博弈论(第一、二章)

合集下载

演化博弈论PPT课件

演化博弈论PPT课件
纳什均衡指的是这样一种战略组合,这种策略组合由所有参与 人最优策略组成。即在给定别人策略的情况下,没有人有足够 理由打破这种均衡。
纳什均衡可以通过划线法得出
13
纳什均衡和演化稳定(1)
a
X b
a 0,0
Y b
1,1
1,1
0,0
策略b是否是演化稳定的? 有一个规模为E的策略a入侵
策略b的平均适应度: (1 E)*0 E *1 E 策略a的平均适应度: (1 E)*1 E*0 1 E
Y/q(1p)2p0
p1/3
18
N-群体的演化稳定策略
定义1:策略组合 x{x1,x2,..x.n,}是纳什均衡, 如果x是演化稳定策略,如果对于任意的策 略组合 yx 存在某个 (0,1) 使得对于所有的
(0,
)
和y(1)x,有
ui(xi, i) ui(yi, i)
i I
i I
定义2:策略组合x是演化稳定策略,当且 仅当x是一个严格的纳什均衡。
:是一个与突变策略y有关的常数,称之为侵入界限; εy + (1 − ε)x:表示选择进化稳定策略群体与选择突变策略群
体所组成的混合群体。
16
演化稳定策略的定义(2)
Definition 2: 对任意的s'∈S×S,满足
(i) f(s,s)≥f(s',s); (ii)如果f(s,s)=f(s',s),那么对任意的s≠s'有 f(s,s)>f(s',s'); 则s是演化稳定策略
➢ 自演化博弈论诞生之日起,它就逐渐的被人们用 来分析生物、经济等领域的问题。
1. Selten Reinhard.A Note on Evolutionary Stable Strategies in Asymmetric Animal Conflicts [J]. Journal of Theoretical Biology, 1980,(84).

博弈论(第二章)讲义

博弈论(第二章)讲义

纳什均衡的练习(1)
例1:囚徒困境
囚徒B
坦白
不坦白
坦白 囚徒A
不坦白
-5, -5 -8, 0
0, -8 -1, -1
纳什均衡的练习(2)
例2:智猪博弈
大猪

不踩
小猪
踩 不踩
1.5, 3.5 5, 0.5
- 0.5, 6 0, 0
纳什均衡的练习(3)
例2:猜硬币的博弈
猜硬币者


正 盖硬币者

-1, 1 1, -1
博弈方2
U
L
R
U 博弈方1
D
1, 0 0, 3
1, 2 0, 1
0, 1 2, 0
三、划线法
其中心思想是根据博弈方策略之间的相对优劣关系,导 出博弈分析的“划线法”。
例:下图中的得益矩阵表示两博弈方的一个静态博弈,
试使用划线法进行分析。 博弈方2



上 博弈方1

1, 0 0, 4
1, 3 0, 2
二、严格下策反复消去法
(1)如果在一个博弈中,不管其它博弈方的策略如何变 化,一个博弈方的某种策略给他带来的得益,总是 比另一种策略给他带来的得益要小,那么称前一种 策略为相对于后一种策略的一个“严格下策” 。
(2)经“反复消去”博弈方的严格下策以后,每个博弈 方
可选策略都缩小为一个策略。因此,每个博弈方都 选择各自剩下的一个策略所组成的策略组合,是这 个博弈的均衡解 。
0, 1 2, 0
划线法的练习(1) 例2:囚徒困境
坦白 囚徒A
不坦白
囚徒B
坦白
不坦白
-5, -5 -8, 0

第一章 什么是博弈

第一章 什么是博弈

第一章 什么是博弈一.管理活动中博弈现象无处不在1.如同我们的人生是由一局又一局的博弈组成的,各类管理实践也是如此,如管理者与被管理者之间的博弈,管理者之间的博弈,被管理者之间的博弈,企业与消费者之间的博弈,企业之间的博弈,等等。

案例1.斗鸡博弈白军红军 进攻后退问题:在该博弈中,甲和乙应该如何决策?最终的博弈结局会是什么样的? 斗鸡博弈在市场进入及许多社会问题的分析中有着非常重要的应用价值。

案例2.智猪博弈小猪大猪按等 问题:在该博弈中,甲和乙应该如何决策?最终的博弈结局会是什么样的? 智猪博弈在公共产品问题的分析中有着非常重要的应用。

案例3.报数博弈两人在1、2、3、4、5、6、7、8之间任意选择数字进行轮流报数,然后把两人已经报出的全部数字进行加总,谁报数后,加起来的数字大于等于174,谁就获胜。

如果让你先报,为了获胜,你应该采取什么报数策略?案例4:最低价格承诺我们上街经常会遇见一些大商场作出如下广告承诺:本商场承诺所卖的XX商品是市场最低价;若不是最低价,本商场将承诺退回差额并按照差额对消费者进行补偿。

问题:你有没有见过最低价格承诺?这些大商场为什么要作出最低价格承诺?他们的意图和目的是什么?2.到底什么是博弈(game)?(1)在日常生活中,人们经常把博弈狭隘地等同于讨价还价或勾心斗角、玩阴谋诡计。

(2)凡是具备以下几个特征的事件均可以视为博弈A.参与人之间或多或少存在利益上的相互冲突。

B.参与人获得的收益不仅取决于自己的决策,也取决于其他参与人的决策。

C.参与人的行动或决策相互之间存在直接的影响。

二.博弈的基本构成要素从上面的例子可以发现博弈是由以下基本要素构成的。

1.博弈的参与人(player)。

通常有n个人参与博弈,就称之为n人博弈思考:一场足球比赛是几人博弈?在构造博弈时一定要仔细辨别谁才是博弈真正的参与人,不要以为所有的当事人都是博弈的参与人。

例如,企业参加工程投标活动,博弈的参与人通常是谁?2.博弈的规则。

博弈论课后习题

博弈论课后习题

Document serial number [UU89WT-UU98YT-UU8CB-UUUT-UUT108]第一章导论1、什么是博弈博弈论的主要研究内容是什么2、设定一个博弈模型必须确定哪儿个方面3、举出烟草、餐饮、股市、房地产、广告、电视等行业的竞争中策略相互依存的例子。

