李群中的三维旋转群

合集下载

数学中的李群与李代数

数学中的李群与李代数

数学中的李群与李代数李群与李代数在数学中扮演着重要的角色。

本文将对李群与李代数的基本概念进行介绍,并讨论它们之间的关系。

一、李群(Lie Group)李群是一种同时具有群结构和流形结构的数学对象。

群结构指的是李群上定义了乘法运算,同时存在单位元、逆元等性质。

而流形结构则是指李群在每个点附近都具有局部同胚于欧几里得空间的性质。

举个简单的例子,旋转矩阵群SO(3)就是一个李群。

它由所有的旋转矩阵组成,而旋转矩阵的乘法运算便构成了群运算。

此外,SO(3)也是一个三维实流形,因为它在每个点附近都可以通过欧几里得空间进行局部的描述。

李群的定义使得我们可以在其上定义微分结构,进而研究其微分几何性质。

比如,我们可以定义李群上的切空间和切丛,进而研究其在每个点上的切向量和切空间的结构。

二、李代数(Lie Algebra)李代数是李群的切空间上的代数结构。

它通常用于描述李群的局部性质。

李代数由向量空间和李括号这两个部分构成。

向量空间是李代数的基础,它的元素被称为李代数的生成元或向量场。

李代数的生成元通常用一组基向量来表示,这些向量之间通过线性组合构成一个线性空间。

李括号则定义了李代数中向量场之间的运算。

对于两个向量场X和Y,李括号[X, Y]被定义为它们的Lie导数的对易子。

李代数的一个经典例子是三维旋转群的李代数so(3)。

它由三个无限小旋转生成元构成,通常记作J₁, J₂和J₃。

它们之间的李括号满足以下关系:[J₁, J₂] = J₃, [J₂, J₃] = J₁, [J₃, J₁] = J₂。

三、李群与李代数的关系李群与李代数之间存在着密切的联系。

事实上,对于任意一个李群,都可以构造出与之对应的李代数。

这个李代数被称为李群的切代数,它反映了李群局部性质的信息。

具体地,李群的切代数可以通过计算李群上的左不变矢量场的李括号来得到。

左不变矢量场在李群的每个点上都是不变的,因此它在整个李群上构成了一个矢量场。

反过来,给定一个李代数,也可以构造出与之对应的李群。

第4章李群李代数

第4章李群李代数

第4章李群李代数⼀、概述1. 李群和李代数的核⼼思想封结⼳逆法则;法则;可以理解为专门⽤于矩阵旋转的东西,符合封结⼳逆1. 可以理解为专门⽤于矩阵旋转的东西,符合,李代数可以理解为旋转向量旋转向量;;李群可以理解为旋转矩阵旋转矩阵,李代数可以理解为2. 李群可以理解为3. 李群是连续群,李代数可以表出李群的导数,所以李代数表⽰的是李群的局部性质;4. 进⽽我们可以理解为:旋转向量表达了旋转矩阵的局部(旋转发⽣那⼀瞬间的领域内)性质;5. 由拉格朗⽇中值定理可知:导数控制函数。

李代数控制李群,\phi控制R;【1】也就是说想要估计出函数值,我们可以研究该函数的导数,⽤来描述某个点领域内性质。

故⽽我们需要建⽴对李群的求导模型,通过分析导数的性质来估计出相机在这⼀时刻(领域内)的位姿。

但是我们知道群是指只有⼀个运算的集合(我们选择矩阵乘法),所以李群不对加法封闭【2】,但是我们知道李代数是建⽴在向量空间上的,⽀持加法运算。

所以我们需要⼀种让李群映射到李代数的机制,然后通过对李代数求导,求出李群的导数。

不过,对李代数求导后的结果⾮常复杂,所以我们需要寻找另外⼀种求导⽅式【3】,这就是我们接下来所要介绍的内容。

【注】【1】:某个名牌⼤学考研的复试题——你知道导数的作⽤是什么吗?【2】:李群也是⼀种群。

甭跟我扯什么鳄鱼不是鱼、⽇本⼈不是⼈。

【3】:对谁求导不重要,因为我们总可以通过这个导数控制相同的函数。

2. 李群的两种求导模型(都是映射到了李代数空间)1. BCH公式线性化(将李群的变化与李代数的变化联系起来);;(复杂)求导模型;(复杂)2. 对李代数求导的对李代数求导的求导模型1. 需要求出左右雅可⽐矩阵的逆;扰动模型;(精简);(精简)对微扰动求导的扰动模型3. 对微扰动求导的1. 不需要求出左右雅可⽐矩阵的逆;3. 这两种求导模型都是会有误差存在的4. 李群和李代数的基础符号1. 特殊正交群SO(3),特殊欧式群SE(3);2. 特殊正交群上的李代数\mathfrak{so}(3),这⾥我们具象化为三维\phi向量或者反对称阵\widehat{\phi};3. 特殊欧式群上的李代数\mathfrak{se}(3),这⾥我们具象化为六维\xi向量或者四维⽅阵\widehat{\xi};\rho表⽰三维空间中的平移,\phi表⽰三维空间中的旋转。

李群李代数在数据融合算法中的应用分析

李群李代数在数据融合算法中的应用分析

李群李代数在数据融合算法中的应用分析作者:袁治晴来源:《电脑知识与技术》2019年第08期摘要:数据融合是提升机器人、无人驾驶、无人机等应用能力的重要手段,一直是前沿技术中研究的一个热点,关于数据融合算法的分析设计,学术界和工程界对此方面进行了长期的研究与讨论,而数据融合算法结合李群李代数一直是此领域研究的一个热点,本文将对李群李代数应用于数据融合的算法进行分析,展开对基于李群李代数的扩展卡尔曼滤波系统模型的分析,并实验对比得出将李群李代数应用于数据融合算法在提升精度方面起着的重要一环。

关键词:数据融合;李群李代数;扩展卡尔曼滤波中图分类号:TP311 文献标识码:A文章编号:1009-3044(2019)08-0192-021 引言数据融合一直是研究领域的一个热点,是针对一个系统使用多种传感器这一特定问题而展开的一种关于数据处理的研究。

数据融合技术是多学科交叉的新技术,涉及概率统计、信息论、人工智能、模糊数学等理论。

提升精度是数据融合设计中的关键一环,而李群李代数理论正好提供了这样的工具,随着数据融合技术广泛应用于机器人、自动驾驶等计算机视觉领域,李群李代数对数据融合优化改进在越来越重要。

本文的研究方向是对数据融合中滤波算法优化改进进行分析,研究基于李群李代数扩展卡尔曼滤波算法并进行试验对比,进一步证明李群李代数在提升数据融合算法的精度占据重要地位。

2 李群李代数在数据融合系统模型中研究2.1 引言由于该系统模型算法步骤推导过程复杂,受篇幅限制,只给出具体的算法步骤来分析。

首先分析经典的扩展卡尔曼滤波EKF,接着介绍李群李代数基本知识,着重分析李群李代数在数据融合扩展卡尔曼滤波EKF算法的应用分析,为后续进行试验验证对比证明结论奠定了基础。

2.2 扩展卡尔曼滤波卡尔曼滤波算法的核心是动态调整权值,本质是通过预测结合测量来估计当前系统的状态,Kalman Filter用预测和测量进行状态估计,并根据卡尔曼增益K来决定用哪个来估计,当系统为线性高斯模型时,滤波器能给出最优的估计,实际系统存在不同程度的非线性,通过线性化方法将非线性系统转换为近似的线性系统,即为扩展卡尔曼滤波EKF,核心思想是围绕滤波值将非线性函数展开成泰勒级数并略去二阶及以上项,得到一个近似的线性化模型,然后应用卡尔曼滤波完成状态估计。

