2019-2020学年广东省阳江市阳东区七年级上期中数学试卷及答案解析

合集下载

2019-2020年七年级上学期期中考试数学试卷含答案

2019-2020年七年级上学期期中考试数学试卷含答案

2019-2020学年七年级(上册)期中考试数学试卷一.选择题(共10小题)1.2019的相反数是()A.2019 B.﹣2019 C.D.﹣2.(﹣7)6的意义是()A.﹣7×6 B.6﹣7相加C.6个﹣7相乘D.7个﹣6相乘3.2019年2月5日《流浪地球》上映,这部由刘慈欣小说改编的同名电影,5天累计票房达到了16亿元,成为名副其实的首部国产科幻大片,数据16亿用科学记数法表示为()A.1.6×108B.16×108C.1.6×109D.0.16×10104.下列各组数中,运算结果相同的是()A.﹣(﹣2)和|﹣2| B.(﹣2)2和﹣22C.()2和D.(﹣2)3和(﹣3)25.单项式的系数和次数分别是()A.B.﹣C.D.﹣2,26.下列化简正确的是()A.4a﹣2a=2 B.3xy﹣4yx=﹣xyC.﹣2m+6n=4mn D.3ab2﹣5ba2=﹣2ab27.已知ax=ay,下列等式中成立的是()A.x=y B.ax+1=ay﹣1 C.ax=﹣ay D.3•ax=3•ay8.在算式3﹣|﹣4□5|中,要使计算出来的值最小,填入□的运算符号应为()A.+ B.﹣C.×D.÷9.已知x<0,x+y>0,那么x,y,x+y这三个数中最小的数是()A.x B.y C.x+y D.无法确定10.将一个两位数的十位和个位调换位置后得到一个新数,将新数与原数相加,所得的结果不可能是以下的()A.99 B.132 C.145 D.187二.填空题(共8小题)11.直接写出结果:(1)﹣1+2=;(2)﹣1﹣1=;(3)(﹣3)3=;(4)6÷(﹣1)=;(5)(﹣1)2n﹣(﹣1)2n﹣1=(n为正整数);(6)方程4x=0的解为;(7)方程﹣x=2的解为.12.在所给数:﹣2,0.01,﹣2019,0,﹣5.中,负有理数有个.13.图1所示框图表示解方程3x+20=4x﹣25的流程.其中,“移项”的依据是.14.写出一个只含字母x的二次三项式,使得常数为﹣1,并按降幂排列:.15.a3x+1b与﹣2a3b y﹣1是同类项,则x y的值为.16.已知x=﹣1是关于x的方程5x﹣a=﹣2的解,则a=.17.如图,点A、B为数轴上的两点,O为原点,A、B表示的数分别是x、x+2,B、O两点之间的距离等于A、B两点间的距离,则x的值是.18.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是.三.解答题(共11小题)19.画出数轴并把下列各数标在数轴上:﹣2.5,,3,0.20.计算下列各题:(1)(﹣3)﹣(﹣5)﹣(+7)(2)﹣8×+14÷(﹣7)(3)()×(﹣30)(4)﹣24+(1)×|3﹣(﹣3)2|21.化简下列各题:(1)2ab﹣3ab+(﹣ab)(2)3(x﹣1)﹣(x﹣5)(3)3a2﹣[a﹣(5a﹣a2)+a2﹣1]22.解下列方程:(1)2x=x﹣5(2)5x﹣2=1+9x23.先化简,再求值(3a2﹣ab﹣1)﹣(5ab+4a2﹣3),其中a=﹣2,b=.24.某校七(1)班学生的平均身高是160厘米,如表给出了该班6名学生的身高情况(单位:厘米)学生A B C D E F身高157 162 158 154 163 165身高与平均身高的差值﹣3 +2 ﹣2 a+3 b(1)计算得出表中的数据a=;b=;(2)这6名学生的平均身高是多少厘米?(结果精确到0.1)25.“囧”(jiong)曾经是风靡网络的流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分),设剪去的小长方形边长为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示图中“囧”(阴影部分)的面积;(2)当x、y互为倒数时,求此时“囧”的面积.26.列一元一次方程解决问题:在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为24?如果能,这三个日期数分别是多少?27.定义:若a+b=ab,则称a、b是“相伴数”例如:3+1.5=3×1.5,因此3和1.5是一组“相伴数”(1)﹣1与是一组“相伴数”;(2)若m、n是一组“相伴数”,2mn﹣[3m+2(n﹣m)+3mn﹣6]的值.28.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.阅读下列材料:问题:利用一元一次方程将0.化成分数.解:设0.=x.方程两边都乘以10,可得10×0.=10x由0.=0.777…,可知10×0.=7.777…=7+0.即7+x=10x.(请你体会将方程两边都乘以10起到的作用)可解得x=,即0.=.(1)填空:将0.写成分数形式为.(2)请你仿照上述方法把下列两个小数化成分数,要求写出利用一元一次方程进行解答的过程:①0.,②0.43.29.如图,在数轴上A点表示数a,B点表示数b,C点表示数c,且a、c满足|a+3|+(c﹣9)2=0.若点A与点B之间的距离表示为AB=|a﹣b|,点B与点C之间的距离表示为BC=|b﹣c|,点B在点A、C之间,且满足BC=2AB.(1)a=,b=,c=;(2)若点P为数轴上一动点,其对应的数为x,当代数式|x﹣a|+|x﹣b|+|x﹣c|取得最小值时,此时x =,最小值为.(3)动点M从A点位置出发,沿数轴以每秒1个单位的速度向终点C运动,设运动时间为t秒,当点M 运动到B点时,点N从A点出发,以每秒2个单位的速度沿数轴向C点运动,N点到达C点后,再立即以同样的速度返回,运动到终点A.问:在点N开始运动后,M、N两点之间的距离能否为2个单位?如果能,请求出运动的时间t的值以及此时对应的M点所表示的数:如果不能,请说明理由.参考答案与试题解析一.选择题(共10小题)1.2019的相反数是()A.2019 B.﹣2019 C.D.﹣【分析】由相反数的定义即可得到答案.【解答】解:2019的相反数是﹣2019.故选:B.2.(﹣7)6的意义是()A.﹣7×6 B.6﹣7相加C.6个﹣7相乘D.7个﹣6相乘【分析】根据有理数乘方的定义解答即可.【解答】解:(﹣7)6的意义是6个﹣7相乘.故选:C.3.2019年2月5日《流浪地球》上映,这部由刘慈欣小说改编的同名电影,5天累计票房达到了16亿元,成为名副其实的首部国产科幻大片,数据16亿用科学记数法表示为()A.1.6×108B.16×108C.1.6×109D.0.16×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:16亿=1600000000=1.6×109,故选:C.4.下列各组数中,运算结果相同的是()A.﹣(﹣2)和|﹣2| B.(﹣2)2和﹣22C.()2和D.(﹣2)3和(﹣3)2【分析】选项A根据相反数以及绝对值的定义判断;选项B、C、D根据有理数的乘方的定义判断.【解答】解:A.﹣(﹣2)=2,|﹣2|=2,∴﹣(﹣2)=|﹣2|,故本选项符合题意;B.(﹣2)2=4,﹣22=﹣4,故本选项不合题意;C.,,故本选项不合题意;D.(﹣2)3=﹣8,(﹣3)2=9,故本选项不合题意.故选:A.5.单项式的系数和次数分别是()A.B.﹣C.D.﹣2,2【分析】单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数,由此可得出答案.【解答】解:单项式的系数和次数分别是﹣π、3.故选:C.6.下列化简正确的是()A.4a﹣2a=2 B.3xy﹣4yx=﹣xyC.﹣2m+6n=4mn D.3ab2﹣5ba2=﹣2ab2【分析】根据合并同类项的法则计算即可.【解答】解:A、4a﹣2a=2a,故不符合题意;B、3xy﹣4yx=﹣xy,故符合题意;C、﹣2m+6n,不是同类项,不能合并;故不符合题意;D、3ab2﹣5ba2,不是同类项,不能合并;故不符合题意;故选:B.7.已知ax=ay,下列等式中成立的是()A.x=y B.ax+1=ay﹣1 C.ax=﹣ay D.3•ax=3•ay【分析】根据等式的性质,逐项判断即可.【解答】解:∵ax=ay,a=0时,x、y不一定相等,∴选项A不符合题意;∵ax=ay,∴ax+1=ay+1,∴选项B不符合题意;∵ax=ay,∴ax=﹣ay不一定成立,∴选项C不符合题意;∵ax=ay,∴3•ax=3•ay,∴选项D符合题意.故选:D.8.在算式3﹣|﹣4□5|中,要使计算出来的值最小,填入□的运算符号应为()A.+ B.﹣C.×D.÷【分析】利用运算法则计算即可确定出相应的运算符号.【解答】解:在算式3﹣|﹣4□5|中的“□”所在的位置中,要使计算出来的值最小,则应填入的运算符号为×,故选:C.9.已知x<0,x+y>0,那么x,y,x+y这三个数中最小的数是()A.x B.y C.x+y D.无法确定【分析】根据有理数的加法运算法则判断出y>0,然后根据有理数的大小比较方法判断出最小的数为x.【解答】解:∵x<0,x+y>0,∴y>0,∴x,y,x+y这三个数中最小的数是x.故选:A.10.将一个两位数的十位和个位调换位置后得到一个新数,将新数与原数相加,所得的结果不可能是以下的()A.99 B.132 C.145 D.187【分析】可设一个两位数的十位是a,个位是b,表示出该两位数和的调换位置后得到一个新数,得到所得的结果是11的倍数,再找到不是11的倍数的数即为所求.【解答】解:设一个两位数的十位是a,个位是b,则10a+b+10b+a=11a+11b=11(a+b),则所得的结果是11的倍数,在99,132,145,187中,只有145不是11的倍数.故选:C.二.填空题(共8小题)11.直接写出结果:(1)﹣1+2= 1 ;(2)﹣1﹣1=﹣2 ;(3)(﹣3)3=﹣27 ;(4)6÷(﹣1)=﹣4 ;(5)(﹣1)2n﹣(﹣1)2n﹣1= 2 (n为正整数);(6)方程4x=0的解为x=0 ;(7)方程﹣x=2的解为x=﹣6 .【分析】依据有理数的运算法则正确计算即可,利用一元一次方程的解法求解即可.【解答】解:(1)﹣1+2=+(2﹣1)=1;(2)﹣1﹣1=﹣(1+1)=﹣2;(3)(﹣3)3=(﹣3)(﹣3)(﹣3)=﹣27;(4)6÷(﹣1)=6×(﹣)=﹣4;(5))(﹣1)2n﹣(﹣1)2n﹣1=1﹣(﹣1)=2;(6)方程4x=0的两边都除以4得:x=0,故解为x=0;(7)方程﹣x=2的两边都乘以(﹣3)得:x=﹣6;故答案为:(1)1,(2)﹣2,(3)﹣27,(4)﹣4,(5)2,(6)x=0,(7)x=﹣6.12.在所给数:﹣2,0.01,﹣2019,0,﹣5.中,负有理数有 3 个.【分析】根据负有理数的定义得出即可.【解答】解:﹣2,0.01,﹣2019,0,﹣5.中,负有理数有:﹣2,﹣2019,﹣5.,一共3个.故答案为:3.13.图1所示框图表示解方程3x+20=4x﹣25的流程.其中,“移项”的依据是等式的基本性质1 .【分析】根据等式的性质判断即可.【解答】解:图1所示框图表示解方程3x+20=4x﹣25的流程.其中,“移项”的依据是等式的基本性质1.故答案为:等式的基本性质1.14.写出一个只含字母x的二次三项式,使得常数为﹣1,并按降幂排列:x2﹣2x﹣1 .【分析】根据二次三项式和多项式的系数、常数项的有关概念以及只含字母x,即可得出答案,(答案不唯一).【解答】解:这个二次三项式的常项是﹣1,只含字母x,∴这个二次三项式是:x2﹣2x﹣1;故答案为:x2﹣2x﹣1.15.a3x+1b与﹣2a3b y﹣1是同类项,则x y的值为.【分析】根据同类项的定义中相同字母的指数也相同,可求得x和y的值.同类项的定义:所含字母相同且相同字母的指数也相同的项是同类项.【解答】解:∵a3x+1b与﹣2a3b y﹣1是同类项,∴3x+1=3,y﹣1=1,解得,y=2.∴.故答案为:16.已知x=﹣1是关于x的方程5x﹣a=﹣2的解,则a=﹣3 .【分析】把x=﹣1代入方程即可得到一个关于a的方程,解方程求得a的值.【解答】解:把x=﹣1代入方程得:﹣5﹣a=﹣2,解得:a=﹣3.故答案是:﹣3.17.如图,点A、B为数轴上的两点,O为原点,A、B表示的数分别是x、x+2,B、O两点之间的距离等于A、B两点间的距离,则x的值是﹣4 .【分析】由B,O两点之间的距离等于A,B两点间的距离,可得出关于x的一元一次方程,解之即可得出结论.【解答】解:根据题意得:0﹣(x+2)=x+2﹣x,解得:x=﹣4.故答案为:﹣4.18.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是4n﹣2(或2+4(n﹣1))个.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:由图可知:第一个图案有阴影小三角形2个.第二图案有阴影小三角形2+4=6个.第三个图案有阴影小三角形2+8=10个,那么第n个就有阴影小三角形2+4(n﹣1)=4n﹣2个,故答案为:4n﹣2(或2+4(n﹣1))个.三.解答题(共11小题)19.画出数轴并把下列各数标在数轴上:﹣2.5,,3,0.【分析】把各点在数轴上表示出来即可.【解答】解:如图所示:20.计算下列各题:(1)(﹣3)﹣(﹣5)﹣(+7)(2)﹣8×+14÷(﹣7)(3)()×(﹣30)(4)﹣24+(1)×|3﹣(﹣3)2|【分析】(1)先化简再计算;(2)先算乘除,最后算加法;(3)根据乘法分配律简便计算;(4)先算乘方,再算乘法,最后算加减;如果有括号和绝对值,要先做括号和绝对值内的运算.【解答】解:(1)(﹣3)﹣(﹣5)﹣(+7)=﹣3+5﹣7=﹣5;(2)﹣8×+14÷(﹣7)=﹣4﹣2=﹣6;(3)()×(﹣30)=×(﹣30))﹣×(﹣30)+×(﹣30)=﹣3+4﹣25=﹣24;(4)﹣24+(1)×|3﹣(﹣3)2|=﹣16+×|3﹣9|=﹣16+×6=﹣16+4=﹣12.21.化简下列各题:(1)2ab﹣3ab+(﹣ab)(2)3(x﹣1)﹣(x﹣5)(3)3a2﹣[a﹣(5a﹣a2)+a2﹣1]【分析】(1)合并同类项即可求解;(2)先去括号,然后合并同类项即可求解;(3)先去括号,然后合并同类项即可求解.【解答】解:(1)2ab﹣3ab+(﹣ab)=(2﹣3﹣1)ab=﹣2ab;(2)3(x﹣1)﹣(x﹣5)=3x﹣3﹣x+5=2x+2;(3)3a2﹣[a﹣(5a﹣a2)+a2﹣1]=3a2﹣[a﹣5a+a2+a2﹣1]=3a2﹣a+5a﹣a2﹣a2+1=a2+4a+1.22.解下列方程:(1)2x=x﹣5(2)5x﹣2=1+9x【分析】(1)移项、合并同类项,依此即可求解;(2)移项、合并同类项、系数化为1,依此即可求解.【解答】解:(1)2x=x﹣52x﹣x=﹣5,x=﹣5;(2)5x﹣2=1+9x,5x﹣9x=1+2,﹣4x=3,x=﹣.23.先化简,再求值(3a2﹣ab﹣1)﹣(5ab+4a2﹣3),其中a=﹣2,b=.【分析】根据整式的加减混合运算法则把原式化简,代入计算即可.【解答】解:原式=3a2﹣ab﹣1﹣5ab﹣4a2+3=﹣a2﹣6ab+2,当a=﹣2,b=时,原式=﹣(﹣2)2﹣6×(﹣2)×+2=2.24.某校七(1)班学生的平均身高是160厘米,如表给出了该班6名学生的身高情况(单位:厘米)学生A B C D E F身高157 162 158 154 163 165身高与平均身高的差值﹣3 +2 ﹣2 a+3 b(1)计算得出表中的数据a=﹣6 ;b=+5 ;(2)这6名学生的平均身高是多少厘米?(结果精确到0.1)【分析】(1)根据学生的平均身高为160厘米,即可填写出表格中的数值;(2)求出6名学生的平均身高.【解答】解:(1)由题意:a=154﹣160=﹣6,b=165﹣160=+5;故答案为:﹣6,+5;(2)6名学生的平均身高=160+≈159.8cm,∴这6名学生的平均身高是159.8厘米.25.“囧”(jiong)曾经是风靡网络的流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分),设剪去的小长方形边长为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示图中“囧”(阴影部分)的面积;(2)当x、y互为倒数时,求此时“囧”的面积.【分析】(1)阴影部分的面积=长方形的面积﹣小长方形的面积﹣两个直角三角形的面积;(2)由图可知,20=3y,则可分别求出x、y的值,将x、y的值代入S=40x﹣2xy即可求解.【解答】解:(1)阴影部分的面积=长方形的面积﹣小长方形的面积﹣两个直角三角形的面积,∴S=20(x+x)﹣xy﹣2××xy=40x﹣2xy;(2)由图可知,20=3y,∴y=,当xy=1时,x=,∴S=40x﹣2=6﹣2=4.26.列一元一次方程解决问题:在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为24?如果能,这三个日期数分别是多少?【分析】设中间的数为x,其它两个为(x﹣7)与(x+7),表示出之和,根据三个日期数之和为24,列出方程,如果求出的解符合题意,那么相邻三行里同一列的三个日期数之和能为24,否则不能.【解答】解:设中间的数为x,其它两个为(x﹣7)与(x+7),根据题意得:x﹣7+x+x+7=24,解得:x=8,∴x﹣7=1,x+7=15,答:这三个日期数分别是1,8,15.27.定义:若a+b=ab,则称a、b是“相伴数”例如:3+1.5=3×1.5,因此3和1.5是一组“相伴数”(1)﹣1与是一组“相伴数”;(2)若m、n是一组“相伴数”,2mn﹣[3m+2(n﹣m)+3mn﹣6]的值.【分析】(1)设﹣1与m是一组“相伴数”,根据“相伴数”的定义列式计算,得到答案;(2)根据“相伴数”的定义得到m+n=mn,根据整式的加减混合运算法则把原式化简,代入计算即可.【解答】解:(1)设﹣1与m是一组“相伴数”,由题意得,﹣1+m=﹣m,解得,m=,故答案为:;(2)∵m、n是一组“相伴数”,∴m+n=mn,则2mn﹣[3m+2(n﹣m)+3mn﹣6]=2mn﹣m﹣(n﹣m)﹣mn+3=2mn﹣m﹣n+m﹣mn+3=mn﹣(m+n)+3=3.28.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.阅读下列材料:问题:利用一元一次方程将0.化成分数.解:设0.=x.方程两边都乘以10,可得10×0.=10x由0.=0.777…,可知10×0.=7.777…=7+0.即7+x=10x.(请你体会将方程两边都乘以10起到的作用)可解得x=,即0.=.(1)填空:将0.写成分数形式为.(2)请你仿照上述方法把下列两个小数化成分数,要求写出利用一元一次方程进行解答的过程:①0.,②0.43.【分析】(1)根据0.化成分数的方法,设0.=x,仿照例题的解法即可得出结论;(2)①根据0.化成分数的方法,设0.=m,仿照例题的解法(×10换成×100)即可得出结论;②根据0.化成分数的方法,设0.43=n,仿照例题的解法即可得出结论.【解答】解:(1)设0.=x,方程两边都乘以10,可得10×0.=10x即4+x=10x解得x=,即0.=(2)①设0.=m,方程两边都乘以100,可得100×0.=100m即15+m=100m解得m=,即0.=,②设0.43=n,方程两边都乘以10,可得10×0.43=10n由0.43=0.43222…可知10×0.43=4.3222…=3.89+0.43,即3.89+n=10n解得n=,即0.43=,29.如图,在数轴上A点表示数a,B点表示数b,C点表示数c,且a、c满足|a+3|+(c﹣9)2=0.若点A与点B之间的距离表示为AB=|a﹣b|,点B与点C之间的距离表示为BC=|b﹣c|,点B在点A、C之间,且满足BC=2AB.(1)a=﹣3 ,b= 1 ,c=9 ;(2)若点P为数轴上一动点,其对应的数为x,当代数式|x﹣a|+|x﹣b|+|x﹣c|取得最小值时,此时x = 1 ,最小值为12 .(3)动点M从A点位置出发,沿数轴以每秒1个单位的速度向终点C运动,设运动时间为t秒,当点M 运动到B点时,点N从A点出发,以每秒2个单位的速度沿数轴向C点运动,N点到达C点后,再立即以同样的速度返回,运动到终点A.问:在点N开始运动后,M、N两点之间的距离能否为2个单位?如果能,请求出运动的时间t的值以及此时对应的M点所表示的数:如果不能,请说明理由.【分析】(1)利用绝对值及偶次方的非负性可求出a,c的值,结合BC=2AB可求出b值;(2)当﹣3≤x≤9时,|x﹣a|+|x﹣c|取得最小值,结合当x=1时|x﹣b|=0,即可得出结论;(3)用含t的代数式表示出点M,N表示的数,结合MN=2,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)∵a、c满足|a+3|+(c﹣9)2=0,∴a+3=0,c﹣9=0,∴a=﹣3,c=9.又∵点B在点A、C之间,且满足BC=2AB,∴9﹣b=2[b﹣(﹣3)],∴b=1.故答案为:﹣3;1;9.(2)当﹣3≤x≤9时,|x﹣a|+|x﹣c|取得最小值,最小值为9﹣(﹣3)=12.∵|x﹣b|≥0,b=1,∴当x=b=1时,|x﹣b|取得最小值,最小值为0,∴当x=1时,|x﹣a|+|x﹣c|+|x﹣b|取得最小值,最小值为12.故答案为:1;12.(3)12÷2=6(秒),4+6=10(秒).当0≤t≤12时,点M表示的数为t﹣3;当t>12时,点M表示的数为9;当4≤t≤10时,点N表示的数为2(t﹣4)﹣3=2t﹣11;当10<t≤16时,点N表示的数为9﹣2(t﹣10)=29﹣2t.①当4≤t≤10时,MN=|t﹣3﹣(2t﹣11)|=2,解得:t=6或t=10,∴t﹣3=3或7;②当10<t≤12时,MN=|t﹣3﹣(29﹣2t)|=2,解得:t=10(舍去)或t=,∴t=3=;③当12<t≤16时,MN=|9﹣(29﹣2t)|=2,解得:t=9(舍去)或者t=11(舍去).综上所述:当t的值为6,10或时,M、N两点之间的距离为2个单位,此时点M表示的数为3,7或.。