4、"囚徒的困境”的内在根源是什么举出现实中囚徒的困境的具体例子。

5、博弈有哪些分类方法,有哪些主要的类型6、你正在考虑是否投资100万元开设一家饭店。

假设情况是这样的:你决定开,则的概率你讲收益300万元(包括投资),而的概率你将全部亏损;如果你不开,则你能保住本钱但也不会有利润,请你(a)用得益矩阵和扩展形式表示该博弈;(b)如果你是风险中性的,你会怎样选择(c)如果你是风险规避的,且期望得益的折扣系数为,你的策略选择是什么(d)如果你是风险偏好的,期望得益折算系数为,你的选择又是什么7、一逃犯从关押他的监狱中逃走,一看守奉命追捕。

如果逃犯逃跑有两条可选择的路线,看守只要追捕方向正确就一定能抓住逃犯。

逃犯逃脱可以少坐10年牢,但一旦被抓住则要加刑10年;看守抓住逃犯能得到1000元奖金。

请分别用得益矩阵和扩展形式表示该博弈,并作简单分析。

第二章完全信息静态博弈1、上策均衡、严格下策反复消去法和纳什均衡相互之间的关系是什么2、为什么说纳什均衡是博弈分析中最重要的概念3、找出现实经济或生活中可以用帕累托上策均衡、风险上策均衡分析的例子。

4、多重纳什均衡是否会影响纳什均衡的一致预测性质,对博弈分析有什么不利影响5、下面的得益矩阵表示两博弈方之间的一个静态博弈。

该博弈有没有纯策略纳什均衡t専弈的结果是什么6、求出下图中得益矩阵所表示的博弈中的混合策略纳什均衡。

7、博弈方1和2就如何分10 000元进行讨价还价。

假设确定了以下规则:双方同时提出自己要求的数额S1和S2, 0< sl,s2< 10 000,如果sl+s2W10 000,则两博弈方的要求都得到满足,即分别得到si和s2, 但如果是sl+s2>10 000,则该笔钱就被没收。

经济博弈论(第三版)复习题及答案%20谢识予著

经济博弈论(第三版)复习题及答案%20谢识予著
5
L 2,0 3,4
R
7、我们用反应函数法来分析这个博弈。先讨论博弈方 1 的选择。根据问题 的假设,如果博弈方 2 选择金额 s2(0≤s2≤10000) ,则博弈方 1 选择 s1 的利益 为: s1 u(s1)= 0
当 S1≤10000 -s2 当 S1≤10000 -s2
因此博弈方 1 采用 s1=1000—s2 时,能实现自己的最大利益 u(s1)= s1=1000— s2。因此 s1=1000—s2 就是博弈方 1 的反应函数。 博弈方 2 与博弈方 1 的利益函数和策略选择是完全相似的,因此对博弈方 1 所选择的任意金额 s1, 博弈方 2 的最优反应策略, 也就是反应函数是 s2=1000- s1。 显然, 上述博弈方 1 的反应函数与博弈方 2 的反应函数是完全重合的,因此 本博弈有无穷多个纳什均衡,所有满足该反应函数,也就是 s1+ s2=10000 的数组 (s1 ,s2)都是本博弈的纯策略纳什均衡。 如果我是两个博弈方中的一个,那么我会要求得到 5000 元。理由是在该博 弈的无穷多个纯策略纳什均衡中, (5000,5000)既是比较公平和容易被双方接 受的,也是容易被双方同时想到的一个,因此是一个聚点均衡。 9、 (1)两个厂商的利润函数为: πi=pqi-ciqi=(a-qi-qj)qi-ciqi 将利润函数对产量求导并令其为 0 得: ∂π i =a-qj-ci-2qi=0 ∂qi 解得两个厂商的反应函数为: qj=(a- qj-ci)/2 或具体写成: q1=(a-q2-c1)/2 q2=(a-q1-c2)/2 (2)当 0<ci<a/2 时, 我们根据上述两个厂商的反应函数,直接求出两个厂商 的纳什均衡产量分别为: a − 2c1 + c 2 3 a + c1 − 2c 2 q2= 3 (3)当 c1<c2<a,但 2c2>a+ c1 时,根据反应函数求出来的厂商 2 产量 q2<0。 这意味着厂商 2 不会生产, 这时厂商 1 成了垄断厂商,厂商 1 的了优产量选择是 利润最大化的垄断产量 a − c1 q1=q* = 2 因此这种情况下的纳什均衡为[(a- c1)/2, 0]。 q1=

博弈论教程

博弈论教程
囚徒A 坦白 不坦白
-5,-5
-10,0
0,-10
-1,-1
2.1.2 严格下策反复消去法(逐步剔除严格劣战略) 例
L M R
U M 8,3 2,1 5,1 8,4 6,2 3,6
D
3,0
9,6
2,8
可以预测该博弈的合理结局为(U,L),即参与人A
选择策略U,而参与人B选择策略L。
2.2 Nash 均 衡 2.2.1 Nash 均 衡 的 定 义 Nash 均衡是指这样的策略组合(或剖面): 为 了 极大化自己的收益(或效用), 每一个参与 人所 采取的策略一定应该是关于其他参与人 所采 取的策略的最佳反应. 因此没有一个参 与人会 轻率地偏离这个策略组合而使自己蒙 受损失。



