干空气物理性质表

合集下载

第二节 空气的物理性质

第二节  空气的物理性质

第二节 空气的物理性质、气体状态方程及流动规律一、空气的组成成份及空气的物理性质1.空气的组成成份大气中的空气主要是由氮、氧、氩、二氧化碳,水蒸气以及其它一些气体等若干种气体混合组成的。

含有水蒸气的空气为湿空气。

大气中的空气基本上都是湿空气。

而把不含有水蒸气的空气称为干空气。

在距地面20 km 以内,空气组成几乎相同。

在基准状态(0℃,绝对压力为101325 Pa ,相对湿度为0)下地面附近的干空气的组成见表11-1。

空气中氮气所占比例最大,由于氮气的化学性质不活泼,具有稳定性,不会自燃,所以空气作为工作介质可以用在易燃、易爆场所。

2.空气的密度单位体积空气的质量,称为空气的密度ρ(kg/m 3),其公式为ρ =m / V (11-1)式中 ρ — 空气密度;m — 空气的质量(kg );V — 空气的体积(m 3)。

气体密度与气体压力和温度有关,压力增加,密度增加,而温度上升,密度减少。

在基准状态下,干空气的密度为 1.293 kg/m 3,在温度 t (℃)、压力(MPa )下的干空气的密度可用下式计算(11-2) 式中 ρ0 — 基准状态下的干空气密度;p — 绝对压力(MPa );ρ — 干空气的密度;t — 温度(℃),其中(273+t )为绝对温度(K )。

对于湿空气的密度可用下式计算(11-3)式中 ρ' — 湿空气的密度;p — 湿空气的全压力(MPa );φ — 空气的相对湿度(%);p b — 温度为t ℃时饱和空气中水蒸气的分压力(MPa )。

3.空气的粘性空气在流动过程中产生的内摩擦阻力的性质叫做空气的粘性,用粘度表示其大小。

空气的粘度受压力的影响很小,一般可忽略不计。

随温度的升高,空气分子热运动加剧,因此,空气的粘度随温度的升高而略有增加。

粘度随温度的变化关系见表11-2。

气体与液体和固体相比具有明显的压缩性和膨胀性。

空气的体积较易随压力和温度的变化而变化。

例如,对于大气压下的气体等温压缩,压力增大0.1 MPa ,体积减小一半。

空气比热容温度对照表

空气比热容温度对照表

干空气的物理性质温度t/ 0x09密度p /kg -3比定压热容cp/kJ •-kgy\x09 导热系数入/102W・m-1 •41\x09 粘度止/105Pa &09普兰德数Pr质量的物质,在温度升高时,所吸收的热量与该物质的质量和升高的温度乘积之比,称做这种物质的比热容(比热),用符号c表示。

其国际单位制中的单位是焦耳每千克开尔文或焦耳每千克每摄氏度。

J 是指焦耳,K是指热力学温标,即令 1 千克的物质的温度上升(或下降)1 开尔文所需的能量。

根据此定理,便可得出以下公式:Q 为吸收(或放出)的热量;m是物体的质量,AT是吸热(或放热)后温度的变化量,初中的教材里把AT写成At,其实这是不规范的(我们生活中常用C作为温度的单位,很少用K,而且△ T=A t ,因此中学阶段都肥t ,但国际或更高等的科学领域仍用AT)。

物质的比热容与所进行的过程有关。

在工程应用上常用的有定压比热容Cp、定容比热容Cv和饱和状态比热容三种。

定压比热容Cp:是单位质量的物质在压力不变的条件下,温度升高或下降1 ℃或1K 所吸收或放出的能量。

定容比热容Cv:是单位质量的物质在容积(体积)不变的条件下,温度升高或下降 1 ℃或1K 吸收或放出的能量。

饱和状态比热容:是单位质量的物质在某饱和状态时,温度升高或下降1 C或1K所吸收或放出的热量。

比热容是指没有相变化和化学变化时,一定量均相物质温度升高1K所需的热量利用比热容的概念可以类推出表示1mol物质升高1K所需的热量的摩尔热容。

与比热相关的热量计算公式:Q=cmA T Q吸(放)=cm(T初-T末)其中c为比热,m为质量,Q为能量热量。

吸热时为Q=cm A T升(用实际升高温度减物体初温),放热时为Q=cm AT降(用实际初温减降后温度)。

或者Q=cmA T=cm(T 末-T初),Q>0时为吸热,Q<0时为放热。

传热实验(化工原理实验)

