1.5.1 第2课时 有理数乘法的运算律
七年级上册数学教案设计1.5.1第2课时有理数的混合运算1
第2课时 有理数的混合运算1.掌握有理数混合运算法则,能熟练进行有理数的混合运算,并能合理使用运算律进行简便运算;(难点)2.养成在计算前认真审题,确定运算顺序,计算中按步骤审慎进行,最后要养成验算的好习惯.一、情境导入前面我们学习了有理数的加、减、乘、除和乘方运算,对各种运算的法则、运算律和运算技巧已经比较熟悉,如果遇到有理数的混合运算,你有信心进行准确的计算吗?下图是小玲和小亮的对话,你同意小亮的说法吗?二、合作探究探究点一:有理数的混合运算计算:(1)(-5)-(-5)×110÷110×(-5); (2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)题是含有减法、乘法、除法的混合运算,运算时,一定要注意运算顺序,尤其是本题中的乘除运算.要从左到右进行计算;(2)题有大括号、中括号,在运算时,可从里到外进行.注意要灵活掌握运算顺序.解:(1)(-5)-(-5)×110÷110×(-5)=(-5)-(-5)×110×10×(-5)=(-5)-25=-30; (2)-1-{(-3)3-[3+23×(-112)]÷(-2)}=-1-{-27-[3+23×(-32)]÷(-2)}=-1-{-27-2÷(-2)}=-1-{-27-(-1)}=-1-(-26)=25.方法总结:有理数的混合运算可用下面的口诀记忆:混合运算并不难,符号第一记心间;加法需取大值号,乘法同正异负添;减变加改相反数,除改乘法用倒数;混合运算按顺序,乘方乘除后加减.探究点二:数字规律探索为了求1+2+22+23+24+…+22015的值,可令S =1+2+22+23+…+22015,则2S =2+22+23+24+…+22016,因此2S -S =22016-1,所以1+2+22+23+…+22015=22016-1,仿照以上推理,那么1+5+52+…+52015=________.解析:观察等式,可发现规律,根据规律即可进行解答.则设S =1+5+52+53+…+52015,5S =5+52+53+54+…+52016,5S -S =52016-1,∴S =52016-14,故填52016-14. 方法总结:解规律性问题的关键在于发现规律,应用规律解题.三、板书设计有理数的混合运算顺序:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.有理数的运算是数学中很多其他运算的基础,培养学生正确迅速的运算能力,是数学教学中的一项重要目标.在加、减、乘、除、乘方这几种运算基本掌握的前提下,学生进行混合运算,首先应注意的就是运算顺序的问题.小组讨论有理数运算法则后,教师应提醒学生牢固掌握有理数混合运算的几项规定,特别是加入乘方以后,学生对乘方运算不熟悉,容易算成加法或底数与指数相乘.学生在运算符号多的时候容易出错,需要进行针对性讲解.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A.3a+bB.3a-bC.a+3bD.2a+2b2.如图,轩轩同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A.两条直线相交,只有一个交点B.两点确定一条直线C.经过一点的直线有无数条D.两点之间,线段最短3.轮船航行到C 处观测小岛A 的方向是北偏西48°,那么从A 同时观测轮船在C 处的方向是( ) A.南偏东48°B.东偏北48°C.东偏南48°D.南偏东42°4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( ) A.()31001003xx +-= B.()31001003xx --= C.10031003xx -+= D.10031003xx --= 5.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( ) A .200元 B .240元 C .250元 D .300元6.3x 的倒数与293x -互为相反数,那么x 的值为( ) A.32 B.32- C.3 D.-37.下列说法正确的是( )A.3xy5-的系数是3- B.22m n 的次数是2次 C.x 2y 3-是多项式D.2x x 1--的常数项是18.如果3x 2m y n+1与﹣12x 2y m+3是同类项,则m ,n 的值为( ) A.m=﹣1,n=3B.m=1,n=3C.m=﹣1,n=﹣3D.m=1,n=﹣39.下列运算正确的是( ) A .a 2+a 3=a 5B .a 2•a 3=a 5C .(-a 2)3=a 6D .-2a 3b÷ab=-2a 2b10.如果温度上升10℃记作+10℃,那么温度下降5℃记作( ) A .+10℃ B .﹣10℃ C .+5℃ D .﹣5℃ 11.|-2|的倒数是( ) A.2B.-12C.-2D.1212.下列说法中,正确的是( ) A.()23-是负数 B.若x 5=,则x 5=或x 5=- C.最小的有理数是零 D.任何有理数的绝对值都大于零二、填空题13.如果A 站与B 站之间还有C 、D 两个车站,那么往返于A 站与B 站之间的客车应安排_________种车票. 14.在同一平面内,两条直线相交时最多有1个交点,三条直线相交时最多有3个交点,四条直线相交时最多有6个交点,…,那么十条直线相交时最多有____个交点. 15.如果23x +与5互为相反数,那么x 等于___________.16.设一列数1a 、2a 、3a 、…、 a 2010中任意三个相邻数之和都是35,已知a 3=2x,a 20=15,993a x =-,那么a 2011=_________________。
有理数乘法的运算律及运用精品 【公开课教案】
1.4.1 有理数的乘法第2课时有理数乘法的运算律及运用教学目标:使学生经历探索有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之计算简便.教学重难点:熟练运用运算律进行计算.教与学互动设计:(一)创设情境,导入新课想一想上一节课大家一起学习了有理数的乘法运算法则,掌握得较好.那在学习过程中,大家有没有思考多个有理数相乘该如何来计算?做一做(出示胶片)下列题目你能运算吗?(1)2×3×4×(-5);(2)2×3×(-4)×(-5);(3)2×(-3)×(-4)×(-5);(4)(-2)×(-3)×(-4)×(-5);(5)-1×302×(-2004)×0.由此我们可总结得到什么?(二)合作交流,解读探究交流讨论不难得到结论:几个不为0的数相乘,积的符号由负因数的个数决定.当负因数的个数是偶数时,积为正;负因数的个数是奇数时,积为负,并把绝对值相乘.几个数相乘,如果其中有因数为0,积等于0.(三)应用迁移,巩固提高【例1】计算(-3)××(-)×(-)×(-8)×(-1).【例2】计算(-1999)×(-2000)×(-2001)×(-2002)×2003×(-2004)×0.导入运算律(1)通过计算:①5×(-6),②(-6)×5,比较结果得出5×(-6)=(-6)×5;(2)用文字语言归纳乘法交换律:两个数相乘,交换因数的位置,积相等;(3)用公式的形式表示为:ab=ba;(4)分组计算,比较[3×(-4)]×(-5)与3×[(-4)×(-5)]的结果,讨论、归纳出乘法结合律;(5)全班交流,规范结合律的两种表达形式:文字语言、公式形式;(6)分组计算、比较:5×[3+(-7)]与5×3+5×(-7)的结果,讨论归纳出乘法分配律;(7)全班交流、规范分配律的两种表达形式:文字语言、公式形式.