第一章 导论
1.1什么是博弈论(Game Theory) 1.1.1 从游戏到博弈
游戏都有一些共同的特点:
1.都具有一定的规则; 2.都有一个结果; 3.策略至关重要; 4.策略和利益有相互依存性
一、博弈论概述
1.1.1 博弈论的定义
博弈论研究的是人与人之间利益相互制约下策略选择时的 理性行为及相应结局。 豪尔绍尼(John C.Harsanyi)1994年诺贝尔经济学奖获 奖致词:博弈论是关于策略相互作用的理论。 博弈论研究人与人之间“斗智”的形式和后果,当人 们利益存在冲突时,每个人所获得的利益不仅取决于自己 所获取的行动,还依赖于其他人采取的行动,每个人都需 要针对对方的行为选择作出对自己最有利的反应。
定 义 在有n个参与人的博弈 G={S1,S2…Sn;u1,u2,…un)中,策略组合 s*=(s1 *,s2 *,…sn *)是一个Nash均衡,如果对于每一 个i, si*是给定其他参与人的选择: S-i*=(s1*,…si-1*,si+1*,…sn*)的情况下,第i个人的最 优策略,即 ui(si*,s-i*)≥ui(si,s-i*) ,对所有的i∈Γ 或者用另一种表示方式,si*是下述最大化问题的 解: si*∈arg ui(s1*,…si-1*,si,si+1*,…sn*),i=1,2,…n S *∈Si 因此,当且仅当没有一个参与人能从单方面背离 某个策略组合的预见中增加自己的得益时,这 个策略组合就是Nash均衡。

第1章博弈论基本模型

第1章博弈论基本模型

为什么学习?
从学习中获得心灵的提高,获得心灵的享受。
学习,其实就为自己创造一个美丽的心灵世界的过程。
有人说,我也没什么追求,就学一点实用知识就行,但问题是, 你没有那些“无用”的知识,你怎么驾驭哪些实用的知识呢? “世人只知有用之用,而不知无用只用”。
很多人30岁后就不再读书,到60岁还是30年前的思维;很多人 感慨“现在一读书就头痛”;农村现在不要为生存而挣扎了,那 做什么呢?“我不打牌又做什么呢?”
齐 田忌策略:
上马 ∨
中马 ∨
下马 ∨

上马
中马
下马
结 果:
田忌将军每次输掉三千金
谋士孙膑 策略:
结 果:

上马
中马
下马




下马
上马
中马
田忌将军胜二负一赢一千金
博弈论的创立与发展
2、博弈论的发展阶段 第一阶段:萌芽期(20世纪40年代前)。利益冲突的研究是分散和初
步的、带有很大程度的随意性。 孙子兵法:古诺(Cournot,1883)—古诺的“双寡头垄断”模型;艾
专业学习:谋职、谋生(身无长物、何以生存)。 事理学习:明白事理、懂得分析生活中的很多问题。(崔琦:
明白这个世界是一个什么样子,这很重要)。一个人,其实只 要懂得了加减乘除四则运算,就可以挣到钱买房买车,在物质 世界中生活的很好。但这只是像一个盲人一样在生活,“春天 来了,但我却看不到” 。(明明德) 人生学习:充实人生、提高人生的境界、把学习融入人的生活 中。人不是做事和挣钱的工具,而是宇宙中的有血有肉的生灵, 需要提高生活的趣味,享受趣味化的人生,这就需要学习。一 个人,不会欣赏《二泉映月》,不会感受过禅宗的静谧,从来 也不思考什么是天行健,好像也是在生活。看看很多人下班后 在做什么?打牌、或者歌厅洗脚房等,当衣食住行解决了之后, 就不知怎么过了,只有赌博和玩乐,却找不到真正的趣味。 (身体在成长、心灵也在成长吗?)(新民) 仰望星空

博弈论(部分英文版翻译)

博弈论(部分英文版翻译)

博弈论(部分英文版翻译)博弈论托马斯·S.Ferguson/translator:·xly第一部分:公平组合游戏1.外卖游戏1.1简单的外卖游戏1.2什么是组合游戏?1.3 P状态和N状态1.4游戏1.5相关练习2.尼姆游戏初步分析尼姆和多堆尼姆游戏布顿理论证明守财奴版尼姆游戏相关练习3.图形游戏有向图形游戏SG函数相关例子的一般图的SG函数4.组合游戏和N图游戏及SG定理的相关应用与休息游戏相关的练习5.硬币游戏的例子二维空间中的硬币旋转游戏尼姆复杂的网格游戏练习6.绿色哈肯布什竹竿树木上的绿色哈肯布什普通根图练习的绿色引导参考材料第一部分:公平组合游戏1。

外卖游戏组合游戏是两人游戏。

如果有足够的条件,当一方不能继续经营时,游戏的结果就会出来。

这个游戏的结果取决于一系列的状态,包括初始状态和准备操作的玩家。

游戏双方轮流操作,直到达到最终状态。

最终状态意味着该状态不能再运行。

此时,结果已经出现分歧。

这里有两个关于组合游戏的主要材料。

一部是康威的《论数字与游戏》,学术出版社1976年出版。

这本书介绍了这一领域的许多基本思想,加速了这一领域今天的发展。

另一本更适合这门课的参考书是学术出版社于1982年出版的两卷本平装本,书名是《柏林坎普、康威和盖伊的数学游戏制胜之道》。

这本书介绍了许多有趣的游戏,学习数学的本科生可以理解。

这些理论可以分为两类。

公平游戏指的是任何给定的状态,游戏双方要采取的行动是相同的。

另一方面,游击队游戏意味着给定一个状态,游戏双方将采取不同的行动。

例如,国际象棋是一种游击队游戏。

在第一部分,我们只研究“公平竞争”。

公平组合游戏的介绍可以在理查德·盖伊写的公平游戏中找到(发表在1989年的COMAP数学探索系列中)。

让我们从一个简单的例子开始。

1.1一个简单的外卖游戏。

这是这个公平组合游戏的一些规则(从一堆筹码中取一些):(1)有两个玩家,我们分别将他们标记为1号和2号;(2)桌上有一堆筹码,总共21个筹码;(3)一次操作可以取1、2、3个筹码,至少要取一个筹码,最多要取3个筹码。