广东省2020学年七年级数学上学期期中试卷(含解析)

广东省2020学年七年级数学上学期期中试卷(含解析)

七年级数学上学期期中试卷一、选择题:本题共12个小题,每小题2分,共24分,在每小题给出的四个选项中,只有一项符合题目要求.1.﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.2.下列图形的名称按从左到右的顺序依次是()A.圆柱、圆锥、正方体、长方体B.圆柱、球、正方体、长方体C.棱柱、球、正方体、长方体 D.棱柱、圆锥、四棱柱、长方体3.数轴上有A,B,C,D四个点,其中哪个点表示的数为1()A.点A B.点B C.点C D.点D4.下列各组式子中是同类项的是()A.4x与﹣4y B.4y与﹣4xy C.4xy2与﹣4x2y D.﹣4xy2与4y2x5.冬季我国某城市某日最高气温为3℃,最低温度为﹣13℃,则该市这天的温差是()A.13℃ B.14℃ C.15℃ D.16℃6.下面几何体的截面图可能是圆的是()A.圆锥 B.正方体C.长方体D.棱柱7.下列图形经过折叠不能围成棱柱的是()A.B.C.D.8.下列说法中,正确的是()A.不是整式B.﹣的系数是﹣3,次数是3C.3是单项式D.多项式2x2y﹣xy是五次二项式9.如果规定符号“⊗”的意义为a⊗b=,则2⊗(﹣3)的值是()A.6 B.﹣6 C.D.10.下列说法中:(1)一个数,如果不是正数,必定就是负数;(2)整数与分数统称为有理数;(3)如果两个数的绝对值相等,那么这两个数相等;(4)符号不同的两个数互为相反数.其中正确的有()A.1个B.2个C.3个D.4个11.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体()A.3个B.4个C.5个D.6个12.下列变形中,不正确的是()A.a+(b+c﹣d)=a+b+c﹣d B.a﹣(b﹣c+d)=a﹣b+c﹣dC.a﹣b﹣(c﹣d)=a﹣b﹣c﹣d D.a+b﹣(﹣c﹣d)=a+b+c+d二、填空题:本大题共6小题,每小题3分,共18分)13.流星划过天空时留下一道明亮的光线,用数学知识解释为.14.﹣2的相反数为,﹣2的倒数为,|﹣|= .15.某种水果的售价为每千克a元,用面值为50元的人民币购买了3千克这种水果,应找回元(用含a的代数式表示).16.世界文化遗产长城总长约为6700000m,将6700000用科学记数法表示应为.17.如图是一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是.18.已知代数式x2﹣4x﹣2的值为3,则代数式2x2﹣8x﹣5的值为.三、解答题:本题共7小题,共58分,解答应写出文字说明,过程或演算步骤.)19.由数轴回答下列问题(Ⅰ)A,B,C,D,E各表示什么数?(Ⅱ)用“<“把这些数连接起来.20.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.21.(1)12﹣(﹣18)+(﹣12)﹣15(2)(﹣+)×(﹣24)(3)(﹣)×1÷(﹣1)(4)(﹣2)3×(﹣)﹣(﹣3)22.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下: +3(x﹣1)=x2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣1,求所挡的二次三项式的值.23.司机小王沿东西大街跑出租车,约定向东为正,向西为负,某天自A地出发到收工时,行走记录为(单位:千米):+8、﹣9、+7、﹣2、+5、﹣10、+7、﹣3、回答下列问题:(Ⅰ)记录中“+8”表示什么意思?(Ⅱ)收工时小王在A地的哪边?距A地多少千米?(Ⅲ)若每千米耗油0.2升,问从A地出发到收工时,共耗油多少升?24.陈老师和学生做一个猜数游戏,他让学生按照如下步骤进行计算:①任想一个两位数a,把a乘以2,再加上9,把所得的和再乘以2;②把a乘以2,再加上30,把所得的和除以2;③把①所得的结果减去②所得的结果,这个差即为最后的结果.陈老师说:只要你告诉我最后的结果,我就能猜出你最初想的两位数a.学生周晓晓计算的结果是96,陈老师立即猜出周晓晓最初想的两位数是31.请完成(Ⅰ)由①可列代数式,由②可列代数式,由③可知最后结果为;(用含a的式子表示)(Ⅱ)学生小明计算的结果是120,你能猜出他最初想的两位数是多少吗?(Ⅲ)请用自己的语言解释陈老师猜数的方法.25.某餐厅中,一张桌子可坐6人,有以下两种摆放方式:(Ⅰ)有4张桌子,用第一种摆设方式,可以坐人;用第二种摆设方式,可以坐人;(Ⅱ)有n张桌子,用第一种摆设方式可以坐人;用第二种摆设方式,可以坐人(用含有n的代数式表示);(Ⅲ)一天中午,餐厅要接待120位顾客共同就餐,但餐厅中只有30张这样的长方形桌子可用,且每6张拼成一张大桌子,若你是这家餐厅的经理,你打算选择哪种方式来摆放餐桌,为什么?参考答案与试题解析一、选择题:本题共12个小题,每小题2分,共24分,在每小题给出的四个选项中,只有一项符合题目要求.1.﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.【考点】15:绝对值.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2.故选B.2.下列图形的名称按从左到右的顺序依次是()A.圆柱、圆锥、正方体、长方体B.圆柱、球、正方体、长方体C.棱柱、球、正方体、长方体 D.棱柱、圆锥、四棱柱、长方体【考点】I1:认识立体图形.【分析】根据圆柱,球,正方体、长方体的构造特点即可求解.【解答】解:观察图形可知,图形的名称按从左到右的顺序依次是圆柱、球、正方体、长方体.故选:B.3.数轴上有A,B,C,D四个点,其中哪个点表示的数为1()A.点A B.点B C.点C D.点D【考点】13:数轴.【分析】根据数轴上点与实数的对应关系即可解答.【解答】解:由数轴知,点C表示数1,故选C.4.下列各组式子中是同类项的是()A.4x与﹣4y B.4y与﹣4xy C.4xy2与﹣4x2y D.﹣4xy2与4y2x【考点】34:同类项.【分析】根据同类项的定义进行解答即可.【解答】解:A、4x与﹣4y不是同类项,故本选项错误;B、4y与﹣4xy不是同类项,故本选项错误;C、4xy2与﹣4x2y不是同类项,故本选项错误;D、﹣4xy2与4y2x是同类项,故本选项正确;故选D.5.冬季我国某城市某日最高气温为3℃,最低温度为﹣13℃,则该市这天的温差是()A.13℃ B.14℃ C.15℃ D.16℃【考点】1A:有理数的减法.【分析】根据有理数的减法法则,减去一个数等于加上这个数的相反数,可得答案.【解答】解:∵我国某城市某日最高气温为3℃,最低温度为﹣13℃,∴该市这天的温差是:3﹣(13)=16℃.故选:D.6.下面几何体的截面图可能是圆的是()A.圆锥 B.正方体C.长方体D.棱柱【考点】I9:截一个几何体.【分析】根据圆锥、正方体、长方体、棱柱的形状分析即可.【解答】解:正方体、长方体和棱柱的截面都不可能有弧度,所以截面不可能是圆,而圆锥只要截面与底面平行,截得的就是圆.故选A.7.下列图形经过折叠不能围成棱柱的是()A.B.C.D.【考点】I7:展开图折叠成几何体.【分析】由平面图形的折叠及棱柱的展开图解题.【解答】解:A可以围成四棱柱,C可以围成五棱柱,D可以围成三棱柱,B选项侧面上多出一个长方形,故不能围成一个三棱柱.故选:B.8.下列说法中,正确的是()A.不是整式B.﹣的系数是﹣3,次数是3C.3是单项式D.多项式2x2y﹣xy是五次二项式【考点】41:整式;42:单项式;43:多项式.【分析】利用单项式、多项式及整式的定义判定即可.【解答】解:A、是整式,错误;B、﹣的系数是﹣,次数是3,错误;C、3是单项式,正确;D、多项式2x2y﹣xy是三次二项式,错误;故选C9.如果规定符号“⊗”的意义为a⊗b=,则2⊗(﹣3)的值是()A.6 B.﹣6 C.D.【考点】1G:有理数的混合运算.【分析】按照规定的运算方法改为有理数的混合运算计算即可.【解答】解:2⊗(﹣3)==6.故选:A.10.下列说法中:(1)一个数,如果不是正数,必定就是负数;(2)整数与分数统称为有理数;(3)如果两个数的绝对值相等,那么这两个数相等;(4)符号不同的两个数互为相反数.其中正确的有()A.1个B.2个C.3个D.4个【考点】12:有理数;14:相反数;15:绝对值.【分析】根据有理数的定义及其分类标准,和绝对值、相反数的意义进行辨析即可.【解答】解:(1)一个数,如果不是正数,必定就是负数不对,还有可能是0;(2)整数与分数统称为有理数正确;(3)如果两个数的绝对值相等,那么这两个数可能相等也可能互为相反数,(4)符号不同的两个数不一定互为相反数,如、+5与﹣3;综上所述只有一个正确;故答案为A.11.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体()A.3个B.4个C.5个D.6个【考点】U3:由三视图判断几何体.【分析】根据题目中的三视图可以得到这个展台有几个正方体组成,从而可以解答本题.【解答】解:由三视图可知,这个展台前面第一排一个正方体,后面三个,左面竖直两个,右面一个,故选B.12.下列变形中,不正确的是()A.a+(b+c﹣d)=a+b+c﹣d B.a﹣(b﹣c+d)=a﹣b+c﹣dC.a﹣b﹣(c﹣d)=a﹣b﹣c﹣d D.a+b﹣(﹣c﹣d)=a+b+c+d【考点】36:去括号与添括号.【分析】根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反判断即可.【解答】解:A、a+(b+c﹣d)=a+b+c﹣d,故本选项正确;B、a﹣(b﹣c+d)=a﹣b+c﹣d,故本选项正确;C、a﹣b﹣(c﹣d)=a﹣b﹣c+d,故本选项错误;D、a+b﹣(﹣c﹣d)=a+b+c+d,故本选项正确;故选C.二、填空题:本大题共6小题,每小题3分,共18分)13.流星划过天空时留下一道明亮的光线,用数学知识解释为点动成线..【考点】I2:点、线、面、体.【分析】根据点动成线进行回答.【解答】解:流星划过天空时留下一道明亮的光线,用数学知识解释为点动成线.故答案为:点动成线.14.﹣2的相反数为 2 ,﹣2的倒数为﹣,|﹣|= .【考点】17:倒数;14:相反数;15:绝对值.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积为1的两个数互为倒数,可得一个数的倒数,根据负数的绝对值是它的相反数,可得一个负数的绝对值.【解答】解:﹣2的相反数为2,﹣2的倒数为﹣,|﹣|=.故答案为:2,﹣,.15.某种水果的售价为每千克a元,用面值为50元的人民币购买了3千克这种水果,应找回(50﹣3a)元(用含a的代数式表示).【考点】32:列代数式.【分析】利用单价×质量=应付的钱;用50元减去应付的钱等于剩余的钱即为应找回的钱.【解答】解:∵购买这种售价是每千克a元的水果3千克需3a元,∴根据题意,应找回(50﹣3a)元.故答案为:(50﹣3a).16.世界文化遗产长城总长约为6700000m,将6700000用科学记数法表示应为 6.7×106.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6 700 000=6.7×106,故答案为:6.7×106.17.如图是一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是强.【考点】I8:专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴与“建”字所在面相对的面的字是强.故答案为:强.18.已知代数式x2﹣4x﹣2的值为3,则代数式2x2﹣8x﹣5的值为 5 .【考点】33:代数式求值.【分析】根据题意求出x2﹣4x的值,原式前两项提取2变形后,将x2﹣4x的值代入计算即可求出值.【解答】解:∵x2﹣4x﹣2=3,即x2﹣4x=5,∴原式=2(x2﹣4x)﹣5=10﹣5=5.故答案为:5.三、解答题:本题共7小题,共58分,解答应写出文字说明,过程或演算步骤.)19.由数轴回答下列问题(Ⅰ)A,B,C,D,E各表示什么数?(Ⅱ)用“<“把这些数连接起来.【考点】18:有理数大小比较;13:数轴.【分析】(I)数轴上原点左边的数就是负数,右边的数就是正数,离开原点的距离就是这个数的绝对值;(II)数轴上的数右边的数总是大于左边的数,即可求解.【解答】解:(I)A:﹣4;B:1.5;C:0;D:﹣1.5;E:4;(II)用“<”把这些数连接起来为:﹣4<﹣1.5<0<1.5<4.20.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.【考点】U4:作图﹣三视图.【分析】主视图有4列,每列小正方形数目分别为1,3,1,1;左视图有3列,每列小正方形数目分别为3,1,1;俯视图有4列,每行小正方形数目分别为1,3,1,1.【解答】解:如图所示:.21.(1)12﹣(﹣18)+(﹣12)﹣15(2)(﹣+)×(﹣24)(3)(﹣)×1÷(﹣1)(4)(﹣2)3×(﹣)﹣(﹣3)【考点】1G:有理数的混合运算.【分析】(1)解法统一成加法计算即可;(2)利用乘方分配律计算即可;(3)根据有理数乘除混合运算法则计算即可;(4)先乘方,再乘除,最后算加减即可;【解答】解:(1)12﹣(﹣18)+(﹣12)﹣15=12+18﹣12﹣15=30﹣27=3(2)(﹣+)×(﹣24)=×24﹣×24=9﹣14=﹣5(3)(﹣)×1÷(﹣1)=﹣××(﹣)=(4)(﹣2)3×(﹣)﹣(﹣3)=﹣8×(﹣)+3=722.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下: +3(x﹣1)=x2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣1,求所挡的二次三项式的值.【考点】44:整式的加减.【分析】(1)根据题意确定出所挡的二次三项式即可;(2)把x的值代入计算即可求出值.【解答】解:(1)所挡的二次三项式为x2﹣5x+1﹣3(x﹣1)=x2﹣5x+1﹣3x+3=x2﹣8x+4;(2)当x=﹣1时,原式=1+8+4=13.23.司机小王沿东西大街跑出租车,约定向东为正,向西为负,某天自A地出发到收工时,行走记录为(单位:千米):+8、﹣9、+7、﹣2、+5、﹣10、+7、﹣3、回答下列问题:(Ⅰ)记录中“+8”表示什么意思?(Ⅱ)收工时小王在A地的哪边?距A地多少千米?(Ⅲ)若每千米耗油0.2升,问从A地出发到收工时,共耗油多少升?【考点】11:正数和负数.【分析】(Ⅰ)根据约定向东为正,向西为负即可求解;(Ⅱ)根据有理数的加法,可得答案;(Ⅲ)根据单位耗油量乘以行驶路程,可得耗油量.【解答】解:(Ⅰ)记录中“+8”表示小王向东走了8千米;(Ⅱ)8+(﹣9)+7+(﹣2)+5+(﹣10)+7+(﹣3)=3(千米),答:收工时小王在A地的东边,距A地3千米;(Ⅲ)0.2×(8+|﹣9|+7+|﹣2|+5+|﹣10|+7+|﹣3|)=0.2×51=10.2(升),答:从A地出发到收工时,共耗油10.2升.24.陈老师和学生做一个猜数游戏,他让学生按照如下步骤进行计算:①任想一个两位数a,把a乘以2,再加上9,把所得的和再乘以2;②把a乘以2,再加上30,把所得的和除以2;③把①所得的结果减去②所得的结果,这个差即为最后的结果.陈老师说:只要你告诉我最后的结果,我就能猜出你最初想的两位数a.学生周晓晓计算的结果是96,陈老师立即猜出周晓晓最初想的两位数是31.请完成(Ⅰ)由①可列代数式4a+18 ,由②可列代数式a+15 ,由③可知最后结果为3a+3 ;(用含a的式子表示)(Ⅱ)学生小明计算的结果是120,你能猜出他最初想的两位数是多少吗?(Ⅲ)请用自己的语言解释陈老师猜数的方法.【考点】32:列代数式.【分析】(1)根据①②步骤列出代数式,做差后即可得出结论;(2)结合(1)可知3a+3=120,解之即可得出结论;(3)根据最后结果为3a+3,写出求a的过程即可.【解答】解:(1)由题意可知,第①步运算的结果为:2(2a+9)=4a+18;第②步运算的结果为:(2a+30)=a+15;第③步运算的为:(4a+18)﹣(a+15)=3a+3,故答案为:4a+18;a+15;3a+3;(2)∵最后结果为120,∴3a+3=120,解得:a=39.答:小明最初想的两位数是39.(3)陈老师猜数的方法是:将学生所得的最后结果减去3,再除以3.25.某餐厅中,一张桌子可坐6人,有以下两种摆放方式:(Ⅰ)有4张桌子,用第一种摆设方式,可以坐18 人;用第二种摆设方式,可以坐12 人;(Ⅱ)有n张桌子,用第一种摆设方式可以坐4n+2 人;用第二种摆设方式,可以坐2n+4 人(用含有n的代数式表示);(Ⅲ)一天中午,餐厅要接待120位顾客共同就餐,但餐厅中只有30张这样的长方形桌子可用,且每6张拼成一张大桌子,若你是这家餐厅的经理,你打算选择哪种方式来摆放餐桌,为什么?【考点】38:规律型:图形的变化类.【分析】(Ⅰ)旁边2人除外,每张桌可以坐4人,由此即可解决问题;(Ⅱ)旁边4人除外,每张桌可以坐2人,由此即可解决问题;(Ⅲ)分别求出两种情形坐的人数,即可判断;【解答】解:(Ⅰ)有4张桌子,用第一种摆设方式,可以坐4×4+2=18人;用第二种摆设方式,可以坐4×2+4=12人;(Ⅱ)有n张桌子,用第一种摆设方式可以坐4n+2人;用第二种摆设方式,可以坐2n+4(用含有n的代数式表示);(Ⅲ)选择第一种方式.理由如下;第一种方式:6张桌子可以坐4×6+2=26(人),30张桌子可以拼5张大桌子,一共可以坐26×5=130(人).第二种方式:6张桌子可以坐2×6+4=16(人),30张桌子可以拼5张大桌子,一共可以坐16×5=80(人).又130>120>80,所以选择第一种方式.故答案为:18,12,4n+2,2n+4.。