【例3】用简便方法计算:(1)(-5)×89.2×(-2);(2)(-8)×(-7.2)×(-2.5)×.【例4】用两种方法计算(+-)×12.(四)总结反思,拓展升华本节课我们的成果是探究出有理数的乘法运算律并进行了应用.可见,运算律的运用十分灵活,各种运算律常常是混合应用的.这就要求我们要有较好的掌握运算律进行计算的能力,要寻找最佳解题途径,不断总结经验,使自己的能力得到提高.(五)课堂跟踪反馈夯实基础1.计算题:(1)(-)××(-)×(-2);(2)6.878×(-15)+6.878×(-12)-6.878×(-37);(3)×(-16)×(-)×(-1)×8×(-0.25);(4)(-99)×36.提升能力2.若a、b、c为有理数,且│a+1│+│b+2│+│c+3│=0.求(a-1)(b+2)(c-3)的值.第八章 8.2.2消元——解二元一次方程组(一)知识点1:加减消元法两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程.这种方法叫做加减消元法,简称加减法.知识点2:列二元一次方程组解实际应用题的步骤列二元一次方程组解应用题与列一元一次方程解应用题的思路基本相似,也是审题、设元、列方程、检验、作答几个步骤.其中与列一元一次方程解应用题不同的是,列一元一次方程解应用题的时候,我们需要考虑设哪个未知量为x,运用哪个相等关系来列方程,而列二元一次方程组解应用题时,如果题目有两个未知量,两个相等关系,我们直接将未知量设为x和y,两个相等关系都用来列方程.考点1:先化简再求方程组的解【例1】解方程组解:原方程组可化为②×5-①,得26y=104,解得y=4.把y=4代入②,得x+20=28,解得x=8.所以原方程组的解为点拨∶对于比较复杂的二元一次方程组,首先将两个方程化简成ax+by=c的形式,然后再使用代入消元法或加减消元法求解.考点2:换元法解方程组【例2】解方程组解:设a=,b=,则原方程组可变形为解得∴解得点拨:仔细观察方程组,我们不难发现两个方程中均出现和,我们可将和分别看作两个未知数a,b,这个复杂的方程组就可以转化成一个简单的方程组来解决了,这种方法叫做换元法.考点3:轮对称的二元一次方程组的求解策略【例3】解方程组解:①+②,得27x+27y=81,化简得x+y=3.③①-②,得-x+y=-1.④③+④,得2y=2,解得y=1.③-④,得2x=4,解得x=2.∴原方程组的解是点拨:呈现形式的方程组称为轮对称方程组.考点4:一个二元一次方程组与一个二元一次方程同解的问题【例4】若关于x,y的方程组的解也是方程3x+2y=17的解,求m的值.解法一:①-②,得3y=-6m,即y=-2m.把y=-2m代入①,得x-4m=3m,解得x=7m.把x=7m,y=-2m代入3x+2y=17,得21m-4m=17,解得m=1.解法二:①×3-②,得2x+7y=0.根据题意可得:解这个方程组,得把代入①,得7-4=3m,解得m=1.点拨:解法一:把m看作已知数,用含m的代数式表示x,y,然后把x,y的值代入3x+2y=17中,得到一个关于m的一元一次方程,解这个一元一次方程即可求出m的值.解法二:由原方程组消去m,得到一个关于x,y的二元一次方程,这个二元一次方程和3x+2y=17组成一个方程组,解出x,y的值,然后代入原方程组中任意一个方程求出m的值.3.2 解一元一次方程(一)——合并同类项与移项第1课时用合并同类项的方法解一元一次方程教学目标:1.经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.2.学会合并同类项,会解“ax+bx=c”类型的一元一次方程.3.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程.教学重点:建立方程解决实际问题,会解“ax+bx=c”类型的一元一次方程.教学难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程.教学过程:一、设置情境,提出问题(出示背景资料)约公元820年,中亚细亚的数学家阿尔-花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题.出示课本P86问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍.前年这个学校购买了多少台计算机?二、探索分析,解决问题引导学生回忆:实际问题一元一次方程设问1:如何列方程?分哪些步骤?师生讨论分析:(1)设未知数:前年这个学校购买计算机x台;(2)找相等关系:前年购买量+去年购买量+今年购买量=140台.(3)列方程:x+2x+4x=140.设问2:怎样解这个方程?如何将这个方程转化为“x=a”的形式?学生观察、思考:根据分配律,可以把含x的项合并,即x+2x+4x=(1+2+4)x=7x老师板演解方程过程:略.为帮助有困难的学生理解,可以在上述过程中标上箭头和框图.设问3:在以上解方程的过程中“合并”起了什么作用?每一步的根据是什么?学生讨论回答,师生共同整理:“合并”是一种恒等变形,它使方程变得简单,更接近“x=a”的形式.三、拓广探索,比较分析学生思考回答:若设去年购买计算机x台,得方程+x+2x=140.若设今年购买计算机x台,得方程++x=140.课本P87例2.问题:①每相邻两个数之间有什么关系?②用x表示其中任意一个数,那么与x相邻的两个数怎样表示?③根据题意列方程解答.四、综合应用,巩固提高1.课本P88练习第1,2题.2.一个黑白足球的表面一共有32个皮块,其中有若干块黑色五边形和白色六边形,黑、白皮块的数目之比为3:5,问黑色皮块有多少?(学生思考、讨论出多种解法,师生共同讲评.)3.有一列数按一定规律排成-1,2,-4,8,-16,32,……,其中某三个相邻数的和是-960.求这三个数.五、课时小结1.你今天学习的解方程有哪些步骤,每一步的依据是什么?2.今天讨论的问题中的相等关系有何共同特点?学生思考后回答、整理:解方程的步骤及依据分别是:合并和系数化为1;总量=各部分量的和.。
人教版七年级上册数学:第一章《有理数》1.4.1 第2课时《有理数乘法的运算律及运用》
3×5=5×3 (3×5)×2=3×(5×2) 3×(5+2)=3×5+3×2
引入负数后,三种运算律是否还成立呢?
一、有理数乘法的运算律
合作探究
第一组:
(1) 2×3= 6
3×2= 6
2×3 =3×2
(2) (3×4)×0.25= 3
3×(4×0.25)= 3
(3×4)×0.25 =3×(4×0.25)
(3) 2×(3+4)= 14
2×3+2×4= 14
2×(3+4)= 2×3+2×4
思考:上面每小组运算分别体现了什么运算律?
第二组:
(1)5×(-6) =-30 (-6 )×5= -30 5× (-6) = (-6) ×5
(2)[3×(-4)]×(- 5)=(-12)×(-5) = 60 3×[(-4)×(-5)]= 3×20= 60
2.25 4.-6
课堂小结
1.乘法交换律: 两个数相乘,交换两个因数的位置,积不变. ab=ba 2.乘法结合律: 三个数相乘,先把前两个数相乘,或先把后
(ab)c = a(bc) 两个数相乘,积不变. 3.乘法分配律: 一个数同两个数的和相乘,等于把这个数 a(b+c) = ab+ac 分别同这两个数相乘,再把积相加.
_各__运__算__律__在__有__理__数__范__围__内__仍__然__适__用____.
归纳总结
1.乘法交换律:
数的范围已扩充 到有理数.
两个数相乘,交换两个因数的位置,积相等.