博弈论与信息经济学答案

博弈论与信息经济学答案

博弈论与信息经济学答案第⼀章5.n 个企业,其中的⼀个⽅程:π1=q 1(a -(q 1+q 2+q 3……q n )-c ),其他的类似就可以了,然后求导数,结果为每个值都相等,q 1= q 2=……q n=(a-c)/(n+1)。

或者先求出2个企业的然后3个企业的推⼀下就好了。

6.假定消费者从价格低的⼚商购买产品,如果两企业价格相同,就平分市场,如果企业i 的价格⾼于另⼀企业,则企业i 的需求量为0,反之,其它企业的需求量为0。

因此,企业i 的需求函数由下式给出:i ii i i i i i p pi p p p p 0)/2Q(p )Q(p q --->==从上述需求函数的可以看出,企业i 绝不会将其价格定得⾼于其它企业;由于对称性,其它企业也不会将价格定的⾼于企业i ,因此,博弈的均衡结果只可能是每家企业的价格都相同,即p i =p j 。

但是如果p i =p j >c 那么每家企业的利润02i ij i p cq ππ-==>,因此,企业i 只要将其价格略微低于其它企业就将获得整个市场的需求,⽽且利润也会上升⾄()()22i i i i p c p cQ p Q p εε---->,()0ε→。

同样,其它企业也会采取相同的策略,如果此下去,直到每家⼚商都不会选择降价策略,此时的均衡结果只可能是p i =p j =c 。

此时,企业i 的需求函数为2ia cq -=。

在静态的情况下,没有⼀个企业愿意冒险将定价⾼于⾃⼰的单位成本C ,最终P=C ,利润为0。

因为每个参与⼈都能预测到万⼀⾃⼰的定价⾼于C ,其他⼈定价为C 那么⾃⼰的利益就是负的(考虑到⽣产的成本⽆法回收)。

就算两个企业之间有交流也是不可信的,最终将趋于P=C 。

现实情况下⼀般寡头不会进⼊价格竞争,⼀定会取得⼀个P 1=P 2=P 均衡。

此时利润不为零,双⽅将不在进⾏价格竞争。

7.设企业的成本相同为C ,企业1的价格为P 1,企业2的价格为P 2。

北京大学博弈论课件第1章博弈论概述

北京大学博弈论课件第1章博弈论概述
博弈参与者可能是单个的个人,也可能是组织或集体
企业、社会团体、国家
博弈参与者可能多于两方,三方或多方博弈参与者
二、博弈策略(Strategy)
博弈策略指博弈参与者可以采取的行动 在“锤头、剪刀、布”博弈中,博弈参与者所能采取的博弈策略
均为“锤头”、“剪刀”或“布” 两名同学去相约去博物馆博弈中,博弈参与者所能采取的博弈策
博弈参与者:两个人 博弈过程:
两人在校门口集合,一起逛博物馆
博弈策略和结果
两人都去南门,成功碰面 两人都去北门,成功碰面 同学甲去南门,同学乙去北门,两人错过 同学甲去北门,同学乙去南门,两人错过
博弈双方策略相互依赖,不独立。
其他博弈实例
棋类比赛:象棋、围棋等。古人“对弈”。 寡头市场:
遇、不能够相遇两种可能的结果。 在“囚徒困境”博弈中,博弈参与者得到的收益是
如果甲、乙都坦白,则甲、乙均得到 5 年徒刑 如果甲、乙都不坦白,则甲、乙均得到 2 年徒刑 如果甲坦白、乙不坦白,则甲得到 1 年、乙得到 10 年有期徒刑 如果甲不坦白、乙坦白,则甲得到 10 年、乙得到 1年有期徒刑
略均为“去学校南门集合”或“去学校北门集合” 在“囚徒困境”博弈中,博弈参与者所能采取的博弈策略均为
“坦白”或“不坦白”
三、博弈的收益(Payoff)
博弈收益指不同博弈策略给博弈参与者带来的利益 在“锤头、剪刀、布”博弈中,博弈参与者得到的收益是:赢、平局、
输三种可能的结果。 两名同学去相约去博物馆博弈中,博弈参与者得到的收益是:能够相
2.非合作博弈(Non-cooperative games),纳什就读于普林斯 顿大学数学系的博士毕业论文,1950年。

博弈论蒋文华浙江大学

博弈论蒋文华浙江大学

第一讲、博弈论概述献给诸位知人者智,自知者明;胜人者力,自胜者强;小胜者术,大胜者德。

第一章何为“博弈”博:博览全局弈:对弈棋局→谋定而动是指在一定的游戏规则约束下,基于直接相互作用的环境条件,各参与人依据所掌握的信息,选择各自的策略(行动),以实现利益最大化的过程。

第一节从一个简单的故事说起博弈时要搞清楚对手是谁!博弈时要搞清楚和别人比什么!行为选择既跟对手的情况有关,又跟所遇到的外部环境的变化有关。

特别提示:博弈既可以是竞争,也可以是合作!特别提示:博弈,必须学会换位思考!特别提示:博弈,只需领先一步,高人一筹!博弈就是你中有我,我中有你。

由于直接相互作用(互动),每个博弈参与者的得益不仅取决于自己的策略(行动),还取决于其他参与者的策略(行动)。

博弈的核心在于整体思维基础上的理性换位思考,用他人的得益去推测他人的策略(行动),从而选择最有利于自己的策略(行动)。

特别提示:站在别人的立场上想一想,就是为自己未来的遭遇着想。

——米兰·昆德拉特别提示:如果因为对方眼中的你的傻,而让对方更愿意和你合作,何乐而不为呢?(大智若愚)特别提示:请不要在一个充分竞争的市场去追求成功!特别提示:选对市场(对手)比选对策略更重要!特别提示:在博弈之前,博弈就已经开始了!第二节博弈的渊源一、中国的理解博+弈=下围棋略观围棋,法于用兵,怯者无功,贪者先亡。