2019-2020年初一数学期中考试试题及答案解析.docx

2019-2020年初一数学期中考试试题及答案解析.docx

2019-2020 年初一数学期中考试试题及答案解析注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第 I 卷(选择题)评卷人得分一、选择题(每题 3 分,共 30 分)1.多项式 3x2- 2xy 3-1y- 1 是 ().2A.三次四项式B.三次三项式C.四次四项式D.四次三项式2.- 3 的绝对值是A . 3B.- 3C.-D.3.若 |x+2|+|y-3|=0,则 x-y 的值为()A. 5B. -5C.1 或-1D.以上都不对4.1)的相反数是(3A.1B.1C. 3D.﹣3 335. 2014 年 5 月 21 日,中国石油天然气集团公司与俄罗斯天然气工业股份公司在上海签署了《中俄东线供气购销合同》,这份有效期为30 年的合同规定,从2018 年开始供气,每年的天然气供应量为380 亿立方米, 380 亿立方米用科学记数法表示为()A.3.8 ×10103B.38×1093C.380×1083D.3.8 ×10113 m m m m6.计算 (a 2) 3÷ (a 2) 2的结果是 ()A. a B . a2 C . a3 D . a47.下列因式分解中,正确的有()①4a﹣ a3b2=a( 4﹣ a2b2);②x2y﹣ 2xy+xy=xy ( x﹣ 2);③﹣ a+ab﹣ ac=﹣ a( a﹣ b﹣c );④9abc﹣ 6a 2b=3abc ( 3﹣ 2a);⑤ x 2y+ xy 2= xy ( x+y )A.0个B.1个C.2个D.5个8.下列因式分解正确的是()A. x2﹣ xy+x=x ( x﹣ y)3222B. a ﹣ 2a b+ab =a( a﹣ b)22C. x ﹣ 2x+4=( x﹣ 1) +32D. ax ﹣ 9=a(x+3)( x﹣ 3)9.实数 a、 b 在数轴上的位置如图所示,下列式子错误的是()A. a< b C.- a<- b B. |a| > |b| D. b- a> 010.﹣ 的倒数是( )A 、B 、C 、﹣D 、﹣第 II 卷(非选择题)评卷人 得分二、填空题(每题 3 分,共 24 分)12 .用代数式表示“a 的 4 倍与 5 的差”为 .13 .已知2x m 1y 3 和 1 x n y m+n 是同类项,则nm 2012 =▲。

七年级数学试题参考答案 期中

七年级数学试题参考答案 期中

2019—2020学年度第一学期期中学业质量监测七年级数学试题答案及评分标准13. > 14. 千亿 15. 41.76 16. ③④ 17. 26 18. 2 三、解答题(本大题共6小题,共66分) 19.(满分20分,每小题4分)解:(1)18+(-12)+(-21)-(-12) (2)231754----4747⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=18-12-21+12 =231754+4747--+ =(18-21)+(-12+12) =235174()+(+)4477-+=-3+0 =-7+3 =-3 =4-(3)()23-1-31427÷⎪⎭⎫ ⎝⎛⨯ (4)()34.075-31-317234.0-3213-⨯⨯+⨯⨯ =2721-439⎛⎫⨯⨯ ⎪⎝⎭ =()2125-13+-13-0.34+0.343377⎡⎤⎛⎫⨯⨯⨯⨯ ⎪⎢⎥⎣⎦⎝⎭=⎪⎭⎫ ⎝⎛⨯⨯9132427- =()⎪⎭⎫⎝⎛+⨯⎪⎭⎫ ⎝⎛+⨯757234.0-313213-=21- =-13-0.34 =-13.34(5)()()[]242--1315.0-1-1-⨯⨯=111(3)23--⨯⨯-=1 1--2⎛⎫- ⎪⎝⎭=1 -2【说明:1.每小题缺少运算过程不得分;2.过程正确,结果错误得2分.】20.(本小题满分8分,每小题4分)解:(1)如图所示,①③题各1分,②题2分(2)因为AB=2cm,BC=2AB所以BC=2×2cm=4cm所以AC=AB+BC=6cm ----------------------------------5分因为D为AB的中点,E为AC的中点所以cmACAEcmABAD321121====,------------------------------7分所以cmADAEDE2=-=-----------------------------------------8分21. (本小题满分9分)解:(1)补充表格和条形图分别如下:-----------------------------------------3分(2)估计七年级合格人数为1000×=880(人);-----------------------5分(3)若要知道抽测中每一个等级的人数占总人数的百分比,应选择扇形统计图,表示如图:等级A B C D人数41083------------------------------------9分(说明:每表示正确一个等级得1分) 22.(本小题满分9分)解:由已知可得,a +b =0,cd =1,x =±2;--------------------3分 当x =2时,x 2﹣(a +b +cd )x +(a +b )2019+(﹣cd )2020 =22﹣(0+1)×2+02019+(﹣1)2020 =4﹣2+0+1=3 --------------------------------6分 当x =﹣2时,x 2﹣(a +b +cd )x +(a +b )2019+(﹣cd )2020 =(﹣2)2﹣(0+1)×(﹣2)+02019+(﹣1)2020 =4+2+0+1=7 --------------------------------9分 23.(本小题满分9分)解:(1)g (2)=g (21)=1,g (32)=g (25)=5;故答案为1,5; ------------2分 (2)①g (14)=g (2×7)=g (2)+g (7),因为g (7)=2.807,g (2)=1,所以g (14)=3.807;--------------------------3分g (47)=g (7)﹣g (4),g (4)=g (22)=2, 所以g (47)=g (7)﹣g (4)=2.807﹣2=0.807;------------------------------5分②g (18)=g (2×33 )= g (2)+g (3)+g (3)=1+2p---------7分 g (163)=g (3)﹣g (16)=g (3)﹣g (42)=p-4---------------------9分 24.(本小题满分11分)解:(1)a 是最大的负整数,即a=﹣1;b=﹣|﹣5|=﹣5,c 是﹣4的相反数,即c=4, 所以点A 、B 、C 在数轴上位置如图所示: --------------------------------------3分(2)-4或2;--------------------------5分(3)设运动t秒后,点P可以追上点Q,则点P表示数﹣5+3t,点Q表示-1+t,依题意得:﹣1+t=-5+3t,---------------------------------9分解得:t=2.答:运动2秒后,点P可以追上点Q;----------------------------9分(4)92或32-------------------------------11分。

广东省2019_2020学年七年级数学上学期期中试卷(含解析)

广东省2019_2020学年七年级数学上学期期中试卷(含解析)

17.计算题
(1)1+(﹣2)+|﹣2﹣3|﹣5
(2)
(3)
(4) 18.化简求值:
(1)﹣3xy﹣2y2+5xy﹣4y2. (2)x2﹣3(2x2﹣4y)+2(x2﹣y)其中 x=﹣2,y= . 19.解下列方程
2
如果您喜欢这份文档,欢迎下载! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
A.④
B.①②
C.①②③
D.①②④
【分析】根据 an 表示 n 个 a 相乘,而﹣an 表示 an 的相反数,而(﹣a)2n=a2n,(﹣a)2n+1
=﹣a2n+1(n 是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作
出判断. 【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数; ②(﹣1)2=1,﹣12=﹣1,故互为相反数; ③23=8,32=9 不互为相反数; ④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数. 故选:B. 7.下列等式变形正确的是( )
一次性购物
优惠办法
少于 200 元
不予优惠
低于 500 元但不低于 200 元
九折优惠
500 元或超过 500 元
其中 500 元部分给予九折优惠, 超过 500 元部分给予八折优惠
(1)王老师一次性购物 600 元,他实际付款
元.
(2)若顾客在该超市一次性购物 x 元,当 x 小于 500 元但不小于 200 时,他实际付款
13.比较大小:﹣
﹣.
14.已知 a、b 互为相反数,c、d 互为倒数,m 的绝对值是 2.则﹣
﹣3cd 的值为

2019—2020年最新人教版七年级数学上册期中考试综合测试题及答案解析(同步试卷).docx

2019—2020年最新人教版七年级数学上册期中考试综合测试题及答案解析(同步试卷).docx

七年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.﹣的相反数是()A.B.﹣C.5 D.﹣52.下列去括号的结果中,正确的是()A.﹣2(a﹣1)=﹣2a﹣1 B.﹣2(a﹣1)=﹣2a+1 C.﹣2(a﹣1)=﹣2a﹣2 D.﹣2(a﹣1)=﹣2a+23.如图所示,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A.b>a>0>c B.a<b<0<c C.b<a<0<c D.a<b<c<04.某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃5.下列说法中不正确的是()A.最小的正整数是1 B.最大的负整数是﹣1C.有理数分为正数和负数 D.绝对值最小的有理数是06.下面运算正确的是()A.3ab+3ac=6abc B.4a2b﹣4b2a=0 C.2x2+5x2=7x4D.5y2﹣2y2=3y27.下面各组数中,相等的一组是()A.﹣22与(﹣2)2B.与()3C.﹣|﹣2|与﹣(﹣2)D.(﹣3)3与﹣338.若有理数m,n满足mn>0,且m+n<0,则下列说法正确的是()A.m,n可能一正一负B.m,n都是正数C.m,n都是负数D.m,n中可能有一个为09.已知a,b互为倒数,|c﹣1|=2,则abc的值为()A.﹣1或3 B.﹣1 C.3 D.±210.观察下列单项式的排列规律:3x,﹣7x2,11x3,﹣15x4,19x5,…,照这样排列第10个单项式应是()A.39x10B.﹣39x10C.﹣43x10D.43x10二、填空题(共8小题,每小题3分,满分24分)11.若一个物体向东运动5米记作﹣5米,则该物体向西运动3米记作米.12.比较大小:(用“>或=或<”填空).13.某文具店的钢笔每支m元,练习本每本n元,小颖买了2支钢笔和3本练习本,应付元.14.请写出一个与5a2b是同类项的代数式.15.太阳的半径约为696 000千米,用科学记数法表示数696 000为.16.已知a﹣b=3,c+d=2,则(b+c)﹣(a﹣d)的值为.17.若﹣1<a<3,则化简|﹣1﹣a|+|3﹣a|的结果为.18.用火柴按图中的方式撘图形:按照这种方式撘下去,撘第n个图形需要根火柴.三、解答题(共7小题,满分46分)19.已知下列各有理数:5,﹣3.5,0,,2,﹣.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“>”号把这些数连接起来.20.计算:(1)(﹣15)+(+7)﹣(﹣3);解:原式=(2).解:原式=21.如图,小刚有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各题.(1)从中抽出2张卡片,使这两张卡片上的数字之和最大,可抽取的卡片是,,最大值是.(2)从中抽出2张卡片,使这两张卡片上的数字乘积最大,可抽取的卡片是,,最大值是.(3)从中抽出4张卡片,用学过的运算方式,使结果为24,请写出一个运算式子:.22.(1)化简:4x﹣5﹣3(x﹣2);(2)先化简,再求值:x2y+5xy﹣3(2x2y+xy),其中x=﹣,y=4.23.如图是一所住宅的建筑平面图(图中长度单位:m).(1)这所住宅的建筑面积是多少(用字母x,y的代数式表示)?(2)若x=3m,y=2.5m,要把卧室和客厅铺上木地板,则至少需要购买多少平方米的木地板?24.“十•一”黄金周期间,一农家花博园统计了10月1日至10月6日每天参观的人数及变化,如表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期10月1日10月2日10月3日10月4日10月5日10月6日人数 a ﹣100 +550 ﹣200 +600 ﹣300(1)若10月1日的游客人数记为a人,请用a的代数式表示10月3日的游客人数(直接在横线上写出结果):.(2)若a=1000,花博园门票每人20元,问10月1日至6日期间游客人数最多一天门票收入多少元?25.阅读材料大数学家高新在上学时,曾经研究过这样一个问题:1+2+3+4+5+…+100=?经过研究,这个问题的一般性结论是:1+2+3+4+5+…+n=n(n+1),其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+3×4+4×5×…+n(n+1)=?观察下面三个特殊的等式:1×2=.2×.3×.如果将这三个等式的两边相加,你会有怎样的发现呢?解决问题要求:直接在横线上写出结果(式子或数值),不必写过程.(1)将材料中的三个特殊的等式两边相加,可以得到:1×2+2×3+3×4= ;(2)探究并计算:1×2+2×3+3×4+4×5+…+20×21= ;1×2+2×3+3×4+4×5+…+n(n+1)= .参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.﹣的相反数是()A.B.﹣C.5 D.﹣5【考点】相反数.【分析】求一个数的相反数,即在这个数的前面加负号.【解答】解:﹣的相反数是.故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.2.下列去括号的结果中,正确的是()A.﹣2(a﹣1)=﹣2a﹣1 B.﹣2(a﹣1)=﹣2a+1 C.﹣2(a﹣1)=﹣2a﹣2 D.﹣2(a﹣1)=﹣2a+2【考点】去括号与添括号.【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【解答】解:A、﹣2(a﹣1)=﹣2a+2,故本选项错误;B、﹣2(a﹣1)=﹣2a+2,故本选项错误;C、﹣2(a﹣1)=﹣2a+2,故本选项错误;D、2(a﹣1)=﹣2a+2,故本选项正确;故选D.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.3.如图所示,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A.b>a>0>c B.a<b<0<c C.b<a<0<c D.a<b<c<0【考点】有理数大小比较;数轴.【专题】数形结合.【分析】根据数轴的特点可直接解答.【解答】解:因为在数轴上原点右边的数大于0,左边的数小于0,右边的数总大于左边的数可知,b<a<0<c.故选C.【点评】本题比较简单,考查的是有理数大小比较及数轴上各数的特点.4.某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃【考点】正数和负数.【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得答案.【解答】解:﹣18﹣2=﹣20℃,﹣18+2=﹣16℃,温度范围:﹣20℃至﹣16℃,A、﹣20℃<﹣17℃<﹣16℃,故A不符合题意;B、﹣22℃<﹣20℃,故B不符合题意;C、﹣20℃<﹣18℃<﹣16℃,故C不符合题意;D、﹣20℃<﹣19℃<﹣16℃,故D不符合题意;故选:B.【点评】本题考查了正数和负数,有理数的加法运算是解题关键,先算出适合温度的范围,再选出不适合的温度.5.下列说法中不正确的是()A.最小的正整数是1 B.最大的负整数是﹣1C.有理数分为正数和负数 D.绝对值最小的有理数是0【考点】有理数.【分析】此题主要是理解有理数、正整数、负整数的概念.【解答】解:A、最小的正整数是1,正确;B、最大的负整数是﹣1,正确;C、有理数分为正数、零和负数,错误;D、绝对值最小的有理数是0,正确;故选C【点评】此题考查有理数的概念问题,关键是注意对概念的理解.6.下面运算正确的是()A.3ab+3ac=6abc B.4a2b﹣4b2a=0 C.2x2+5x2=7x4D.5y2﹣2y2=3y2【考点】合并同类项.【分析】根据合并同类项,系数相加字母和字母的指数不变,可得答案.【解答】解:A、不是同类项不能合并,故A错误;B、不是同类项不能合并,故B错误;C、合并同类项,系数相加字母和字母的指数不变,故C错误;D、合并同类项,系数相加字母和字母的指数不变,故D正确;故选:D.【点评】本题考查了合并同类项,合并同类项,系数相加字母和字母的指数不变.7.下面各组数中,相等的一组是()A.﹣22与(﹣2)2B.与()3C.﹣|﹣2|与﹣(﹣2)D.(﹣3)3与﹣33【考点】有理数的乘方.【分析】本题涉及负数和分数的乘方,有括号与没有括号底数不相同,对各选项计算后即可选取答案.【解答】解:A、﹣22=﹣4,(﹣2)2=4,故本选项错误;B、=,()3=,故本选项错误;C、﹣|﹣2|=﹣2,﹣(﹣2)=2,故本选项错误;D、(﹣3)3=﹣27,﹣33=﹣27,故本选项正确.故选D.【点评】本题主要考查有理数的乘方运算.8.若有理数m,n满足mn>0,且m+n<0,则下列说法正确的是()A.m,n可能一正一负B.m,n都是正数C.m,n都是负数D.m,n中可能有一个为0【考点】有理数的乘法;有理数的加法.【分析】根据有理数的性质,因为mn>0,且m+n<0,可得n,m同号且两者都为负数可排除求解.【解答】解:若有理数m,n满足mn>0,则m,n同号,排除A,D选项;且m+n<0,则排除m,n都是正数的可能,排除B选项;则说法正确的是m,n都是负数,C正确,故选:C.【点评】本题考查了有理数的乘法.根据有理数的性质利用排除法依次排除选项,最后得解.9.已知a,b互为倒数,|c﹣1|=2,则abc的值为()A.﹣1或3 B.﹣1 C.3 D.±2【考点】有理数的乘法;绝对值.【分析】利用倒数的定义求出ab值,利用绝对值求出c的值,代入代数式即可解答.【解答】解:∵a,b互为倒数,∴ab=1,∵|c﹣1|=2,∴c=3或﹣1,∴abc=﹣1或3,故选:A.【点评】本题考查了有理数的乘法,解决本题的关键是熟记倒数、绝对值的性质.10.观察下列单项式的排列规律:3x,﹣7x2,11x3,﹣15x4,19x5,…,照这样排列第10个单项式应是()A.39x10B.﹣39x10C.﹣43x10D.43x10【考点】单项式.【专题】规律型.【分析】第奇数个单项式系数的符号为正,第偶数个单项式的符号为负,那么第n个单项式可用(﹣1)n+1表示,第一个单项式的系数的绝对值为3,第2个单项式的系数的绝对值为7,那么第n个单项式的系数可用(4n﹣1)表示;第一个单项式除系数外可表示为x,第2个单项式除系数外可表示为x2,第n个单项式除系数外可表示为x n.【解答】解:第n个单项式的符号可用(﹣1)n+1表示;第n个单项式的系数可用(4n﹣1)表示;第n个单项式除系数外可表示为x n.∴第n个单项式表示为(﹣1)n+1(4n﹣1)x n,∴第10个单项式是(﹣1)10+1(4×10﹣1)x10=﹣39x10.故选B.【点评】本题考查了单项式.也考查了数字的变化规律;分别得到符号,系数等的规律是解决本题的关键;得到各个单项式的符号规律是解决本题的易错点.二、填空题(共8小题,每小题3分,满分24分)11.若一个物体向东运动5米记作﹣5米,则该物体向西运动3米记作﹣3 米.【考点】正数和负数.【分析】正数和负数具有相反的意义,向东运动为负,那么向西运动为正.【解答】解:若一个物体向东运动5米记作﹣5米,则该物体向西运动3米记作﹣3米.故答案为:﹣3.【点评】本题考查正数和负数的意义,解决本题的关键是熟记正数和负数具有相反的意义.12.比较大小:<(用“>或=或<”填空).【考点】有理数大小比较.【分析】根据两个负数比较大小,绝对值大的反而小,即可得出答案.【解答】解:∵>,∴<;故答案为:<.【点评】此题考查了有理数的大小比较,掌握两个负数比较大小,绝对值大的反而小是解题的关键.13.某文具店的钢笔每支m元,练习本每本n元,小颖买了2支钢笔和3本练习本,应付2m+3n 元.【考点】列代数式.【分析】根据总价=单价×数量的关系列出代数式即可.【解答】解:应付(2m+3n)元.故答案为:2m+3n.【点评】此题主要考查代数式问题,解答此题的关键是根据总价=单价×数量的关系列出代数式.14.请写出一个与5a2b是同类项的代数式a2b .【考点】同类项.【分析】根据同类项的概念求解.【解答】解:与5a2b是同类项的为a2b.故答案为:a2b.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.15.太阳的半径约为696 000千米,用科学记数法表示数696 000为 6.96×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:696 000=6.96×105,故答案为:6.96×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.已知a﹣b=3,c+d=2,则(b+c)﹣(a﹣d)的值为﹣1 .【考点】整式的加减—化简求值.【分析】运用整式的加减运算顺序,先去括号,再合并同类项.解答时把已知条件代入即可.【解答】解:原式=b+c﹣a+d=c+d﹣a+b=(c+d)﹣(a﹣b)=2﹣3=﹣1.【点评】本题考查整式的加减运算,解此题的关键是注意整体思想的应用.17.若﹣1<a<3,则化简|﹣1﹣a|+|3﹣a|的结果为 4 .【考点】绝对值.【分析】根据a的范围判断出﹣1﹣a与3﹣a的正负,利用绝对值的代数意义化简,计算即可得到结果.【解答】解:∵﹣1<a<3,∴﹣1﹣a<0,3﹣a>0,|﹣1﹣a|+|3﹣a|=﹣(﹣1﹣a)+(3﹣a)=1+a+3﹣a=4.故答案为:4.【点评】此题考查了整式的加减,以及绝对值,熟练掌握运算法则是解本题的关键.18.用火柴按图中的方式撘图形:按照这种方式撘下去,撘第n个图形需要2n+2 根火柴.【考点】规律型:图形的变化类.【分析】由图形可知:撘第1个图形需要4根火柴,撘第2个图形需要4+2=6根火柴,撘第3个图形需要4+2+2=8根火柴,…由此得出撘第n个图形需要4+2(n﹣1)=2n+2根火柴.【解答】解:∵撘第1个图形需要4根火柴,撘第2个图形需要4+2=6根火柴,撘第3个图形需要4+2+2=8根火柴,…∴撘第n个图形需要4+2(n﹣1)=2n+2根火柴.故答案为:2n+2.【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间得运算规律,利用规律解决问题.三、解答题(共7小题,满分46分)19.已知下列各有理数:5,﹣3.5,0,,2,﹣.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“>”号把这些数连接起来.【考点】有理数大小比较;数轴.【分析】(1)画出数轴,把各数在数轴上表示出来即可;(2)按各数在数轴上的位置从右到左用“>”连接起来即可.【解答】解:(1)如图所示,;(2)由图可知,5>2>>0>﹣>﹣3.5.【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.20.计算:(1)(﹣15)+(+7)﹣(﹣3);解:原式=(2).解:原式=【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣15+7+3=﹣5;(2)原式=×4﹣+=+=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.21.如图,小刚有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各题.(1)从中抽出2张卡片,使这两张卡片上的数字之和最大,可抽取的卡片是+3 ,+4 ,最大值是7 .(2)从中抽出2张卡片,使这两张卡片上的数字乘积最大,可抽取的卡片是﹣3 ,﹣5 ,最大值是15 .(3)从中抽出4张卡片,用学过的运算方式,使结果为24,请写出一个运算式子:(﹣3)×(+4)×[(﹣5)+(+3)] .【考点】有理数的混合运算.【专题】计算题;图表型.【分析】(1)取值两个正数,使其和最大即可;(2)取值两个负数,使其积最大即可;(3)利用“24点”游戏规则计算即可.【解答】解:(1)从中抽出2张卡片,使这两张卡片上的数字之和最大,可抽取的卡片是+3,+4,最大值是7;(2)从中抽出2张卡片,使这两张卡片上的数字乘积最大,可抽取的卡片是﹣3,﹣5,最大值是15;(3)从中抽出4张卡片,用学过的运算方式,使结果为24,写出一个运算式子为(﹣3)×(+4)×[(﹣5)+(+3)].故答案为:(1)+3;+4;7;(2)﹣3;﹣5;15;(3)(﹣3)×(+4)×[(﹣5)+(+3)]【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.(1)化简:4x﹣5﹣3(x﹣2);(2)先化简,再求值:x2y+5xy﹣3(2x2y+xy),其中x=﹣,y=4.【考点】整式的加减—化简求值;整式的加减.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)原式=4x﹣5﹣3x+6=x+1;(2)原式=x2y+5xy﹣6x2y﹣3xy=﹣5x2y+2xy,当x=﹣,y=4时,原式=﹣5﹣4=﹣9.【点评】此题考查了整式的加减﹣化简求值,以及整式的加减,熟练掌握运算法则是解本题的关键.23.如图是一所住宅的建筑平面图(图中长度单位:m).(1)这所住宅的建筑面积是多少(用字母x,y的代数式表示)?(2)若x=3m,y=2.5m,要把卧室和客厅铺上木地板,则至少需要购买多少平方米的木地板?【考点】列代数式;代数式求值.【分析】(1)把四个小长方形的面积合并起来即可;(2)把x=3m,y=2.5m代入(1)中的代数式求得答案即可.【解答】解:(1)这所住宅的建筑面积是8xy+2xy+4xy+xy=15xy;(2)把x=3m,y=2.5m代入8xy+4xy=90(平方米).【点评】此题考查列代数式,看清图意,利用面积的出代数式是解决问题的关键.24.“十•一”黄金周期间,一农家花博园统计了10月1日至10月6日每天参观的人数及变化,如表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期10月1日10月2日10月3日10月4日10月5日10月6日人数 a ﹣100 +550 ﹣200 +600 ﹣300(1)若10月1日的游客人数记为a人,请用a的代数式表示10月3日的游客人数(直接在横线上写出结果):a+450 .(2)若a=1000,花博园门票每人20元,问10月1日至6日期间游客人数最多一天门票收入多少元?【考点】列代数式;代数式求值.【分析】(1)直接求出10月3日的人数,即可解决问题.(2)首先求出黄金周期间游客的总人数,然后即可求出总收入.【解答】解:(1)10月3日的游客人数是a+450,故答案为:a+450;(2)10月1日人数:1000,10月2日人数:1000+(﹣100)=900,10月3日人数:900+(+550)=1450,10月4日人数:1450+(﹣200)=1250,10月5日人数:1250+(+600)=1850,10月6日人数:1850+(﹣300)=1550,故10月5日人数最多1850,最多一天门票收入37000元.【点评】该题主要考查了列代数式来解决现实生活中的实际问题;解题的关键是灵活运用正数和负数的意义准确列出代数式,来分析、判断、解答.25.阅读材料大数学家高新在上学时,曾经研究过这样一个问题:1+2+3+4+5+…+100=?经过研究,这个问题的一般性结论是:1+2+3+4+5+…+n=n(n+1),其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+3×4+4×5×…+n(n+1)=?观察下面三个特殊的等式:1×2=.2×.3×.如果将这三个等式的两边相加,你会有怎样的发现呢?解决问题要求:直接在横线上写出结果(式子或数值),不必写过程.(1)将材料中的三个特殊的等式两边相加,可以得到:1×2+2×3+3×4= ×3×4×5 ;(2)探究并计算:1×2+2×3+3×4+4×5+…+20×21= ×20×21×22 ;1×2+2×3+3×4+4×5+…+n(n+1)= n(n+1)(n+2).【考点】有理数的混合运算.【专题】计算题;规律型.【分析】(1)将三式子相加求出结果即可;(2)原式各项归纳总结得到一般性规律,计算即可.【解答】解:(1)三式相加得:1×2+2×3+3×4=(1×2×3﹣0×1×2+2×3×4﹣1×2×3+3×4×5﹣2×3×4)=×3×4×5;(2)归纳总结得:原式=×20×21×22;原式=n(n+1)(n+2).故答案为:(1)×3×4×5;(2)×20×21×22;n(n+1)(n+2).【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。