ab=ba
2.乘法结合律:
三个数相乘,先把前两个数相乘,或先把后两个
数相乘,积相等. (ab)c = a(bc)
《有理数的乘法》第2课时精品教案
《有理数的乘法》第2课时精品教案教学目标:1.掌握多个有理数连续相乘的运算方法.2.正确理解乘法交换律、结合律和分配律,能用字母表示运算律的内容.3.能运用运算律较熟练地进行乘法运算.重点:了解多个有理数连续相乘的运算方法以及乘法运算律的内容,运用运算律进行乘法运算.难点:运用运算律简化乘法运算.教学流程:一、知识回顾问题1:有理数乘法法则:答案:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.问题2:填空:2×(-3)=______(-6)×(-4)=______24×(-5)=______答案:-6;24;-120问题引入:想一想:2×(-3)×(-4)×(-5)该如何计算呢?二、探究1问题1:观察下面各式,它们的积是正的还是负的?2×3×4×(-5)2×3×(-4)×(-5)2×(-3)×(-4)×(-5)(-2)×(-3)×(-4)×(-5)答案:依次为正数;负数;负数;正数追问:几个不等于0的数相乘,积的符号与负因数的个数之间有什么关系?归纳:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.例:计算591(1)(3)()()654-⨯⨯-⨯-;41(2)(5)6()54-⨯⨯-⨯解:591(1)(3)()()654591365498-⨯⨯-⨯-⨯⨯⨯=--=41(2)(5)6()544156546-⨯⨯-⨯=⨯⨯⨯=追问:多个不是0的数相乘,先做哪一步,再做哪一步?强调:先确定积的符号,再把各个乘数的绝对值相乘,作为积的绝对值. 练习1:1.若五个有理数的积为负数,那么这五个数中负因数的个数是( )A .1B .3C .5D .1或3或5答案:D 2.计算:(1)(5)8(7)(0.25)-⨯⨯-⨯-;5812(2)()()121523-⨯⨯⨯- 解:(1)(5)8(7)(0.25)1587470-⨯⨯-⨯-=-⨯⨯⨯=-5812(2)()()1215235812121523227-⨯⨯⨯-=⨯⨯⨯= 三、探究2问题2:你能看出下式的结果吗?如果能,请说明理由.7.8(8.1)0(19.6)⨯-⨯⨯-归纳:几个数相乘,如果其中有因数为0,积等于0. 练习2:判断下列各式乘积的符号: ①(-3)×(-4)×(+5.5); ②4×(-2)×(-3.1)×(-7); ③(-201)×0×7×(-2);④(-3.7)×(-6)×10×(-5.3)×(-1),其中积为正数的有________,积为负数的有____________,积为0的是_______________.(只填写序号)答案:①④;②;③四、探究3问题3:计算:5×(-6)(-6)×5(-4)×(-3)(-3)×(-4)(-2)×7 7×(-2)追问:两次所得的积相同吗?答案:相等归纳:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.乘法交换律:ab=ba强调:a×b也可以写成a·b或ab,当用字母表示乘数时,“×”可以写为“·”或省略.问题4:计算:[3×(-4)]×(-5)3×[(-4)×(-5)]解:[3×(-4)]×(-5)3×[(-4)×(-5)]=(-12)×(-5) =3×20=60 =60追问:你能得出什么结论呢?归纳:一般地,有理数乘法中,三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.乘法结合律:(ab)c=a(bc)问题5:计算:5×[3+(-7)] 5×3+5×(-7)解:5×[3+(-7)] 5×3+5×(-7)=5×(-4)=15+(-35)=-20 =-20追问:你能得出什么结论呢?归纳:一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.分配律:a(b+c)=ab+ac练习3:1.运用运算律填空:(1)[(-4)×5]×(-15)=(-4)×[ ____ ×( ________ )];(2)(-0.25)×21×(-8)×(-17)=[(-0.25)×( ____ )]×[ ____ ×(-17)].答案:5,-15;-8,212.观察下面的计算过程:(13-315+25)×3×5=(13-315+25)×15=5-3+6=8 在上面的计算过程中运用的运算律是( )A .乘法交换律及结合律B .乘法交换律及分配律C .加法结合律及分配律D .乘法结合律及分配律答案:D 五、应用提高例:用两种方法计算:111()12462+-⨯ 解法1:解法2:111()12462326()12121212112121+-⨯=+-⨯=-⨯=-111()124621111212124623261+-⨯=⨯+⨯-⨯=+-=- 练习3: 计算:(1)(85)(25)(4);-⨯-⨯-91(2)()30;1015-⨯71(3)()15(1);87-⨯⨯-62617(4)()()()()5353-⨯-+-⨯+解:(1)(85)(25)(4)85(254)851008500-⨯-⨯-=-⨯⨯=-⨯=-91(2)()301015913030101527225-⨯=⨯-⨯=-=71(3)()15(1)8771()(1)158711515-⨯⨯-=-⨯-⨯=⨯=62617(4)()()()()53536217()[()()]5336()556-⨯-+-⨯+=-⨯-++=-⨯=-六、体验收获今天我们学习了哪些知识? 1.我们学习了哪些乘法运算律?2.进行有理数的乘法运算时,哪些情况下考虑使用乘法运算律呢? 七、达标测评1.下列计算正确的是( )A .(-9)×5×(-4)×0=9×5×4=180B .-5×(-4)×(-2)×(-2)=5×4×2×2=80C .(-12)×(23-14-1)=-8-3-1=-12 D .-2×5-2×(-1)-(-2)×2=-2×(5+1-2)=-8 答案:B2.用简便方法计算:(-23)×25-6×25+18×25+25,逆用分配律正确的是( )A .25×(-23-6+18)B .25×(-23-6+18+1)C .-25×(23+6+18)D .-25×(23+6-18+1)答案:B3. 计算1357×316,最简便的方法是( )A .(13+57)×316B .(14-27)×316C .(10+357)×316D .(16-227)×316答案:D4. 在等式4×□-2×□=30的两个方格中分别填入一个数,使这两个数互为相反数,且等式成立,则第一个方格内的数是________.答案:5 5.计算:(1) (-4)×(-72)×(-0.25)×(-136);(2)(-712-56+1)×(-36);(3) 9992425×(-5).解:(1) (-4)×(-72)×(-0.25)×(-136)=[(-4)×(-0.25)]×[(-72)×(-136)]=1×2 =2(2)(-712-56+1)×(-36)=(-712)×(-36)-56×(-36)+1×(-36)=21+30-36 =1524(3)999(5)251(1000)(5)2511000(5)(5)25150005449995⨯-=-⨯-=⨯--⨯-=-+=-八、布置作业教材38页习题1.4第7(1)(2)(3)题.。
2.2.1 第2课时 有理数乘法的运算律
③计算:5×[3+(-6)]=___-__1_5_; 5×3+5×(-6)=___-__1_5_; 5×[3+(-6)]___=____5×3+5×(-6). 由上可以发现:一个数与两个数的____和___相乘,等于把这 个数分别与这两个数___相__乘__,再把__积____相加,即a(b+c) =___a_b_+__a_c____.这就是分配律.
【题型二】有理数的乘法运算律
例3:对于算式2 024×(-8)+(-2 024)×(-18),利用分配律写 成积的形式是( C ) A.2 024×(-8-18) B.-2 024×(-8-18) C.2 024×(-8+18) D.-2 024×(-8+18)
例4:用简便方法计算: (1)(-5)×(-9.7)×(-2);
(3)原式=63×(-19)+63×221+63×(-47)=-7+6-36=-37. (4)原式=-151×[(-5)+13-3]=-151×5=-11.
课堂小结
本节课我们学习了哪些知识?
有理数的乘法运算律;多个非零有理数相乘时积的符号与 负乘数个数的关系
通过本节课的学习,我们发现,运算的应用十分灵活,各 种运算律常常是混合应用的,这就要求我们要有较好的掌 握运算律进行计算的能力,能发现最佳解题途径,不断总 结经验,使自己的能力得到提高!
小组讨论
小组合作完成课本43页练习1,2题.
小组展示
越展越优秀
提疑惑:你有什么疑惑?
知识讲解
知识点1:有理数的乘法运算律(重难点)
运算律
语言叙述
两个数相乘,交换乘数的位置,积 乘法交换律
不变
三个数相乘,先把前两个数相乘, 乘法结合律
或者先把后两个数相乘,积不变
一个数与两个数的和相乘,等于把
人教版七年级数学上册1.有理数乘法的运算律及其应用(第2课时)课件
A.加法交换律
B.乘法交换律
C.乘法结合律
D.乘法分配律
4.下列计算中,错误的是( C ) A.-6×(-5)×(-3)×(-2)=180 B.(-36)×16-19-13=-6+4+12=10 C.(-15)×(-4)×+15×-12=6 D.-3×(+5)-3×(-1)-(-3)×2=-3×(5-1-2)=-6
33
解:1+12×1+14×1+16×…×1+210×1-13×1-15×1-17×…×1-211 =32×54×76×…×2210×23×45×67×…×2201=32×23×54×45×76×67×…×2210×2201 =1×1×1×…×1=1.
课堂小结
1.乘法交换律:
数的范围已扩充 到有理数.
D.b>0,c>0
10.计算:(-4)×-115×(-0.25)×23=__-__45___.
11.计算:(1-2)×(2-3)×(3-4)×…×(2019-2020)=_-__1___.
12.若 a+b+c>0,且 abc<0,则 a、b、c 中负数有__1__个.