----汉代刘向,《围棋赋》二、西方的理解game(规则)费厄泼赖(fair play)第三节学习博弈论的收益一、当局者清更有利的选择更快速的反应二、旁观者更清理解历史与现实预测未来的发展三、提出完善游戏规则(制度)的建议第二章发展简史第一节最初的探索和应用一、古诺模型参加博弈的双方以各自在同一时间内相互独立的产量作为决策的变量,是一个产量竞争模型。

二、伯川德模型该模型与古诺模型的不同之处在于,企业把其产品的价格而不是产量作为竞争手段和决策变量,通过制定一个最优的销售价格来实现利润最大化。

博弈论第二章习题

博弈论第二章习题

问题1:博弈方2就如何分10000元钱进行讨价还价。

假设确定了以下原则:双方提出自己要求的数额1s 和2s ,10000021≤≤s s ,。

如果设博弈方1和,1000021≤+s s ,则两博弈方的要求都得到满足,即分得1s 和2s ;但如果1000021>+s s ,则该笔钱就被没收。

问该博弈的纯策略纳什均衡是什么?如果你是其中一个博弈方,你会选择什么数额,为什么?解:112111210000()010000s s s u s s s ≤-⎧=⎨>-⎩,那么,1210000s s =-221222110000()010000s ss u s s s ≤-⎧=⎨>-⎩那么,2110000s s =-它们是同一条直线,1210000s s +=上的任意点12(,)s s ,都是本博弈的纯策略的Nash 均衡。

假如我是其中一个博弈方,我将选择15000s =元,因为(5000,5000)是比较公平和容易接受的。

它又是一个聚点均衡。

问题2:设古诺模型中有n 家厂商。

i q 为厂商i 的产量,n q q q Q +++= 21为市场总产量。

P 为市场出清价格,且已知Q a Q P P -==)((当a Q <时,否则0=P )。

假设厂商i 生产产量i q 的总成本为ii i i cq q C C ==)(,也就是说没有固定成本且各厂的边际成本都相同,为常数)(a c c <。

假设各厂同时选择产量,该模型的纳什均衡是什么?当趋向于无穷大时博弈分析是否仍然有效?解:1()ni i i j i j pq cq a c q q π==-=--∑,1,2,,i n =令20ii j j ii a c q q q π≠∂=---=∂∑,1,2,,i n =解得:***121na c q q q n -====+,2***121na c n πππ-⎛⎫==== ⎪+⎝⎭当n 趋向于无穷大时,这是一个完全竞争市场,上述博弈分析方法其实已经失效。

第一课应用博弈论第二讲 完全信息静态博弈

第一课应用博弈论第二讲  完全信息静态博弈
博弈方的最终目标也是实现自身的最大得 益。不过,这里,各个博弈方的得益既取决于 自己选择的策略,还与其他博弈方选择的策略 有关。根据这种思想,科学的决策思路应该是: 先找出自己针对其他博弈方每种策略或策略组 合的最佳对策,然后在此基础上,通过对其他 博弈方策略选择的判断,预测博弈的可能结果 和确定自己的最优策略。根据上述思想,介绍 划线法寻找博弈的解。
们投入大量资金进行技术创新,开发新 产品,而中小企业是小猪,不会进行大 规模技术创新,而是等待大企业的新产 品形成新的市场后生产模仿大企业的新 产品的产品去销售。
21
例3
为什么只有大企业才会花巨额金钱打广 告?
大企业是大猪,中小企业是小猪。大企 业投入大量资金为产品打广告,中小企 业等大企业的广告为产品打开销路形成 市场后才生产类似产品进行销售。
经开始对日本和德国这两个法西斯轴心国展开大反 攻。
在欧洲,以艾森豪威尔为总司令的盟国远征军,准
备横渡英吉利海峡,在欧洲开辟第二战场。欧洲只
有东翼的苏德战场是两大阵营对抗的正面战场,前
苏联方面一再要求美英同盟国及早在欧洲大陆开辟
第二战场。1944年春天,英美联军在北非战场中彻
底摧毁了德国隆美尔元帅的抵抗,德军已经完全收
德军在欧洲西线的总兵力是58个师,要布防的海岸线 长达3000公里。因此,德军只能把主要兵力放在它认为 盟国最有可能渡海登陆的地方。同时,盟军在英国能够 用于渡海作战的兵力,由于受登陆舰船容量的限制,数 量也有限,只能考虑集中有限的兵力重点进攻一个地方。 因此,无论是对于盟军还是对于德军,选择和判断盟军 将在那里登陆已经成为这次跨海作战成败的关键。
生活中其实有很多相关的例子。
19
生活中的例子
例1 股市博弈 在股票市场上,大户是大猪,他们

博弈论基础

博弈论基础

博弈论博弈论(Game Theory),亦名“对策论”、“赛局理论”,属应用数学的一个分支,博弈论已经成为经济学的标准分析工具之一。

目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。

博弈论主要研究公式化了的激励结构间的相互作用。

是研究具有斗争或竞争性质现象的数学理论和方法。

也是运筹学的一个重要学科。

博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。

生物学家使用博弈理论来理解和预测进化论的某些结果。

参见:行为生态学(behavioral ecology)。

约翰·冯·诺依曼博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的目的。

博弈论思想古已有之,中国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论著作。

博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展。

博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。

近代对于博弈论的研究,开始于策墨洛(Zermelo),波雷尔(Borel)及冯·诺伊曼(von Neumann)。

1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。

1944年,冯·诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。

1950~1951年,约翰·福布斯·纳什(John Forbes Nash Jr)利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的策墨洛(Zermelo)基础。

纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。

此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。

博弈论第二章——博弈规则

博弈论第二章——博弈规则

U1f(f,z)=1 盖 U1f(f,f)=-1 硬
▪ U2z(z,z)=-1
币 方
-1
U2z(f,z)=1
U2f(z,f)=1
U2f(f,f)=-1
猜硬币游戏
猜硬币方-2 正面z 反面f
正面z -1,1 1,-1 反面f 1,-1 -1,1
Uz= U1z+ U2z=-1+1-1+1=0
Uf= U1f+ U2f=1-1+1-1=0
2.2.1 博弈中的博弈方
博弈方(player/ players) 博弈中独立决策、独立承担博弈结
果的个人或组织称为博弈方。 1.单人博弈 2.双人博弈 3.多人博弈
1.单人博弈
设有一商人要从A地运输一批货物, 从A地到B地有水、陆两条路线, 走陆路运输成本10 000元,而走水 路运输成本只要7000元。但非常危 险,出现坏天气的概率为0.25,此 时会损失10%的货物。货物总价值 90 000元。
参考书目
1. [美]阿维纳什·K ·迪克西特.策略思维.中国人民大 学出版社,2002
2. 王则柯. 新编博弈论平话. 中信出版社,2003 3. 谢识予.经济博弈论(第二版) .复旦大学
出版社,2002
4. [美]埃里克·拉斯缪森.博弈与信息:博弈论概论. 北京大学出版社,2003
5.张维迎.博弈论与信息经济学.上海三联书店, 2004
第二章 博弈论基本知识
2.1 什么是博弈论 2.2 博弈的结构和分类 2.3 博弈的表达方式 2.4 几类经典的博弈模型
第一节 什么是博弈论
2.1.1 从游戏到博弈 2.1.2 一个非技术性的定义 2.1.3 博弈论模型简介
2.1.1 从游戏到博弈

博弈论第二章 (1)

博弈论第二章 (1)
囚徒2 坦 白 囚 坦 白 徒 1 不坦白 -5, -5 -8, 0 不坦白 0, -8 -1, -1
3、举例(2):斗鸡博弈
进 A 进 退
-3,-3 0, 2
B
退
2, 0 0, 0
独木桥
2
2014/9/22
一、博弈的标式表述
3、举例(3):齐王田忌赛马
上中下 上中下 上下中 齐 王 中上下 中下上 下上中 下中上 3,-3 1,-1 1,-1 -1,1 1,-1 1,-1 上下中 1,-1 3,-3 -1,1 1,-1 1,-1 1,-1 田忌 中上下 1,-1 1,-1 3,-3 1,-1 1,-1 -1,1 中下上 1,-1 1,-1 1,-1 3,-3 -1,1 1,-1 下上中 -1, 1 1,-1 1,-1 1,-1 3,-3 1,-1 下中上 1,-1 -1, 1 1,-1 1,-1 1,-1 3,-3

3
2014/9/22
二、重复剔除严格劣战略
3、重复剔除严格劣战略

二、重复剔除严格劣战略


(1)、思路和原理 反思占优均衡分析的思路,不难发现占优均衡分析 釆用的决策思路是一种选择法的思路,是在所有可 选择策略中选出最好一种。 剔除法与选择法在思路上正好相反,它是通过对可 选策略的相互比较,把不可能采用的较差策略排除 掉,从而筛选出较好的策略,或者至少缩小候选策 略的范围。这种剔除法的思路导出了博弈分析中的 重复剔除严格劣战略法(Iterated Elimination of Strictly Dominated Strategies)。
10:39:53
M
R
U S D
2 ,8 08 ,8 0 ,8
1,6 0 ,6 1,5

博弈论翟文明第一章博弈论入门

博弈论翟文明第一章博弈论入门

博弈论翟文明第一章博弈论入门博弈论是研究决策者在特定环境中做出选择的数学理论。

在这个数学理论中,决策者之间的互动是核心问题,他们根据对手的选择来优化自己的策略。

博弈论是一个多学科的领域,涉及数学、经济学、计算机科学和行为科学等多个学科。

在这篇文章中,我们将探讨博弈论的基本概念、应用和相关问题,希望能为读者提供一个深入了解博弈论的入门指南。

一、博弈论的基本概念博弈论研究的对象是决策者在特定环境中做出选择的数学理论。

在博弈论中,决策者被称为“玩家”,他们之间的互动构成了一个“博弈”。

在一个博弈中,每个玩家的选择都会影响其他玩家的利益,因此每个玩家都需要根据其他玩家的选择来优化自己的策略。

博弈可以分为合作博弈和非合作博弈两种类型。

合作博弈是指玩家之间可以合作来达到共同的目标,而非合作博弈是指玩家之间没有合作的可能性,每个玩家都要根据自己的利益来做出选择。

在合作博弈中,最著名的例子是合作博弈的核心概念即核心解概念,博弈的核心是指在合作博弈中所有玩家都能获得自己认为至少不亏损的结果。

而在非合作博弈中,最著名的例子是纳什均衡,即所有玩家都选取了最佳的策略,没有人会因为改变自己的策略而受益。

二、博弈论的应用博弈论在经济学、政治学、生物学、计算机科学等领域都有着重要的应用。

在经济学中,博弈论被广泛应用于研究市场竞争、价格形成和合作行为。

在政治学中,博弈论被用来研究政治决策和国际关系。

在生物学中,博弈论被应用于研究动物行为和进化论。

在计算机科学中,博弈论被用来解决博弈游戏和人工智能领域的问题。

博弈论还可以用来分析一些具体的博弈问题,例如囚徒困境、交易谈判、拍卖机制、合作博弈等等。

这些问题在现实生活中存在着,并且对人们的生活产生着重要的影响,因此博弈论的应用在现实生活中是非常广泛的。

三、博弈论的相关问题在博弈论中存在一些经典的问题,例如囚徒困境、拍卖问题、合作博弈和非合作博弈等等。

这些问题都是博弈论研究的核心内容,它们有着重要的理论意义和实际应用价值。

博弈论判断题

博弈论判断题

博弈论判断题第一章导论(1)单人博弈就是个人最优化决策,与典型的博弈问题有本质区别。

(2)博弈方的策略空问必须是数量空间,博弈的结果必须是数量或者能够数量化。

(3)囚徒的困境博弈中两个因徒之所以会处于困境,无法得到较理想的结果,是因为两囚徒都不在乎坐牢时间长短本身,只在乎不能比对方坐牢的时间更长.(4)因为零和博弈中博奔方之间的关系都是竞争性的、对立的,因此零和博弈就是非合作博弈。