传热实验(化工原理实验)

传热实验一、实验目的1、熟悉套管换热器、列管换热器的结构及操作方法;2、通过对套管换热器空气-水蒸汽传热性能的实验研究,掌握对流传热系数的测定方法;3、确定套管传热管强化前后内管中空气的强制湍流换热关联式,并比较强化传热前后的效果;4、通过对列管换热器传热性能实验研究,掌握总传热系数K 的测定方法,并对变换面积前后换热性能进行比较。

二、实验原理1、普通套管换热器传热系数测定及准数关联式的确定:(1)对流传热系数i α的测定:对流传热系数i α可以根据牛顿冷却定律,通过实验来测定。

i i i mQ S t α=⨯⨯∆(1)i i m iQ t S α=∆⨯(2)式中:i α—管内流体对流传热系数,W/(m 2·℃);i Q —管内传热速率,W ;i S —管内换热面积,m 2;m t ∆—壁面与主流体间的温度差,℃。

平均温度差由下式确定:m w t t t∆=-(3)式中:t —冷流体的入口、出口平均温度,℃;w t —壁面平均温度,℃。

因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,w t 用来表示,由于管外使用蒸汽,所以w t 近似等于热流体的平均温度。

管内换热面积:i i iS d L π=(4)式中:i d —内管管内径,m ;i L —传热管测量段的实际长度,m 。

由热量衡算式:21()i i pi i i Q W c t t =-(5)其中质量流量由下式求得:3600i i i V W ρ=(6)式中:i V —冷流体在套管内的平均体积流量,m 3/h ;pi c —冷流体的定压比热,kJ/(kg·℃);i ρ—冷流体的密度,kg/m 3;pi c 和i ρ可根据定性温度查得,122i i m t t t +=为m 冷流体进出口平均温度;1i t 、2i t 、w t 、i V 可采取一定的测量手段得到。

(2)对流传热系数准数关联式的实验确定:流体在管内作强制湍流,被加热状态,准数关联式的形式为:m ni i i Nu ARe Pr =(7)其中:i i i i d Nu αλ=,i i i i i u d Re ρμ=,pi i i ic Pr μλ=。

空调系统自动化原理

空调系统自动化原理
空调系统自动化原理
3、冷冻水循环泵、冷却水循环泵
冷冻水循环泵将从空调前端设备返回的冷冻水(一般为 12℃)加压送入冷冻机,在冷冻机内进行热交换、释 放热量、降低温度后离开冷冻机(一般为7℃ ),到达 空调前端设备进行热交换,实现降温调节,再循环返回 冷冻机。
2、水汽分压力pc:大小反映了水汽的多少,是空 气湿度的一个指标。
p pg pc
3、温度t或T:反映了空气分子热运动的剧烈程度, 表示空气冷热程度的指标。 T=273+t
空调系统自动化原理
4、湿度: (1)绝对湿度x:1m3湿空气中含有的水汽量(单位为
kg),与水汽分压力的关系 xpc/(RcT)
Rc是水汽的气体常数,等于461J/(kg.K)
(2)含湿量d:1kg空气含有的水汽量(单位为g)
(3)相对湿度Ψ:表示空气湿度接近饱和绝对湿度的程度, 饱和绝对湿度指空气中的水汽超过了最大限度,多余的水 汽开始发生凝结的水汽量。
5、露点温度t1:空气由某一温度降至另一适当温度时,其 相对湿度就达到100%,空气中的水汽便凝结成水--结 露,这个降低后的温度为露点温度。
选择根据:建筑物用途、负荷大小和变化情况、 制冷机特性、电源、热源和水源情况、初次建 设投资、运行费用、维护保养、环保和安全等 因素。
空调系统自动化原理
(1)压缩式制冷机: 原理: 制冷量:是制冷剂在蒸发器中进行相变时所吸收的汽化潜热。 以电为能源
(2)吸收式制冷机 以热为能源 制冷剂——溴化锂水溶液(水为制冷剂、溴化锂为吸收剂) 制冷范围不如压缩式。
统、空气--水系统 。