30
13.用简便方法计算: (1)(-9)×31289+(-8)×-31289; 解:原式=31289×(-9+8)=-31289. (2)(-12.5)×-67×(-4); 解:原式=-(12.5×4)×67=-50×67=-4267.
27
= 71 (9) 2 (9)
27
=
639
(
2) 3
= -639 2
3
21
典例精练
4.下面是小强和小刚两位同学在求 711156×(-8)的值时,各自的解题过程,请 你阅读后回答下面的问题.
有理数的乘法(第二课时)教案
有理数的乘法(第二课时)教案教学目标1.知识与技能使学生经历探究有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之运算简便.2.过程与方法通过对问题的探究,培养观看、分析和概括的能力.3.情感、态度与价值观能面对数学活动中的困难,有学好数学的自信心.教学重点难点重点:熟练运用运算律进行运算.难点:灵活运用运算律.教与学互动设计(一)创设情境,导入新课想一想上一节课大伙儿一起学习了有理数的乘法运算法则,把握得较好.那在学习过程中,大伙儿有没有摸索多个有理数相乘该如何来运算?做一做(出示胶片)你能运算吗?(1)234(-5)(2)23(-4)(-5)(3)2(-3)(-4)(-5)(4)(-2)(-3)(-4)(-5)那个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录同时阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,因此内容要尽量广泛一些,能够分为人一辈子、价值、理想、学习、成长、责任、友谊、爱心、探究、环保等多方面。
如此下去,除假期外,一年便能够积存40多则材料。
假如学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?(5)-1302(-2021)0要练说,得练看。
看与说是统一的,看不准就难以说得好。
练看,确实是训练幼儿的观看能力,扩大幼儿的认知范畴,让幼儿在观看事物、观看生活、观看自然的活动中,积存词汇、明白得词义、进展语言。
在运用观看法组织活动时,我着眼观看于观看对象的选择,着力于观看过程的指导,着重于幼儿观看能力和语言表达能力的提高。
由此我们可总结得到什么?死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随着素养教育的开展,死记硬背被作为一种僵化的、阻碍学生能力进展的教学方式,慢慢为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
事实上,只要应用得当,“死记硬背”与提高学生素养并不矛盾。
第1章 1.5.1 第2课时 有理数的混合运算
第一章 有理数
1.5 有理数的乘方 1.5.1 乘方
第2课时 有理数的混合运算
有理数的混合运算顺序 有理数加、减、乘、除、乘方的混合运算:(1)先算 乘方 ,后算 乘除 , 最后算加减;(2)同级运算,从 左 到 右 依次进行;(3)如有括号,先算 括号 里面的,按 小 括号, 中 括号, 大 括号依次进行. 自我诊断 1. 计算:2×(-3)3-4÷(-2)+15 时,先算 乘方,再算 乘 法和
(3)2018 不是这列数中的数,因为这列数中,所有的偶数都是负数.
15.(1)计算①11+12-1=
1 2
;
②31+14-12=
1 12
;
③51+16-13=
1 30
;
④71+18-14=
1 56
;
(2)第 8 个式子为 115+116-18=2410
;
(3)根据规律填空20117+
1 2018
A.0
B.-54
C.-72
D.-18
4.计算-32+5-8×(-2)时,应该先算 乘方 ,再算 乘法 ,最后算
加减 ,正确的结果为 12 .
5.观察下列按规律排列的等式:0+1=12,2×1+2=22,3×2+3=32,4×3+4 =42,…请你猜想,第 10 个等式应为 10×9+10=102 .
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/52021/9/5Sunday, September 05, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/52021/9/52021/9/59/5/2021 9:29:47 AM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/52021/9/52021/9/5Sep-215-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/52021/9/52021/9/5Sunday, September 05, 2021
1.5.1 乘方 第2课时 有理数的混合运算
【归纳总结】探索数的变化规律的方法: (1)从简单、特殊情形着手,然后猜想一般情形; (2)观察符号的变化规律; (3)观察数的绝对值的变化规律,当数的绝对值变大时,可考虑加 法、乘法或乘方(底数大于1)等运算,反之,可考虑减法、除法或 乘方(底数是小于1的正数)等运算.
总结反思
知识点 有理数的混合运算 有理数的混合运算顺序: 1.先___乘_方____,再__乘_除_____,最后_加_减______; 2.同级运算,从____左____到___右_____进行; 3.如有括号,先做__括_号__内___的运算,按小括号、中括号、大括 号
[点拨] 运算时优先确定每步结果的符号;除遵守以上原则外, 还需注意灵活运用运算律,使运算简便.
计算:232+(-32+5)+(-32)×(23)2. 解:232+(-32+5)+(-32)×(23)2 =49+(9+5)+9×49① =49+14+4②=1849.③
以上解答从第____①____步开始出现错.1 乘方
第一章 有理数
第2课时 有理数的混合运算
目标突破 总结反思
目标突破
目标一 会进行含乘方的有理数的混合运算
例 1 教材例 3 针对训练 计算: (1)2×(-3)2-5÷(-21)×(-2); (2)-12019-[2-(-1)2018]÷(-52)×52.
[解析] (1)先算乘方,再算乘除,最后算加减即可得到结果. (2)先算乘方,再算括号内的,然后将除法转化为乘法,计算乘法,最后 计算加减即可得到结果.
目标二 探索有理数的变化规律
例2 教材例4针对训练 观察下面三行数: 2,-4,8,-16,…;① -1,2,-4,8,…;② 3,-3,9,-15,….③ (1)第①行数有什么规律? (2)第②③行数与第①行数分别有什么关系? (3)取每行数的第9个数,计算这三个数的和.
2024秋季新教材湘教版七年级上册数学1.5.1 第2课时 有理数乘法的运算律课件
情境导入
1. 有理数的乘法法则: 两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数与 0 相乘,积仍为 0.
2. 小学学过乘法的哪些运算律: 乘法交换律、结合律和乘法对加法的分配律.
探究新知
1 有理数乘法的运算律
合作探究
(1) 先填空,再判断下面三组算式的结果是否分别相等. ① (-6)×[4+(-9)]=(-6)× -5 = 30 . (-6)×4+(-6)×(-9)= -24 + 54 = 30 .
3
=
1
2,
1
2
;
② [(-2)×3]×(-4)= (-6) ×(-4)= 24 ,
(-2)× [3×(-4)]=(-2)× 12 = -24 .
(2) 将 (1) 中的有理数换成其他有理数,各组算式的结 果分别相等吗?你能发现什么?
知识要点 一般地,有理数的乘法满足如下两个运算律:
乘法交换律 a×b=b×a; 乘法结合律 (a×b)×c=a×(b×c).
3
1 2
,用乘法分配律计算过程正确的是(
A
)
A.
(-2)×3
+
(-2)×
1 2
B.
(-2)×3
-
(-2)×
1 2
C.
2×3
-
(-2)×
1 2
D.
(-2)×3
+
2×
1 2
2. 计算:
(1)(25)(17)4; (2) 12
(2)
1 2
(2);
解:(1)(25) (17) 4 25 417 10017 1700.