(5)凡是博弈方的选择、行为有先后次序的一定是动态博弈。

(6)多人博弈中的“破坏者"会对所有博弈方的利益产生不利影响.(7)合作博弈就是博弈方采取相互合作态度的博弈。

参考答案:(1)正确。

因为单人博弈只有一个博弈方,因此不可能存在博弈方之间行为和利益的交互作用和制约.因此实际上就是个人最优化决策,与存在博弈方之间行为和利益交互作用和制约的典型博弈问题有本质的区别。

(2)前半句错误,后半句正确.博弈方的策略空间不一定是数量空间,因为博弈方的策略除了可以是数量水平(如产量、价格等)以外,也可以是各种定性的行为取舍和方向选择,甚至也可能是各种函数或者其他更复杂的内容。

但一个博弈的结果必须是数量或者可以数量化,因为博弈分析只能以数量关系的比较为基础.(3)错误.结论恰恰相反,也就是囚徒的困境博弈中两囚徒之所以处于困境,根源正是因为两囚徒很在乎坐牢的绝对时间长短.此外,我们一开始就假设两囚徒都是理性经济人,而理性经济人都是以自身的(绝对)利益,而不是相对利益为决策目标的。

(4)错误。

虽然零和博弈中博弈方的利益确实是对立的.但非合作博弈的含义并不是博弈力之间的关系是竞争性的、对立的,而是指博弈方是以个体理性、个体利益最大化为行为的逻辑和依据,是指博弈中不能包含有约束力的协议。

(5)错误。

其实并不是所有选择、行为有先后次序的博弈问题都是动态博弈.例如两个厂商先后确定自己的产量,但只要后确定产量的厂商在定产之前不知道另一厂商定的产量是多少,就是静态博弈问题而非动态博弈问题.(6)错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