广东省阳江市阳东区2020-2021学年七年级上学期期中考试数学试卷(含答案)

广东省阳江市阳东区2020-2021学年七年级上学期期中考试数学试卷(含答案)

2020-2021学年广东省阳江市阳东区七年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.如果向北走6步记作+6步,那么向南走8步记作()A.+8步B.﹣8步C.+14步D.﹣2步2.在数1,0,﹣1,﹣2中,最大的数是()A.﹣2B.﹣1C.0D.13.下列各组数中,互为相反数的是()A.﹣(﹣3)与3B.(﹣3)2与32C.|﹣3|与3D.﹣32与324.下列计算正确的是()A.3a+2b=5ab B.5y﹣3x=2C.7a+a=7a2D.3x2y﹣2x2y=x2y5.小邱同学做这样一道题“计算|(﹣8)+■|”,其中“■”是被墨水污染看不清的一个数,他翻看了后面的答案,得知该题的答案是15,那么“■”表示的数是()A.8B.﹣15C.23D.﹣7或236.按括号内的要求用四舍五入法取近似数,下列选项正确的是()A.403.53≈403(精确到个位)B.2.604≈2.60(精确到十分位)C.0.0234≈0.0(精确到0.1)D.0.01361≈0.014(精确到0.0001)7.2019年2月5日《流浪地球》上映,这部由刘慈欣小说改编的同名电影,5天累计票房达到了16亿元,成为名副其实的首部国产科幻大片,数据16亿用科学记数法表示为()A.1.6×108B.16×108C.1.6×109D.0.16×10108.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按如图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm9.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是()A.p B.q C.m D.n10.已知a、b为有理数,下列式子:①|ab|>ab;②;③;④a3+b3=0.其中一定能够表示a、b异号的有()个.A.1B.2C.3D.4二、填空题(本大题共7小题,每小题4分,共28分)11.(4分)﹣16的相反数是.12.(4分)比较大小:﹣(+2)﹣|﹣3|(填>,<,=)13.(4分)冬季供暖后,乐乐发现室内的温度为20°,此时冰箱冷冻室的温度为﹣5℃,则室内的温度比冷冻室的温度高℃14.(4分)在数轴上,若A点表示数﹣1,点B表示数2,A、B两点之间的距离为.15.(4分)已知单项式3x a+1y4与﹣2y b﹣2x3是同类项,那么a=,b=.16.(4分)在如图所示的运算程序中,若输入的x的值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,……则第2020次输出的结果为.17.(4分)如图的数轴上有两处不小心被墨水淹没了,所标注的数据是墨水部分边界与数轴相交点的数据,则被淹没的整数点有个,负整数点有个.三、解答题(一)(本大题共3小题,每小题6分,共18分)18.(6分)计算:﹣1﹣×(﹣22)÷(﹣)19.(6分)2(x2y+xy2)﹣2(x2y﹣3x)﹣2xy2﹣2y.20.(6分)某食品厂从生产的食品罐头中,抽出20瓶检查质量,将超过标准质量的用正数表示,不足标准质量的用负数表示,结果记录如表.与标准质量的偏差/克﹣10﹣50+5+10+15瓶数124751问这批样品的平均质量比标准质量重还是轻?平均每瓶相差多少克?四、解答题(二)(本大题共3小题,每小题8分,共24分)21.(8分)计算如图阴影部分面积:(1)用含有a,b的代数式表示阴影面积;(2)当a=1,b=2时,其阴影面积为多少?22.(8分)如图,数轴上的三点A、B、C分别表示有理数a、b、c,则(1)b﹣a0,a﹣c0,b+c0(用“>”“<”或“=”填空).(2)化简:|b﹣a|﹣|a﹣c|+|b+c|23.(8分)已知多项式(mx2﹣6x2+3x)+(1﹣x+3mx2)﹣2x(1)若m=2,化简此多项式;(2)若多项式的值与x的值无关,求4m2﹣6m+2的值.五、解答题(三)(本大题共2小题,每小题10分,共20分)24.(10分)某商场销售一种西装和领带,西装每套定价500元,领带每条定价100元,“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到商场购买西装20套,领带x条(x>20).(1)若客户按方案一购买,需付款元;若客户按方案二购买,需付款元;(2)若x=30,请通过计算说明此时按哪种方案购买较为合算;(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并计算此方案需要付款多少元.25.(10分)如图,数轴上点A表示数a,点C表示数c,且多项式x3﹣3xy29﹣20的常数项是a,次数是c.我们把数轴上两点之间的距离用表示两点的大写字母表示,比如,点A 与点C之间的距离记作AC.(1)求a,c的值;(2)若数轴上有一点D满足CD=2AD,求D点表示的数为多少?(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A,C在数轴上运动,点A,C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t秒.若点A向左运动,点C向右运动,AB=BC,求t的值.2020-2021学年广东省阳江市阳东区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.如果向北走6步记作+6步,那么向南走8步记作()A.+8步B.﹣8步C.+14步D.﹣2步【分析】“正”和“负”是表示互为相反意义的量,向北走记作正数,那么向北的反方向,向南走应记为负数.【解答】解:∵向北走6步记作+6步,∴向南走8步记作﹣8步,故选:B.2.在数1,0,﹣1,﹣2中,最大的数是()A.﹣2B.﹣1C.0D.1【分析】根据有理数大小比较的规律即可得出答案.【解答】解:﹣2<﹣1<0<1,所以最大的数是1,故选:D.3.下列各组数中,互为相反数的是()A.﹣(﹣3)与3B.(﹣3)2与32C.|﹣3|与3D.﹣32与32【分析】根据有理数的乘方的意义逐个选项进行计算即可.【解答】解:A.﹣(﹣3)=3,因此选项A不符合题意;B.(﹣3)2=9,32=9,因此选项B不符合题意;C.|﹣3|=3,因此选项C不符合题意;D.﹣32=﹣9,32=9,因此选项D符合题意,故选:D.4.下列计算正确的是()A.3a+2b=5ab B.5y﹣3x=2C.7a+a=7a2D.3x2y﹣2x2y=x2y【分析】直接利用合并同类项法则计算得出答案.【解答】解:A、3a+2b,无法合并,故此选项错误;B、5y﹣3x,无法合并,故此选项错误;C、7a+a=8a,故此选项错误;D、3x2y﹣2x2y=x2y,正确.故选:D.5.小邱同学做这样一道题“计算|(﹣8)+■|”,其中“■”是被墨水污染看不清的一个数,他翻看了后面的答案,得知该题的答案是15,那么“■”表示的数是()A.8B.﹣15C.23D.﹣7或23【分析】根据|(﹣8)+■|=15,可得:(﹣8)+■=±15,据此求出“■”表示的数是多少即可.【解答】解:∵|(﹣8)+■|=15,∴(﹣8)+■=±15,∴■=﹣15﹣(﹣8)=﹣7或■=15﹣(﹣8)=23.故选:D.6.按括号内的要求用四舍五入法取近似数,下列选项正确的是()A.403.53≈403(精确到个位)B.2.604≈2.60(精确到十分位)C.0.0234≈0.0(精确到0.1)D.0.01361≈0.014(精确到0.0001)【分析】根据近似数的精确度对各选项进行判断.【解答】解:A、403.53≈404(精确到个位),所以A选项错误;B、2.604≈2.60(精确到百分位),所以B选项错误;C、0.0234≈0.0(精确到0.1),所以C选项正确;D、0.01361≈0.014(精确到0.001),所以D选项错误.故选:C.7.2019年2月5日《流浪地球》上映,这部由刘慈欣小说改编的同名电影,5天累计票房达到了16亿元,成为名副其实的首部国产科幻大片,数据16亿用科学记数法表示为()A.1.6×108B.16×108C.1.6×109D.0.16×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:16亿=1600000000=1.6×109,故选:C.8.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按如图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【解答】解:∵原正方形的周长为acm,∴原正方形的边长为cm,∵将它按如图的方式向外等距扩1cm,∴新正方形的边长为(+2)cm,则新正方形的周长为4(+2)=a+8(cm),因此需要增加的长度为a+8﹣a=8cm.故选:B.9.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是()A.p B.q C.m D.n【分析】根据n+q=0可以得到n、q的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【解答】解:∵n+q=0,∴n和q互为相反数,0在线段NQ的中点处,∴绝对值最大的点P表示的数p,故选:A.10.已知a、b为有理数,下列式子:①|ab|>ab;②;③;④a3+b3=0.其中一定能够表示a、b异号的有()个.A.1B.2C.3D.4【分析】由|ab|>ab得到ab<0,可判断a、b一定异号;由<0时,可判断a、b一定异号;由||=﹣得到≤0,当a=0时,不能判断a、b不一定异号;由a3+b3=0可得到a+b=0,当a=b=0,则不能a、b不一定异号.【解答】解:当|ab|>ab时,a、b一定异号;当<0时,a、b一定异号;当||=﹣,则≤0,a可能等于0,b≠0,a、b不一定异号;当a3+b3=0,a3=﹣b3,即a3=(﹣b)3,所以a=﹣b,有可能a=b=0,a、b不一定异号.所以一定能够表示a、b异号的有①②.故选:B.二、填空题(本大题共7小题,每小题4分,共28分)11.(4分)﹣16的相反数是16.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:﹣16的相反数是16.故答案为:1612.(4分)比较大小:﹣(+2)>﹣|﹣3|(填>,<,=)【分析】根据两个负数比较大小,其绝对值大的反而小比较即可.【解答】解:∵﹣(+2)=﹣2,﹣|﹣3|=﹣3,|﹣2|<|﹣3|,∴﹣(+2)>﹣|﹣3|.故答案为:>13.(4分)冬季供暖后,乐乐发现室内的温度为20°,此时冰箱冷冻室的温度为﹣5℃,则室内的温度比冷冻室的温度高25℃【分析】根据有理数的减法,即可解答.【解答】解:20﹣(﹣5)=20+5=25(℃),故答案为:25.14.(4分)在数轴上,若A点表示数﹣1,点B表示数2,A、B两点之间的距离为3.【分析】用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.【解答】解:2﹣(﹣1)=3.故答案为:315.(4分)已知单项式3x a+1y4与﹣2y b﹣2x3是同类项,那么a=2,b=6.【分析】根据同类项的概念得出关于a、b的方程,解之即可.【解答】解:∵单项式3x a+1y4与﹣2y b﹣2x3是同类项,∴a+1=3,b﹣2=4,∴a=2,b=6,故答案为:2,6.16.(4分)在如图所示的运算程序中,若输入的x的值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,……则第2020次输出的结果为0.【分析】根据题意和运算程序,可以写出前几次的输出结果,从而可以发现输出结果的变化特点,从而可以解答本题.【解答】解:由题意可得,第一次输出的结果为24,第二次输出的结果为12,第三次输出的结果为6,第四次输出的结果为3,第五次输出的结果为0,第六次输出的结果为0,…,故第2020次输出的结果为0,故答案为:0.17.(4分)如图的数轴上有两处不小心被墨水淹没了,所标注的数据是墨水部分边界与数轴相交点的数据,则被淹没的整数点有69个,负整数点有52个.【分析】根据数轴的构成可知,﹣72和﹣41之间的整数点有:﹣72,﹣71,…,﹣41,共31个;﹣21和16之间的整数点有:﹣21,﹣20,…,16,共38个;依此即可求解.【解答】解:由数轴可知,﹣72和﹣41之间的整数点有:﹣72,﹣71,…,﹣42,共31个;﹣21和16之间的整数点有:﹣21,﹣20,…,16,共38个;故被淹没的整数点有31+38=69个,负整数点有31+21=52个.故答案为:69,52.三、解答题(一)(本大题共3小题,每小题6分,共18分)18.(6分)计算:﹣1﹣×(﹣22)÷(﹣)【分析】根据有理数的乘方、有理数的乘除法和减法可以解答本题.【解答】解:﹣1﹣×(﹣22)÷(﹣)=﹣1﹣×(﹣4)×(﹣2)=﹣1﹣2=﹣3.19.(6分)2(x2y+xy2)﹣2(x2y﹣3x)﹣2xy2﹣2y.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=2x2y+2xy2﹣2x2y+6x﹣2xy2﹣2y=6x﹣2y.20.(6分)某食品厂从生产的食品罐头中,抽出20瓶检查质量,将超过标准质量的用正数表示,不足标准质量的用负数表示,结果记录如表.与标准质量的偏差/克﹣10﹣50+5+10+15瓶数124751问这批样品的平均质量比标准质量重还是轻?平均每瓶相差多少克?【分析】由已知,首先计算出与标准质量的偏差总量,在计算平均质量比标准质量相差多少,如果得到正数,则多,否则少.【解答】解:∵(﹣10)×1+(﹣5)×2+0×4+(+5)×7+(+10)×5+(+15)×1=80(克)∴80÷20=4(克)答:这批样品的平均质量比标准质量重,平均每瓶重4克.四、解答题(二)(本大题共3小题,每小题8分,共24分)21.(8分)计算如图阴影部分面积:(1)用含有a,b的代数式表示阴影面积;(2)当a=1,b=2时,其阴影面积为多少?【分析】(1)由三个矩形面积之和表示出阴影部分面积即可;(2)将a与b的值代入计算即可求出值.【解答】解:(1)根据题意得:4a2+2ab+3b2;(2)当a=1,b=2时,原式=4+4+12=20.22.(8分)如图,数轴上的三点A、B、C分别表示有理数a、b、c,则(1)b﹣a<0,a﹣c>0,b+c<0(用“>”“<”或“=”填空).(2)化简:|b﹣a|﹣|a﹣c|+|b+c|【分析】(1)根据数轴上右边的数总是大于左边的数即可判断a、b、c的大小关系,根据有理数的加法法则判断符号;(2)根据绝对值的性质即可去掉绝对值符号,然后合并同类项即可.【解答】解:(1)根据数轴可得b<a,a>c,c<b<0.则b﹣a<0,a﹣c>0,b+c<0.故答案是:<,>,<;(2)原式=a﹣b﹣(a﹣c)﹣(b+c)=a﹣b﹣a+c﹣b﹣c=﹣2b.23.(8分)已知多项式(mx2﹣6x2+3x)+(1﹣x+3mx2)﹣2x(1)若m=2,化简此多项式;(2)若多项式的值与x的值无关,求4m2﹣6m+2的值.【分析】(1)把m=2代入原式,去括号合并即可得到结果;(2)原式去括号合并后,由结果与x的值无关求出m的值,代入原式计算即可得到结果.【解答】解:(1)原式=2x2﹣6x2+3x+1﹣x+6x2﹣2x=2x2+1;(2)原式=mx2﹣6x2+3x+1﹣x+3mx2﹣2x=(4m﹣6)x2+1,由结果与x的值无关,得到m=1.5,则原式=9﹣9+2=2.五、解答题(三)(本大题共2小题,每小题10分,共20分)24.(10分)某商场销售一种西装和领带,西装每套定价500元,领带每条定价100元,“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到商场购买西装20套,领带x条(x>20).(1)若客户按方案一购买,需付款(100x+8000)元;若客户按方案二购买,需付款(90x+9000)元;(2)若x=30,请通过计算说明此时按哪种方案购买较为合算;(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并计算此方案需要付款多少元.【分析】(1)根据两种方案,利用西装的费用+领带的费用列代数式;(2)当x=30时,分别求解两方案的费用,即可求解;(3)根据x=30可列出更为省钱的方案,列式计算可求解.【解答】(1)方案一费用:500×20+100×(x﹣20)=(100x+8000)元;方案二费用:500×20×90%+100x×90%=(90x+9000)元;故答案为(100x+8000);(90x+9000);(2)当x=30时,方案一费用:100×30+8000=11000(元);方案二费用:90×30+9000=11700(元);∵11000<11700,∴按方案一购买较为合算;(3)先按方案一购买20套西装赠20条领带,再按方案二购买10条领带,20×500+100×0.9×10=10900(元).故此方案需要付款10900元.25.(10分)如图,数轴上点A表示数a,点C表示数c,且多项式x3﹣3xy29﹣20的常数项是a,次数是c.我们把数轴上两点之间的距离用表示两点的大写字母表示,比如,点A 与点C之间的距离记作AC.(1)求a,c的值;(2)若数轴上有一点D满足CD=2AD,求D点表示的数为多少?(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A,C在数轴上运动,点A,C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t秒.若点A向左运动,点C向右运动,AB=BC,求t的值.【分析】(1)根据多项式与单项式的概念即可求出答案.(2)分三种情况:当点D在点A的左侧;当点D在点A,C之间时;当点D在点C的右侧时;进行讨论可求D点表示的数;(3)根据两点间的距离公式作答.【解答】解:(1)多项式x3﹣3xy29﹣20的常数项是﹣20,次数是30.所以a=﹣20,c=30.(2)分三种情况讨论:当点D在点A的左侧时,∵CD=2AD,∴AD=AC=50.点D表示的数为﹣20﹣50=﹣70;当点D在点A,C之间时,∵CD=2AD,∴AD=AC=,∴D点表示的数为﹣20+=﹣.∴当点D在点C的右侧时,则AD>CD,与CD=2AD相矛盾,不符合题意.综上所述,D点表示的数为﹣70或﹣;(3)如图所示:当t=0时,AB=21,BC=29.当时间为t时,点A表示的数为﹣20﹣2t,点B表示的数为l+t,点C表示的数为30+3t,AB=1+t﹣(﹣20﹣2t)=3t+21,BC=30+3t﹣(1+t)=2t+29,由AB=BC即3t+21=2t+29.解之得t=8.故当t=8时,AB=BC.。