三维空间转动变换 李群的基本概念

三维空间转动变换 李群的基本概念
x2 x2 x3
P’ P x1 x’1Biblioteka x1x1x’1
x'2 x1 sin x2 cos
x'3 x3
将系数写成矩阵
cos
R(e3, ) sin
0
sin cos
0
x'1
x1
0 0
x'2 x'3
R(e3, ) x 2 x3
1
●利用物理中常用的泡利矩阵,可将转动矩阵写成矩阵指 数函数的形式
3
r' ea x'a
则 x1' R11 R12 R13 x1
a 1 3
x2 ' R 21
x3 ' R31
R 22 R 32
R 23 x2 R33 x3
xa '
b1
R abx b
♣坐标的齐次变换保证原点位置不变
♣距离不变要求矩阵R是实正交矩阵 (距离与x2联系,两个列矩阵相乘xT x)
n0
1 (i n!
2
)
n
n0
1 n n!
(i2
泡利矩阵: 0 1 0 i 1 0
1 1 0, 2 i
0
,3
0
1
三个矩阵之间的关系:
3
ab ab1 i abcc c1
1 abc 1
0
abc : 123,231,312 abc : 321,213,132
others
a2 1, 12 i3, Tra 0, Tr(ab ) 2ab, etc.
♣O(3)群:三维实正交矩阵群 SO(3)+空间反演变换σ群
四、特殊的转动
1. 绕x3(z)转动ω角的变换矩阵 R(e3, )

三维旋转群SO3

三维旋转群SO3
3
亦即
cos cos cos sin sin (cos cos sin sin cos ) cos sin R(, , ) sin cos cos cos sin (sin cos sin cos cos ) sin sin sin cos sin sin cos
cos( ) sin( ) 0 R(, 0, ) sin( ) cos( ) 0 0 0 1
4
因此,单位元不仅处在零参数 0 处,亦处 在 0 与 0 处,所以三个欧勒角不是正则参 数.
下面我们给出每一个 U SU(2) 所对应的三维空间正 交变换 R U 的具体表达式. 将(1)、(2)与(4)代入(3)得
* x i x x x ix a b x 3 a b 1 2 3 1 2 * * * x ix x x ix x b a b a 2 3 2 3 1 1 r ( x , x , x ) 由上式可以确定出 之间的 1 2 3 与 r ( x 1, x 2 , x 3 )
M UMU (3)
6
由于U是幺正矩阵,所以 U U1 . 另矩阵的迹在 相似变换下不变,所以 M 与 M 一样也是一无迹厄 米矩阵. 由于任何 2 2 无迹厄米矩阵都可由泡利 矩阵线性组合给出,所以 M 可以表示成
M r

x 3 x k k x ix 2 k 1 1
M r x 1 1 x 2 2 x 3 3 x3 x ix 2 1 x 1 ix 2 x3

群论-三维转动群

群论-三维转动群

物理学中的群论——三维转动群主讲翦知渐群论-三维转动群第四章三维转动群三维转动群的表示4.1 维转动群的表示§拓扑群和李群42§4.2轴转动群SO (2)§4.3 三维转动群SO (3)§4.4二维特殊幺正群SU (2)§4.1拓扑群和李群连续群的基本概念1拓扑群无限群分为分立无限群和连续无限群有关有限群的理论对于分立无限群来说几乎全部成立定义4.1 连续群的维数, a2, …, a n所标明连续群G的元素由一组实参数a1其中至少有一个参数在某一区域上连续变化,且该组参数对标明群的所有元素是必需的而且足够的则该组参数中连续参数的个数l 称为连续群的维数。

在具体的群中,参数的取法可能不唯一例子如下的线性变换T(a,b)x'= T(a,b)x = ax +b,a,b∈(-∞,+∞), a≠0构成的集合,定义其上的乘法为:T(a1,b1)T(a2,b2)x = T(a1a2, a1b2+b1)x,b b T封闭律是显然的逆元素为T-1(a,b) = T(1/a, -b/a) ,单位元是T(1,0)结合律也容易证明因此{T(a,b)}构成个连续群。

构成一个连续群。

由于群元素的连续性质,需要在群中引入拓扑由于群元素的连续性质需要在群中引入简单说拓扑是个集子集族简单地说,拓扑是一个集合以及它的子集族拓扑学研究的是某个对象在连续变形下不变的性质为简单起见,我们仅讨论其元素可与l 维实内积空间的某个子有对应关系的群有一一对应关系的群集Sl该子集称为参数空间定义4.2 拓扑群群元的乘法法则和取逆法则在群的所有元素处都连续的群,称为拓扑群定义4.3 简单群和混合群拓扑群G的任意两个元素x1和x2在参数空间中如果能用一条或者多条道路连接(道路连通),则该群的参数空间是连通的,该群称为连通群或简单群。

若群的参数空间形成不相连结的若干片,则该群称为混合群。

前者如三维转动群SO(3),后者如三维实正交群O(3)。

三维旋转群SO(3)

三维旋转群SO(3)
第五章 三维旋转群SO(3)
本章将讨论物理上常用的一种李群三维旋转群 SO(3). 旋转群在物理学的应用中占有十分重要的地位. 它不仅是描述物理系统在普通坐标空间中各向同性的 对称群,也是处理物理系统内部对称性的有用工具. 本章我们将介绍三维旋转群SO(3)的基本知识.
§5.1 三维旋转群SO(3)
r R z ()R y ()R z ( )r R(, , )r
其中
R(, , ) R z ()R y ()R z ( ) cos sin 0 cos 0 sin cos sin 0 sin cos 0 0 1 0 sin cos 0 0 sin 0 cos 0 0 1 0 1
(1)
(2) 接着绕新坐标系的 为 r ,其矩阵形式为: r R y (2)

2
显然
R y () Rz ()R y ()Rz ()
1
(3)
这样绕新坐标系 y 轴的转动,变成绕原坐标系坐 标轴的转动,其中
cos 0 sin R y () 0 1 0 sin 0 cos
2 1 2 1
U(, , ) U1 ( )U 2 ()U1 ( )
U SU(2) R U SO(3) V SU(2) R V SO(3) UV SU(2) RUV SO(3) (8)
现在要证明的是 R UV R UR V ,即两元素乘积的映射等于 两元素映射的乘积. 由前面的(2)、(3)、(4)与(6)式得
M (3)式 VMV
SO(3)群是三参数 [ 2 n(n - 1), n 3] 的李群,在§4.5节 例3中,我们曾求得SO(3)群的群元素. 在那里,三个 群参数选为坐标系绕三个坐标轴的三个转角 1 、 2 、 2 . 在实际应用中,人们通常取三个欧勒角 ( ) 作 为SO(3)群的群参数. 这一节,我们将导出该情况下, SO(3)群的群元素的具体形式. 1

5.3三维转动群的表示

5.3三维转动群的表示
j 2m j j = i −2 m ' ( −1) m −m ' Dm = ( −1) 2( m −m ') Dm ' mi ' m = Dm ' m , j j j Dm ' m 是 Dm ' m ' 的等价表示,以后我们用 Dm ' m 作为转动群表示。 j j 2j j 下面我们讨论 Dm ' m 与 R 之间的关系:由于 D ( u ) = ( −1) D ( − u ) ,当 j = l (整数)时,
r r 算符应有 R(m, ϕ ) = MR(n , ϕ ) M −1 , 所以绕转轴转相同角度的群元属于同一类, 做 M 变换时,
它们的特征标用 χ j (ϕ ) 来表示, 我们选最简单的表示矩阵来计算它。 绕 z 轴转 ϕ 角的表示矩 阵元
⎛ −iα 2 ⎜e 若取 u1 (α ) = ⎜ ⎜ 0 ⎝ ⎞ 0 ⎟ , 则由 h′ = u1 (α ) hu −1 (α ) ,即 α ⎟ i e2⎟ ⎠ ⎞ 0 ⎟⎛ z α ⎟⎜ i ⎝ x + iy e2⎟ ⎠ ⎛ iα x − iy ⎞ ⎜ e 2 ⎜ −z ⎟ ⎠⎜ ⎝ 0 ⎞ 0 ⎟ , α ⎟ −i 2 ⎟ e ⎠
这 R(α , β , γ ) 是相同的转动。所以 SU(2) 群 u 与转动群 R 是二对一的同态关系。 2. 三维转动群的表示
R 与 SU(2) 同态,因此 D j 也是 R 的表示,与 R(α , β , γ ) 同态的 u(α , β , γ ) 为
a=e
−i
α +γ
2
cos
β
2பைடு நூலகம்
, b = −e
刘建军
我们可以通过幺正矩阵 M μ v = δ μ v i −2 μ 的相似变换去掉因子 ( −1)m −m ' ,

欧拉角—wiki

欧拉角—wiki

Euler anglesThisarticle is about the Euler anglesused in mathematics .For the use of thetermin physics and aerospace engi-neering ,see Rigid body dynamics .For chained rotations,chained rotations .Euler angles are three angles introduced by Leonhard Euler to describe the orientation of a rigid body .[1]To describe such an orientation in 3-dimensional Euclidean space three parameters are required.They can be given in several ways,Euler angles being one of them;see charts on SO(3)for others.Euler angles are also used to describe the orientation of a frame of reference (typ-ically,a coordinate system or basis )relative to another.They are typically denoted as α,β,γ,or φ,θ,ψ.Euler angles represent a sequence of three elemental rota-tions ,i.e.rotations about the axes of a coordinate system .For instance,a first rotation about z by an angle α,a sec-ond rotation about x by an angle β,and a last rotation again about y ,by an angle γ.These rotations start from a known standard orientation.In physics,this standard initial orientation is typically represented by a motionless (fixed ,global ,or world )coordinate system ;in linear al-gebra,by a standard basis .Any orientation can be achieved by composing three el-emental rotations.The elemental rotations can either occur about the axes of the fixed coordinate system (extrinsic rotations )or about the axes of a rotating coordi-nate system,which is initially aligned with the fixed one,and modifies its orientation after each elemental rotation (intrinsic rotations ).The rotating coordinate system may be imagined to be rigidly attached to a rigid body.In this case,it is sometimes called a local coordinate system.Without considering the possibility of using two different conventions for the definition of the rotation axes (intrin-sic or extrinsic),there exist twelve possible sequences of rotation axes,divided in two groups:•Proper Euler angles (z-x-z,x-y-x,y-z-y,z-y-z,x-z-x,y-x-y )•Tait–Bryan angles (x-y-z,y-z-x,z-x-y,x-z-y,z-y-x,y-x-z ).Tait–Bryan angles are also called Cardan angles ;nau-tical angles ;heading,elevation,and bank ;or yaw,pitch,and roll .Sometimes,both kinds of sequences are called “Euler angles”.In that case,the sequences of the first group are called proper or classic Euler angles.1Proper Euler anglesyzProper Euler angles representing rotations about z ,N ,and Z axes.The xyz (original)system is shown in blue,the XYZ (ro-tated)system is shown in red.The line of nodes (N )is shown in green.1.1Classic definitionEuler angles are a means of representing the spatial ori-entation of any reference frame (coordinate system or basis )as a composition of three elemental rotations start-ing from a known standard orientation,represented by another frame (sometimes referred to as the original or fixed reference frame,or standard basis ).The reference orientation can be imagined to be an initial orientationfrom which the frame virtually rotates to reach its ac-tual orientation.In the following,the axes of the origi-nal frame are denoted as x ,y ,z and the axes of the rotated frame are denoted as X ,Y ,Z .In geometry and physics ,the rotated coordinate system is often imagined to be rigidlyattached to a rigid body .In this case,it is called a “local”coordinate system,and it is meant to represent both the position and the orientation of the body.The geometrical definition (referred sometimes as static)of the Euler angles is based on the axes of the above-mentioned (original and rotated)reference frames and an 121PROPER EULER ANGLESadditional axis called the line of nodes.The line of nodes (N)is defined as the intersection of the xy and the XY coordinate planes.In other words,it is a line passing through the common origin of both frames,and perpen-dicular to the zZ plane,on which both z and Z lie.The three Euler angles are defined as follows:•α(orφ)is the angle between the x axis and the N axis.•β(orθ)is the angle between the z axis and the Z axis.•γ(orψ)is the angle between the N axis and the X axis.This definition implies that:•αrepresents a rotation around the z axis,•βrepresents a rotation around the N axis,•γrepresents a rotation around the Z axis.Ifβis zero,there is no rotation about N.As a conse-quence,Z coincides with z,αandγrepresent rotations about the same axis(z),and thefinal orientation can be obtained with a single rotation about z,by an angle equal toα+γ.1.2Alternative definitionThe rotated frame XYZ may be imagined to be initially aligned with xyz,before undergoing the three elemental rotations represented by Euler angles.Its successive ori-entations may be denoted as follows:•x-y-z,or x0-y0-z0(initial)•x’-y’-z’,or x1-y1-z1(afterfirst rotation)•x″-y″-z″,or x2-y2-z2(after second rotation)•X-Y-Z,or x3-y3-z3(final)For the above-listed sequence of rotations,the line of nodes N can be simply defined as the orientation of X after thefirst elemental rotation.Hence,N can be simply denoted x’.Moreover,since the third elemental rotation occurs about Z,it does not change the orientation of Z. Hence Z coincides with z″.This allows us to simplify the definition of the Euler angles as follows:•α(orφ)represents a rotation around the z axis,•β(orθ)represents a rotation around the x’axis,•γ(orψ)represents a rotation around the z″axis.1.3ConventionsDifferent authors may use different sets of rotation axes to define Euler angles,or different names for the same angles.Therefore any discussion employing Euler angles should always be preceded by their definition.[2]Unless otherwise stated,this article will use the convention de-scribed above.The three elemental rotations may occur either about the axes xyz of the original coordinate system,which is assumed to remain motionless(extrinsic rotations),or about the axes of the rotating coordinate system XYZ, which changes its orientation after each elemental rota-tion(intrinsic rotations).The definition above uses in-trinsic rotations.There are six possibilities of choosing the rotation axes for proper Euler angles.In all of them,thefirst and third rotation axes are the same.The six possible sequences are:1.z-x’-z″(intrinsic rotations)or z-x-z(extrinsic rota-tions)2.x-y’-x″(intrinsic rotations)or x-y-x(extrinsic rota-tions)3.y-z’-y″(intrinsic rotations)or y-z-y(extrinsic rota-tions)4.z-y’-z″(intrinsic rotations)or z-y-z(extrinsic rota-tions)5.x-z’-x″(intrinsic rotations)or x-z-x(extrinsic rota-tions)6.y-x’-y″(intrinsic rotations)or y-x-y(extrinsic rota-tions)Euler angles between two reference frames are defined only if both frames have the same handedness.1.4Signs and rangesAngles are commonly defined according to the right hand ly,they have positive values when they rep-resent a rotation that appears clockwise when looking in the positive direction of the axis,and negative values when the rotation appears counter-clockwise.The oppo-site convention(left hand rule)is less frequently adopted. About the ranges:•forαandγ,the range is defined modulo2πradians.A valid range could be[−π,π].•forβ,the range coversπradians(but can't be said to be moduloπ).For example could be[0,π]or [−π/2,π/2].3 Angles of a given frameas columns of a matrixof the theoretical ma-Hence the three Eulerthe same result algebra,which is more with unit vectors(X,Y, be seen that:for Y3,projecting itfirstz and the line of nodes. isπ/2−βand cos(π/2−function,inverse cosine functionargument.In this ge-of the solutions is valid. as a sequence of rota-but there will be only is because the sequence frame is not unique if the[3]be useful to represent42TAIT–BRYAN ANGLES2Tait–Bryan anglesTait–Bryan angles.z-y′-x″sequence(intrinsic rotations;N coin-cides with y’).The angle rotation sequence isψ,θ,Ф.Note that in this caseψ>90°andθis a negative angle.The second type of formalism is called Tait–Bryan an-gles,after Peter Guthrie Tait and George H.Bryan.The definitions and notations used for Tait-Bryan angles are similar to those described above for proper Euler an-gles(Classic definition,Alternative definition).The only difference is that Tait–Bryan angles represent rotations about three distinct axes(e.g.x-y-z,or x-y’-z″),while proper Euler angles use the same axis for both thefirst and third elemental rotations(e.g.,z-x-z,or z-x’-z″).This implies a different definition for the line of nodes. In thefirst case it was defined as the intersection between two homologous Cartesian planes(parallel when Euler angles are zero;e.g.xy and XY).In the second one,it is defined as the intersection of two non-homologous planes (perpendicular when Euler angles are zero;e.g.xy and YZ).Tait–Bryan angles.z-x’-y″sequence(intrinsic rotations;N coin-cides with x’)2.1ConventionsThe three elemental rotations may occur either about the axes of the original coordinate system,which remains motionless(extrinsic rotations),or about the axes of the rotating coordinate system,which changes its orientation after each elemental rotation(intrinsic rotations). There are six possibilities of choosing the rotation axes for Tait–Bryan angles.The six possible sequences are:1.x-y’-z″(intrinsic rotations)or x-y-z(extrinsic rota-tions)2.y-z’-x″(intrinsic rotations)or y-z-x(extrinsic rota-tions)3.z-x’-y″(intrinsic rotations)or z-x-y(extrinsic rota-tions)4.x-z’-y″(intrinsic rotations)or x-z-y(extrinsic rota-tions)5.z-y’-x″(intrinsicrotations)or z-y-x(extrinsic rota-tions):the intrinsic rotations are known as:yaw, pitch and roll6.y-x’-z″(intrinsic rotations)or y-x-z(extrinsic rota-tions)2.2Alternative namesThe principal axes of an aircraftTait-Bryan angles,following z-y’-x″(intrinsic rotations) convention,are also known as nautical angles,because they can be used to describe the orientation of a ship or aircraft,or Cardan angles,after the Italian mathemati-cian and physicist Gerolamo Cardano,whofirst described in detail the Cardan suspension and the Cardan joint. They are also called heading,elevation and bank,or yaw,pitch and roll.Notice that the second set of terms is also used for the three aircraft principal axes.3.2Extrinsic rotations 53Relationship with physical mo-tionsSee also:Givens rotations and Davenport rotations3.1IntrinsicrotationsAny target orientation can be reached,starting from a known reference orientation,using a specific sequence of intrinsic rotations,whose magnitudes are the Euler angles of the target orientation.This example uses the z-x′-z″sequence.Intrinsic rotations are elemental rotations that occur about the axes of the rotating coordinate system XYZ ,which changes its orientation after each elemental rotation.The XYZ system rotates,while xyz is fixed.Starting with XYZ overlapping xyz ,a composition of three intrinsic rotations can be used to reach any target orientation for XYZ .The Euler or Tait-Bryan angles (α,β,γ)are the amplitudes of these elemental rotations.For instance,the target orien-tation can be reached as follows:•The XYZ system rotates by αabout the Z axis (which coincides with the z axis).The X axis now lies on theline of nodes.•The XYZ system rotates about the now rotated X axis by β.The Z axis is now in its final orientation,and the X axis remains on the line of nodes.•The XYZ system rotates a third time about the new Z axis by γ.The above-mentioned notation allows us to summarizethis as follows:the three elemental rotations of the XYZ-system occur about z ,x ’and z ″.Indeed,this sequence is often denoted z-x’-z″.Sets of rotation axes associated with both proper Euler angles and Tait-Bryan angles are commonly named using this notation (see above for de-tails).Sometimes,the same sequence is simply called z-x-z ,Z-X-Z ,or 3-1-3,but this notation may be ambiguous as it may be identical to that used for extrinsic rotations.In this case,it becomes necessary to separately specify whether the rotations are intrinsic or extrinsic.Rotation matrices can be used to represent a sequence of intrinsic rotations.For instance,R =X (α)Y (β)Z (γ)represents a composition of intrinsic rotations about axes x-y’-z″,if used to pre-multiply column vectors ,whileR =Z (γ)Y (β)X (α)represents exactly the same composition when used to post-multiply row vectors .See Ambiguities in the def-inition of rotation matrices for more details.3.2Extrinsic rotationsExtrinsic rotations are elemental rotations that occur about the axes of the fixed coordinate system xyz .The XYZ system rotates,while xyz is fixed.Starting with XYZ overlapping xyz ,a composition of three extrinsic rota-tions can be used to reach any target orientation for XYZ .The Euler or Tait-Bryan angles (α,β,γ)are the ampli-tudes of these elemental rotations.For instance,the tar-get orientation can be reached as follows:•The XYZ system rotates about the z axis by α.The X axis is now at angle αwith respect to the x axis.•The XYZ system rotates again about the x axis by β.The Z axis is now at angle βwith respect to the z axis.•The XYZ system rotates a third time about the z axis by γ.In sum,the three elemental rotations occur about z ,x andz .Indeed,this sequence is often denoted z-x-z (or 3-1-3).Sets of rotation axes associated with both proper Euler angles and Tait–Bryan angles are commonly named usingthis notation (see above for details).Rotation matrices can be used to represent a sequence of extrinsic rotations.For instance,R =Z (γ)Y (β)X (α)64GIMBAL MOTION RELATIONSHIPrepresents a composition of extrinsic rotations about axes x-y-z ,if used to pre-multiply column vectors ,while R =X (α)Y (β)Z (γ)represents exactly the same composition when used to post-multiply row vectors .See Ambiguities in the def-inition of rotation matrices for more details.3.3Conversion betweenintrinsic and ex-trinsic rotations A rotation represented by Euler angles (α,β,γ)=(−60°,30°,45°),using z-x’-z″intrinsic rotationsThe same rotation represented by (γ,β,α)=(45°,30°,−60°),using z-x-z extrinsic rotationsAny extrinsic rotation is equivalent to an intrinsic rotation by the same angles but with inverted order of elementalrotations,and vice versa.For instance,the intrinsic rota-tions x-y’-z″by angles α,β,γare equivalent to the extrin-sic rotations z-y-x by angles γ,β,α.Both are represented by a matrixR =X (α)Y (β)Z (γ)if R is used to pre-multiply column vectors ,and by a ma-trixR =Z (γ)Y (β)X (α)if R is used to post-multiply row vectors .See Ambiguities in the definition of rotation matrices for more details.3.3.1The proof of the conversion in the pre-multiply caseThe rotation matrix of the intrinsic rotation sequence x-y’-z″can be obtained by the sequential intrinsic element rotations from the right to the left:R =Z ′′Y ′X.In this process there are three frames related in the in-trinsic rotation sequence.Let’s denote the frame 0as theinitial frame,the frame 1after the first rotation aroundthe x axis ,the frame 2after the second rotation around the y’axis and the frame 3as the third rotation around z″axis.Since a rotation matrix can be represented among these three frames,let’s use the left shoulder index to denote the representation frame.The following notation means therotation matrix that transforms the frame a to the frame b and that is represented in the frame c :cR a →b .An intrinsic element rotation matrix represented in thatframe where the rotation happens has the same value as that of the corresponding extrinsic element rotation ma-trix:R 1→0=X,1R 2→1=Y,2R 3→2=Z.The intrinsic element rotation matrix Y’and Z″repre-sented in the frame 0can be expressed as other forms:Y ′=0R 2→1=0R 1→01R 2→10R −11→0=XY X −1Z ′′=0R 3→2=0R 1→01R 3→20R −11→0=X (1R 2→12R 3→21R −12→1)X−1=XY ZY −1X −1The two equations above are substituted to the first equa-tion:R =Z ′′Y ′X=(XY ZY −1X −1)(XY X −1)X =XY ZY −1(X −1X )Y (X −1X )=XY Z (Y −1Y )=XY Z Therefore,the rotation matrix of an intrinsic element ro-tation sequence is the same as that of the inverse extrinsicelement rotation sequence:R =Z ′′Y ′X =XY Z.4Gimbal motion relationshipEuler basic motions are defined as the movements ob-tained by changing one of the Euler angles while leav-ing the other two constant.Euler rotations are never ex-pressed in terms of the external frame,or in terms of the co-moving rotated body frame,but in a mixture.Theyconstitute a mixed axes of rotation system,where the first angle moves the line of nodes around the external axis z ,the second rotates around the line of nodes and4.2Intermediate frames7the third one is an intrinsic rotation around an axisfixed in the body that moves.These rotations are called precession,nutation,and intrinsic rotation(spin).As an example,consider a top. The top spins around its own axis of symmetry;this cor-responds to its intrinsic rotation.It also rotates around its pivotal axis,with its center of mass orbiting the piv-otal axis;this rotation is a precession.Finally,the top can wobble up and down;the inclination angle is the nutation angle.While all three are rotations when applied over individual frames,only precession is valid as a rotation operator,and only precession can be expressed in general as a matrix in the basis of the space.4.1Gimbal analogyZZNXxLeft:A three axes z-x-z gimbal where the external frame and external axis x are not shown and axes Y are perpendicular to each gimbal ring.Right:A simple diagram showing the Euler angles and where the axes Y of intermediate frames are located.If we suppose a set of frames,able to move each with respect to the former according to just one angle,like a gimbal,there will exist an externalfixed frame,onefi-nal frame and two frames in the middle,which are called “intermediate frames”.The two in the middle work as two gimbal rings that allow the last frame to reach any orientation in space.In these conditions,each Euler rotation works on one of the rings,independently from the rest.4.2Intermediate framesThe gimbal rings indicate some intermediate frames. They can be defined statically too.Taking some vectors i,j and k over the axes x,y and z,and vectors I,J,K over X,Y and Z,and a vector N over the line of nodes,some intermediate frames can be defined using the vector cross product,as following:•origin:[i,j,k](where k=i×j)•first:[N,k×N,k]•second:[N,K×N,K]•final:[I,J,K]These intermediate frames are equivalent to those of the gimbal.They are such that they differ from the previous one in just a single elemental rotation.This proves that:•Any target frame can be reached from the reference frame just composing three rotations.•The values of these three rotations are exactly the Euler angles of the target frame.86PROPERTIES5Relationship to other representa-tionsMain article:Rotation formalisms in three dimensions§Conversion formulae between formalismsEuler angles are one way to represent orientations.There are others,and it is possible to change to and from other conventions.5.1Rotation matrixAny orientation can be achieved by composing three el-emental rotations,starting from a known standard ori-entation.Equivalently,any rotation matrix R can be decomposed as a product of three elemental rotation ma-trices.For instance:R=X(α)Y(β)Z(γ)is a rotation matrix that may be used to represent a com-position of intrinsic rotations about axes x-y’-z″.How-ever,both the definition of the elemental rotation ma-trices X,Y,Z,and their multiplication order depend on the choices taken by the user about the definition of both rotation matrices and Euler angles(see,for instance, Ambiguities in the definition of rotation matrices).Un-fortunately,different sets of conventions are adopted by users in different contexts.The following table was built according to this set of conventions:1.Each matrix is meant to operate by pre-multiplyingcolumn vectors(see Ambiguities in the definition of rotation matrices)2.Each matrix is meant to represent an active rota-tion(the composing and composed matrices are sup-posed to act on the coordinates of vectors defined in the initialfixed reference frame and give as a re-sult the coordinates of a rotated vector defined in the same reference frame).3.Each matrix is meant to represent the compositionof intrinsic rotations(around the axes of the rotating reference frame).4.Right handed reference frames are adopted,and theright hand rule is used to determine the sign of the anglesα,β,γ.For the sake of simplicity,the following table uses the following nomenclature:1.1,2,3represent the anglesα,β,γ.2.X,Y,Z are the matrices representing the elementalrotations about the axes x,y,z of thefixed frame(e.g.,X1represents a rotation about x by an angleα).3.s and c represent sine and cosine(e.g.,s1representsthe sine ofα).4.Each matrix is denoted by the formula used to cal-culate it.If R=Z1X2Z3,we name it Z1X2Z3 .To change the formulas for the opposite direction of ro-tation,change the signs of the sine functions.To change the formulas for passive rotations,transpose the matri-ces(then each matrix transforms the initial coordinates of a vector remainingfixed to the coordinates of the same vector measured in the rotated reference system;same ro-tation axis,same angles,but now the coordinate system rotates,rather than the vector).5.2QuaternionsUnit quaternions,also known as Euler–Rodrigues param-eters,provide another mechanism for representing3D ro-tations.This is equivalent to the special unitary group description.Expressing rotations in3D as unit quaternions instead of matrices has some advantages:•Concatenating rotations is computationally faster and numerically more stable.•Extracting the angle and axis of rotation is simpler.•Interpolation is more straightforward.See for exam-ple slerp.•Quaternions do not suffer from gimbal lock as Euler angles do.5.3Geometric algebraOther representation comes from the Geometric alge-bra(GA).GA is a higher level abstraction,in which the quaternions are an even subalgebra.The principal tool in GA is the rotor R=[cos(θ/2)−Iu sin(θ/2)]whereθ= angle of rotation,(u)=rotation axis(unitary vector)and (I)=pseudoscalar(trivector in R3)6PropertiesSee also:Charts on SO(3)and Quaternions and spatial rotation9The Euler angles form a chart on all of SO(3),the special orthogonal group of rotations in 3D space.The chart is smooth except for a polar coordinate style singular-ity along β=0.See charts on SO(3)for a more complete treatment.The space of rotations is called in general “The Hypersphere of rotations ",though this is a misnomer:the group Spin(3)is isometric to the hypersphere S 3,but the rotation space SO(3)is instead isometric to the real pro-jective space RP 3which is a 2-fold quotient space of the hypersphere.This 2-to-1ambiguity is the mathematical origin of spin in physics .A similar three angle decomposition applies to SU(2),the special unitary group of rotations in complex 2D space,with the difference that βranges from 0to 2π.These are also called Euler angles.The Haar measure for Euler angles has the simple formsin(β).dα.dβ.dγ,usually normalized by a factor of 1/8π².For example,to generate uniformly randomized orienta-tions,let αand γbe uniform from 0to 2π,let z be uniform from −1to 1,and let β=arccos(z ).7Higher dimensionsIt is possible to define parameters analogous to the Euler angles in dimensions higher than three.[4]The number of degrees of freedom of a rotation matrix is always less than the dimension of the matrix squared.That is,the elements of a rotation matrix are not all com-pletely independent.For example,the rotation matrix in dimension 2has only one degree of freedom,since all four of its elements depend on a single angle of rotation.A rotation matrix in dimension 3(which has nine ele-ments)has three degrees of freedom,corresponding to each independent rotation,for example by its three Euler angles or a magnitude one (unit)quaternion.In SO(4)the rotation matrix is defined by two quater-nions ,and is therefore 6-parametric (three degrees of freedom for every quaternion).The 4×4rotation matri-ces have therefore 6out of 16independent components.Any set of 6parameters that define the rotation matrixcould be considered an extension of Euler angles to di-mension 4.In general,the number of euler angles in dimension D is quadratic in D;since any one rotation consists of choos-ing two dimensions to rotate between,the total number of rotations available in dimension D is N rot =(D 2)=D (D −1)/2,which for D =2,3,4yields N rot =1,3,6.A gyroscope keeps its rotation axis constant.Therefore,angles measured in this frame are equivalent to angles measured in the lab frame 8Applications8.1Vehicles and moving framesMain article:rigid body See also:axes conventionsTheir main advantage over other orientationdescrip-Industrial robot operating in a foundry.tions is that they are directly measurable from a gimbal mounted in a vehicle.As gyroscopes keep their rotation axis constant,angles measured in a gyro frame are equiva-lent to angles measured in the lab frame.Therefore gyros are used to know the actual orientation of moving space-craft,and Euler angles are directly measurable.Intrin-sic rotation angle cannot be read from a single gimbal,108APPLICATIONSso there has to be more than one gimbal in a spacecraft. Normally there are at least three for redundancy.There is also a relation to the well-known gimbal lock problem of mechanical engineering[5].Heading,elevation and bank for an aircraft with axes DIN9300 The most popular application is to describe aircraft at-titudes,normally using a Tait–Bryan convention so that zero degrees elevation represents the horizontal attitude. Tait–Bryan angles represent the orientation of the aircraft respect a reference axis system(world frame)with three angles which in the context of an aircraft are normally called Heading,Elevation and Bank.When dealing with vehicles,different axes conventions are possible.When studying rigid bodies in general,one calls the xyz system space coordinates,and the XYZ system body co-ordinates.The space coordinates are treated as unmov-ing,while the body coordinates are considered embedded in the moving body.Calculations involving acceleration, angular acceleration,angular velocity,angular momen-tum,and kinetic energy are often easiest in body coordi-nates,because then the moment of inertia tensor does not change in time.If one also diagonalizes the rigid body’s moment of inertia tensor(with nine components,six of which are independent),then one has a set of coordinates (called the principal axes)in which the momentof inertia tensor has only three components.The angular velocity of a rigid body takes a simple form using Euler angles in the moving frame.Also the Euler’s rigid body equations are simpler because the inertia tensor is constant in that frame.Polefigures displaying crystallographic texture of gamma-TiAl in an alpha2-gamma alloy,as measured by high energy X-rays.[6] 8.2Crystallographic textureIn materials science,crystallographic texture(or pre-ferred orientation)can be described using Euler angles. In texture analysis,the Euler angles provide a mathemat-ical depiction of the orientation of individual crystallites within a polycrystalline material,allowing for the quan-titative description of the macroscopic material.[7]The most common definition of the angles is due to Bunge and corresponds to the ZXZ convention.It is important to note,however,that the application generally involves axis transformations of tensor quantities,i.e.passive ro-tations.Thus the matrix that corresponds to the Bunge Euler angles is the transpose of that shown in the table above.[8]8.3OthersEuler angles,normally in the Tait–Bryan convention,are also used in robotics for speaking about the degrees of freedom of a wrist.They are also used in Electronic sta-bility control in a similar way.Gunfire control systems require corrections to gun-order angles(bearing and elevation)to compensate for deck tilt (pitch and roll).In traditional systems,a stabilizing gyro-scope with a vertical spin axis corrects for deck tilt,and stabilizes the optical sights and radar antenna.However, gun barrels point in a direction different from the line of sight to the target,to anticipate target movement and fall of the projectile due to gravity,among other factors.Gun mounts roll and pitch with the deck plane,but also require stabilization.Gun orders include angles computed from the vertical gyro data,and those computations involve Eu-ler angles.Euler angles are also used extensively in the quantum me-chanics of angular momentum.In quantum mechanics, explicit descriptions of the representations of SO(3)are very important for calculations,and almost all the work has been done using Euler angles.In the early history of quantum mechanics,when physicists and chemists had a。

群论(1)第三章

群论(1)第三章

2
3.3 SO(3)群的欧拉角表示
绕n轴转动w角也可通过下述步骤实现
1. 绕z轴转动alpha角 R(ez; ®)~r = ~r 0; 0 · ® < 2¼
2. 绕y’轴转动beta角 R(e0y; ¯)~r 0 = ~r 00; 0 · ¯ · ¼
3. 绕z’’轴转动gamma角 R(e0z0; °)~r 00 = ~r 000; 0 · ° < 2¼
y
¡ sin μ
0
cos μ
Á
x
三维转动群的基础表示
R(n^; w) = S(μ; Á)R(ez; w)S¡1(μ; Á)
0
=
B@
n2x(1 ¡ cos w) + cos w nxny(1 ¡ cos w) + nz sin w
nxny(1 ¡ cos w) ¡ nz sin w n2y(1 ¡ cos w) + cos w
¡i 2
(a2
¡
a¤2
+
b2
¡
b¤2)
1 2
(a2
+
a¤2
+
b2
+
b¤2)
i(a¤b ¡ ab¤)
nxnz(1 ¡ cos w) ¡ ny sin w nynz(1 ¡ cos w) + nx sin w
1 nxnz(1 ¡ cos w) + ny sin w nynz(1 ¡ cos w) ¡ nx sin w CA
n2z(1 ¡ cos w) + cos w
nx = sin μ cos Á; ny = sin μ sin Á; nz = cos μ
二维幺模幺正矩阵

三维旋转群SO(3)

三维旋转群SO(3)
r R z ()R y ()R z ( )r R(, , )r
其中
R(, , ) R z ()R y ()R z ( ) cos sin 0 cos 0 sin cos sin 0 sin cos 0 0 1 0 sin cos 0 0 sin 0 cos 0 0 1 0 1
1
采用欧勒角描述SO(3)群的转动时,其转动方 式如下: (1) 先将坐标系绕z轴转 角,这时矢量 r 变 为 r ,其矩阵形式为: 其中
r R z ()r
cos sin 0 R z ( ) sin cos 0 0 0 1
SO(3)群是三参数 [ 2 n(n - 1), n 3] 的李群,在§4.5节 例3中,我们曾求得SO(3)群的群元素. 在那里,三个 群参数选为坐标系绕三个坐标轴的三个转角 1 、 2 、 2 . 在实际应用中,人们通常取三个欧勒角 ( ) 作 为SO(3)群的群参数. 这一节,我们将导出该情况下, SO(3)群的群元素的具体形式. 1
(1)
(2) 接着绕新坐标系的 为 r ,其矩阵形式为: r R y ()r
y
轴转 角,变矢量 r
(2)

2
显然
R y () Rz ()R y ()Rz ()
1
(3)
这样绕新坐标系 y 轴的转动,变成绕原坐标系坐 标轴的转动,其中
cos 0 sin R y () 0 1 0 sin 0 cos
a b 1
2 2
(1)
6
SU(2)群与SO(3)群一样也是一个三参数李群. SO(3)与SU(2)两群间存在着同态关系,具体地 说就是SO(3)群中的一个元素对应于SU(2)群中的两 个元素,下面我们来证明这一结论. 设三维空间矢量 r 的分量为 ( x 1, x 2 , x 3 ) . 它与 泡利矩阵的点积为:

视觉SLAM十四讲 第四讲 李群与李代数

视觉SLAM十四讲 第四讲 李群与李代数

18 4.1 李群李代数基础
• 请读者验证 so(3) 和 se(3) 满足李代数各性质。 • 注:
• 不同书籍对se(3)的平移/旋转分量的先后顺序定义不同。这里使用平移在前的方式,也 有地方是旋转在前的。
• 把李代数理解成向量形式或矩阵形式都是可以的。向量形式更加自然一些。
19
4.2 指数映射和对数映射反对称符号来自• 两侧右乘R(t),得
• 可以看到,对R求导后,左侧多出一个
13 4.1 李群李代数基础

14 4.1 李群李代数基础
• 该式说明,对任意t,都可以找到一个R和一个 的对应关系
• 该关系称为指数映射(Exponential Map)
• 这里的
称为SO(3)对应的李代数:so(3)
• 问题:
• so(3)的定义和性质? • 指数映射如何求?
15 4.1 李群李代数基础
• 李代数(Lie Algebra):
• 每个李群都有与之对应的李代数。李代数描述了李群单位元数的正切空间性质。
16 4.1 李群李代数基础
• 其中二元运算[,]被称为李括号(Lie Bracket)。
• 直观上说,李括号表达了两个元素的差异。
• 完整形式非常复杂,见:https:///wiki/Baker-Campbell-Hausdorff\_formula
• 部分展开式:(方括号为李括号)
28 4.3 李代数求导与扰动模型
• 当其中一个量为小量时,忽略其高阶项,BCH具有线性近似形式:
• 这里的
左乘雅可比
• 通常记作小写的so(3)和se(3)。书中以哥特体突出显示。
• 事实上是李群单位元处的正切空间。
• 李代数的引出:

SU(2)群和SU(3)群及其在物理中的应用

SU(2)群和SU(3)群及其在物理中的应用


1
李群简介
李群定义 我们所讨论的拓扑群所在的拓扑空间 G 与 R × R × L × R = R r 实空间之 间 存 在 着 1-1 对 应 有 映 射 g : R r → G 使 g ( a1, a 2 , L , a r ) ∈ G
a i ∈ R, i = 1, 2,3, L , r g ( a ) = g ( a1 , a2 , L, ar )
' 8
′ ′′ 再作变换得到 X ′ 4 和 X8 1 0 0 ′ 0 − 1 0 X′ 4 = 0 0 0 三
1
1 0 0 1 ′′ = X8 0 1 0 3 0 0 − 2
作为 SU(3)群的无穷小产生子
自旋合同位旋
自旋 我们都知道电子有自旋 儿自旋变量只能取 ±
α, β 是连续可微的函数 满足 γ = f (α, β) 和 γ = f (γ ,0) = f ( 0, γ ) g ( a ) −1
其 参 量 为 a' 则 0 = f (a , a ' )
对于逆元
最后乘法的结合律要求
g (α)( g ( β) g (γ )) = ( g (α) g ( β)) g (γ ) ⇒ f [α, f ( β, γ )] = f [ f (α, β), γ ] 并且 f
ai = 0
0 i = − i 0
0 − 1 = 1 0 i 0 ai = 0 = 0 − i
ai =0
它们之间有对易式 将 X i 乘以
[X , X ] = 2ε
i j
ijk
Xk
分别为
2 i
X i 变为 Pauli 矩阵 σi

李代数知识点总结

李代数知识点总结

李代数知识点总结李代数的概念是由挪威数学家Sophus Lie提出的。

它是一种在向量空间上定义的代数结构,它可以用来描述连续对称性,例如旋转、对称变换等。

李代数的基本概念是李括号(Lie bracket)和李群(Lie group), 其中李括号是在向量空间上定义的二元运算,满足一定的性质。

在这篇文章中,我们将介绍李代数的基本知识和重要性质,包括定理和应用。

同时,我们也将介绍李代数在数学、物理和工程中的应用,并讨论李代数的未来发展方向。

一、李代数的基本定义和性质1. 定义:李代数是定义在一个向量空间上的一种代数结构,它是一个满足以下性质的向量空间和二元运算的组合:(1)封闭性:对于任意两个元素x, y∈V,它们的李括号[x, y]∈V;(2)双线性:李括号[x, y]是关于x和y线性的;(3)对称性:李括号的对称性[x, y] = −[y, x];(4)Jacobi等式:对任意的x, y, z∈V,李括号满足Jacobi等式[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0。

2. 李代数的例子:一个最简单的李代数是一维向量空间R上的李代数,它的李括号可以定义为对任意的x, y∈R,[x, y] = 0。

另一个例子是三维欧几里得空间R^3上的李代数,它的李括号可以定义为对任意的x=(x1, x2, x3), y=(y1, y2, y3)∈R^3,[x, y] = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1)。

3. 李代数的性质:李代数有许多重要的性质,其中最重要的是Lie括号的Jacobi等式,它保证了李代数的代数结构的稳定性。

李代数还有一些其他的重要性质,例如子代数、理想、李代数的同态等。

二、李群和李代数的关系李代数和李群是紧密相关的数学结构,它们之间有着密切的联系和相互作用。

李群是一种拓扑群,它在局部上是类似于欧几里得空间的群结构,而李代数是李群在单位元上的切空间结构。

群论-4 三维转动群

群论-4 三维转动群
物理学中的群论
—— 三维转动群
主讲 翦知渐
ห้องสมุดไป่ตู้
群论-三维转动群
第四章 三维转动群
三维转动群及其表示
§4.1 §4.2 §4.3 §4.4 拓扑群和李群 轴转动群SO(2) 三维转动群SO(3) 二维特殊幺正群SU(2)
群论-三维转动群-拓扑群和李群
返回
§4.1 拓扑群和李群
——连续群的基本概念
无限群分为分立无限群和连续无限群 有关有限群的理论对于分立无限群来说几乎全部成立 连续群的元素个数是不可数的 1 连续群的定义 连续群G的元素由一组实参数a1, a2, …, an 确定 ——该组参数对标明群的所有元素是必需的而且足够的 其中至少有一个参数在某一区域上连续变化 该组参数中连续参数的个数 l 称为连续群的维数
取逆法则的连续性:对于任意元素x, 其邻域中的任何元素的逆均属于其逆x-1 的邻域
群论-三维转动群-拓扑群和李群
返回
简单群和混合群 拓扑群G的任意两个元素x1和x2在参数空间中如果能用一条或 者多条道路连接(道路连通),则该群的参数空间是连通的, 该群称为连通群或简单群。 若群的参数空间形成不相连结的若干片,则该群称为混合群。 连通群:三维转动群SO(3) 混合群:三维实正交群O(3) ;{T(a, b)} 多重连通群 简单群根据其参数空间的拓扑,进一步分为单连通和多连通 的。若任意群元在参数空间中的连通道路恰有k条,并且它们 不能通过在参数空间内部的连续形变而重合,则称该群为k重 连通。k称为连通度。 双连通
群论-三维转动群-轴转动群SO(2)
返回
4) T(ϕ)是一个作用在函数f(x, y)上的转动变换,函数f(x, y)定 义于(x, y)平面上,而转动轴为z轴:

李群中的三维旋转群

李群中的三维旋转群

李群中的三维旋转群1、群的定义群的定义:设G 是一个集合,若满足下面四个条件,则称G 为一个群(Group )。

(1) G 中有一种对应规则(通称为乘法):对G 中任意二元素g ,h ∈G ,对应G 中的一元素k (称为g 与h 之乘积)记为,k=g ▫h (或gh )。

此性质称为群乘法的封闭性。

(2) 乘法满足结合律:对G 中任意三元素g ,h ,k 满足:(gh)k=g(hk)。

(3) G 中存在一个幺元e ,使对G 中任意元素g ,均有:ge=eg=g 。

(4) G 中每一元素g ,均存在一个逆元g -1,使g g -1= g -1g=e 。

群的乘法一般不满足交换律。

若一群G 的任意两个元素的乘法均可交换:gh=hg ,∀g ,h ∈G ,则称G 为可交换群或Abel 群。

2、 什么是李群Lie 群的定义:设G 是一个r 维流形,同时G 又是一个群,其幺元记为e 。

因e 又是流形G 中的一点,所以可取定一个包含e 的局部坐标领域U ;在U 中取定坐标系{U ,φ}。

设取e 为坐标原点;()(0,0,,0)e ϕ=对U 中的三元素g ,h ,k ,设其坐标分别为121212()(,,,)()(,,,)()(,,,)r r r g x x x h y y y k z z z ϕϕϕ=== 则群的乘法k=gh 可以用相应的坐标来表示:121212()(,,,)()(,,,)()(,,,)r r r g x x x h y y y k z z z ϕϕϕ=== 111212221212331212(,,,;,,,),(,,,;,,,),(,,,;,,,).r r r r r r z f x x x y y y z f x x x y y y z f x x x y y y ===在上式不至引起混淆可记为(,)z f x y =,我们要求这r 个函数12,,,r f f f是无限次可导的,即光滑的。

3.2李群的基本概念

3.2李群的基本概念

因此,若在群空间中,代表元素R的点与
E
代表恒元E的点可以通过一条完全在群空间 R
内的连续曲线相连结,则R可表示为无穷多个
无202穷0/2/6小元素的乘积
(2) 群元素 简单李群:群元素可表示为无穷多个无穷小元素的乘积
混合李群:除无穷小元素外,还需在群空间每一个连续片 给出一个特殊元素(包括恒元),它们的乘积才能表示出 任意群元素
(A)ax (x) j 0xa
引入g个微量微分算符,它们线性无关
I(j0) i
a
(Ax)a j 0 xa
g
PA(x)(x)i jI(j0)(x) j1
这样 李群中无穷多个无穷小元素对标量函数的作用 就 可以用g个微量微分算符I(0)j完全描写
A(α) A,B是无穷小元素,但不一定很小, B(β) 参数α,β是无穷小量
李群无穷小元素的性质决定了李群的局域性质
2020/2/6
2. 局域性质 ➢无穷小元素与任意元素R的乘积,是R的邻近元素
乘积的参数在元素R参数的邻域中
➢R的邻近元素和R-1相乘,得到无穷小元素
➢粗略地说,无穷多个无穷小元素相继乘到群元素上,在 群空间表现为 由元素R对应点出发的一条连续曲线
2020/2/6
二、李群的局域(Local)性质
1. 邻近元素 在群空间中,邻近的点对应的元素为邻近元素
无穷小元素 因常把恒元的参数选为零,恒元邻近的元素,参数是无 穷小量,称为无穷小元素 注意:不要把无穷小元素看成是一个很小的元素
无穷小量是一个极限过程 无穷小元素与群元素的微分运算相联系
E(e)
空间是连通的 简单连续群:群空间是连通的连续群
B A
如 SO(3)群,又称简单李群

第一章 李群的概要_2

第一章  李群的概要_2

令 iJ z , 则 J z i ( x

y x 这是角动量Z分量算符(ħ =1)
y

)
ex.3 x1 1 x1 2 x2 f 1 ( x1 x2 a ); x2 3 x1 4 x2 f 2 ( x1 x2 a )
单位元:1= 4=1, 2= 3=0 在此附近展开
r
ˆ 当并不很小时而很大时。 P 此算子使g(0)变到g(/N) r 在 点上 g g 0 i i g 0 群空间
N
k 1
N

i 1
N

2 g g N N
r i g 0 i g N N i 1
a * b b * a
(有三个独立参量,a,b是复数) a,b很小
1 2 1 2 2 u i v 1 3 2 i
b 1 a g a , b I ( a , b ) * b 1 a*

i i 1 u du u 3u 2 1 v f u u , v , 1 , 2 , 3 2 2 2
i i 1 v dv v 2 1 u 3 v f v u , v, 1 , 2 , 3 2 2 2 f u i u u1 v 1 { } 0 2
定轴转动
0 1 无穷小生成元 dg 0 1 0 d 1 0 0 g e 0 1 0 令 ,则
N

李群方法

李群方法

经典李群概述及其应用第一部分群论简介及发展1.1 对群论的认识群论起源于对代数方程的研究,它是人们对代数方程求解问题逻辑考察的结果。

群理论被公认为十九世纪最杰出的数学成就之一。

最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大的影响,同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响。