5
0
7 8
高邑县第四中学七年级数学上册第一章有理数1.5有理数的乘方1.5.1乘方第2课时有理数的混合运算教案
第2课时有理数的混合运算【知识与技能】了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序.【过程与方法】能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律.【情感态度】培养学生对数的感觉,提高学生正确运算的能力,培养学生思维的逻辑性和灵活性,进一步发展学生的思维能力.【教学重点】有理数的混合运算顺序是确定的.【教学难点】根据有理数的混合运算顺序,正确地进行有理数的混合运算.一、情境导入,初步认识计算:3-(-2)3×6.这个式子先算什么,后算什么?【教学说明】教师引导学生做这道题,让学生说一说运算顺序,接着师生共同归纳出下面的结论.【归纳结论】1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.二、典例精析,掌握新知例1计算下列各题:【分析】按照有理数混合运算的顺序——先算括号,再乘方,然后算乘除,最后算加减进行计算,每步计算先确定符号再计算结果.【教学说明】有理数的计算要遵循先观察,后计算,先确定符号,再计算结果的原则;观察时,先看每个算式可以用括号和“+、-”号分成几个部分(如第(1)题可分为三部分,第(2)题可分为两部分),再看每个部分能否进行简算(如\[21×317-713×722÷312\]2及(0.12510×89)均可进行简算),乘除法中带分数一般化为假分数进行计算.完成此例题后,教师让学生自行阅读教材第43~44页例3、例4.试一试教材第44页练习.例2观察下面三行数:1,4,9,16,25,…;①0,3,8,15,24,…;②4,7,12,19,28,…;③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第12个,计算这三个数的和.分析通过比较可以发现,第②③行数据都是在①的基础上进行加减后得到的,所以根据这个思路很容易知道怎么解题.解:(1)第①行数是12,22,32,42,52,….(2)对比①②两行中的数据,可以发现:第②行数是第①行相应数减1,即12-1,22-1,32-1,42-1,52-1,….对比①③两行中的数据,可以发现,第③行数是第①行相应数加3,即12+3,22+3,32+3,42+3,52+3,….(3)每行第12个数是122,122-1,122+3,其和是122+122-1+122+3=434.【教学说明】这道例题与课本上的例题比较类似,教师可事先让学生学习教材例4后再解这道题.例3已知y=ax5+bx3+cx-5,当x=-3时,y=7;求x=3的y的值.解:当x=-3时,y=a·(-3)5+b·(-3)3+c·(-3)-5=-35a-33b-3c-5=7,∴35a+33b+3c=-12那么,当x=3时,y=35a+33b+3c-5=-12-5=-17【教学说明】本题重在让学生体会整体思想的运用.三、运用新知,深化理解1.计算下列各题.2.根据下表,探索规律:根据规律写出37与320的个位数字.【教学说明】第1题中的几道题都是有关混合运算的题,教师先让学生思考,再让学生在黑板上解答,然后全体学生共同订正,总结规律与注意事项.第2题为探索题,教师可与学生共同探索,提示学生注意看个位数字的变化规律.2.解:由表格知,3n中,当n是连续自然数变化时,幂3n的个位数字是3,9,7,1,3,9,7,1,…周期变化,且四个数为一个周期,易知37的个位数字为7,20 ÷4=5,则320的个位数字与第四个数的个位数字相同,即320的个位数字与34的个位数字相同,为1.四、师生互动,课堂小结1.注意有理数的混合运算顺序,要熟练进行有理数混合运算;2.在运算中要注意像-72与(-7)2等这类式子的区别.1.布置作业::从教材习题1.5中选取.2.完成练习册中本课时的练习.本课时教学重在培养学生计算能力,要求学生先通过交流,正确归纳出有理数混合运算顺序,再在实际解题过程中寻找规律,发现问题,学生间互相辨析指正.教师在指导过程中,强调学生对易错点特别警醒,解题时仔细分析问题结构特征,合理选择步骤和运算律.第3课时整式的加法和减法【知识与技能】能运用合并同类项和去括号法则进行整式的加法和减法.【过程与方法】经历将整式去括号、合并同类项的化简过程,培养学生将所学知识点结合使用的能力.【情感态度】在观察、探索的过程中,培养学生主动归纳、学习的意识.【教学重点】熟练进行整式的加法和减法.【教学难点】准确理解整式的加法和减法的意义,解决实际问题.一、情景导入,初步认知1.化简:2(a+1)-a.2.想一想,如何进行整式的加减运算.【教学说明】通过两个问题,回顾前面所学过的合并同类项和去括号法则,引出新的知识.二、思考探究,获取新知1.计算:(1)(5x-1)+(x+1)(2)(2x+1)-(4-2x)2.动脑筋:有两个大小不一样的长方体纸盒,如图所示,已知大纸盒的体积是小纸盒体积的24倍.(1)这两个纸盒的体积和为多少?(2)大纸盒与小纸盒的体积差为多少?【教学说明】让学生加强对新知的理解和应用,培养学生分析问题、解决问题的能力.三、运用新知,深化理解1.教材P75例5、62.若两个整式的和是2x2+xy+3y2,一个加式是x2-xy,求另一个加式.解:另一个加式=(2x2+xy+3y2)-(x2-xy)=2x2+xy+3y2-x2+xy=x2+2xy+3y2.3.求3a2-2ab+6与5a2-6ab-7的和与差.答案:和是8a2-8ab-1,差是-2a2+4ab+13.4.先化简,再求值:5(3a2b-ab2)-(ab2+3a2b),其中a=12,b=-1.解:化简,得12a2b-6ab2,把a=12,b=-1化入化简,得-6.5.求下列式子的值:2[mn+(-3m)]-3(2n-mn),其中m+n=2,mn=-3.解:化简,得5mn-6m-6n,变形为5mn-6(m+n),把mn=-3,m+n=2代入得-27.6.已知A=a2+b2-c2,B=-4a2+2b2+3c2,且A+B+C=0,求C.解:由A+B+C=0,得C=-A-B=-(a2+b2-c2)-(-4a2+2b2+3c2)=-a2-b2+c2+4a2-2b2-3c2=3a2-3b2-2c2.7.为了加强地球和月球,人们在地球和月球上各加上了一道铁箍,现在想把铁箍各向外扩展1米,问哪个所增加的铁箍长.解:设地球的半径为R米,月球的半径为r米,则地球上的铁箍增加的长度为2π(R+1)-2πR=2π月球上的铁箍增加的长度为2π(r+1)-2πr=2π所以两者所增加的铁箍的长度是相同的.【教学说明】让学生巩固所学知识,能熟练将各知识点结合使用.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题2.5”中第5、6、8题.对整合知识点求解的过程没能很好掌握,还有对去括号法则理解不够,练习过程中总出现各种问题,课堂上需要及时解决出现的问题,否则课后作业没有效果.三元一次方程组的解法知识要点:1.定义:含有三个未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.2.用代入消元法解三元一次方程组的步骤:①利用代人法消去一个未知数,得出一个二元一次方程组;②解这个二元一次方程组,求得两个未知数的值;③将这两个未知数的值代入原方程组中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起,就是所求三元一次方程组的解.3.用加减消元法解三元一次方程组的步骤:①利用加减法消去一个未知数,得出一个二元一次方程组;②解这个二元一次方程组,求得两个未知数的值;③将这两个未知数的值代入原方程组中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起,就是所求的三元一次方程组的解.一、单选题1.如图①,在第一个天平上,砝码A的质量等于砝码B加上砝码C的质量;如图②,在第二个天平上,砝码A加上砝码B的质量等于3个砝码C的质量.请你判断:1个砝码A与( )个砝码C的质量相等.A.1 B.2 C.3 D.42.如图所示是最近微信朋友圈常被用来“醒醒盹,动动脑”的图片,请你一定认真观察,动动脑子想一想,图中的?表示什么数()A.25 B.15 C.12 D.143.方程组1231x y zx y zx y z-+=⎧⎪+-=⎨⎪-+=⎩的解为A.11xyz=⎧⎪=⎨⎪=⎩B.111xyz=⎧⎪=⎨⎪=⎩C.121434xyz⎧=⎪⎪⎪=-⎨⎪⎪=-⎪⎩D .121434xyz⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩4.三元一次方程组321x y zx y zx y-+=-⎧⎪+-=⎨⎪+=⎩的解是()A.112xyz=-⎧⎪=⎨⎪=⎩B.124xyz=-⎧⎪=-⎨⎪=-⎩C.221xyz=-⎧⎪=⎨⎪=⎩D.227xyy=⎧⎪=-⎨⎪=-⎩5.三元一次方程组的解是()A.B.C.D.6.已知x=2,y=﹣1,z=﹣3是三元一次方程组72325mx ny znx y mzx y z k--=⎧⎪--=⎨⎪++=⎩的解,则m2﹣7n+3k的值为( )A.125 B.119 C.113 D.717.