2019-2020学年七年级数学上学期期中卷(全解全析)

2019-2020学年七年级数学上学期期中卷(全解全析)

2019-2020学年上学期期中原创卷A 卷七年级数学·全解全析123456789101112BABCAACDDCAB1.【答案】B【解析】因为只有符号不同的两个数互为相反数,所以–2019的相反数是2019.故选B.2.【答案】A【解析】规定向右运动3m 记作+3m ,那么向左运动4m 记作–4m .故选A .3.【答案】B【解析】在所列有理数中,负数有–|–12|,(–2)3这2个,故选B .4.【答案】C【解析】根据单项式的定义,在代数式2x -,0,3x y -,4x y +,ba 中单项式有2x -和0两个.故选C .5.【答案】A【解析】m 的3倍与n 的差的平方为(3m –n )2.故选A.6.【答案】A【解析】π5x 的系数是1π5,故原题说法错误;故选A.7.【答案】C【解析】8.8×104精确到千位.故选C .8.【答案】D【解析】A 、x –(3y –12)=x –3y +12,正确;B 、m +(–n +a –b )=m –n +a –b ,正确;C 、2–3x =–(3x –2),正确;D 、–12(4x –6y +3)=–2x +3y –32,错误;故选D .9.【答案】D【解析】因为3x 2+5x =5,所以10x –9+6x 2=2(3x 2+5x )–9=2×5–9=1.故选D .10.【答案】C【解析】由图可得,a <0,b >0,且|a |>|b |,所以a +b <0,所以|a +b |=–(a +b )=–a –b .故选C .11.【答案】A【解析】m 2+2mn =13,3mn +2n 2=21,可得2m 2+4mn =26,9mn +6n 2=63,两式相加可得:2m 2+13mn +6n 2=89,所以2m 2+13mn +6n 2–44=45.故选A .12.【答案】B【解析】因为13a =,所以22223a ==--,()321222a ==--,4241322a ==-,52 3.423a ==-所以该数列每4个数为一周期循环,因为2018÷4=504……2,所以201822a a ==-,故选B .13.【答案】2【解析】|–2|=2.故答案为:2.14.【答案】–35;7【解析】单项式2535x y -的系数是35-,次数是7,故答案为:35-,7.15.【答案】7.6×1011【解析】7600亿=760000000000,760000000000=7.6×1011.故答案为:7.6×1011.16.【答案】2ab【解析】根据题意可得这批图书共有ab 册,它的一半就是2ab .故答案为:2ab .17.【答案】3【解析】因为多项式(a –2)x 2+(2b +1)xy –x +y –7是关于x ,y 的多项式,该多项式不含二次项,所以a –2=0,2b +1=0,解得a =2,b =12-,所以a –2b =2–12(2⨯-=2+1=3.故答案为:3.18.【答案】4【解析】第1次输入10:10×|–12|÷[–(−12)2]=–20,–20<100;第2次输入–20:–20×|–12|÷[–(−12)2]=40,40<100,第3次输入40:40×|–12|÷[–(−12)2]=–80,–80<100,第4次输入–80:80×|–12|÷[–(−12)2]=160,因为160>100,停止.所以输入的次数为4.故答案为:4.19.【解析】(1)原式=–115+3×1283=–115+128=13;(3分)(2)原式=–1–12×13×(–7)=–1+76=16.(6分)20.【解析】(1)原式=a 2–2a 3–2a 2+3a 3+3a 2=a 3+2a 2;(3分)(2)原式=x –3x –2y –4x +2y =–6x .(6分)21.【解析】因为a 、b 互为相反数,c 、d 互为倒数,x 的绝对值等于3,所以a +b =0,cd =1,x =±3,(3分)所以原式=9–(0+1)+2×0=9–1+0=8.(6分)22.【解析】(1)3x 2–5x +x 2+2x –4x 2+7=–3x +7,把x =13代入得:原式=–3×13+7=6;(4分)(2)6(a +b )2+12(a +b )+19(a +b )2–2(a +b )=25(a +b )2+10(a +b ),把a +b =25代入得:原式=25×(25)2+10×25=8.(8分)23.【解析】(1)由数轴可知x >0,y <0,则y =–y ,则–x ,y 在数轴上表示为:(2分)(2)数轴上左边的数小于右边的数,则–x <y <0<y <x ;(5分)(3)由数轴可知x +y >0,y –x <0,y =–y ,则x y +–y x -+y =x +y +y –x –y =y .(8分)24.【解析】(1)(–1008)+1100+(–976)+1010+827+946=1899(米).答:此时他在A 地的向南方向,距A 地1899米;(5分)(2)|–1008|+|1100|+|–976|+|1010|+|827|+|946|=5867(米).答:小明共跑了5867米.(10分)25.【解析】(1)阴影部分的面积为a 2+82–[12a 2+12×8×(a +8)](4分)=a 2+64–(12a 2+4a +32)=a2+64–12a2–4a–32=12a2–4a+32;(6分)(2)当a=4时,12a2–4a+32=12×42–4×4+32=24,则所涂油漆费用=24×60=1440(元).(10分)26.【解析】(1)小军解法较好;(2分)(2)还有更好的解法,492425×(–5)=(50–125)×(–5)=50×(–5)–125×(–5)=–250+1 5=–24945;(7分)(3)191516×(–8)=(20–116)×(–8)=20×(–8)–116×(–8)=–160+1 2=–1591 2.(12分)27.【解析】(1)因为|a+2|+(c–7)2=0,所以a+2=0,c–7=0,解得a=–2,c=7,因为b是最小的正整数,所以b=1;故答案为:–2,1,7.(3分)(2)(7+2)÷2=4.5,对称点为7–4.5=2.5,2.5+(2.5–1)=4;故答案为:4.(7分)(3)不变,因为AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;所以3BC–2AB=3(2t+6)–2(3t+3)=12.(12分)。

2020年广东省阳江市七年级(上)期中数学试卷

2020年广东省阳江市七年级(上)期中数学试卷

期中数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.下列说法正确的是()A. 零是正数不是负数B. 零既不是正数也不是负数C. 零既是正数也是负数D. 不是正数的数一定是负数,不是负数的数一定是正数2.下列不是正有理数的是()A. -3.14B. 0.6C.D. 33.与原点距离是2.5个单位长度的点所表示的有理数是()A. 2.5B. -2.5C. ±2.5D. 这个数无法确定4.-(-2)的值是()A. -2B. 2C. ±2D. 45.-3的绝对值是()A. 3B. -3C. -D.6.单项式7πa2b3的次数是()A. 4B. 5C. 6D. 77.下列各组中的两个单项式中,是同类项的是()A. a2和-2aB. 2m2n和3nm2C. -5ab和-5abcD. x3和238.化简5(2x-3)+4(3-2x)结果为()A. 2x-3B. 2x+9C. 8x-3D. 18x-39.减去-3m等于5m2-3m-5的式子是( )A. 5(m2-1)B. 5m2-6m-5C. 5(m2+1)D. -(5m2+6m-5)10.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000kg,这个数据用科学记数法表示为()A. 0.5×1011kgB. 50×109kgC. 5×109kgD. 5×1010kg二、填空题(本大题共7小题,共28.0分)11.数轴上原点右边的点表示的数都大于______.12.30+(-20)=______.13.计算:-32=______,(-3)2=______.14.当x=-2时,代数式-x2+2x-1的值是______.15.若单项式-的系数是m,次数是n,则mn的值等于______ .16.3xy2-7xy2=______.17.一名足球守门员练习折返跑,从球门线出发,向前为正,返回为负,他的记录如下(单位:米):+5,-3,+10,-8,+4,-6,+8,-10.守门员全部练习结束后,他共跑了______米.三、计算题(本大题共3小题,共20.0分)18.计算:-2×4-6+(-)-19.计算:|-3.75|+(-5.25)×(-1)-|-2.5|20.先化简,再求值(2x2-x-1)-(x2-x-)+(3x2-),其中.四、解答题(本大题共5小题,共42.0分)21.合并同类项:2x2-3x+4x2-6x-522.若|a+5|+|b-2|+|c+4|=0,求÷的值.23.根据下面给出的数轴,解答下列问题:(1)A、B两点之间的距离是多少?(2)画出与点A的距离为2的点(用不同于A、B的字母在所给的数轴上表示).(3)数轴上,线段AB的中点表示的数是多少?24.大客车上原有(3m-n)人,中途有一半人下车,又上车若干人,此时车上共有乘客(8m-5n)人.(1)请问中途上车的共有多少人?(2)当m=10,n=8时,中途上车的乘客有多少人?25.已知:b是最小的正整数,且a、b满足(c-6)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a= ______ ,b= ______ ,c= ______(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P 在A、B之间运动时,请化简式子:|x+1|-|x-1|-2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒n(n >0)个单位长度的速度向左运动,同时,点B和点C分别以每秒2n个单位长度和5n个单位长度的速度向右运动,假设经过t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.答案和解析1.【答案】B【解析】解:0既不是正数,也不是负数.只有B符合.故选B.根据正数和负数的概念,对选项进行一一分析,排除错误答案.考查正数和负数的概念.要注意0既不是正数,也不是负数.2.【答案】A【解析】解:不是正有理数,则为负有理数或零,故选:A.根据题意,在选项中寻找负有理数或零即可.本题考查有理数;能够理解题意,掌握有理数的分类是解题的关键.3.【答案】C【解析】解:在数轴上距离原点2.5个单位长度的点有两个,它们位于原点的两侧,如下图所示:即:与原点距离是2.5个单位长度的点所表示的有理数是±2.5.故:选C利用在数轴上描点来求解.本题考查了绝对值的几何意义,解题的关键是理解数轴上的点表示的数的分布特征4.【答案】B【解析】解:-(-2)=2,故选:B.根据相反数的定义直接求得结果.本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.5.【答案】A【解析】解:-3的绝对值是3.故选:A.计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.此题主要考查了绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.【答案】B【解析】【分析】本题主要考查了单项式,解题的关键是熟记单项式的定义.注意π是常数.利用单项式的【解答】解:单项式7πa2b3的次数是5.故选B.7.【答案】B【解析】解:A、∵a2和-2a中,所含字母相同,相同字母的指数不相等,∴这两个单项式不是同类项,故本选项错误;B、∵2m2n和3nm2中,所含字母相同,相同字母的指数相等,∴这两个单项式是同类项,故本选项正确;C、∵-5ab和-5abc中,所含字母不同,∴这两个单项式不是同类项,故本选项错误;D、∵x3和23中,所含字母不同,∴这两个单项式不是同类项,故本选项错误.故选B.根据同类项的定义对四个选项进行逐一分析即可.本题考查的是同类项的定义,解答此题时要注意同类项必需满足以下条件:①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;②同类项与系数的大小无关;③同类项与它们所含的字母顺序无关;④所有常数项都是同类项.8.【答案】A【解析】解:原式=10x-15+12-8x=2x-3.故选:A.首先利用分配律相乘,然后去掉括号,进行合并同类项即可求解.本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.9.【答案】B【解析】【分析】本题考查了整式的加减,比较简单,容易掌握.此题只需设这个式子为A,则A-(-3m)=5m2-3m-5,求得A的值即可.【解答】解:由题意得,设这个式子为A,则A-(-3m)=5m2-3m-5,A=5m2-3m-5-3m=5m2-6m-5.故选B.10.【答案】D【解析】解:50 000 000 000kg=5×1010kg.故选:D.用科学记数法表示较大的数时,一般形式为a×10-n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10-n,其中1≤|a|<10,确定a与n的值是解题的关键.11.【答案】0【解析】解:数轴上以原点为界限,右边的数都大于0,左边的数都小于0,原点表示故答案为:0.根据数轴上数字的表示可得答案.本题考查了数轴上的点所表示的数,非常简单.12.【答案】10【解析】解:30+(-20)=+(30-20)=10.故答案为:10根据有理数加法法则计算即可.本题主要考查了有理数的加法,熟记有理数的加法法则是解答本题的关键.13.【答案】-9 9【解析】解:-32=-9;(-3)2=9.故答案是:-9和9.根据平方的定义a2=a•a,即可求解.本题考查了有理数的平方,正确理解-32表示32的相反数是关键.14.【答案】-9【解析】解:∵x=-2,∴-x2+2x-1=-(-2)2+2×(-2)-1=-4+(-4)-1=-9.故本题答案为:-9.直接将x=-2代入-x2+2x-1求值即可.本题是代数式求值中的最常见的问题,求解时可以直接代入就可以了.15.【答案】-2【解析】解:∵单项式-的系数是m,次数是n,∴m=-,n=3,∴mn=-2.根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.然后求出m和n的值,相乘即可.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.16.【答案】-4xy2【解析】解:3xy2-7xy2=(3-7)xy2=-4xy2.故答案为:-4xy2根据合并同类项的法则计算即可.本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.17.【答案】54【解析】解:由题意可得:|+5|+|-3|+|+10|+|-8|+|+4|+|-6|+|+8|+|-10|=5+3+10+8+4+6+8+10=54(米),答:守门员全部练习结束后,他共跑了54米.故答案为:54.本题考查了正数和负数,在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.解题关键是理解“正”和“负”的相对性,确定具有相反意义的量.18.【答案】解:-2×4-6+(-)-=-8-6+(-)+(-)=-15.【解析】根据有理数的乘法和加减法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.【答案】解:|-3.75|+(-5.25)×(-1)-|-2.5|=3.75+5.25-2.5=6.5.【解析】根据有理数的乘法和加减法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20.【答案】解:原式=2x2-x-1-x2+x++3x2-=4x2-4,当x=时,原式=9-4=5.【解析】原式去括号合并得到最简结果,将x的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.21.【答案】解:原式=(2x2+4x2)+(-3x-6x)-5=6x2-9x-5.【解析】根据合并同类项法则计算即可.本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.22.【答案】解:∵|a+5|+|b-2|+|c+4|=0,∴a+5=0,b-2=0,c+4=0,解得a=-5,b=2,c=-4,÷=×=×=5,即÷的值是5.【解析】根据绝对值的非负性可得a+5=0,b-3=0,c+2=0,再解可得a、b、c的值,然后再代入代数式可得答案.此题主要考查了绝对值,以及有理数的乘法,关键是掌握有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.23.【答案】解:(1)A、B两点之间的距离是2+3=5.(2)如图所示:.(3)(-2+3)÷2=0.5.【解析】(1)从数轴上可以看出A点是-2,B点是3,所以距离为5;(2)与点A的距离为2的点有两个,即一个向左,一个向右.(3)从数轴上找出线段AB的中点,即距A,B两点的距离都是2.5的点,然后读出这个数即可.本题主要考查了在数轴上解决实际问题的能力,学生要会利用数轴来解决这些问题.24.【答案】解:(1)根据题意得:(8m-5n)-(3m-n)=8m-5n-m+n=m-n,则中途上车的共有(m-n)人;(2)当m=10,n=8时,原式=×10-×8=65-36=29,则中途上车的乘客有29人.【解析】此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.(1)根据题意列出关系式,去括号合并即可得到结果;(2)将m与n的值代入(1)中的关系式,计算即可得到结果.25.【答案】(1)-1;1;6(2)由题意-1<x<1,∴|x+1|-|x-1|-2|x+5|=x+1+x-1-2(x+5)=-10,(3)由题意BC=5+5nt-2nt=5+3nt,AB=nt+2+2nt=2+3nt,∴BC-AB=(5+3nt)-(2+3nt)=3,∴BC-AB的值不变,BC-AB=3.【解析】【分析】本题考查非负数的性质、绝对值、数轴等知识,解题的关键是熟练掌握非负数的性质,绝对值的化简,学会用参数表示线段的长,属于中考常考题型.(1)根据最小的正整数是1,推出b=1,再利用非负数的性质求出a、c即可.(2)首先确定x的范围,再化简绝对值即可.(3)BC-AB的值不变.根据题意用n,t表示出BC、AB即可解决问题.【解答】解:(1)∵b是最小的正整数,∴b=1,∵(c-6)2+|a+b|=0,(c-6)2≥0,|a+b|≥0,∴c=6,a=-1,b=1,故答案为-1,1,6.(2)见答案(3)见答案。

