按顺时针方向旋转90°后得到的是( )4、若b a >,则下列各式中一定成立的是( ) A.b a 33->- B.33ba ->-C.b a ->-33D.33->-b a5、小明用一枚均匀的硬币进行试验,连续抛三次,结果都是同一面.....的概率是( ) A 、21 B 、41 C 、61 D 、816、如图2,AB 切⊙O 于B ,割线ACD 经过圆心O, 若∠BCD=70° 则∠A 的度数为( ) A 、20° B 、50° C 、40° D 、80° 图27、不等式110320x x ⎧+>⎪⎨⎪-⎩≥的解集是( )A 、-31<x ≤2 B 、-3<x ≤2 C 、x ≥2D 、x <-38、函数2x y =的图象向左平移2个单位后解析式变为( )A 、22+=x yB 、22-=x y C 、()22-=x y D 、()22+=x y9、如图3,在ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G , BG=24,则ΔCEF 的周长为( )A 、8B 、9.5C 、10D 、11.5 图310、函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )C O DABCGE ABD二、填空题(本大题共6小题,每小题4分,满分24分) 11、分解因式:4x 2-4=_______________;12、如图4,在Rt ABC △中,90C ∠=°,点D 是BC 上一点, AD BD =,若85AB BD ==,,则CD = .13、某多边形的内角和为900°,则该多边形的对角线条数为 ; 14、从一个n 边形的同一个顶点出发,分别连接这个顶点与其余各顶点, 若把这个多边形分割成6个三角形,则n 的值是 ;15、如图5,A 为反比例函数ky x=的图象在第二象限上的任一点,AB x ⊥轴于B ,AC y ⊥轴于C ,且矩形ABOC 的面积为8,则k = ; 16、如图6,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年广东省中山市华侨中学中考数学模拟试卷(5月份)一、选择题(本大题10小题,每小题3分,共30分)1.(3分)下列各数中,小于﹣4的是()A.﹣3B.﹣5C.0D.12.(3分)下列各式计算的结果为a5的是()A.a3+a2B.a10÷a2C.a•a4D.(﹣a3)23.(3分)2018年精准脱贫,农村贫困人口减少1386万数据1386万,科学记数法表示()A.1.386×108B.1.386×103C.13.86×107D.1.386×107 4.(3分)下面的几何图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.圆C.平行四边形D.正六边形5.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x B.x C.x D.x6.(3分)甲、乙、丙三个旅行团的游客人数都相等,且毎团游客的平均年龄都是32岁,这三个团游客年龄的方差分别是S甲2=27,S乙2=19.6,S丙2=1.6,导游小王最喜欢带游客年龄相近的团队,若在三个团中选择一个,则他应选()A.甲团B.乙团C.丙团D.甲或乙团7.(3分)如图,直线AD∥BC,若∠1=40°,∠BAC=80°,则∠2的度数为()A.70°B.60°C.50°D.40°8.(3分)如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40°B.45°C.50°D.55°9.(3分)从A城到B城分别有高速铁路与高速公路相通,其中高速铁路全程400km,高速公路全程480km.高铁行驶的平均速度比客车在高速公路行驶的平均速度多120km/h,从A城到B城乘坐高铁比客车少用4小时.设客车在高速公路行驶的平均速度为xkm/h,依题意可列方程为()A.B.C.D.10.