设x y z234==,则x2y3zx y z-+++的值为()A.27B.69C.89D.578.利用两块长方体测量一张桌子的高度,首先按图①方式放置,再交换木块的位置,按图②方式放置,测量的数据如图所示,则桌子的高度为()A.84cm B.85cm C.86cm D.87cm9.若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值为( )A.2 B.3 C.4 D.5二、填空题10.已知方程组123a bb ca c-=-⎧⎪-=⎨⎪+=⎩,则a=______________.11.“微信”已成为人们日常交流的一种重要工具,前不久在“微信群”中看到如下一幅图片,被群友们所热议.请你运用初中所学数学知识求出桌子的高度应是__________.12.方程组42325560a b ca b ca b c-+=⎧⎪++=⎨⎪++=⎩的解是_____.13.解三元一次方程组时,先消去z ,得二元一次方程组,再消去y,得一元一次方程2x=3,解得x =,从而得y=_____,z=____.14.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶,在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间,过了12分钟,小轿车追上了货车,又过了8分钟,小轿车追上了客车,再过t分钟,货车追上了客车,则t=_____.三、解答题15.解方程组:34, 2312,6.x y zx y zx y z-+=⎧⎪+-=⎨⎪++=⎩①②③16.已知方程组522718x y ax y a-=⎧⎨+=-⎩的解x、y互为相反数,求出a的值并求出方程组的解.17.一方有难八方支援,某市政府筹集抗旱必需物资120吨打算运往灾区,现有甲、乙、丙三种车型可供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)(1)若全部物资都用甲、乙两种车来运送,需运费8200元,则分别需甲、乙两种车各几辆?(2)为了节约运费,该市政府共调用16辆甲、乙,丙三种车都参与运送物资,试求出有几种运送方案,哪种方案的运费最省?其费用是多少元?答案1.B2.B3.C4.C5.D6.C7.C8.B9.D10.2 11.130 cm12.325 abc=⎧⎪=-⎨⎪=-⎩13.,. 14.4015.2,3,1. xyz=⎧⎪=⎨⎪=⎩16.a=274,9494xy⎧=⎪⎪⎨⎪=-⎪⎩.17.(1)需甲车型8辆,需车型10辆;(2)有二种运送方案:①甲车型6辆,乙车型5辆,丙车型5辆;②甲车型4辆,乙车型10辆,丙车型2辆;方案②运费最省,最少运费是7800元。
第2课时有理数的乘法运算律
第2课时 有理数乘法运算律知识点 1 有理数乘法运算律1.在算式-27×24+16×24-79×24=(-27+16-79)×24中运用了( )A .加法交换律B .加法结合律C .乘法结合律D .乘法分配律2.计算-43×⎝⎛⎭⎫-112×34的结果是( ) A .1 B .-112 C .112 D .4123.2017·滨湖区期中计算(1-12+13+14)×(-12)时,运用哪种运算律可以避免通分( ) A .乘法分配律 B .乘法结合律C .乘法交换律D .乘法结合律和交换律4.下列计算正确的是( )A.()-48×⎝⎛⎭⎫16-18-1=-8+6+1=-1B.()-24×⎝⎛⎭⎫-12+13-1=12+8+24=44 C.()-18×⎣⎡⎦⎤-⎝⎛⎭⎫-12=9 D .-5×2×||-2=-205.在横线上写出下列变化中所运用的运算律:(1)3×(-2)×(-5)=3×[(-2)×(-5)]________;(2)48×(524-216)=48×524-48×136________. 6.填空:13×⎝⎛⎭⎫-34-3=13×________+13×________=________+________=________. 7.计算:(-4.5)×1.25×(-8)=________.8.2017·苍南县模拟计算:(23-12)×(-6)=________.9.计算:(1)(-2)×(-78)×5;(2)-4×5×(-0.25);(3)(-37)×(-12)×(-815);(4)(-8)×(-7.2)×(-2.5)×512;(5)⎝⎛⎭⎫47-19+221×(-63).知识点 2 倒数的概念10.2017·贺州-12的倒数是( ) A .-2 B .2 C.12 D .-1211.下列说法错误的是( )A .正数的倒数是正数B .负数的倒数是负数C .任何一个有理数a 的倒数都等于1aD .0没有倒数12.-3与a 互为倒数,则a 等于________.13.+1的倒数是______,________的倒数是-1,________的倒数等于它本身.14.写出下列各数的倒数.(1)-11; (2)0.125; (3)-133.15.如果规定符号“※”的意义是a ※b =a ·a ·b ,那么[5※(-2)]=________.16.计算:⎝⎛⎭⎫-14-12+23×24-54×(-2.5)×(-8).17.教材例2变式有时灵活运用分配律可以简化有理数的运算,使计算又快又准,例如逆用分配律ab +ac =a (b +c ),可使运算大大简便,试逆用分配律计算下列各题:(1)(-56)×(-32)+51×(-32);(2)(-6)×⎝⎛⎭⎫-317+()-6×337; (3)112×57-(-57)×212+(-52)×57.18.学了有理数的运算后,老师给同学们出了一道题:计算:191718×(-9).下面是两位同学的解法:小方:原式=-35918×9=-323118=-17912; 小杨:原式=⎝⎛⎭⎫19+1718×(-9)=-19×9-1718×9=-17912. (1)两位同学的解法中,谁的解法较好?(2)请你写出另一种更好的解法.19.任何一个数都可以拆成两个数的和、差、积、商,通过拆分法你能计算下面这道题吗?计算:2018×20172017-2017×20182018.1.D .2.C 3.A4.D .5.(1)乘法结合律 (2)乘法分配律6.⎝⎛⎭⎫-34 (-3) -14 (-1) -547.45 8.-19.解:(1)原式=2×5×78=780.(2)原式=()4×0.25×5=5.(3)原式=-37×⎝⎛⎭⎫12×815=-37×415=-435. (4)原式=-2.5×8×7.2×512=-60. (5)原式=47×(-63)-19×(-63)+221× (-63)=-36+7-6=-35.10.A11.C .12.-1313.1 -1 ±114.解:(1)-11的倒数是-111. (2)0.125的倒数是8.(3)-133的倒数是-313. 15.-5016.解:原式=⎝⎛⎭⎫-14-12+23×24-54×⎝⎛⎭⎫-52×(-8)=-14×24-12×24+23×24-54×52×8 =-6-12+16-25=-43+16=-27.17.解:(1)(-56)×(-32)+51×(-32)=(-32)×(-56+51)=-32×(-5)=160.(2)(-6)×(-317)+(-6)×337=-6×(-317+337) =-6×(-317+247) =-6×(-1)=6.(3)112×57-⎝⎛⎭⎫-57×212+⎝⎛⎭⎫-52×57=57×⎝⎛⎭⎫112+212-52 =57×32=1514. 18.解:(1)小杨同学的解法较好.(2)191718×(-9)=⎝⎛⎭⎫20-118×(-9)=20×(-9)-118×(-9)=-180+12=-17912. 19.解:原式=2018×2017×(10000+1)-2017×2018×(10000+1)=0.。
《1.5.1 第2课时 有理数的混合运算》教案、同步练习(附导学案)
1.5.1 乘方《第2课时有理数的混合运算》教案【教学目标】:1.了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序.2.能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律.【教学重点】:根据有理数的混合运算顺序,正确地进行有理数的混合运算.【教学难点】:有理数的混合运算.【教学过程】:一、有理数的混合运算顺序:1.先乘方,再乘除,最后加减.2.同级运算,从左到右进行.3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.【例1】计算:(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);(2)1-×[3×(-)2-(-1)4]+÷(-)3.强调:按有理数混合运算的顺序进行运算,在每一步运算中,仍然是要先确定结果的符号,再确定结果的绝对值.【例2】观察下面三行数:-2,4,-8,16,-32,64,…;①0,6,-6,18,-30,66,…;②-1,2,-4,8,-16,32,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和.【例3】已知a=-,b=4,求()2--(ab)3+a3b的值.二、课堂练习 1.