2019-2020学年七年级(上)期中数学试卷解析版

2019-2020学年七年级(上)期中数学试卷解析版

七年级(上)期中数学试卷一、选择题本大题共 8 个小题,每题 3 分,共 24 分 . 在每题给出的四个选项中,只有一项为哪一项切合题目要求的 1.以下四个有理数中,最大的是()A .﹣B .﹣C .﹣ 1D .﹣ 22.我市某天清晨气温是﹣3℃,到正午高升了7℃,夜晚又降低了3℃,到子夜又降低了6℃,子夜时温度为( )A . 19℃B . 1℃C .﹣ 5℃D .﹣ 2℃3.节俭是一种美德,据不完整统计,某国每年浪费食品总量折合粮食可养活约 3亿6千万人, 360000000 用科学记数法表示为( )A . 0.36 × 109B . 3.6 ×108C . 36× 107D .360× 1064.假如 , b 互为相反数, x , y 互为倒数,则( +)2018+(﹣ xy ) 2019 的值是()aa bA . 1B . 0C .﹣ 1D .﹣ 20195.我国为认识决药品价钱过高的问题,决定大幅度降低某些药品价钱,此中将原价为 a 元的某种常用药降低 60%,则降低后的价钱为( )A .元B .元C . 0.4 a 元D .0.6 a 元6.以下各组代数式中,不是同类项的是( )A .2与﹣5B . 2xy 2 与 3x 2 yC .﹣ 3t 与 200tD .ab 2 与 b 2a2的值为2的值为()7.今世数式 x +3x +5 11 时,代数式 3x +9x ﹣ 2A . 16B . 12C . 9D .﹣ 28.定义一种新运算“※” ,察看以下各式1※ 3= 1× 5+3= 83※(﹣ 1)= 3× 5﹣ 1=145※ 4= 5× 5+4= 294※(﹣ 3)= 4× 5﹣ 3=17若 a ※(﹣ b )=﹣6,则( a ﹣ b )※( 5a +3b )的值为()A . 12B .6C .﹣6D .﹣ 12二、填空题本大题共8 个问题,钊题3 分,共24 分,答案填在题中横线上9.有理数﹣的倒数是.10.绝对值小于 3.5 的整数是.11.若 | x| = 2,| y|=3,则| x+y| 的值为.12.已知长方形的周长为4a+2b,其一边长为a﹣ b,则另一边长为.13.已知a,b,c三个数在数轴上对应点的地点以下图① a< c<b,②﹣ a< b,③ a﹣ b>0,④ c﹣ a<0在上述几个判断中,错误的序号为.14.若规定一种运算法例=ad﹣bc,请运算=.15.以下说法中正确的序号为.①在正有理数中,0 是最小的整数②最大的负整数是﹣ 1③有理数包含正有理数和负有理数④数轴上表示﹣ a 的点必定在原点的左侧⑤在数轴上 5 与 7 之间的有理数是6.16.由 1 开始的连续奇数排成以以下图所示,察看规律.则此表中第n 行的第一个数是.(用含有 n 的代数式表示).三、解答题本大题共 6 个小题,共52 分,解答应写出文字说明,证明过程或演算步骤17.依据以下要求达成各题(1)计算:(﹣ 5)﹣(﹣ 2) +(﹣ 3) +6(2)计算:(﹣ 10)÷ 2﹣(﹣ 3)× 42 518.计算:(﹣ 3)×(﹣ 2)﹣ [ (﹣ 1)﹣8] ÷ 3+| ﹣ 7|19.已知有理数a、 b、 c 在数轴上的地点如图,化简| a| ﹣ | a+b|+| c﹣a|+| b+c| .20.先化简,再求值:2(x3﹣ 32)﹣( 5x3+x)﹣ 3(y2﹣x3),此中x=﹣ 7,y=﹣21.如图,在长方形ABCD中,放入6个形状和大小都同样的小长方形后,还有一部分空余(暗影部分),已知小长方形的长为a,宽为b,且a> b.( 1)用含a、 b 的代数式表示长方形ABCD的长 AD和宽 AB.( 2)用含a、 b 的代数式表示暗影部分的面积(列式表示即可,不要求化简).( 3)若a =7 ,=2 ,求暗影部分的面积.cmb cm22.如图 1 所示,在一个长方形广场的四角都设计一块半径同样的四分之一圆形的花坛.若广场的长为m米,宽为 n 米,圆形的半径为r 米.(1)列式表示广场空地的面积.(2)若广场的长为 300 米,宽为 200 米,圆形的半径为 30 米,求广场空地的面积(计算结果保存π).( 3)如图 2 所示,在( 2)的条件下,若在广场的中间再建一个半径为R的圆形花坛,使广场的空地面积许多于广场总面积的,求R的最大整数值(π取3.1 ).参照答案与试题分析一.选择题(共8 小题)1.以下四个有理数中,最大的是()A.﹣B.﹣C.﹣ 1D.﹣ 2【剖析】有理数大小比较的法例:①正数都大于0;②负数都小于0;③正数大于全部负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:依占有理数比较大小的方法,可得﹣>﹣>﹣1>﹣2,∴四个有理数中,最大的是﹣.应选: B.2.我市某天清晨气温是﹣3℃,到正午高升了7℃,夜晚又降低了3℃,到子夜又降低了6℃,子夜时温度为()A. 19℃B. 1℃C.﹣ 5℃D.﹣ 2℃【剖析】依据题意列出算式,利用有理数的加减即可求得结果.【解答】解:依据题意,得﹣ 3+7﹣3﹣ 6=﹣ 5应选:C.3.节俭是一种美德,据不完整统计,某国每年浪费食品总量折合粮食可养活约 3 亿6 千万人, 360000000 用科学记数法表示为()A. 0.36 × 109 B. 3.6 ×108 C. 36× 107 D.360× 106【剖析】科学记数法的表示形式为a×10n的形式,此中1≤ | a| < 10,n 为整数.确立n 的值时,要看把原数变为 a 时,小数点挪动了多少位,n 的绝对值与小数点挪动的位数同样.当原数绝对值> 1 时,n是正数;当原数的绝对值< 1 时,n是负数.【解答】解: 3 亿6 千万= 360000000= 3.6 × 108,应选:B.4.假如a, b 互为相反数,x, y 互为倒数,则(a+b)2018+(﹣ xy)2019的值是()A. 1 B. 0 C.﹣ 1 D.﹣ 2019【剖析】利用相反数,倒数的性质求出a+b 与 xy 的值,代入原式计算即可求出值.【解答】解:依据题意得:a +b =0, xy = 1,则原式= 0﹣ 1=﹣ 1,应选: .C5.我国为认识决药品价钱过高的问题,决定大幅度降低某些药品价钱,此中将原价为 a 元的某种常用药降低 60%,则降低后的价钱为( )A .元B .元C . 0.4 a 元D .0.6 a 元【剖析】 重点描绘语是: 降价后是在a 的基础上减少了 60%,价钱为: ( 1﹣ 60%)= 40%a a= 0.4 a 元.【解答】解:依题意得:价钱为:a ( 1﹣ 60%)= 40%a = 0.4 a 元.应选: C .6.以下各组代数式中,不是同类项的是()A . 2 与﹣ 5B . 2xy 2 与 3x 2 yC .﹣ 3t 与 200tD .ab 2 与 b 2a【剖析】同类项定义:单项式所含字母及字母指数同样的是同类项,单个数也是同类项. 根据定义即可判断选择项.【解答】解: A 是两个常数项,是同类项;B 中两项所含字母同样但同样字母的指数不一样,不是同类项;C 和D 所含字母同样且同样字母的指数也同样的项,是同类项.应选: B .7.今世数式x2+3 +5 的值为 11 时,代数式 3 2+9 ﹣ 2 的值为()xx xA . 16B . 12C . 9D .﹣ 2【剖析】依据题意求出 x 2 +3x = 6,变形后整体代入,即可求出答案.【解答】解:依据题意得:2x +3x +5= 11,x 2+3x = 6,2所以 3x +9x ﹣ 2= 3( x 2+3x )﹣ 2= 3× 6﹣2= 16.应选: A .8.定义一种新运算“※” ,察看以下各式1※ 3= 1× 5+3= 83※(﹣ 1)= 3× 5﹣ 1=145※ 4= 5× 5+4= 294※(﹣ 3)= 4× 5﹣ 3=17若 a※(﹣ b)=﹣6,则(a﹣b)※( 5a+3b)的值为()A. 12 B.6C.﹣6 D.﹣ 12【剖析】题中等式利用新定义化简,原式化简后辈入计算即可求出值.【解答】解:依据题中的新定义得:a※(﹣ b)=5a﹣ b=﹣6,则原式= 5(a﹣b) +5a+3b= 10a﹣ 2b=2( 5a﹣b)=﹣ 12,应选: D.二.填空题(共8 小题)9.有理数﹣的倒数是﹣5.【剖析】依据倒数的定义即可求解.【解答】解:有理数﹣的倒数是﹣ 5.故答案为:﹣5.10.绝对值小于 3.5 的整数是0,± 1,± 2,± 3.【剖析】依据一个数所表示的点到原点的单位长度叫做这个数的绝对值,从而绘图得出答案.【解答】解:如图,绝对值小于 3.5 的整数是:﹣3;﹣ 2;﹣ 1; 0; 1;2; 3.故答案为:0;± 1;± 2;± 3.11.若 | x| = 2,| y| = 3,则 | x+y| 的值为 5 或 1 .【剖析】依据绝对值的意义由| x| = 2, | y| = 3 获得 x=±2 ,y=±3,可计算出 x+y=±1 或± 5,而后再利用绝对值的意义求| x+y| .【解答】解:∵ | x| = 2, | y| = 3,∴x=±2, y=±3,∴x+y=±1或±5,∴ | x +y | = 5 或 1. 故答案为 5 或 1.12.已知长方形的周长为 4 +2 ,其一边长为a ﹣ ,则另一边长为 +2 .a bba b【剖析】依据长方形的对边相等得出算式(4 +2 )÷2﹣( ﹣),化简即可.a ba b【解答】解:∵长方形的周长为4a +2b ,其一边长为 a ﹣ b ,∴另一边长为( 4a +2b )÷ 2﹣( a ﹣b ),即( 4a +2b )÷ 2﹣( a ﹣b )= 2a +b ﹣a +b= a +2b .故答案为: a +2b .13.已知 a , b ,c 三个数在数轴上对应点的地点以下图① a < c <b ,②﹣ a < b ,③ a ﹣ b > 0,④ c ﹣ a < 0在上述几个判断中,错误的序号为③ .【剖析】利用 A 、B 、C 在数轴上的地点,确立符号和绝对值,从而对各个选项做出判断.【解答】解:由题意得,a <0, < 0, >0,且 | | < |b | , |c | < | b | ,bca所以:① a < c < b ,不正确,②﹣ a <b ,不正确,③ a ﹣ b >0,正确,④ c ﹣ a <0 不正确,故答案为:③14.若规定一种运算法例=ad ﹣ bc ,请运算=﹣ 28.【剖析】依据新定义获得:=﹣ 2× 5﹣ 3× 6,再先算乘法运算,而后进行减法运算.【解答】解:=﹣ 2×5﹣ 3× 6=﹣ 10﹣18=﹣ 28.故答案为:﹣28.15.以下说法中正确的序号为②.①在正有理数中,0 是最小的整数②最大的负整数是﹣ 1③有理数包含正有理数和负有理数④数轴上表示﹣ a 的点必定在原点的左侧⑤在数轴上 5 与 7 之间的有理数是6.【剖析】依占有理数的意义、数轴等知识逐一判断,得出结论即可.【解答】解:①0 既不是正数也不是负数,所以①不正确,②负整数中最大的是﹣1,正确,③有理数包含正有理数,0,负有理数,所以③不正确,④﹣ a 不必定是负数,不必定在原点的左侧,所以④不正确,⑤在数轴上 5 与7 之间的有理数有无数个,不只是有6,所以⑤不正确,故答案为:②.16.由1 开始的连续奇数排成以以下图所察看规律.则此表中第n 行的第一个数是n( n 示,﹣1)+1 .(用含有n 的代数式表示)【剖析】依据图中给出的第一个数找出规律,依据规律解答;【解答】解:由题意得,第 1 行的第一个数是1= 1×( 1﹣1) +1,第2 行的第一个数是3=2×(2﹣1)+1,第 3 行的第一个数是 5=3×( 3﹣ 1) +1,第 n 行的第一个数是 n(n﹣1)+1,故答案为: n( n﹣1)+1.三.解答题(共 6 小题)17.依据以下要求达成各题( 1)计算:(﹣ 5)﹣(﹣ 2) +(﹣ 3) +6( 2)计算:(﹣ 10)÷ 2﹣(﹣ 3)× 4【剖析】( 1)先化简,再计算加减法即可求解;( 2)先算乘除法,再算减法.【解答】解:( 1)(﹣ 5)﹣(﹣ 2)+(﹣ 3) +6=﹣ 5+2﹣ 3+6=﹣ 8+8=0;( 2)(﹣ 10)÷ 2﹣(﹣ 3)× 4=﹣ 5+12=7.18.计算:(﹣ 3)2×(﹣ 2)﹣ [ (﹣ 1)5﹣8] ÷ 3+| ﹣ 7|【剖析】先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的次序进行计算;假如有括号和绝对值,要先做括号和绝对值内的运算.【解答】解:(﹣ 3)2×(﹣ 2)﹣ [ (﹣ 1)5﹣ 8] ÷ 3+| ﹣7| = 9×(﹣ 2)﹣(﹣ 1﹣8)÷ 3+7 =﹣ 18﹣(﹣ 9)÷3+7=﹣ 18+3+7=﹣ 8.19.已知有理数a、 b、 c 在数轴上的地点如图,化简| a| ﹣ | a+b|+| c﹣a|+| b+c| .【剖析】直接利用数轴联合绝对值的性质化简求出答案.【解答】解:由数轴可得:原式=﹣ a﹣[﹣( a+b)]+ c﹣ a﹣( b+c)=﹣ a.20.先化简,再求值:3 2 3)﹣2 32(x ﹣ 3 )﹣( 5x +x 3(y ﹣ x ),此中 x=﹣7, y=﹣【剖析】原式去括号归并获得最简结果,把x 与 y 的值代入计算即可求出值.【解答】解:原式= 2x3﹣ 18﹣ 5x3﹣x﹣ 3y2+3x 3=﹣ 18﹣x﹣ 3y2,当 x=﹣7, y=﹣时,原式=﹣ 18+7﹣=﹣ 11 .21.如图,在长方形ABCD中,放入6个形状和大小都同样的小长方形后,还有一部分空余(暗影部分),已知小长方形的长为 a ,宽为 b ,且 a > b .( 1)用含 a 、 b 的代数式表示长方形的长和宽.ABCD AD AB ( 2)用含 a 、 b 的代数式表示暗影部分的面积(列式表示即可,不要求化简).( 3)若 a = 7 , = 2 ,求暗影部分的面积.cm b cm【剖析】( 1)以下图, AD = a +b +b = a +2b , CD = a +b ,即为长方形的长与宽;( 2)暗影部分的面积=长方形 ABCD 的面积﹣ 6 个小长方形的面积,利用长方形的面积公式表示出暗影部分的面积即可;( 3)代入求值即可.【解答】解:( 1)由图形得: AD = a +2b , AB = a +b ;( 2) S 暗影 =( a +b )( a +2b )﹣ 6ab= a 2+2ab +ab +2b 2﹣ 6ab= a 2﹣ 3ab +2b 2;( 3)把 a = 7cm , b = 2cm 代入,得22= 15.S 暗影=7 ﹣3×7×2+2×222.如图 1 所示,在一个长方形广场的四角都设计一块半径同样的四分之一圆形的花坛.若广场的长为 m 米,宽为 n 米,圆形的半径为 r 米.( 1)列式表示广场空地的面积.( 2)若广场的长为 300 米,宽为 200 米,圆形的半径为 30 米,求广场空地的面积(计算结果保存 π).( 3)如图 2 所示,在(2)的条件下,若在广场的中间再建一个半径为R的圆形花坛,使广场的空地面积许多于广场总面积的,求R的最大整数值取3.1 ).(π【剖析】( 1)长方形的面积减去半径为r 的圆的面积即可.(2)把m= 300,n= 200,r= 30 代入即可求出空地的面积,(3)依据面积之间的关系列出不等式,求出不等式的整数解即可.【解答】解:( 1)由题意得,mn﹣πr2,答:广场空地的面积为(mn﹣π r 2)平方米,( 2)把m= 300,n= 200,r= 30 代入得,原式= 300× 200﹣π× 900=( 60000﹣900π)平方米,答:广场空地的面积大概为(60000﹣ 90π)平方米.( 3)由题意得,300× 200﹣π× 302﹣πR2≥ 300× 200×,解得 R≤74.51,R为最大的整数,所以 R=74米,答: R的最大整数值为74 米.。

