汽车轮毂模态分析课题
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
wenku.baidu.com
NVH问题概述
1.噪声问题 主要包括发动机噪声、进排气噪声、轮胎噪声、传动 系齿轮啮合噪声、车内板振动噪声,制动噪声等。 2.振动问题 主要包括乘客感觉到的方向盘、底盘和座椅的抖动, 发动机运动件的不平衡旋转和往复运动、曲轴的变动 气体负荷、传动轴万向节变动力矩引起的振动等。 3.声振粗糙度问题 降低乘客感受到的汽车非平稳运动、颠簸、冲击和刺 耳的异常噪声等引起的不舒适问题。
解决NVH问题的方法
1.对振动源和噪声源的控制
改善产生振动和噪声的零部件的结构,改善其振动特性,避 免产生共振;改进旋转原件的平衡;提高零部件的加工精度 和装配质量,减小相对原件之间的冲击与摩擦;改善车身结 构,提高刚度等。
2.对振动和噪声的传递途径控制
采用阻尼元器件减小振动,比如悬架中的扭振减振器,减振 弹簧等;分析改进元件结构,提高密封性能;采用各种隔音 材料的应用,研究隔音结构,提高汽车内部的隔音性能。
轮毂的基本结构
轮毂通常由 轮辋和轮辐 两部分组成
轮辋 轮辐
螺栓孔
中心孔
• 轮辋是汽车轮毂上与轮胎直接接触的部分,起到支撑轮胎 的作用。在轮辋的两侧突起部分有胎圈座和轮缘组成,胎 圈座与轮胎的胎圈直接接触的部分起到支持轮胎半径方向 力的作用;轮缘起到保持并支撑轮胎方向的作用。此外, 轮辋上还有放置轮胎气门嘴的气门孔。 • 轮辐是连接轮辋与中心孔的部分,起到重要承载作用。它 的强度决定了轮毂整体强度。
III. 研究各部件模态频率与发动机阶次激励中的重合点, 防止在重合点出振动噪声放大。
IV. 研究各部件模态频率与路面激振频率的重合,防止 路面激振带来的振动噪声和平顺性问题。 V. 研究人体敏感频率和车身、座椅等系统的频率重合, 增加驾驶员和乘客的舒适度感觉。
汽车结构动态设计
在建立了汽车整车振动模型后,汽车结构的动态 设计成为了可能,其步骤是: 1. 建立汽车整车的振动模型 2. 计算汽车在各种工况下的振动响应 3. 提出改进目标函数,确定应该修改的部件 4. 结构参数修改量的计算
二.模态分析与汽车NVH问题
• NVH概念
NVH是英文noise(噪声)、vibration(振动)、harshness(声振粗糙度)的 缩写。NVH反映的是乘员感受到的噪声、振动以及相关的动态不舒适性。
声振粗糙度描述的是噪声和振动使人不 舒适的感觉,因此有人称之为不平顺性。 总之,它是人体对振动和噪声的主观感 受,与振动和噪声的瞬态性质有关,不 能直接用客观测量方法来度量。
程度上可以明显改善车轮的空 气动力学特性,从而降低一部 分汽车油耗。
辐板式轮毂结构
ABAQUS进行模态分析的具体步骤
基于ABAQUS汽车轮毂模态分析
一.研究汽车模态的意义 二.模态分析与汽车NVH问题 1. NVH概念 2. NVH解决的问题 3. NVH特性研究方法 三. 轮毂实例分析
一.研究汽车模态的意义
I. 使整车中各部件模态分离,防止各部件之间共振引 起的振动噪声问题。
II. 是整车中各部件与发动机的怠速频率分离,防止整 车中部件在怠速时因发动机激振而共振。
NVH特性的研究方法
1.多体系统动力学法 主要应用于底盘悬架系统、转向传动系统低频范围的建模 与分析。 2.有限元法 一方面,可用于研究车身结构振动;另一方面,可用于对 车室内部空腔噪声分析。 3.统计能量分析法 将系统分解为多个子系统,研究他们之间的能量流动和模 态响应的统计特性。适用于结构、声学等系统的动力学分 析。 4.边界元法 研究车体振动和车室内部空腔噪声的声固耦合系统。
目前,普通轿车和轻、中型货车普遍采用辐板式车轮,这种车轮如图 所示,由挡圈、轮辋、辐板和气门嘴伸出口组成。车轮中用以连接轮毂 和轮辋的钢质圆盘称为辐板,大多是冲压制成的,少数是和轮毂铸成一
体,后者主要用于重型汽车。辐板式轮辋是目前应用最为
广泛的轮毂形式,它的特点是 将轮辋和轮辐铸成一体,优点
是质量轻、尺寸精度高、某种
三.轮毂分析实例
为什么进行轮毂模态分析?