计算:(1)|-|2+(-1)101-×(0.5-)÷; (2)1÷(1)×(-)÷(-12); (3)(-2)3+3×(-1)2-(-1)4; (4)[2-(-)3]-(-)+(-)×(-1)2; (5)5÷[-(2-2)]×6. 2.若|x+2|+(y-3)2=0,求的值.3.已知A=a+a 2+a 3+…+a 2004,若a=1,则A 等于多少?若a=-1,则A 等于多少? 三、课时小结1.注意有理数的混合运算顺序,要熟练进行有理数混合运算.2.在运算中要注意像-72与(-7)2等这类式子的区别.1.5.1 乘方《第2课时 有理数的混合运算》同步练习1.填空题(1)求几个相同因数的积的运算,叫做_______,即n n a a a a •⋅⋅⋅•=个=a n 在a n 中,a 叫做_______,n 叫做______,a n 叫做_______;(2)正数的任何次幂都是______;负数的奇次幂是_______,负数的偶次幂是________;(3)乘方(-2)5的意义是____________________,结果为________; (4)-25的意义是____________________,结果为________;(5)在(-2)4中,-2是______,4是______,(-2)4读作_______或读作_______.思路解析:按照乘方定义及幂的结构解题. 答案:(1)乘方 底数 指数 幂(2)正数负数正数(3)5个-2的积 -32(4)5个2的积的相反数 -32(5)底数指数负二的四次幂负二的四次方2.把下列各式写成幂的形式,并指出底数是什么?指数是什么?(1)(-113)(-113)(-113)(-113);(2)(-0.1)×(-0.1)×(-0.1). 思路解析:根据幂的意义写出.答案:(1)(-113)4,底数是-113,指数是4;(2)(-0.1)3,底数是-0.1,指数是3.1.把下列各式写成幂的形式,并指出底数、指数各是什么?(1)(-1.2)×(-1.2)×(-1.2)×(-1.2)×(-1.2);(2)12×12×12×12×12×12;(3)2nb b b b ••⋅⋅⋅个.思路解析:底数是负数或分数时,要用括号将底数括起来,在括号外边写上指数,如(-1.2)5不能写成-1.25,(12)6不能写成612.答案: (1) (-1.2)5,其中底数是-1.2,指数是5;(2) (12)6,其中底数是12,指数是6;(3)222nn nb b b b b b••⋅⋅⋅==个,底数是b,指数是2n.2.判断题:(1)-52中底数是-5,指数是2;()(2)一个有理数的平方总是大于0;()(3)(-1)2 001+(-1)2 002=0;()(4)2×(-3)2=(-6)2=36; ()(5)223=49. ()思路解析:区别底的符号与幂结果的符号,注意底数是负数和分数时要把该底数用小括号括起来.答案:(1)×(2)×(3)×(4)×(5)×3.计算:(1)(-6)4;(2)-64;(3)(-23)4;(4)-423.思路解析:本题中(-6)4表示4个-6相乘,-64表示64的相反数,切不可看成同样的,且结果互为相反数.(-23)4表示4个-23相乘,而-423表24除以3的商的相反数.要注意区别.答案:(1)1 296; (2)-1 296; (3)1681; (4)-163.4.计算:(1)(-1)100;(2)(-1)101;(3)(-0.2)3;(4)(+25)3;(5)(-12)4;(6)(+0.02)2.思路解析:根据乘方的定义进行计算.答案:(1)1; (2)-1; (3)-0.008; (4)8125; (5)116; (6)0.000 4.5.计算下列各题:(1)(-3)2-(-2)3÷(-23)3;(2)(-1)·(-1)2·(-1)3……(-1)99·(-1)100.思路解析:由乘方的符号法则,易知对于一个有理数a,有(-a)2n=a2n,(-a)2n+1=-a2n+1(n为整数).本例应依此先确定幂的符号,再进行乘方运算.答案:(1)-18; (2)-1.(巩固类训练)1.6a2-2ab-2(3a2+12ab)的结果是()A.-3abB.-abC.3a2D.9a2答案:A2.填空:(1)若x<0且x2=49,则x=_______;(2)若|x+2|+(y+1)2=0,则x=______,y=______,x3y2 002=_______;(3)平方小于10的整数有_______个,其和为_______,积为________. 答案:(1)-7 (2)-2 -1 -8 (3)7 0 03.计算:(1)(-5)4; (2)-54; (3)-(-27)3;(4)[-(-27)]3; (5)-245; (6)(-45)2.思路解析:本题意在考查对(-a)n与-a n的意义的理解,要注意二者的区别与联系.解:(1)原式=(-5)×(-5)×(-5)×(-5)=625;(2)原式=-5×5×5×5=-625;(3)原式=-(-27)(-27)(-27)=8343;(4)原式=(27)3=27×27×27=8343;(5)原式=-445=-165;(6)原式=(-45)(-45)=1625.4.计算:(1)-(14)2×(-4)2÷(-18)2;(2)(-33)×(-1527)÷(-42)×(-1)25.思路解析:本题是乘、除、乘方混合运算运算时一要注意运算顺序:先乘方、后乘除,二要注意每一步运算中符号的确定.解:(1)原式=-116×16÷164=-64;(2)原式=(-27)×(-3227)÷(-16)×(-1)=27×3227×116=2.5.已知a、b为有理数,且(a+12)2+(2b-4)2=0,求-a2+b2的值.解:因为任意有理数的平方非负,可得:(a+12)2≥0,(2b -4)2≥0.又因为(a+12)2+(2b -4)2=0,得a+12=0,a=-12,2b -4=0,b=2,把a=-12, b=2代入a 2+b 2,得334.6.若n 为自然数,求(-1)2n -(-1)2n+1+(-2)3的值.思路解析:因为n 为自然数,所以2n 为偶数,2n+1为奇数.由负数的奇次幂是负数,负数的偶次幂是正数可知: (-1)2n =1,(-1)2n+1=-1.答案:-6.7.x 2=64,x 是几?x 3=64,x 是几?思路解析:由于任何数的偶次幂都是正数或0,平方也是偶次幂,所以平方是64的数有可能是正数,也有可能是负数,这两个数互为相反数.先求出正数,再求出其相反数.立方是正数(64)的数只能是正数,因为负数的奇次幂为负数,所以立方是64的数只能有一个.解:x=±8时,x 2=64;x=4时,x 3=64. 8.求(1-212)×(1-213)×(1-214)…(1-219)×(1-2110)的值. 思路解析:由于每一项都可以改写成两项积的形式,因此可利用分解相约的方法.答案:1120. 9.1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此截下去,第7次后剩下的小棒有多长?思路解析:此题的关键是找出每次截完后,剩下的小棒占整根棒的比例与所截次数之间的关系.现将它们的关系列表如下:答案:128米.1.5.1 乘方《第2课时 有理数的混合运算》导学案【学习目标】:1、熟练进行有理数的混合运算2、及时纠正运算中的错误,进一步培养学生正确迅速的运算能力,培养学生严谨的学习态度【重难点】:有理数的四则混合运算 【学习过程】 一、自主学习: (一)复习回顾:1、有理数的加、减、乘、除及乘方的运算法则2、加入乘方后,有理数的混合运算的顺序如何? (二)导学:有理数的混合运算顺序:(1)先 ,再 ,最后 ;(2)同级运算,从左到右进行;(3)如有括号,先做 的运算,按小括号、中括号、大括号依次进行。
《有理数的乘法 第2课时》示范公开课教学设计【部编新人教版七年级数学上册】
有理数的乘法第2课时一.教学目标1.学会利用有理数的乘法运算律和有理数的乘法法则进行简单的计算;2.经历观察、推理、总结归纳等过程,理解有理数的乘法运算律;3.通过多种方法解决数学问题,揭示学习有理数的乘法运算律的方便性;4.通过有理数乘法运算律和有理数乘法运算法则的综合运用,不断提升学生的数学运算能力.二.教学重难点重点:有理数的乘法运算律;难点:有理数的乘法运算律.三.教学工具多媒体5914125665454)(-)(-);()(-)(-)59165459165498)(-)(-);416544156546)(-)先确定积的符号,然后再把它们的绝对值相乘-5)×89.2×(-2)的过程能否使用简便方法?这样做有没思考并积极回答最后归纳总1-12122341342222333)(-))(-)(-);)(-)(-)(-);)(-)(-)(-).)-120(3)16(4)81870.25581212152358320141523)(-)(-);)(-);)(-)(-)(-).2)227(3)025413015115172617353)(-););)(-))(-)+(-)(+).2)25(3)15(4)-6结的脉络,有助于学生对法则的理解与掌握. 环节六布置作业教材习题1.4第7(1)~(3)、14题.通过课后作业,教师能及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.。
人教版七年级数学有理数的乘法——乘法运算律课件
知2-导
知2-讲
1.乘法交换律:两个数相乘,交换因数的位置,积相 等.即ab=ba.