2019-2020学年广东省阳江市阳东区七年级上学期期中数学试卷

2019-2020学年广东省阳江市阳东区七年级上学期期中数学试卷

2019-2020学年七年级第一学期期中数学试卷一、选择题1.﹣3的相反数是()A.3 B.﹣3 C.D.2.在﹣3、0、1、﹣2四个数中,最小的数为()A.﹣3 B.0 C.1 D.﹣23.若有理数a的值在﹣1与0之间,则a的值可以是()A.﹣2 B.1 C.D.4.下列计算结果等于1的是()A.(﹣2)+(﹣2) B.(﹣2)÷(﹣2) C.﹣2×(﹣2)D.(﹣2)﹣(﹣2)5.点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,则点B所表示的实数是()A.3 B.﹣1 C.5 D.﹣1或36.对于恐龙灭绝的原因,科学界至今仍众说纷纭.其中一种说法是:“也许恐龙在6500万年前并没有灭绝,而是演变成了新的物种.”数据6500万写成科学记数法正确的是()A.6.5×103B.0.65×104C.65×102D.6.5×1077.一个长方形的周长为6a﹣4b,若它的宽为a﹣b,则它的长为()A.5a﹣3b B.2a﹣3b C.2a﹣b D.4a﹣2b8.已知a与1的和是一个负数,则|a|=()A.a B.﹣a C.a或﹣a D.无法确定9.已知代数式﹣5x3y n与5x m+1y3是同类项,则m﹣n的值为()A.5 B.﹣1 C.1 D.﹣510.有理数a、b在数轴上的表示如图所示,那么()A.﹣b>a B.﹣a<b C.b>a D.|a|>|b|二、填空题(共6小题)11.比较大小:|| ﹣2.(填“<”或“>”或“=”)12.多项式1+a2+b4﹣a2b是次项式.13.小明不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是.14.若|a+3|+(b﹣2)2=0,则(a+b)2019=.15.如果代数式y2+3y的值是6,求代数式2y2+6y﹣2值是.16.将边长为1的正方形纸片按图1所示方法进行对折,记第1次对折后得到的图形面积为S1,第2次对折后得到的图形面积为S2,…,第n次对折后得到的图形面积为S n,请根据图2化简,S1+S2+S3+…+S8=.三、解答题(-)(本大题共3小题,每小题6分,共18分)17.计算:3+(﹣11)﹣(﹣9)18.化简:﹣3xy﹣2y2+5xy﹣4y219.16÷(﹣2)3﹣(﹣)×(﹣4)2.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.先化简,再求值:3x3﹣(4x2+5x)﹣3(x3﹣2x2﹣2x),其中x=﹣221.某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.22.如图所示,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a>0).(1)用a、b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.已知a是绝对值等于4的负数,b是最小的正整数,c的倒数的相反数是﹣2,求:4a2b3﹣[2abc+(5a2b3﹣7abc)﹣a2b3].24.阅读下面文字对于(﹣5)+(﹣9)+17+(﹣3)可以如下计算:原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+(17+)+[(﹣3)+(﹣)] =[(﹣5)+(﹣9)+17+(﹣3)]+[(﹣)+(﹣)++(﹣)]=0+(﹣1)=﹣1上面这种方法叫折项法,你看懂了吗?仿照上面的方法,计算:(1)﹣1+(﹣2)+7+(﹣4)(2)(﹣2019)+2018+(﹣2017)+201625.某商场销售一种西装和领带,西装每套定价200元,领带每条定价40元.国庆节期间商场决定开展促销活动.活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x条(x>20).(1)若该客户按方案一购买,需付款多少元(用含x的式子表示)?若该客户按方案二购买,需付款多少元(用含x的式子表示)(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法和所需费用.参考答案一、选择题1.﹣3的相反数是()A.3 B.﹣3 C.D.解:﹣3的相反数是3,故选:A.2.在﹣3、0、1、﹣2四个数中,最小的数为()A.﹣3 B.0 C.1 D.﹣2解:根据有理数比较大小的方法,可得﹣3<﹣2<0<1,∴在﹣3、0、1、﹣2四个数中,最小的数为﹣3.故选:A.3.若有理数a的值在﹣1与0之间,则a的值可以是()A.﹣2 B.1 C.D.解:由上图所示:介于﹣1和0之间的有理数只有.故选:D.4.下列计算结果等于1的是()A.(﹣2)+(﹣2) B.(﹣2)÷(﹣2) C.﹣2×(﹣2)D.(﹣2)﹣(﹣2)解:A、原式=﹣4,错误;B、原式=1,正确;C、原式=4,错误;D、原式=﹣2+2=0,错误,故选:B.5.点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,则点B所表示的实数是()A.3 B.﹣1 C.5 D.﹣1或3解:点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,B点所表示的实数是2﹣3,即﹣1.故选B.6.对于恐龙灭绝的原因,科学界至今仍众说纷纭.其中一种说法是:“也许恐龙在6500万年前并没有灭绝,而是演变成了新的物种.”数据6500万写成科学记数法正确的是()A.6.5×103B.0.65×104C.65×102D.6.5×107解:6500万=65000000=6.5×107.故选:D.7.一个长方形的周长为6a﹣4b,若它的宽为a﹣b,则它的长为()A.5a﹣3b B.2a﹣3b C.2a﹣b D.4a﹣2b解:由题意得:(6a﹣4b)﹣(a﹣b)=3a﹣2b﹣a+b=2a﹣b,故选:C.8.已知a与1的和是一个负数,则|a|=()A.a B.﹣a C.a或﹣a D.无法确定解:∵a与1的和是一个负数,∴a<﹣1.∴|a|=﹣a.故选:B.9.已知代数式﹣5x3y n与5x m+1y3是同类项,则m﹣n的值为()A.5 B.﹣1 C.1 D.﹣5解:由题意得:m+1=3,n=3,解得:m=2,n=3.∴m﹣n=﹣1.故选:B.10.有理数a、b在数轴上的表示如图所示,那么()A.﹣b>a B.﹣a<b C.b>a D.|a|>|b|解:由图可知,b<0<a且|b|>|a|,所以,﹣b>a,﹣a>b,A、﹣b>a,故本选项正确;B、正确表示应为:﹣a>b,故本选项错误;C、正确表示应为:b<a,故本选项错误;D、正确表示应为:|a|<|b|,故本选项错误.故选:A.二、填空题(本大题共6小题,每小题4分,共24分)11.比较大小:|| >﹣2.(填“<”或“>”或“=”)解:∵|﹣|=,∴||>﹣2,故答案为:>.12.多项式1+a2+b4﹣a2b是四次四项式.解:多项式1+a2+b4﹣a2b是四次四项式,故答案为:四,四.13.小明不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是﹣11 .解:由图可知,左边盖住的整数数值是﹣2,﹣3,﹣4,﹣5;右边盖住的整数数值是0,1,2;所以他们的和是﹣11.故答案为:﹣11.14.若|a+3|+(b﹣2)2=0,则(a+b)2019=﹣1 .解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,∴a=﹣3,b=2,∴(a+b)2019=(﹣3+2)2019=﹣1,故答案为:﹣1.15.如果代数式y2+3y的值是6,求代数式2y2+6y﹣2值是10 .解:∵y2+3y=6,∴原式=2(y2+3y)﹣2=12﹣2=10,故答案为:1016.将边长为1的正方形纸片按图1所示方法进行对折,记第1次对折后得到的图形面积为S1,第2次对折后得到的图形面积为S2,…,第n次对折后得到的图形面积为S n,请根据图2化简,S1+S2+S3+…+S8=.解:由题意可知,S1=,S2=()2,S3=()3,S4=()4,…,S n=()n,∴S1+S2+S3+…+S8=+()2+()3+…+()8=1﹣()8=,故答案为:.三、解答题(-)(本大题共3小题,每小题6分,共18分)17.计算:3+(﹣11)﹣(﹣9)解:3+(﹣11)﹣(﹣9)=3﹣11+9=﹣8+9=1.18.化简:﹣3xy﹣2y2+5xy﹣4y2解:﹣3xy﹣2y2+5xy﹣4y2=(﹣3xy+5xy)﹣(2y2+4y2)=2xy﹣6y2.19.16÷(﹣2)3﹣(﹣)×(﹣4)2.解:16÷(﹣2)3﹣(﹣)×(﹣4)2=16÷(﹣8)﹣(﹣)×16=﹣2+2=0.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.先化简,再求值:3x3﹣(4x2+5x)﹣3(x3﹣2x2﹣2x),其中x=﹣2 解:3x3﹣(4x2+5x)﹣3(x3﹣2x2﹣2x)=3x3﹣4x2﹣5x﹣3x3+6x2+6x=2x2+x当x=﹣2时,原式=2×4+(﹣2)=4.21.某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.解:(1)最高分为:80+12=92分,最低分为:80﹣10=70分;(2)8﹣3+12﹣7﹣10﹣3﹣8+1+0+10=8+12+1+10+0﹣3﹣7﹣10﹣3﹣8=31﹣31=0,所以,10名同学的平均成绩80+0=80分.22.如图所示,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a>0).(1)用a、b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.解:(1)阴影部分的面积为b2+a(a+b);(2)当a=3,b=5时,b2+a(a+b)=×25+×3×(3+5)=,即阴影部分的面积为.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.已知a是绝对值等于4的负数,b是最小的正整数,c的倒数的相反数是﹣2,求:4a2b3﹣[2abc+(5a2b3﹣7abc)﹣a2b3].解:由已知得a=﹣4,b=1,c=,原式=4a2b3﹣2abc﹣5a2b3+7abc+a2b3=5abc,当a=﹣4,b=1,c=时,原式=﹣10.24.阅读下面文字对于(﹣5)+(﹣9)+17+(﹣3)可以如下计算:原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+(17+)+[(﹣3)+(﹣)] =[(﹣5)+(﹣9)+17+(﹣3)]+[(﹣)+(﹣)++(﹣)]=0+(﹣1)=﹣1上面这种方法叫折项法,你看懂了吗?仿照上面的方法,计算:(1)﹣1+(﹣2)+7+(﹣4)(2)(﹣2019)+2018+(﹣2017)+2016解:(1)(1)﹣1+(﹣2)+7+(﹣4)=(﹣1﹣)+(﹣2﹣)+(7+)+(﹣4﹣)=(﹣1﹣2+7﹣4)+(﹣﹣+﹣)=0﹣=﹣;(2)(﹣2019)+2018+(﹣2017)+2016=(﹣2019﹣)+(2018+)+(﹣2017﹣)+(2016+)=(﹣2019+2018﹣2017+2016)+(﹣+﹣+)=﹣2﹣=﹣2.25.某商场销售一种西装和领带,西装每套定价200元,领带每条定价40元.国庆节期间商场决定开展促销活动.活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x条(x>20).(1)若该客户按方案一购买,需付款多少元(用含x的式子表示)?若该客户按方案二购买,需付款多少元(用含x的式子表示)(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法和所需费用.解:(1)方案一购买,需付款:20×200+40(x﹣20)=40x+3200(元),按方案二购买,需付款:0.9(20×200+40x)=3600+36x(元);(2)把x=30分别代入:40x+3200=4×30+3200=4400(元),3600+36×30=4680(元).因为4400<4680,所以按方案一购买更合算;(3)先按方案一购买20套西装(送20条领带),再按方案二购买(x﹣20)条领带,共需费用:20×200+0.9×40(x﹣20)=36x+3280,当x=30时,36×30+3280=4360(元).。

2019-2020学年人教版七年级上学期期中考试数学试卷含解析

2019-2020学年人教版七年级上学期期中考试数学试卷含解析

2019-2020学年七年级上学期期中考试数学试卷含解析一、选择题(本大题共12小题,共36.0分)1.下列有理数最小的是A. B. 1 C. 0 D.【答案】D【解析】解:,有理数最小的是,故选:D.根据正数大于一切负数;两个负数,绝对值大的其值反而小解答即可.本题考查了有理数的大小比较,非常简单,要注意:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小;先分类比较,再判断两个负数的大小.2.如图,由几个相同的小正方体搭成的一个几何体,它的左视图为A.B.C.D.【答案】A【解析】解:从左面看易得第一层有3个正方形,第二层最左边有一个正方形.故选:A.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.如果以学校为起点,沿风临路向东走记为正,向西走记为负,蓉蓉放学后从学校出发,先走了米,又走了米,此时蓉蓉离学校的距离是A. 10米B. 20米C. 30米D. 50米【答案】A【解析】解:,答:此时蓉蓉离学校的距离是10米,故选:A.蓉蓉放学后从学校走了米,又走了米,求出两个数的和即可判断.本题考查正负数的定义、距离等知识,解题的关键是掌握基本概念,属于基础题.4.下列各式运算中正确的是A. B.C. D.【答案】C【解析】解:A、无法计算,故此选项错误;B、,故此选项错误;C、,故此选项正确;D、,故此选项错误;故选:C.直接利用合并同类项的法则分别分析得出答案.此题主要考查了合并同类项,正确把握合并同类项法则是解题关键.5.用一个平面截一个几何体,得到的截面是四边形,这个几何体可能是A. 圆锥B. 圆柱C. 球体D. 以上都有可能【答案】B【解析】解:A、用一个平面去截一个圆锥,得到的图形可能是圆、椭圆、抛物线、三角形,不可能是四边形,故C选项错误;B、用一个平面去截一个圆柱,得到的图形可能是圆、椭圆、四边形,故B选项正确;C、用一个平面去截一个球体,得到的图形只能是圆,故A选项错误;D、根据以上分析可得此选项错误;故选:B.根据圆锥、圆柱、球体的几何特征,分别分析出用一个平面去截该几何体时,可能得到的截面的形状,逐一比照后,即可得到答案.本题考查了圆锥、圆柱、球体的几何特征,其中关键是熟练掌握相关旋转体的几何特征,培养良好的空间想像能力.6.下列说法正确的是A. 绝对值等于本身的数是正数B. 是负数C. 有理数不是正数就是负数D. 分数都是有理数【答案】D【解析】解:绝对值等于本身的数还有0,故A不符合题意;B.是正数,0,负数,故B不符合题意;C、有理数还包括0,故C不符合题意;D、分数都是有理数,故D符合题意;故选:D.根据有理数的分类,有理数的意义,绝对值的性质,可得答案.本题考查了有理数,利用有理数的分类,有理数的意义,绝对值的性质是解题关键.7.下列各数、、0、、中,负数有A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:是正数,是负数,0、是负数、是负数,故选:C.根据去括号法则、有理数的乘方法则、绝对值的性质进行计算,判断即可.本题考查的是正数和负数、绝对值、有理数的乘方,掌握相关的概念和性质是解题的关键.8.下列各式,去括号正确的是A. B.C. D.【答案】B【解析】解:A、,故此选项错误;B、,正确;C、,故此选项错误;D、,故此选项错误;故选:B.直接利用去括号法则分别计算得出答案.此题主要考查了去括号法则,正确掌握相关运算法则是解题关键.9.随着收入逐年提高,小伟家将购买改善型住房提上议事日程,如图为两江新区某楼盘的户型面积示意图,则此房屋面积用代数式表示正确的是A.B.C.D.【答案】C【解析】解:此房屋面积用代数式表示为:,故选:C.根据图形可以得到这套房子的总面积.本题考查列代数式,解题的关键是明确题意,列出相应的代数式.10.若代数式的值是6,则代数式的值是A. 12B. 19C. 22D. 29【答案】D【解析】解:由的值是6,可得:,把代入,故选:D.把整体代入解答即可.此题考查代数式求值,关键是整体代入法的应用.11.正方体的六个面上分别写有“重庆南开中学”这六个字,将正方体按三种不同的方式摆放,如图为从前米看到的三个不同的图形,则可以确定“南”字对面的字是A. 重B. 庆C. 开D. 中【答案】A【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,在原正方体中与“南”字对面的字是重.故选:A.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.12.如图,是一组按某种规律摆放而成的图案,其中图1有1个三角形,图2有4个三角形,图3有8个三角形,,照此规律,则图8中三角形的个数是A. 32B. 28C. 22D. 16【答案】B【解析】解:第一个图案有三角形1个,第二图案有三角形个,第三个图案有三角形个,第四个图案有三角形,第n个图案有三角形个,第8个图中三角形的个数是.故选:B.由图可知:第一个图案有三角形1个,第二图案有三角形个,第三个图案有三角形个,第四个图案有三角形,第n个图案有三角形个,由此得出规律解决问题.本题主要考查图形的变化规律,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题(本大题共21小题,共44.0分)13.若a与互为倒数,则______.【答案】【解析】解:与互为倒数,,解得:.故答案为:.直接利用倒数的定义进而得出答案.此题主要考查了倒数,正确把握倒数的定义是解题关键.14.电影《碟中谍》以406 000 000元的票房碾压全场,占到当周票房的,其中数字406 000 000用科学记数法表示为______.【答案】【解析】解:将406 000000用科学记数法表示为:.故答案是:.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.15.四棱柱有______条侧棱.【答案】4【解析】解:四棱柱有4条侧棱,故答案为:4.根据立体图形,即可解答.本题考查了棱柱的特征,解题时可以运用一般规律:n棱柱有个面,2n个顶点和3n条棱.16.单项式的系数是______.【答案】【解析】解:单项式的系数是,故答案为:.直接根据单项式系数的定义进行解答即可.本题考查的是单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键.17.某公交车上原有10个人,经过两个站点时乘客上下车情况如下上车为正,下车为负:、,则此时车上还有______人【答案】12【解析】解:人,故答案为:12人.根据有理数的加法,原有人数,上车为正,下车为负,可得答案.本题考查了正数和负数,有理数的加法运算是解题关键.18.比较大小:______.【答案】【解析】解:,,,,故答案为:根据两个负数,绝对值大的其值反而小解答即可.本题考查了有理数的大小比较,非常简单,要注意:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小;先分类比较,再判断两个负数的大小.19.当______时,代数式有最小值为______.【答案】1【解析】解:当时,代数式有最小值为:1.故答案为:,1.直接利用非负数的性质进而得出答案.此题主要考查了非负数的性质,正确掌握偶次方的性质是解题关键.20.对于任意有理数a、b,定义新运算:,则______.【答案】【解析】解:根据题中的新定义得:.故答案为:原式利用题中的新定义计算即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.21.绝对值不大于的非正整数的和是______.【答案】【解析】解:绝对值不大于的非正整数有,,,,0,所以故答案为:根据绝对值的意义,可到答案.本题考查了有理数大小比较,理解绝对值不大于的非正整数是解题关键.22.已知,则______.【答案】4【解析】解:把代入可得:,故答案为:4根据整体代入求值即可.此题考查代数式求值,关键是根据整体代入求值解答.23.若,则______.【答案】【解析】解:,,,解得:,,则.故答案为:.直接利用绝对值以及偶次方的性质得出x,y的值进而得出答案.此题主要考查了非负数的性质,正确得出x,y的值是解题关键.24.若代数式与是同类项,则______.【答案】1【解析】解:代数式与是同类项,,,解得:,,则.故答案为:1.直接利用同类项的定义得出m,n的值,进而得出答案.此题主要考查了同类项,正确把握同类项的定义是解题关键.25.若a、b互为倒数,c、d互为相反数且,,则______.【答案】【解析】解:、b互为倒数,c、d互为相反数且,,、、、,则.故答案为:.根据相反数、倒数、绝对值的定义和性质得出、、、,代入求出即可.本题考查了相反数、倒数、绝对值,有理数的混合运算、求代数式的值等知识点,能根据相反数、倒数、绝对值求出、、、是解此题的关键.26.观察下列关于x的单项式,探究其规律:,,,,,,按照上述规律第2018个单项式是______.【答案】【解析】解:奇数个单项式的系数为负,偶数个为正,第n个单项式系数绝对值是2n,指数是n,故第2018个单项式是,故答案为:.系数规律:第奇数个是负,偶数个为正,绝对值是连续偶数;指数与序号数相同.本题考查单项式的系数指数规律应从系数符号、绝对值、指数三个方面逐步突破.27.若是关于x、y的五次单项式,则______.【答案】【解析】解:由是关于x,y的五次单项式,得且,解得.把代入,故答案为:.根据单项式的次数,可得关于a的方程,根据解方程,可得答案.本题考查了单项式,利用单项式的次数得出关于a的方程是解题关键.28.已知,,且,则代数式的值为______.【答案】或【解析】解:,,,,,,则,或,,当,时,;当,时,;综上,的值为或,故答案为:或.由,知,,再由知,据此得,或,,分别代入计算可得.本题主要考查代数式求值,解题的关键是熟练掌握绝对值的性质、有理数的加减运算法则和代数式的求值.29.已知有理数a、b在数轴上所对应的点的位置如图所示,则化简代数式的结果为______.【答案】【解析】解:由图形可知,,且,,,,,故答案为.根据图形可判断,,且,于是可由此判断每个绝对值内的正负,根据正数的绝对值是它的本身,负数的绝对值是它的相反数进行化简.本题主要考查绝对值的化简及有理数的加减运算,用几何方法借助数轴来求解,先判断每个绝对值内表示的数的正负,掌握绝对值的计算法则是关键.30.若代数式的值与x的取值范围无关,则______.【答案】2【解析】解:原式由于该代数式与x的值无关,故,,,,,故答案为:2根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.31.结合图形计算:______.【答案】【解析】解:,故答案为:.根据图象了解到所有数字的和等于整体1减去最后剩余的一部分,从而求解.本题考查了图形的变化类问题,解题的关键是能够了解巧妙的算法,而不是直接求和.32.用若干个相同的小立方块搭一个几何体,使它主视图、俯视图都如图所示,则这样的几何体至少需要______个小立方块.【答案】10【解析】解:由主视图可知,它自下而上共有3列,第一列3块,第二列2块,第三列1块.由俯视图可知,它自左而右共有3列,第第一列3块,第二列2块,第三列1块,从空中俯视的块数只要最底层有一块即可.因此,综合两图可知这个几何体的形状不能确定;并且最少时为块.故答案为:10.由于主视图第一列为3层,故俯视图中第一列至少有一个是3层的,其余可是~层,同时可分析第2列和第三列,进而得到答案.本题考查简单空间图形的三视图,考查空间想象能力,是基础题,难度中等.33.一辆快车和一辆慢车相向而行,快车行驶1410千米时,与慢车相遇,两车同时停止行驶,已知快车从乙站开出,每小时行驶120千米,中途不停靠,快车出发25分钟后慢车从甲站开出,慢车每小时行驶48千米,每行驶1小时到达一个观光站点,第一站点停靠5分钟,第二个站点停靠10分钟,第三个站点停靠15分钟,,第n个站点停靠5n分钟,则甲、乙两站相距______千米.【答案】1810【解析】解:根据题意得,快车行驶的时间为小时,所以,慢车出发的时间为小时,由可得最大整数解慢车停靠了8个站的时间,然后再行驶小时时与快车相遇甲、乙两站相距故答案为1810.先计算快车的行驶时间为小时,减去25分钟即为慢车的出发时间为小时,由的最大整数解可知,于是可知慢车停靠了8个站之后再行驶小时的时候与快车相遇.本题考查了行程问题的数量关系在解实际问题中的运用,并借助不等式的最大整数解解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,再求解.。