游戏2:摘柿子
甲 跑
摇 跑

摇 跑


乙 跑
摇 跑

不跑 (2,2)
(0,0)
(0,1) (2,0)
(0,3) (4,0)
游戏3:免费彩票博弈
每个人可以免费购买任意数量彩票,随机 抽取1张彩票中奖,奖金总额为1000万元/n,n 为彩票数量。
博弈论:研究理性人行为选择的理论
博弈论作用:帮助个人、组织等决策主 体深刻理解策略并明智的选择行动。
第二章 完全信息静态博弈
� 基本分析思路和方法 � 纳什均衡 � 混合策略 � 纳什均衡的选择
第一节 基本分析思路和方法
行动或策略(acቤተ መጻሕፍቲ ባይዱion or strategy)
si:局中人i的一个特定策略 Si:局中人i的策略集(strategy set)或策略空间 (strategy space),可以是离散的或连续的。
纳什的基本贡献是证明了非合作博弈均衡解 及其存在性,建立了作为博弈论基础的“纳 什均衡”概念;海萨尼则把不完全信息纳入 到博弈论方法体系中;泽尔腾的贡献在于将 博弈论由静态向动态的扩展,建立了“子博 弈精练纳什均衡”的概念。
1996莫里斯(James A.Mirrlees)和维克瑞(William Vickrey)
游戏1:军事游戏-进攻和防守
博弈结果表
守方
B 攻方 a -1 b -1 c +1 +1 +1 -1 +1 -1 -1
C -1 +1 +1
游戏1:军事游戏-进攻和防守
博弈结果表
守方
B 攻方 a -1 b -1 c +1 +1 +1 -1 +1 -1 -1
C -1 +1 +1
游戏1:军事游戏-进攻和防守
第一节 基本分析思路和方法
支付(payoff) ui:局中人i从对局中获得的收益。
对应一个策略组合 s,n个局中人的支付向量即 (u1(s),u2(s),…,un(s)) 囚徒困境博弈中,对应策略组合 s=(坦白,坦 白),囚徒 1的收益等于囚徒 2的收益都是5年徒刑, 即u1(s)=u2(s)=-5,如果用向量表示就是 (u1(s),u2(s))=(-5,-5)。
第一节 基本分析思路和方法
上策策略
在一个博弈中,如果不管其他局中人选择什么策 略,一局中人的某个策略给他带来的得益始终高于 其他策略,至少不低于其他策略。 如果该策略始终高于其他策略,称严格上策策 略,否则称弱上策策略。
第一节 基本分析思路和方法
上策策略
对于一个博弈 G={S1,…,Sn;u1,…,un},局中人 i对于其他局中人的每一个策略 s-i∈S-i,都有ui(s*i,s-i) ≥u i(si,s-i),则对局中人 i来说,s*i是局中人i的上策 策略。
博弈论——Game Theory
游戏1:军事游戏-进攻和防守
攻击目标:战备仓库 兵力:守军3个师,攻击军队有 2个师。通往战备仓库 的道路有两条( A、B),都是易守难攻。 规则:双方只能整编师调动,两军相逢,数量多者胜, 数量相同时守军胜 。
双方兵力部署图
A
B
游戏1:军事游戏-进攻和防守
守军的部署方案:
第一节 基本分析思路和方法
支付(payoff)
对于一个n人博弈中,各局中人的策略集为 S1,S2,…,Sn,那么就形成策略组合集 S= S1×S2×…×Sn={(s1,s2,…sn):si∈S, i=1,2,…,n},每个局中人的支付 u1,…un都是定义在 S1×S2×…×Sn上的函数, 我们把这个博弈记作 G={S1,…,Sn;u1,…un}。
博弈论 Game Theory
--一个让人变聪明的理论
教师:廉勇 河南理工大学
第一章 导论(Introduction)
人总想多赢一点,因为人是赌博的动物。
第一节 什么是博弈论 (What is Game Theory)
博弈的中文含义
第一节 什么是博弈论 (What is Game Theory)
这两位经济学家的贡献集中于运用博弈论对 现实经济问题的解释。
博弈论和诺贝尔经济学奖
2001:阿克洛夫(Akerlof)、斯宾塞(Spence)、斯蒂格利茨(Stiglitz)
这三位作为不对称信息市场理论的奠基人被授予诺 贝尔经济学奖,以表彰他们分别在柠檬品市场等不 对称信息理论研究领域做出的基础性贡献。这些贡 献发展了博弈论的方法体系,拓宽了其经济解释范 围。
si ∈Si
囚徒困境中 s1=坦白,策略集 S1={坦白,不坦白} 海滩占位中s1=0.5,策略集S1=[0,1]
第一节 基本分析思路和方法
在一个博弈中, n个局中人选择各自的策略,这样就 形成一个n维向量组成的策略组合 s=(s1,…,sn), 来表示他们的对局。 囚徒困境中s=(坦白,坦白)是一个策略组合。
第三节 博弈结构和博弈的分类
按得益种类分类
� 零和博弈(zero-sum game) � 非零和博弈(non-zero-sum game) � 常和博弈(constant-sum game) � 非常和博弈(non-constant game)或变和博弈(variablesum game)
第三节 博弈结构和博弈的分类
0
1/4
1/2
3/4
1
第三节 博弈结构和博弈的分类
按局中人数量分类
� 单人博弈 � 两人博弈 � 多人博弈
第三节 博弈结构和博弈的分类
按局中人行动顺序分类
静态博弈(static games ) 动态博弈(dynamic games ) 重复博弈( repeated games )
第三节 博弈结构和博弈的分类
A.三个师,部署在 A道路; B.两个师部署在 A道路,一个师部署在 B道路; C.一个师部署在 A道路,两个师部署在 B道路; D.三个师部署在 B道路。
游戏1:军事游戏-进攻和防守
攻方的进攻方案:
a. 集中两个师从 A道路进攻; b. 兵分两路分别从 A、B道路发起进攻; c. 集中两个师从 B道路进攻。
第一节 基本分析思路和方法
严格下策反复消去法(IESDS)
严格下策反复消去法不能解决所有博弈的分析问 题,因为在许多博弈问题中,严格下策往往不存在。
John Von Neuman (1903-1957)
计算机之父 博弈论之父
对原子物理学的发展具有极其 重要的价值 •对数学的多个分支具有开创性的贡献 •在化学方面具有很高的造诣 •他在计算机科学、经济、物理学中的量子 力学及几乎所有数学领域都作过重大贡献。 (维基百科)
博弈论和诺贝尔经济学奖
1994:纳什(Nash)、海萨尼(J.Harsanyi )、泽尔腾(R.Selten)
• 展开型博弈
博弈的展开型表示(extensive-form representation of games)
第二节 几个经典博弈模型
囚徒困境 智猪博弈 猎鹿博弈 海滩占位
一、囚徒困境(Prisoner’s dilemma)
★囚徒的困境模型是博弈论最经典的模型之一,简 单但很说明问题。 1950年,兰德公司的两位科学家 梅里尔·弗劳特和梅尔文 ·德莱歇提出了自博弈论问世 以来最具有争议的一种博弈。 “囚徒的困境”是有兰德 公司的顾问艾伯特 ·塔克(Albert William Tucker )起 的。
按局中人相互关系分类
� 合作博弈(cooperative game) � 非合作博弈(non-cooperative game)
第四节 博弈的有关问题
理性假设
理性人:追求效用最大化的人
第四节 博弈的有关问题
交易问题
交易给交易双方带来利益,利益得失是交易人的一种主观 判断。交易利益等于交易双方保留价格的差。
Game Theory aims to help us understand situations in which decision-makers interact.
如果想成为现代社会中博闻广识的人, 你必须对博弈论有某种程度的了解。 ——Paul Samuelson
博弈论的历史
我国《史记》记载的“田忌赛马”。 现代博弈论发源于西方的 17世纪。 1944年,诺依曼( John Von Neumann)和摩根斯坦 (Oskar Morganstem)合著的《博弈论与经济行 为》”Theory of Games and Economic Behavior ”. 标 志着现代博弈论的正式诞生 。
不完全信 息
不完全信息的 静态博弈
不完全信息的 动态博弈
第三节 博弈结构和博弈的分类
按信息完美性分类
� 完美信息博弈(games of perfect information) � 不完美信息博弈(games of imperfect information) ——完美性信息:指动态博弈过程中面临决策的局中人对博弈进 行迄今的所有信息完全了解。
第一节 基本分析思路和方法
上策均衡
如果一个博弈中的某个策略中的所有策略都是各 个博弈方的上策,那么我们称这样的策略组合为该 博弈的一个 “上策均衡”(Dominant strategy equilibrium )。 上策均衡并不普遍存在
第一节 基本分析思路和方法
严格下策反复消去法(IESDS)
A a 1, 0 Player1 b 0, 4 c 3, 2 player2 B 1, 3 2, 2 2, 1 C 0, 1 2, 0 -1, 0
一、囚徒困境(Prisoner’s dilemma)
囚徒2 坦白 囚徒1 坦白 -5 不坦白 -8 不坦白
-5 0
0 -1
-8 -1
返回
相关文档
最新文档