2.乘法结合律:三个数相乘,先把前两个数相乘,或者 先把后两个数相乘,积相等.即(ab)c=a(bc).
3.分配律:一个数同两个数的和相乘,等于把这个数分 别同这两个数相乘,再把积相加,即a(b+c)=ab+ac.
12
=
3 12
+
2 12
6 12
12
= 1 12= 1. 12
解法2:
1 4
+
1 6
1 2
12
= 1 12+ 1 12 1 12
4
6
2
=3+2 6= 1.
(来自教材)
知2-讲
总结
知2-讲
题中的12是括号内各分母的公倍数,所以可 以利用乘法分配律先去括号,再进行运算.
知2-练
1
在计算
乘法运算律运用的“四点说明”: (1)运用交换律时,在交换因数的位置时,要连同符号一
起交换; (2)运用分配律时,要用括号外的因数乘括号内每一个因
数,不能有遗漏; (3)逆用:有时可以把运算律“逆用”; (4)推广:三个以上的有理数相乘,可以任意交换因数的
位置,或者先把其中的几个因数相乘.如abcd=d(ac)b.
0.
导引:(1)负因数的个数为偶数,结果为正数.(2)负
因数的个数为奇数,结果为负数.(3)几个数
相乘,如果其中有因数为0,那么积等于0.
解:(1)(-5)×(-4)×(-2)×(-2)
=5×4×2×2=80.
2
2 3
1
1 5
1
1 2
5
= 2 6 3 5= 6. 352
七年级上册数学教案设计1.5.1第2课时有理数的混合运算1(附模拟试卷含答案)
第2课时 有理数的混合运算1.掌握有理数混合运算法则,能熟练进行有理数的混合运算,并能合理使用运算律进行简便运算;(难点)2.养成在计算前认真审题,确定运算顺序,计算中按步骤审慎进行,最后要养成验算的好习惯.一、情境导入前面我们学习了有理数的加、减、乘、除和乘方运算,对各种运算的法则、运算律和运算技巧已经比较熟悉,如果遇到有理数的混合运算,你有信心进行准确的计算吗?下图是小玲和小亮的对话,你同意小亮的说法吗?二、合作探究探究点一:有理数的混合运算计算:(1)(-5)-(-5)×110÷110×(-5); (2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)题是含有减法、乘法、除法的混合运算,运算时,一定要注意运算顺序,尤其是本题中的乘除运算.要从左到右进行计算;(2)题有大括号、中括号,在运算时,可从里到外进行.注意要灵活掌握运算顺序.解:(1)(-5)-(-5)×110÷110×(-5)=(-5)-(-5)×110×10×(-5)=(-5)-25=-30; (2)-1-{(-3)3-[3+23×(-112)]÷(-2)}=-1-{-27-[3+23×(-32)]÷(-2)}=-1-{-27-2÷(-2)}=-1-{-27-(-1)}=-1-(-26)=25.方法总结:有理数的混合运算可用下面的口诀记忆:混合运算并不难,符号第一记心间;加法需取大值号,乘法同正异负添;减变加改相反数,除改乘法用倒数;混合运算按顺序,乘方乘除后加减.探究点二:数字规律探索为了求1+2+22+23+24+…+22015的值,可令S =1+2+22+23+…+22015,则2S =2+22+23+24+…+22016,因此2S -S =22016-1,所以1+2+22+23+…+22015=22016-1,仿照以上推理,那么1+5+52+…+52015=________.解析:观察等式,可发现规律,根据规律即可进行解答.则设S =1+5+52+53+…+52015,5S =5+52+53+54+…+52016,5S -S =52016-1,∴S =52016-14,故填52016-14. 方法总结:解规律性问题的关键在于发现规律,应用规律解题.三、板书设计有理数的混合运算顺序:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.有理数的运算是数学中很多其他运算的基础,培养学生正确迅速的运算能力,是数学教学中的一项重要目标.在加、减、乘、除、乘方这几种运算基本掌握的前提下,学生进行混合运算,首先应注意的就是运算顺序的问题.小组讨论有理数运算法则后,教师应提醒学生牢固掌握有理数混合运算的几项规定,特别是加入乘方以后,学生对乘方运算不熟悉,容易算成加法或底数与指数相乘.学生在运算符号多的时候容易出错,需要进行针对性讲解.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.在同一平面上,若∠BOA =60.3°,∠BOC =20°30′,则∠AOC 的度数是( ) A.80.6°B.40°C.80.8°或39.8°D.80.6°或40°2.如图,将一副三角尺按不同位置摆放,摆放方式中∠α与∠β互余的是( )A .B .C .D .3.已知线段AB=2,延长AB 至点C ,使AC=3AB ,则线段BC 的长是( ) A.8B.6C.5D.44.在矩形ABCD 中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE 。
1.5.1 乘方(第2课时有理数的混合运算2023-2024学年七年级数学上册同步备课系列(人教版)
月份 用水量/立方米 水费/元
4
16
33.60
5
25
65.00
(1)请你算一算,这个地区水费的“调节价”为每立方米多少钱? (2)若该用户6月用水量为30立方米,请你算一算,他6月的水费是多 少元?
【详解】(1)“基本价”:33.6÷16=2.1(元) “调节价”:[65-(20×2.1)]÷(25-20)=4.6(元) (2)20×2.1+(30-20)×4.6=88(元)
【详解】解∶根据题意得:4个队一共要比场4×(42−1) = 6比赛,每个 队都要进行3场比赛,∵各队的总得分恰好是四个连续奇数,甲、乙、丙、 丁四队的得分情况只能是7,5,3,1 所以,甲队胜2场,平1场,负0场. 乙队胜1场,平2场,负0场. 丙队胜1场,平0场,负2场. 丁队胜0场,平1场,负2场. 战胜丁的球队是甲和丙, 故选D.
在这些数中加上适当的运算符号就能得到100.
1+1+3×4+5×6+7×8+100
问题1 小学的四则混合运算的顺序是怎样的? 先乘除,后加减,同级运算从左至右,有括号先算括号内,再算括号 外,括号计算顺序:先小括号,再中括号,最后大括号.
问题2 我们目前都学习了哪些运算? 加法、减法、乘法、除法、乘方. 一个运算中,含有有理数的加、减、乘、除、乘方等多种运算,称为有 理数的混合运算.
练一练
1.如图是一个运算程序:若第一次输入a的值为8,则2022次輸出的结 果是 . 【详解】解:由题意得:当第一次输入a的值为8时, 则第二次输出的结果为4; ∴第三次输出的结果为2, 第四次输出的结果为1, 第五次输出的结果为4, 第六次输出的结果为2, 第七次输出的结果为1,…..; ∴从第二次开始,按照4、2、1循环输出结果, ∴(2022-1)÷=673······2, ∴第2022次输出的结果为2.故答案为:2.