广东省阳江市七年级(上)期中数学试卷

广东省阳江市七年级(上)期中数学试卷

七年级(上)期中数学试卷题号 一二三四总分得分一、选择题(本大题共 10 小题,共 30.0 分)1.以下说法中正确的选项是()A. 正数和负数统称为有理数B. 有理数是指整数、分数、正有理数、负有理数和0 五类C. 一个有理数不是整数,就是分数D. 整数包含正整数和负整数2. 在数轴上,与表示数 -5 的点的距离是 2 的点表示的数是()A.-3B.-7C. ±3D.- 3或-73. 以下结论正确的选项是()A. - 4 与 +(-4) 互为相反数B. 0 的相反数是 0C. - 23 与 32 互为相反数D. - 54 自己是相反数4. |-2|的值是()A.-2B. 2C. 12D.- 125. 以下各数中,最小的数是()A. 0B. 13C.- 13D.- 36. 有奇数个负因数相乘,其积为()A. 正B. 负C. 非正数D. 非负数7. 以下式子中不是整式的是()A. - 23xB. a-2baC. 12x+yD. 08. 2 mnm+n 的值为()若 -5x y 与 x y 是同类项,则A. 1B. 2C. 3D. 49. 以下去括号中,错误的选项是()A. x2-3(x-1)=x2-3x+3B. -2(2x-y)-(-x2+y2)=-4x+2y+x2-y2C. a2-(3a-2b+4c)=a2-3a+2b-4cD. 4a2+(-3a+2b)=4a2+3b-2b 10. 已知对于 x 的多项式 3x 4-( m+5) x 3+( n-1) x 2-5x+3 不含 x 3 和 x 2,则()A. m=-5 , n=-1B. m=5 , n=1C. m=-5 , n=1D. m=5 , n=-1二、填空题(本大题共6 小题,共 24.0 分)11. 若 |x-2|+|y+3|=0 ,则 x-y=______ . 12. -21 ÷7×17 =______.13. ( -5)3×4000 用科学记数法表示为 ______.14. 若 -3x m y n是六次单项式,则 2(m+n ) =______. 15.去括号并归并同类项: 3x 2y+(2x-5x 2y ) =______ 16. 22已知 A=x -2xy , B=y +3xy ,则化简 2A-3B 是 ______三、计算题(本大题共5 小题,共 35.0 分) 17. 计算: |-4|+23+3×( -5)18.已知 |x|=2,求 x 与 -3 的和.19.已知3x a+1y b-1与25 x2y2是同类项,求2a2b+3a2b-12 a2b 的值.20.先化简,再求值:a-2[3 a+b-2(a+b) ] ,此中 a=-10 , b=1000.21.大客车上原有(3a-b)人,半途下车一半人,又上车若干人,这时车上共有乘客( 8a-5b)人.(1)问:上车乘客有多少人?(2)在( 1)的条件下,当 a=12 ,b=10 时,上车乘客是多少人?四、解答题(本大题共 4 小题,共31.0 分)22.化简:3(2x2-y2)-2(3y2-2x2).23.计算6÷(-12+13),方方同学的计算过程以下,原式=6÷ (-12) +6÷ 13=-12+18=6.请你判断方方的计算过程能否正确,若不正确,请你写出正确的计算过程.24.有理数a、 b 在数轴上的地点以下图.( 1)试确立 a、 b、 ab、a+b 的符号;( 2)求 a|a|+b|b|+ab|ab|+a+b|a+b|的值.25.察看以下三行数:0, 3, 8, 15,24,①2, 5, 10, 17, 26,②0, 6, 16, 30, 48,③(1)第①行数按什么规律排的,请写出来?(2)第②、③行数与第①行数分别对照有什么关系?(3)取每行的第 n 个数,求这三个数的和.答案和分析1.【答案】C【分析】为是正数,却不是有理数,故选项A错误;解:因有理数按定义分为整数和分数,按性质分为正有理数、负有理数和 0.应选项B错误;因为整数和分数统称有理数,所以一个有理数不是整数,就是分数,故选项 C 正确;整数包含正整数、负整数和 0,因为缺乏 0 应选项 D 错误.应选:C.依占有理数的分类,逐个做出判断即可.本题考察有理数的分类,解题的重点是掌握有理数的分类标准,做到不重不漏.2.【答案】D【分析】解:数轴上距离表示 -5 的点有 2 个单位的点表示的数是 -5-2=-7 或 -5+2=-3.应选:D.切合条件的点有两个,一个在 -5 点的左侧,一个在-5 点的右侧,且都到-5 点的距离都等于 2,得出算式-5-2 和 -5+2,求出即可.本题主要考察了数轴,当要求的点在已知点的左侧时,用减法;当要求的点在已知点的右侧时,用加法.3.【答案】B【分析】解:A 、-4 与+(-4)=-4 相等,不是互为相反数,故本选项错误;B、0 的相反数是 0,故本选项正确;C、-与是互为相反数,故本选项错误;D、-自己是相反数错误,故本选项错误.依据相反数的定义对各选项剖析判断后利用清除法求解.本题考察了相反数的定义,是基础题,熟记观点是解题的重点.4.【答案】B【分析】解:∵-2<0,∴|-2|=2.应选:B.依据绝对值的性质作答.本题考察绝对值的性质:一个正数的绝对值是它自己;一个负数的绝对值是它的相反数;0 的绝对值是 0.5.【答案】D【分析】解:-3,应选:D.依据正数大于0,0 大于负数,可得答案.本题考察了有理数比较大小,正数大于 0,0 大于负数是解题重点.6.【答案】C【分析】解:∵有奇数个负因数相乘,∴如有因数 0,则积为 0,若没有因数 0,则积为负数,综上所述,积为非正数.应选:C.依占有理数的乘法运算法则分有因数0和没有因数0进行计算即可得解.本题考察了有理数的乘法,是基础题,熟记运算法例是解题的重点,易错点在于要考虑能否有因数 0.7.【答案】B【分析】解:A 、是单项式,属于整式;B 、是分式,不是整式;C 、是多项式,属于整式;D 、是单项式,属于整式;应选:B .依据整式观点:单项式和多项式统称为整式,进行判断即可.主要考察了整式的相关观点.要能正确的分清什么是整式.整式是有理式的一部分,在有理式中能够包含加,减,乘,除四种运算,但在整式中除式不可以含有字母.单项式和多项式统称为整式.单项式是字母和数的乘 积,只有乘法,没有加减法.多项式是若干个 单项式的和,有加减法.8.【答案】 C【分析】解:∵-5x 2y m 和 x ny 是同 类项 ,∴n=2,m=1,m+n=2+1=3,应选:C .依据同类项的定义(所含字母同样,同样字母的指数同样)列出方程等式,求出 n ,m 的值,再相加即可.本题考察同类项的知识,注意掌握同类项定义中的两个 “同样 ”:同类项定义中的两个 “同样 ”:(1)所含字母同样;(2)同样字母的指数同样,是易混点,所以成了中考的常考点. 9.【答案】 D【分析】解:A 、原式=x 2-3x+3,故本选项计算正确.B 、原式=-4x+2y+x 2-y 2,故本选项计算正确.C 、原式=a 2-3a+2b-4c ,故本选项计算正确.D 、原式=4a 2-3a+2b ,故本选项计算错误 .应选:D .依据去括号的法 则解答.本题考察去括号的方法:去括号时,运用乘法的分派律,先把括号前的数字与括号里各 项相乘,再运用括号前是 “+,”去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各 项都改变符号.次序为先大后小.10.【答案】 C【分析】解:因为多项式 3x 4-(m+5)x 3+(n-1)x 2-5x+3 不含 x 3 和 x 2.所以含 x 3 和 x 2的单项式的系数 应为 0,即m+5=0,n-1=0,求得 m=-5,n=1.应选:C .依据多项式 3x 4-(m+5)x 3+(n-1)x 2-5x+3 不含 x 3 和 x 2,可令其系数为 0.在多项式中不含哪 项,即哪项的系数为 0.11.【答案】 5【分析】解:∵|x-2|+|y+3|=0, ∴x-2=0,y+3=0, 解得:x=2,y=-3, 故 x-y=2- (-3)=5.故答案为:5.直接利用 绝对值的性质得出 x-2=0,y+3=0,从而得出 x ,y 的值,即可得出答案.本题主要考察了非负数的性质,正确得出 x ,y 的值是解题重点.12.【答案】 -37【分析】解:-21 ÷7× ,=-21× × , =- .故答案为:- .先把除法 转变为乘法,而后约分即可.本题考察了有理数的除法,有理数的乘法,乘除同一 级,要依据从左到右的次序挨次进行计算.13.【答案】 -5 ×10 【分析】5-5 3× 5 .)× ×解:(4000=-125 4000=-500000=-5 10故答案为:-5 ×105.科学记数法的表示形式 为 a ×10n的形式,此中 1≤|a|<10,n 为整数.本题考察科学记数法表示 较大的数的方法,正确确立 a 与 n 值是重点 .14.【答案】 12【分析】解:∵-3x m y n是六次单项式,∴m+n=6∴2(m+n )=2×6=12,故答案为:12.依据全部字母的指数和叫做 这个单项式的次数即可判断得出答案.本题主要考察了单项式次数的定 义,比较简单.15.【答案】 -2x 2y+2x【分析】解:原式=3x 2y+2x-5x 2y=-2x 2y+2x ,故答案为:-2x 2y+2x原式去括号归并即可获得 结果.本题考察 了整式的加减,娴熟掌握运算法 则是解本题的重点.16.【答案】 2x 2-13xy-3y 2【分析】解:∵A=x 2-2xy ,B=y 2+3xy ,∴2A-3B=2 (x 2-2xy )-3(y 2+3xy )=2x 2-4xy-3y 2-9xy=2x 2-13xy-3y 2,故答案为:2x 2-13xy-3y2把 A 与 B 代入原式,去括号归并即可获得 结果.本题考察了整式的加减,娴熟掌握运算法 则是解本题的重点.17.【答案】 解:原式 =4+8-15=-3.【分析】本题考察了有理数的混淆运算,熟练掌握运算法则是解本题的重点.原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.18.【答案】解:∵|x|=2,∴x=2 或 x=-2 ,∴x+( -3) =2-3=-1 或 x+(-3) =-2-3=-5 .【分析】依据绝对值的性质求出 x,再加上-3 即可求解.考察了绝对值的性质,假如用字母a 表示有理数,则数a 绝对值要由字母a 自己的取值来确立:① 当a 是正有理数时,a 的绝对值是它自己a;② 当a 是负有理数时,a 的绝对值是它的相反数 -a;③当 a 是零时,a 的绝对值是零.19.【答案】解:∵3x a+1y b-1与 25 x2y2是同类项,∴a+1=2b-1=2 ,解得: a=1, b=3 ,2则原式 =92 a b2=92 ×1 ×3【分析】原式归并同类项获得最简结果,利用同类项的定义求出 a与 b 的值,代入计算即可求出值.本题考察了整式的加减 -化简求值,娴熟掌握运算法则与同类项的定义是解本题的重点.20.【答案】解:原式=a-6a-2b+4a+4b=-a+2b,当 a=-10 , b=1000 时,原式 =10+2000=2010 .【分析】原式去括号归并获得最简结果,把 a 与 b 的值代入计算即可求出值.本题考察了整式的加减 -化简求值,娴熟掌握运算法则是解本题的重点.21.【答案】解:(1)依据题意得:(8a-5b) -[ ( 3a-b) -12( 3a-b)]=8 a-5b-32 a+12b= (132 a-92 b)人;(2)当 a=12 , b=10 时,原式 =78-45=33(人).【分析】(1)依据题意表示出上车乘客的人数;(2)将a 与 b 的值代入计算即可求出值.本题考察了整式的加减,娴熟掌握运算法则是解本题的重点.2 2)-2( 3y 2 2)22.【答案】解:3(2x -y -2x222 2=6 x -3y -6y +4x2 2=10x -9y .【分析】娴熟运用去括号法则去括号,而后归并同类项.注意去括号时,假如括号前是负号,那么括号中的每一项都要变号;归并同类项时,只把系数相加减,字母与字母的指数不变.重点是去括号.① 不要漏乘;② 括号前面是“-”,去括号后括号里面的各项都要变号.23.【答案】解:方方的计算过程不正确,正确的计算过程是:原式 =6÷( -36 +26)=6÷( -16)=6×( -6)=-36 .【分析】依占有理数的混淆运算顺序,先算括号里面的,再依据除法法则进行计算即可.本题考察了有理数的除法,用到的知识点是有理数的除法、通分、有理数的加法,重点是掌握运算次序和结果的符号.24.【答案】解:(1)依据数轴上点的地点可知:a>0, b< 0, ab< 0,∵|b|> |a|,∴a+b< 0.( 2)原式 =aa+b-b +ab-ab +a+b-(a+b)=1-1-1-1=-2 .【分析】(1)依据a、b 与 0 的地点关系先判断出 a、b 的符号,而后依占有理数的乘法法例和加法法则可判断 ab、a+b的符号;广东省阳江市七年级(上)期中数学试卷本题主要考察的是数轴、绝对值的化简、有理数的乘法和加法法 则的应用,确立出 a > 0,b <0 是解题的重点 .25.【答案】 解:( 1) 0=12-1,3=2 2-1, 8=3 2-1, 15=42-1, 24=52-1, ;( 2)第 ② 行的数是第 ① 行相应的数加 2 所得;第 ③ 行的数是第 ① 行相应的数乘 2 所 得;2 2 2( 3) n -1+ n -1+2+2 (n -1) =4 n 2-2.【分析】(1)经过计算获得 0=12-1,3=22-1,8=32-1,15=42-1,24=52-1,即每个数为它的序号数的平方减 1;(2)察看易得第 ① 行的数加 2 获得第 ② 行的数;第① 行的数乘 2 获得第 ③ 行的数;(3)先表示出第① 行的第 n 个数 n 2-1,再表示出第② 、③ 行的第 n 个数,而后求它们的和.本题考察了规律型 -数字的 变化类:充足利用表中数据,剖析它 们之间的联系,而后概括出一般的 变化规律.第11 页,共 11页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年广东省阳江市阳东区七年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)
1.﹣3的相反数是()
A.3B.﹣3C .D .
2.在﹣3、0、1、﹣2四个数中,最小的数为()
A.﹣3B.0C.1D.﹣2
3.若有理数a的值在﹣1与0之间,则a的值可以是()
A.﹣2B.1C .D .
4.下列计算结果等于1的是()
A.(﹣2)+(﹣2)B.(﹣2)÷(﹣2)C.﹣2×(﹣2)D.(﹣2)﹣(﹣2)5.点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,则点B所表示的实数是()
A.3B.﹣1C.5D.﹣1或3
6.对于恐龙灭绝的原因,科学界至今仍众说纷纭.其中一种说法是:“也许恐龙在6500万年前并没有灭绝,而是演变成了新的物种.”数据6500万写成科学记数法正确的是()A.6.5×103B.0.65×104C.65×102D.6.5×107
7.一个长方形的周长为6a﹣4b,若它的宽为a﹣b,则它的长为()A.5a﹣3b B.2a﹣3b C.2a﹣b D.4a﹣2b
8.已知a与1的和是一个负数,则|a|=()
A.a B.﹣a C.a或﹣a D.无法确定
9.已知代数式﹣5x3y n与5x m+1y3是同类项,则m﹣n的值为()
A.5B.﹣1C.1D.﹣5
10.有理数a、b在数轴上的表示如图所示,那么()
A.﹣b>a B.﹣a<b C.b>a D.|a|>|b|
二、填空题(本大题共6小题,每小题4分,共24分)
11.(4分)比较大小:||﹣2.(填“<”或“>”或“=”)
12.(4分)多项式1+a2+b4﹣a2b是次项式.
第1页(共1页)。

相关文档
最新文档