(3分)函数y=ax2+1与函数y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题(本大题7小题,每小题3分,共28分)11.(3分)因式分解:4m2﹣16=.12.(3分)一组数据:6,9,9,1,12,这组数据的众数是.13.(3分)已知x、y满足方程组,则x+y=.14.(3分)不等式组的解集是.15.(3分)一个袋子中有2个红球,2个黄球,每个球除颜色外都相同,从中摸出2个球,2个球的颜色不同的概率为.16.(3分)如图,在菱形ABCD中,AB=2,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB'C'D',其中点C的运动的路径为,则图中阴影部分的面积为.17.(3分)如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=F A.下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S=S△CEF,其中正确的是(只填写序号).△ADF三、解答题(本大题3小题,每小题6分,共18分)18.(6分)计算:(﹣1)2019+(﹣)﹣2﹣|2﹣|+4sin60°.19.(6分)先化简÷(a+1)+,然后a在﹣1,1,2三个数中任选一个合适的数代入求值.20.(6分)已知△ABC中,∠A=90°,∠B=30°.(1)作图:作△ABC的高AD交BC于点D(用尺规作图,保留作图痕迹,不写作法);(2)求证:BD=3CD.四、解答题(本大题3小题,每小题8分,共24分)21.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由.22.如图,反比例函数的图象与一次函数y=kx+5(k为常数,且k≠0)的图象交于A(﹣2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.23.2009年5月17日至21日,甲型H1N1流感在日本迅速蔓延,每天的新增病例和累计确诊病例人数如图所示.(1)在5月17日至5月21日这5天中,日本平均每天新增加甲型H1N1流感确诊病例多少人?如果接下来的5天中,继续按这个平均数增加,那么到5月26日,日本甲型H1N1流感累计确诊病例将会达到多少人?(2)甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?五、解答题(本大题2小题,每小题10分,共20分)24.如图F为⊙O上的一点,过点F作⊙O的切线与直径AC的延长线交于点D,过圆上的另一点B作AO的垂线,交DF的延长线于点M,交⊙O于点E,垂足为H,连接AF,交BM于点G.(1)求证:△MFG为等腰三角形.(2)若AB∥MD,求证:FG2=EG•MF.(3)在(2)的条件下,若DF=6,tan∠M=,求AG的长.25.如图,在四边形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,点E,F同时从B点出发,沿射线BC向右匀速移动,已知点F的移动速度是点E移动速度的2倍,以EF为一边在CB的上方作等边△EFG,设E点移动距离为x(0<x<6).(1)∠DCB=度,当点G在四边形ABCD的边上时,x=;(2)在点E,F的移动过程中,点G始终在BD或BD的延长线上运动,求点G在线段BD的中点时x的值;(3)当2<x<6时,求△EFG与四边形ABCD重叠部分面积y与x之间的函数关系式,当x取何值时,y有最大值?并求出y的最大值.2020年广东省中山市华侨中学中考数学模拟试卷(5月份)参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)1.【解答】解:比﹣4小的数是﹣5.故选:B.2.【解答】解:A.a3与a2不是同类项,所以不能合并,故本选项不合题意;B.a10÷a2=a8,故本选项不合题意;C.a•a4=a5,故本选项符合题意;D.(﹣a3)2=a6,故本选项不合题意;故选:C.3.【解答】解:1386万=13860000=1.386×107,故选:D.4.【解答】解:A、等边三角形是轴对称图形,不是中心对称图形,符合题意;B、圆既是轴对称图形,也是中心对称图形,不合题意;C、平行四边形不是轴对称图形,是中心对称图形,不合题意;D、正六边形既是轴对称图形,也是中心对称图形,不合题意.故选:A.5.【解答】解:由题意得,2x+1≥0,解得,x≥﹣,故选:B.6.【解答】解:∵S甲2=27,S乙2=19.6,S丙2=1.6,∴S甲2>S乙2>S丙2,∴丙旅行团的游客年龄的波动最小,年龄最相近.故选:C.7.【解答】解:∵∠1=40°,∠BAC=80°,∴∠ABC=60°,又∵AD∥BC,∴∠2=∠ABC=60°,故选:B.8.【解答】解:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故选:D.9.【解答】解:设客车在高速公路行驶的平均速度为xkm/h,则高铁行驶的平均速度为(x+120)km/h,依题意得:故选:A.10.【解答】解:a>0时,y=ax2+1开口向上,顶点坐标为(0,1),y=位于第一、三象限,没有选项图象符合,a<0时,y=ax2+1开口向下,顶点坐标为(0,1),y=位于第二、四象限,D选项图象符合.故选:D.二、填空题(本大题7小题,每小题3分,共28分)11.【解答】解:4m2﹣16,=4(m2﹣4),=4(m+2)(m﹣2).12.【解答】解:众数是一组数据中出现次数最多的数,在这一组数据中9出现了2次,次数最多,故众数是9;故答案为:9.13.【解答】解:,①+②得:3x+3y=6,则x+y=2.故答案为:2.14.【解答】解:,解不等式①得,x>﹣1,解不等式②得,x≤2,所以不等式组的解集是﹣1<x≤2.故答案为:﹣1<x≤2.15.【解答】解:根据题意画图如下:共有12种等情况数,其中从中摸出2个球,2个球的颜色不同的有8种,∴从中摸出2个球,2个球的颜色不同的概率为=;故答案为:.16.【解答】解:连接CD′和BC′,∵∠DAB=60°,∴∠DAC=∠CAB=30°,∵∠C′AB′=30°,∴A、D′、C及A、B、C′分别共线.∴AC=2,∴扇形ACC′的面积为:=π,∵AC=AC′,AD′=AB∴在△OCD′和△OC'B中,,∴△OCD′≌△OC′B(AAS),∴OB=OD′,CO=C′O∵∠CBC′=60°,∠BC′O=30°∴∠COD′=90°∵CD′=AC﹣AD′=2﹣2,OB+C′O=2,∴在Rt△BOC′中,BO2+(2﹣BO)2=(2﹣2)2解得BO=﹣1,C′O=3﹣,∴S△OC′B=•BO•C′O=2﹣3,∴图中阴影部分的面积为:S扇形ACC′﹣2S△OC′B=π+6﹣4.故答案为:.17.【解答】解:∵AB=AD,AE=AF=EF,∴△ABE≌△ADF(HL),△AEF为等边三角形,∴BE=DF,又BC=CD,∴CE=CF,∴∠BAE=(∠BAD﹣∠EAF)=(90°﹣60°)=15°,∴∠AEB=90°﹣∠BAE=75°,∴①②③正确,在AD上取一点G,连接FG,使AG=GF,则∠DAF=∠GF A=15°,∴∠DGF=2∠DAF=30°,设DF=1,则AG=GF=2,DG=,∴AD=CD=2+,CF=CE=CD﹣DF=1+,∴EF=CF=+,而BE+DF=2,∴④错误,⑤∵S△ABE+S△ADF=2×AD×DF=2+,S△CEF=CE×CF==2+,∴⑤正确.故答案为:①②③⑤.三、解答题(本大题3小题,每小题6分,共18分)18.【解答】解:原式=﹣1+9﹣(﹣2)+4×,=﹣1+9﹣2+2+2,=10.19.【解答】解:÷(a+1)+=•+=+=∵a≠1且a≠﹣1,∴当a=2时,原式==5.20.【解答】解:(1)如图,AD即为所求;(2)证明:∵△ABC中,∠BAC=90°,∠B=30°,∴BC=2AC,∠C=60°,∴∠CAD=30°,∴AC=2CD,∴BC=4CD,∴BD=3CD.四、解答题(本大题3小题,每小题8分,共24分)21.【解答】解:(1)∵新坡面的坡度为1:,∴tanα=tan∠CAB==,∴∠α=30°.答:新坡面的坡角a为30°;(2)文化墙PM不需要拆除.过点C作CD⊥AB于点D,则CD=6,∵坡面BC的坡度为1:1,新坡面的坡度为1:,∴BD=CD=6,AD=6,∴AB=AD﹣BD=6﹣6<8,∴文化墙PM不需要拆除.22.【解答】解:(1)把A(﹣2,b)代入,得b=﹣=4,所以A点坐标为(﹣2,4),把A(﹣2,4)代入y=kx+5,得﹣2k+5=4,解得k=,所以一次函数解析式为y=x+5;(2)将直线AB向下平移m(m>0)个单位长度得直线解析式为y=x+5﹣m,根据题意方程组只有一组解,消去y得﹣=x+5﹣m,整理得x2﹣(m﹣5)x+8=0,△=(m﹣5)2﹣4××8=0,解得m=9或m=1,即m的值为1或9.23.【解答】解:(1)(267﹣4)÷5=52.6.267+52.6×5=530.在5月17日至5月21日这5天中,日本平均每天新增加甲型H1N1流感确诊病例52.6人,日本甲型H1N1流感累计确诊病例将会达到530人.(2)设平均一个人一天传染x个人,x(x+1)+x+1=9x=2或x=﹣4(舍去).再5天为:(1+2)7=2187,∴再5天共有2187人患甲型H1N1流感.五、解答题(本大题2小题,每小题10分,共20分)24.【解答】(1)证明:连接OF.∵DM是⊙O的切线,∴DM⊥OF,∴∠MFG+∠OF A=90°,∵BM⊥AD,∴∠AHG=90°,∴∠OAF+∠AGH=90°,∵OF=OA,∴∠OF A=∠OAF,∵∠MGF=∠AGH,∴∠MFG=∠AGF,∴MF=MG,∴△MFG是等腰三角形.(2)证明:连接EF.∵AB∥DM,∴∠MF A=∠F AB,∵∠F AB=∠FEG,∠MFG=∠MGF,∴∠FEG=∠MFG,∵∠EGF=∠MGF,∴△EGF∽△FGM,∴=,∴FG2=EG•GM,∵MF=MG,∴FG2=EG•MF.(3)解:连接OB.∵∠M+∠D=90°,∠FOD+∠D=90°,∴∠M=∠FOD,∴tan M=tan∠FOD==,∵DF=6,∴OF=8,∵DM∥AB,∴∠M=∠ABH,∴tan M=tan∠ABH==,∴可以假设AH=3k,BH=4k,则AB=BG=5k,GH=k,AG=k,在Rt△OHB中,∵OH2+BH2=OB2,∴(8﹣3k)2+(4k)2=82,解得k=,∴AG=.25.【解答】解:(1)作DH⊥BC于H,则四边形ABHD是矩形.∵AD=BH=3,BC=6,∴CH=BC﹣BH=3,在Rt△DHC中,CH=3,∠DCH=30°,∴DH=CH•tan30°=,当等边三角形△EGF的高=时,点G在AD上,此时x=2,∠DCB=30°,故答案为:30,2,(2)如图∵AD∥BC∴∠A=180°﹣∠ABC=180°﹣90°=90°在Rt△ABD中∵∴∠ADB=30°∵G是BD的中点∴,∵AD∥BC∴∠ADB=∠DBC=30°∵△GEF是等边三角形∴∠GFE=60°∴∠BGF=90°在Rt△BGF中∴2x=2即x=1;(3)分两种情况:当2<x<3,如图2点E、点F在线段BC上△GEF与四边形ABCD重叠部分为四边形EFNM∵∠FNC=∠GFE﹣∠DCB=60°﹣30°=30°∴∠FNC=∠DCB∴FN=FC=6﹣2x∴GN=x﹣(6﹣2x)=3x﹣6∵∠FNC=∠GNM=30°,∠G=60°∴∠GMN=90°在Rt△GNM中∴==∴当时,当3≤x<6时,如图3,点E在线段BC上,点F在线段BC的延长线上,△GEF与四边形ABCD重叠部分为△ECP∵∠PCE=30°,∠PEC=60°∴∠EPC=90°在Rt△EPC中EC=6﹣x,,∴对称轴为当x<6时,y随x的增大而减小∴当x=3时,综上所述:当时,。

相关文档
最新文档