其他分类:定风量空调系统、变风量空调系统。
空调系统自动化原理
3.4.2、 空调系统的组成

空气比热容温度对照表

空气比热容温度对照表

干空气的物理性质温度t/℃\x09密度ρ/kg·m-3比定压热容cp/kJ·kg-1·K-1\x09导热系数λ/10-2W·m-1·K-1\x09 粘度μ/10-5Pa·s\x09普兰德数Pr质量的物质,在温度升高时,所吸收的热量与该物质的质量和升高的温度乘积之比,称做这种物质的比热容(比热),用符号c表示。

其国际单位制中的单位是焦耳每千克开尔文或焦耳每千克每摄氏度。

J是指焦耳,K是指热力学温标,即令1千克的物质的温度上升(或下降)1开尔文所需的能量。

根据此定理,便可得出以下公式:Q为吸收(或放出)的热量;m 是物体的质量,ΔT是吸热(或放热)后温度的变化量,初中的教材里把ΔT写成Δt,其实这是不规范的(我们生活中常用℃作为温度的单位,很少用K,而且ΔT=Δt,因此中学阶段都用Δt,但国际或更高等的科学领域仍用ΔT)。

物质的比热容与所进行的过程有关。

在工程应用上常用的有定压比热容Cp、定容比热容Cv和饱和状态比热容三种。

定压比热容Cp:是单位质量的物质在压力不变的条件下,温度升高或下降1℃或1K所吸收或放出的能量。

定容比热容Cv:是单位质量的物质在容积(体积)不变的条件下,温度升高或下降1℃或1K吸收或放出的能量。

饱和状态比热容:是单位质量的物质在某饱和状态时,温度升高或下降1℃或1K所吸收或放出的热量。

比热容是指没有相变化和化学变化时,一定量均相物质温度升高1K所需的热量。

利用比热容的概念可以类推出表示1mol物质升高1K所需的热量的摩尔热容。

与比热相关的热量计算公式:Q=cmΔT 即Q吸(放)=cm(T初-T末)其中c为比热,m为质量,Q为能量热量。

吸热时为Q=cmΔT升(用实际升高温度减物体初温),放热时为Q=cmΔT降(用实际初温减降后温度)。

或者Q=cmΔT=cm(T末-T初),Q>0时为吸热,Q<0时为放热。

干空气物理性质表

干空气物理性质表
500
600
700
800
900
1000
1100
1200
湿空气的性质
温度( ℃ )
湿度
(kg/kg
干空气)
水蒸气压
(kN/m 2 )水分浓度(kg/m 3 )汽化焓
(kJ/kg)
湿焓
(kJ/kg
干空气)
湿容积(m 3 /kg
干空气)
动粘度
(106 m2 /s)
湿热
(10 -3 kJ/kg)
导热系数
(W/m · K)
水分扩散系数
(106 m2 /s)
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100




02380
水的物理性质
温度
( ℃ )
饱和蒸汽压
(kPa)
密度
(kg/m 3 )

(kJ/kg)
比热
kJ/(kg ?℃ )
导热系数λ×10 2 (W/ m ·℃ )
粘度
μ×10 5 (Pa ? a)
体积膨胀系数β×10 4 (1/ ℃ )

空气比热容温度对照表

空气比热容温度对照表
160\x090.815\x091.026\x093.640\x092.45\x090.682
180\x090.779\x091.034\x093.780\x092.53\x090.681
200\x090.746\x091.034\x093.931\x092.60\x090.680
250\x090.674\x091.043\x094.268\x092.74\x090.677
10\x091.247\x091.009\x092.512\x091.76\x090.705
20\x091.205\x091.013\x092.593\x091.81\x090.703
30\x091.165\x091.013\x092.675\x091.86\x090.701
40\x091.128\x091.013\x092.756\x091.91\x090.699
1000\x090.277\x091.139\x098.071\x094.90\x090.719
1100\x090.257\x091.152\x098.502\x095.12\x090.722
1200\x090.239\x091.164\x099.153\x095.35\x090.724
300\x090.615\x091.047\x094.605\x092.97\x090.674
350\x090.566\x091.055\x094.908\x093.14\x090.676
400\x090.524\x091.068\x095.210\x093.30\x090.678
500\x090.456\x091.072\x095.745\x093.62\x090.687
干空气的物理性质
温度t/℃\x09密度ρ/kg·zhim-3

空气中的各种气体

空气中的各种气体

空气中的各种气体目录Menu一、氮气(N2)二、氧气(O2)三、二氧化碳(CO2)四、稀有气体(氦气、氖气、氩气、氙气等)(He、Ne、Ar、Xe)一、氮气的发现氮气在大气中虽多于氧气,由于它的性质不活泼,所以人们在认识氧气之后才认识氮气的。

不过它的发现却早于氧气。

1775年英国化学家布拉克(Black,J.1728-1799)发现碳酸气之后不久,发现木炭在玻璃罩内燃烧后所生成的碳酸气,即使用苛性钾溶液吸收后仍然有较大量的空气剩下来。

后来他的学生D·卢瑟福继续用动物做实验,把老鼠放进封闭的玻璃罩里直至其死后,发现玻璃罩中空气体积减少1/10;若将剩余的气体再用苛性钾溶液吸收,则会继续减少1/11的体积。

D·卢瑟福发现老鼠不能生存的空气里燃烧蜡烛,仍然可以见到微弱的烛光;待蜡烛熄灭后,往其中放入少量的磷,磷仍能燃烧一会,对除掉空气中的助燃气来说,效果是好的。

把磷燃烧后剩余的气体进行研究,D·卢瑟福发现这气体不能维持生命,具有灭火性质,也不溶于苛性钾溶液,因此命名为“浊气”或“毒气”。

在同一年,普利斯特里作类似的燃烧实验,发现使1/5的空气变为碳酸气,用石灰水吸收后的气体不助燃也不助呼吸。

由于他同D·卢瑟福都是深信燃素学说的,因此他们把剩下来的气体叫做“被燃素饱和了的空气”。

二、氮气的制法1、工业制法工业规模制氮有三类:即深冷空分制氮、变压吸附制氮和膜分离制氮。

利用各空气的沸点不同使用液态空气分离法,将氧气和氮气分离。

将装氮气的瓶子漆成黑色,装氧气的漆成蓝色。

工作流程是:空气经压缩机压缩,进入冷干机进行冷冻干燥,以达到变压吸附制氮系统对原料空气的露点要求。

再经过过滤器除去原料空气中的油和水,进入空气缓冲罐,以减少压力波动。

最后,经调压阀将压力调至额定的工作压力,送至二台吸附器(内装碳分子筛),空气在此得到分离,制得氮气。

原料空气进入其中一台吸附器,产出氮气,另一台吸附器,则减压解吸再生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水分扩散系数
(106 m2 /s)
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56

70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100




02380
水的物理性质
温度
( ℃ )
饱和蒸汽压
(kPa)
密度
(kg/m 3 )
南京
73
郑州
67
玉门
39
洛阳
63
兰州
57
武汉
76
银川
60
长沙
78
青岛
70
南昌
79
济南
55
桂林
73
西安
66
南宁
76
延安
58
广州
75
太原
57
成都
79
大同
54
自贡
77
西宁
61
重庆
83
乌鲁木齐
56
昆明
71
包头
50
贵州
77
呼和浩特
52
遵义
79
哈尔宾
66
拉萨
42
长春
68
锦州
60
吉林
67
抚顺
71
沈阳
67
合肥
75
500
600
700
800
900
1000
1100
1200
湿空气的性质
温度( ℃ )
湿度
(kg/kg
干空气)
水蒸气压
(kN/m 2 )
水分浓度
(kg/m 3 )
汽化焓
(kJ/kg)
湿焓
(kJ/kg
干空气)
湿容积(m 3 /kg
干空气)
动粘度
(106 m2 /s)
湿热
(10 -3 kJ/kg)
导热系数
(W/m · K)
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
0
+
109
264
58
全国主要城市年平均温度及湿度表
城市
平均温度(℃)
平均相对湿度(% )
城市
平均温度(℃)
平均相对湿度(% )
北京
59
杭州
82
天津
65
福州
76
石家庄
58
厦门
76
宝鸡
78
开封
71
干空气物理性质表()
温度t
( ℃ )
密度ρ
(kg/m 3 )
比热c,
(kJ/kg• ℃ )
导热系数λ× 10 2
(W/m• ℃ )
粘度
μ× 10 5
(Pa•s)
普兰德数
Pr
-50
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
120
140
160
180
200
250
300
350
400

(kJ/kg)
比热
kJ/(kg •℃ )
导热系数λ×10 2 (W/ m ·℃ )
粘度
μ×10 5 (Pa • a)
体积膨胀系数β×10 4 (1/ ℃ )
表面张力σ×10 3 (N/m)
普兰德数
Pr
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
相关文档
最新文档