在数学和抽象代数中,群论研究名为群的代数结构。

群在抽象代数中具有基本的重要地位:许多代数结构,包括环、域和模等可以看作是在群的基础上添加新的运算和公理而形成的。

群的概念在数学的许多分支都有出现,而且群论的研究方法也对抽象代数的其它分支有重要影响。

群论的重要性还体现在物理学和化学的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构可以用群论方法来进行建模。

于是群论和相关的群表示论在物理学和化学中有大量的应用。

时至今日,群的概念已经普遍地被认为是数学及其许多应用中最基本的概念之一。

它不但渗透到诸如几何学、代数拓扑学、函数论、泛函分析及其他许多数学分支中而起着重要的作用,还形成了一些新学科如拓扑群、李群、代数群、算术群等,它们还具有与群结构相联系的其他结构如拓扑、解析流形、代数簇等,并在结晶学、理论物理、量子化学以至(代数)编码学、自动机理论等方面,都有重要的应用。

作为推广“群”的概念的产物:半群和幺半群理论及其近年来对计算机科学和对算子理论的应用,也有很大的发展。

群论的计算机方法和程序的研究,已在迅速地发展。

今天,群论经常应用于物理领域。

基础物理中常被提到的李群,就类似与伽罗瓦群被用来解代数方程,与微分方程的解密切相关。

在物理上,置换群是很重要的一类群。

置换群包括3S群,二维旋转群,三维旋转群以及和反应四维时空相对应的洛仑兹群。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

李群中的三维旋转群
1、
群的定义
群的定义:设G 是一个集合,若满足下面四个条件,则称G 为一个群(Group )。

(1) G 中有一种对应规则(通称为乘法):对G 中任意二元素g ,h ∈G ,对应
G 中的一元素k (称为g 与h 之乘积)记为,k=g ▫h (或gh )。

此性质称为群乘法的封闭性。

(2) 乘法满足结合律:对G 中任意三元素g ,h ,k 满足:(gh)k=g(hk)。

(3) G 中存在一个幺元e ,使对G 中任意元素g ,均有:ge=eg=g 。

(4) G 中每一元素g ,均存在一个逆元g -1,使g g -1= g -1g=e 。

群的乘法一般不满足交换律。

若一群G 的任意两个元素的乘法均可交换:gh=hg ,∀g ,h ∈G ,则称G 为可交换群或Abel 群。

2、 什么是李群
Lie 群的定义:设G 是一个r 维流形,同时G 又是一个群,其幺元记为e 。

因e 又是流形G 中的一点,所以可取定一个包含e 的局部坐标领域U ;在U 中取定
坐标系{U ,φ}。

设取e 为坐标原点;
()(0,0,,0)e ϕ=
对U 中的三元素g ,h ,k ,设其坐标分别为
121212()(,,,)
()(,,,)()(,,,)
r r r g x x x h y y y k z z z ϕϕϕ=== 则群的乘法k=gh 可以用相应的坐标来表示:
121212()(,,,)()(,,,)()(,,,)
r r r g x x x h y y y k z z z ϕϕϕ=== 111212221212331212(,,,;,,,),(,,,;,,,),(,,,;,,,).
r r r r r r z f x x x y y y z f x x x y y y z f x x x y y y ===
在上式不至引起混淆可记为(,)z f x y =,我们要求这r 个函数12,,,r f f f
是无限
次可导的,即光滑的。

这r 个函数称为G 的乘法函数。

它完全确定了群G 的结构。

这样的群G 就称为一个r 维Lie 群。

惩罚函数的基本性质:
(1) 因为幺元e 的坐标为(0,0,,0) ,所以ex xe x ==,用坐标表示出来就是:
1212(,,,;0,0,,0)(0,0,,0;,,,),1,2,,j r j r j f x x x f x x x x j r === 这以关系可简记为(,0)(0,)f x f x x ==。

(2) 群的乘法满足结合律要求;()()gh k g hk =,用坐标表示出就是;
1111111211111((,,,;,,),,(,,,;,,);,,)(,,,;(,,;,,,),,(,,;,,,))1,2,,j r r r r r r j r r r r r r f f x x y y f x x y y z z f x x x f y y z z f y y z z j r
== (3) G 的每一个元素g 都有唯一的逆元g -1,g -1设的坐标为1(,,)r x
x ,则关系式g g -1= g -1g=e 用坐标表示出就是;
1111(,,;,,)(,,;,,)01,2,,j r r j r r f x x x x f x x x x j r
===
这一关系可简记为(,)(,)0f x x
f x x == 。

直接用乘法函数来研究Lie 群是相当困难的、复杂的。

Lie 的重要贡献在于引进了无穷小变换的概念,使问题大大简化。

这就是Lie 代数的理论。

3、 李群中的三维旋转群
三维旋转群SO (3)。

三维空间饶固定点的一个转动g ∈SO (3),可用单位向量
n
表示其转动轴
OP 的方向,一实数θ表示饶OP 转动的角度。


是g 可用(,)n θ
来确定。

由于空
间单位向量n
由两个独立参数确
定,所以SO (3)的元素由三个独立参数所确定。

因空间任意转动可绕某一轴绕顺时针方向转动一个角度(0)θθπ≤≤来完成。

所以SO (3)可以用一个以π

半径的球来表示。

此球内的一点Q 表示一个绕OQ 为轴转动角度为OQ 的转动。

但要注意,此球面上的对径点对应的是群SO (3)的同一个元素,即0(,)n π
与0(,)n π-
表示同一转动。

所以我们可以用一个半径为π,并将球面的对径点叠合起来的球来表示SO (3)。

这样的模型对研究群SO (3)的整体构造非常有用,(利用这一模型不难证明SO (3)作为一个流行不是单连通的),但对处理一些实际问题却很不方便。

通常对SO (3)我们习惯用Euler 角(,,)θϕψ来描述一个
转动。

如图(,,)(,,)g x y z x y z '''−−→
用矩阵表示出:
11
121311
121321
222321
22
2331
32
3331
32
33,g g g x g g g x g g g g y g g g y g g g z g g g z '⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪'== ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪'⎝⎭⎝⎭⎝⎭⎝⎭
现在用Euler 角来表示出ij g :
cos sin 0sin cos 000
1z g ϕϕϕϕ
ϕ-⎛⎫ ⎪= ⎪ ⎪⎝

1
000
cos sin 0sin cos x g θθθθθ⎛⎫ ⎪=- ⎪ ⎪⎝⎭ cos sin 0sin cos 000
1z g ψψψ
ψ
ψ-⎛⎫ ⎪= ⎪ ⎪⎝

于是:
cos cos cos sin sin cos sin cos sin cos sin sin sin cos cos sin sin sin sin cos sin cos cos sin sin sin cos sin cos z x z g g g g ψθϕ
ψϕθψϕ
ψϕθψϕψθψϕθψϕ
ψϕθψϕ
ψθϕθϕθ
θ---⎛⎫

==+-+- ⎪
⎪⎝

因此SO (3)的元素也可由(,,)θϕψ三个独立参数(坐标)确定。

可知SO (3)是一个三维不可交换Lie 群。

为了便于今后将SO (3)推广到n 维的情况,我们再介绍另一种刻划SO (3)的方法。

三维欧式空间3 的内积:
1231233
112233
1(,,),(,,),j j j x x x x y y y y x y x y x y x y x y =====++∑
线性变换:()ij g g = 1112131
21222323132333
g g g g x x x g x g g g x g g g x ⎛⎫⎛⎫ ⎪ ⎪'−−→== ⎪ ⎪
⎪ ⎪⎝⎭⎝⎭ 3(3),,,,detg>0g SO gx gy x y x y ∈⇔=∀∈ 且 通过直接计算不难验证:,,t gx gy x g gy =
这里t g 表示g 的转置,即t
ij ji g g =。

由3,,,,t x g gy x y x y =∀∈
即得:t g g I =,这里100010001I ⎛⎫

= ⎪ ⎪⎝⎭
——单位矩阵。

所以,(3),det 0.t t g SO g g gg I g ∈⇔==>
(仅满足t t g g gg =的线性变换所构成的群称为O (3)——正交群,SO (3)也称为特殊正交群)
3阶矩阵g 共有9个元素(实参数),条件t t g g gg I ==具体写出来,共有6个方程要满足:
3
13
1
1,1,2,3
0,ij ij
j ij ij
j g g
i g g
i k
=====<∑∑
所以ij g 9个元素中可以选取3个作为独立参数。

这又一次阐明了SO (3)是一个三维Lie 群。

相关文档
最新文档