轮毂是汽车的重要部件,由于它不但要承受整车的 重量,通过转动的轮胎还要承受水平方向的作用力 和由路面传来的冲击力等交变载荷,制动力也会作 用在轮毂上,如此复杂的工作条件使得对轮毂的要 求越来越高。它直接影响汽车的整体行驶稳定性、 安全性、可靠性、平顺性、牵引性及外观形象,对 汽车整体能源消耗,轮胎的寿命都有较大的影响。
5. 以原整车模型为基础,利用摄动法或者其他 方法导出经过修改过的汽车整车振动模型
模态分析在汽车工程的作用
模态分析的最终目标是识别出整车系统以及子系统的模态参 数,为结构的系统振动特性分析、振动故障诊断和预报以及 结构动力特性的优化设计提供依据。
模态分析的应用可以归结为以下几个方面: ① 评价现有结构系统的动态特性 ② 在新产品设计中进行结构动态特性的预估和优化设计 ③ 诊断及预报结构系统的故障 ④ 控制结构的辐射噪声 ⑤ 识别系统的载荷
轮毂的分类
按车轮材质:可分为钢制、铝合金、镁合金等车轮
• 钢制轮毂最主要的优点就是制造工艺简单,成本相对较低,而 且抗金属疲劳的能力很强,也就是我们俗称的便宜又结实。但 钢质轮毂的缺点也相对比较突出就是外观不够美观,重量较大 惯性阻力大,散热性也比较差,而且非常容易生锈。
• 铝合金材质轮毂重量较轻,惯性阻力小,制作精度高,在高速 转动时的变形小,惯性阻力小,有利于提高汽车的直线行驶性 能,减轻轮胎滚动阻力,从而减少了油耗。合金材质的导热性 能又是钢的三倍左右,散热性好,对于车辆的制动系,轮胎和 制动系统的热衰减都能起到一定的作用。 • 镁合金材质轮毂重量比铝合金还要轻,惯性阻力更小,制作精 度更高,近年来在豪华车型有所应用,不过成本比较高,价格 较贵。
按轮辐分:有辐板式和辐条式两类。 辐条式:
车轮有可分为钢丝辐条式车轮(A)和铸造辐条式车轮(B),A轮辋的 结构和自行车车轮相同,不过由于价格昂贵,且维修安装不方便,故实 际使用并不多;B轮辋是用螺栓和特殊形状的衬块固定在辐条上,它多用 于重型货车上。
钢丝辐条式车轮(A)
铸造辐条式车轮(B)
辐板式:
NVH问题概述
1.噪声问题 主要包括发动机噪声、进排气噪声、轮胎噪声、传动 系齿轮啮合噪声、车内板振动噪声,制动噪声等。 2.振动问题 主要包括乘客感觉到的方向盘、底盘和座椅的抖动, 发动机运动件的不平衡旋转和往复运动、曲轴的变动 气体负荷、传动轴万向节变动力矩引起的振动等。 3.声振粗糙度问题 降低乘客感受到的汽车非平稳运动、颠簸、冲击和刺 耳的异常噪声等引起的不舒适问题。
解决NVH问题的方法
1.对振动源和噪声源的控制
改善产生振动和噪声的零部件的结构,改善其振动特性,避 免产生共振;改进旋转原件的平衡;提高零部件的加工精度 和装配质量,减小相对原件之间的冲击与摩擦;改善车身结 构,提高刚度等。
2.对振动和噪声的传递途径控制
采用阻尼元器件减小振动,比如悬架中的扭振减振器,减振 弹簧等;分析改进元件结构,提高密封性能;采用各种隔音 材料的应用,研究隔音结构,提高汽车内部的隔音性能。
轮毂的基本结构
轮毂通常由 轮辋和轮辐 两部分组成
轮辋 轮辐
螺栓孔
中心孔
• 轮辋是汽车轮毂上与轮胎直接接触的部分,起到支撑轮胎 的作用。在轮辋的两侧突起部分有胎圈座和轮缘组成,胎 圈座与轮胎的胎圈直接接触的部分起到支持轮胎半径方向 力的作用;轮缘起到保持并支撑轮胎方向的作用。此外, 轮辋上还有放置轮胎气门嘴的气门孔。 • 轮辐是连接轮辋与中心孔的部分,起到重要承载作用。它 的强度决定了轮毂整体强度。
III. 研究各部件模态频率与发动机阶次激励中的重合点, 防止在重合点出振动噪声放大。
IV. 研究各部件模态频率与路面激振频率的重合,防止 路面激振带来的振动噪声和平顺性问题。 V. 研究人体敏感频率和车身、座椅等系统的频率重合, 增加驾驶员和乘客的舒适度感觉。
汽车结构动态设计
在建立了汽车整车振动模型后,汽车结构的动态 设计成为了可能,其步骤是: 1. 建立汽车整车的振动模型 2. 计算汽车在各种工况下的振动响应 3. 提出改进目标函数,确定应该修改的部件 4. 结构参数修改量的计算
二.模态分析与汽车NVH问题
• NVH概念
NVH是英文noise(噪声)、vibration(振动)、harshness(声振粗糙度)的 缩写。NVH反映的是乘员感受到的噪声、振动以及相关的动态不舒适性。
声振粗糙度描述的是噪声和振动使人不 舒适的感觉,因此有人称之为不平顺性。 总之,它是人体对振动和噪声的主观感 受,与振动和噪声的瞬态性质有关,不 能直接用客观测量方法来度量。
程度上可以明显改善车轮的空 气动力学特性,从而降低一部 分汽车油耗。
辐板式轮毂结构
ABAQUS进行模态分析的具体步骤
基于ABAQUS汽车轮毂模态分析
一.研究汽车模态的意义 二.模态分析与汽车NVH问题 1. NVH概念 2. NVH解决的问题 3. NVH特性研究方法 三. 轮毂实例分析
一.研究汽车模态的意义
I. 使整车中各部件模态分离,防止各部件之间共振引 起的振动噪声问题。
II. 是整车中各部件与发动机的怠速频率分离,防止整 车中部件在怠速时因发动机激振而共振。
NVH特性的研究方法
1.多体系统动力学法 主要应用于底盘悬架系统、转向传动系统低频范围的建模 与分析。 2.有限元法 一方面,可用于研究车身结构振动;另一方面,可用于对 车室内部空腔噪声分析。 3.统计能量分析法 将系统分解为多个子系统,研究他们之间的能量流动和模 态响应的统计特性。适用于结构、声学等系统的动力学分 析。 4.边界元法 研究车体振动和车室内部空腔噪声的声固耦合系统。
目前,普通轿车和轻、中型货车普遍采用辐板式车轮,这种车轮如图 所示,由挡圈、轮辋、辐板和气门嘴伸出口组成。车轮中用以连接轮毂 和轮辋的钢质圆盘称为辐板,大多是冲压制成的,少数是和轮毂铸成一
体,后者主要用于重型汽车。辐板式轮辋是目前应用最为
广泛的轮毂形式,它的特点是 将轮辋和轮辐铸成一体,优点
是质量轻、尺寸精度高、某种
三.轮毂分析实例
为什么进行轮毂模态分析?
轮毂是汽车的重要部件,由于它不但要承受整车的 重量,通过转动的轮胎还要承受水平方向的作用力 和由路面传来的冲击力等交变载荷,制动力也会作 用在轮毂上,如此复杂的工作条件使得对轮毂的要 求越来越高。它直接影响汽车的整体行驶稳定性、 安全性、可靠性、平顺性、牵引性及外观形象,对 汽车整体能源消耗,轮胎的寿命都有较大的影响。
5. 以原整车模型为基础,利用摄动法或者其他 方法导出经过修改过的汽车整车振动模型
模态分析在汽车工程的作用
模态分析的最终目标是识别出整车系统以及子系统的模态参 数,为结构的系统振动特性分析、振动故障诊断和预报以及 结构动力特性的优化设计提供依据。
模态分析的应用可以归结为以下几个方面: ① 评价现有结构系统的动态特性 ② 在新产品设计中进行结构动态特性的预估和优化设计 ③ 诊断及预报结构系统的故障 ④ 控制结构的辐射噪声 ⑤ 识别系统的载荷
轮毂的分类
按车轮材质:可分为钢制、铝合金、镁合金等车轮
• 钢制轮毂最主要的优点就是制造工艺简单,成本相对较低,而 且抗金属疲劳的能力很强,也就是我们俗称的便宜又结实。但 钢质轮毂的缺点也相对比较突出就是外观不够美观,重量较大 惯性阻力大,散热性也比较差,而且非常容易生锈。
• 铝合金材质轮毂重量较轻,惯性阻力小,制作精度高,在高速 转动时的变形小,惯性阻力小,有利于提高汽车的直线行驶性 能,减轻轮胎滚动阻力,从而减少了油耗。合金材质的导热性 能又是钢的三倍左右,散热性好,对于车辆的制动系,轮胎和 制动系统的热衰减都能起到一定的作用。 • 镁合金材质轮毂重量比铝合金还要轻,惯性阻力更小,制作精 度更高,近年来在豪华车型有所应用,不过成本比较高,价格 较贵。
按轮辐分:有辐板式和辐条式两类。 辐条式:
车轮有可分为钢丝辐条式车轮(A)和铸造辐条式车轮(B),A轮辋的 结构和自行车车轮相同,不过由于价格昂贵,且维修安装不方便,故实 际使用并不多;B轮辋是用螺栓和特殊形状的衬块固定在辐条上,它多用 于重型货车上。
钢丝辐条式车轮(A)
铸造辐条式车轮(B)
辐板式: