随机信号分析(常建平-李海林版)课后习题答案.docx

合集下载

随机信号分析课后习题答案

随机信号分析课后习题答案

1第一次作业:练习一之1、2、3题1.1 离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。

求随机变量的数学期望和方差。

解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=i i i x X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。

解:⎪⎩⎪⎨⎧<≤-π==其他0201)](2π[cos 2)()(x x A dx x dF x f 由1)(=⎰∞∞-dx x f得 2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P1.3 试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。

(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x (2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x x x x F (3)0)]()([)(>--=a a x u x u a xx F (4)0)()()(>---=a a x u axa x u a x x F2解:(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x 当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数; 1)(0≤≤x F 成立;)()(x F x F =+也成立。

随机信号分析(常建平李海林)习题答案解析

随机信号分析(常建平李海林)习题答案解析

完美 WORD 格式1-9 已知随机变量X的分布函数为0 , x 02F (x) kx , 0 x 1X1 , x 1求:①系数 k;②X落在区间(0.3,0.7) 内的概率;③随机变量X的概率密度。

解:第①问利用F X (x) 右连续的性质k =1P 0.3 X 0.7 P 0.3 X 0.7 P X 0.7 第②问F 0.7 F 0.3第③问f (x)Xd F(x)Xdx2x 0 x 10 else专业知识分享完美 WORD 格式x1-10 已知随机变量X 的概率密度为( ) ( )f x ke xX(拉普拉斯分布),求:①系数k ②X落在区间 (0,1)内的概率③随机变量 X的分布函数解:第①问f x dx 1 k12第②问x2P x X x F x F x f x dx1 2 2 1x1随机变量 X落在区间( x1 , x2 ] 的概率 P{ x1 X x2} 就是曲线y f x 下的曲边梯形的面积。

1P 0 X 1 P 0 X 1 f x dx1 2 1 e1第③问12 f x12xe xxe xxF x f ( x)dx1 1x x xe dx x 0 e x 02 20 1 1 1xx x xe dx e dx x 0 1 e x 02 0 2 2专业知识分享完美 WORD 格式1-11 某繁忙的汽车站,每天有大量的汽车进出。

设每辆汽车在一天内出事故的概率为0.0001,若每天有1000 辆汽车进出汽车站,问汽车站出事故的次数不小于 2 的概率是多少?n=1- 分布 (0 1)n ,p 0,np=二项分布泊松分布n 成立,0不成立, p q高斯分布实际计算中,只需满足,二项分布就趋近于泊松分布n 10 p 0.1P X kk e==np k!汽车站出事故的次数不小于 2 的概率P(k 2) 1 P k 0 P k 10.1P(k 2) 1 1.1e 答案专业知识分享完美 WORD 格式1-12 已知随机变量 (X,Y)的概率密度为f (x, y) XY(3 x 4 y),ke x 0, y 0, 其它0求:①系数k?②( X ,Y)的分布函数?③P{0 X 1,0 X 2} ?第③问方法一:联合分布函数F XY (x, y) 性质:若任意四个实数 a ab b ,满足1, 2, 1, 2a a bb ,满足a1 a2,b1 b2 ,则P{a X a ,b Y b}F XY(a ,b ) F XY(a ,b) F XY(a ,b ) F XY(a ,b)1 2 1 2 2 2 1 1 1 2 2 1P{0X 1,0 Y 2} F XY(1,2) F XY(0,0) F XY(1,0) F XY(0,2)方法二:利用P{( x, y) D } f XY u,v dudvD2 1P{0X 1,0 Y 2} f XY x,y dxdy0 0专业知识分享完美 WORD 格式1-13 已知随机变量(X,Y) 的概率密度为f (x, y)1, 0 x 1, y x0 , 其它①求条件概率密度 f X (x| y)和f Y ( y | x) ?②判断X 和Y 是否独立?给出理由。

随机信号分析课后习题答案

随机信号分析课后习题答案

随机信号分析课后习题答案随机信号分析课后习题答案随机信号分析是现代通信系统设计和信号处理领域中的重要基础知识。

通过对随机信号的分析,我们可以更好地理解和处理噪声、干扰等随机性因素对通信系统性能的影响。

下面是一些关于随机信号分析的课后习题及其答案,希望对大家的学习有所帮助。

1. 什么是随机信号?随机信号是在时间域上具有随机性质的信号。

与确定性信号不同,随机信号的每个样本值都是随机变量,其取值不是确定的。

随机信号可以用统计特性来描述,如均值、方差、功率谱密度等。

2. 什么是平稳随机信号?平稳随机信号是指在统计性质上不随时间变化的随机信号。

具体来说,平稳随机信号的均值和自相关函数不随时间变化。

平稳随机信号在实际应用中较为常见,因为它们具有一些方便的数学性质,可以简化信号处理的分析和设计。

3. 如何计算随机信号的均值?随机信号的均值可以通过对信号样本值的求平均来计算。

对于离散时间随机信号,均值可以表示为:E[x[n]] = (1/N) * Σ(x[n])其中,E[x[n]]表示信号x[n]的均值,N表示信号的样本数,Σ表示求和运算。

4. 如何计算随机信号的方差?随机信号的方差可以用均方差来表示。

对于离散时间随机信号,方差可以表示为:Var[x[n]] = E[(x[n] - E[x[n]])^2]其中,Var[x[n]]表示信号x[n]的方差,E[x[n]]表示信号的均值。

5. 什么是自相关函数?自相关函数是用来描述随机信号与其自身在不同时间延迟下的相似性的函数。

自相关函数可以用来分析信号的周期性、相关性等特性。

对于离散时间随机信号,自相关函数可以表示为:Rxx[m] = E[x[n] * x[n-m]]其中,Rxx[m]表示信号x[n]的自相关函数,E[ ]表示期望运算。

6. 如何计算随机信号的自相关函数?随机信号的自相关函数可以通过对信号样本值的乘积进行求平均来计算。

对于离散时间随机信号,自相关函数可以表示为:Rxx[m] = (1/N) * Σ(x[n] * x[n-m])其中,Rxx[m]表示信号x[n]的自相关函数,N表示信号的样本数,Σ表示求和运算。

(完整word版)随机信号分析习题.(DOC)

(完整word版)随机信号分析习题.(DOC)

随机信号分析习题一1. 设函数⎩⎨⎧≤>-=-0 ,0 ,1)(x x e x F x ,试证明)(x F 是某个随机变量ξ的分布函数.并求下列概率:)1(<ξP ,)21(≤≤ξP 。

2. 设),(Y X 的联合密度函数为(), 0, 0(,)0 , otherx y XY e x y f x y -+⎧≥≥=⎨⎩, 求{}10,10<<<<Y X P 。

3. 设二维随机变量),(Y X 的联合密度函数为⎥⎦⎤⎢⎣⎡++-=)52(21exp 1),(22y xy x y x f XY π 求:(1)边沿密度)(x f X ,)(y f Y(2)条件概率密度|(|)Y X f y x ,|(|)X Y f x y4. 设离散型随机变量X 的可能取值为{}2,1,0,1-,取每个值的概率都为4/1,又设随机变量3()Y g X X X ==-。

(1)求Y 的可能取值 (2)确定Y 的分布. (3)求][Y E 。

5. 设两个离散随机变量X ,Y 的联合概率密度为:)()(31)1()3(31)1()2(31),(A y A x y x y x y x f XY --+--+--=δδδδδδ试求:(1)X 与Y 不相关时的所有A 值。

(2)X 与Y 统计独立时所有A 值。

6. 二维随机变量(X ,Y )满足:ϕϕsin cos ==Y Xϕ为在[0,2π]上均匀分布的随机变量,讨论X ,Y 的独立性与相关性。

7. 已知随机变量X 的概率密度为)(x f ,求2bX Y =的概率密度)(y f .8. 两个随机变量1X ,2X ,已知其联合概率密度为12(,)f x x ,求12X X +的概率密度?9. 设X 是零均值,单位方差的高斯随机变量,()y g x =如图,求()y g x =的概率密度()Y f y\10. 设随机变量W 和Z 是另两个随机变量X 和Y 的函数222W X Y Z X⎧=+⎨=⎩ 设X ,Y 是相互独立的高斯变量。

《随机信号分析》-高新波等-课后答案

《随机信号分析》-高新波等-课后答案

C = *第0章1/1;1/ 2;1/ 3;1/4;1/ 5;1/ 6;2 /1;2 / 2;2 / 3;2 /4;2 / 5;2/6;3/l;3/2;3/3;3/4;3/5;3/6;4/l;4/2;4/3;4/4;4/5;4/6;5/l;5/2;5/3;5/4;5/5;5/6;6/l;6/2;6/3;6/4;6/5;6/64 = {l/l;2/2;3/3;4/4;5/5;6/6}1/5;!/ 6;2 /4;2 / 5;2 / 6;3 / 3;3 / 4;3 / 5;3 / 6;4 / 2;4 / 3;4 / 4;4 / 5;'4/6;5/l;5/2;5/3;5/4;5/5;5/6;6/l;6/2;6/3;6/4;6/5;6/6 /1 /1;1 / 2;1 / 3;1 / 4;1 / 5;1 / 6;2 /1;2 / 2;2 / 3;2 / 4;2 / 5;2 / 6;3 /1;3 / 2;'3/3;3/4;3/5;3/6;4/l;4/2;4/3;5/l;5/2;5/3;6/l;6/2;6/3B =0.2(2)'0用)=x < 00<x<30x 2/12 2x -3-x 2/4,3<x <41 x>4P (l<x<7/2)=f^v +⑴⑶0.3E (X )= L 2<T :t/r = £ ~^y %dy =E (X2)=「Ji 奇dx = 了241a\^e~y 晶尸dy = 2a 2r (2)= 2a 2o(x)=£(/)-(研x))2=2尸_m S=04292S 0.4⑴£(Jf)=(-1)x03+0x0.44-1x03=0£(K)=1x0.4+2x0.2+3x0.4=2(2)由于存在X=0的情况,所以研Z)不存在(3)E(Z)=(-1-1)2x0.2+(-1-2)2xO.l+(O-l)2xO.l+(0-3)2x0.3+(l-l)2xO.1+0-2)2x0.1+(1-3)2x0.1=5 0.5X=ln*,当\dy\=^M=^e(Iny-mf2/”00.6t2+勺血s=£0<x<l,0<.y<2f32\X x~.—+—s as=(363-)7X*i X丁-312=诉号>=2尸号间=fp+导=土名/(x)0.7££be~^x+y^dxdy=[/>(1-e~'\~y dy=/>(1-e-,)= 1,/>=(!—e~x尸/(x)=he~x Ve-y dy=—^e~x fi<x<\f(y)=be~y^e~x dx—e~y,y>00.8(1)x,v不独立⑵F(z)=££~'|(X+yY{x+y}dxdy=£|/『(xe~x +ye~x}ixdy =g按(1一(1+Z一*片5+*(]_e-(z-y)肱,=]_]+z+/2\2f(z)=F'(z)=\+z+—e~:-(1+z)e~z=—e-2,z>0、2)20.9。

随机信号分析(常建平+李海林)习题答案.

随机信号分析(常建平+李海林)习题答案.

1-9 已知随机变量X 的分布函数为20,0(),011,1X x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。

解:第①问 利用()X F x 右连续的性质 k =1第②问{}{}{}()()0.30.70.30.70.70.30.7P X P X F P X F =<<=<≤-=-第③问 201()()0X X xx d F x f x elsedx ≤<⎧==⎨⎩1-10已知随机变量X 的概率密度为()()xX f x kex -=-∞<<+∞(拉普拉斯分布),求:①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解: 第①问 ()112f x dx k ∞-∞==⎰ 第②问{}()()()211221x x P x X x F x F x f x dx <≤=-=⎰随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。

{}{}()()1010101112P X P X f x dxe -<<=<≤==-⎰第③问()102102xx e x f x e x -⎧≤⎪⎪=⎨⎪>⎪⎩()00()110022111010222xx xxx x x x F x f x dxe dx x ex e dx e dxx e x -∞-∞---∞=⎧⎧≤≤⎪⎪⎪⎪==⎨⎨⎪⎪+>->⎪⎪⎩⎩⎰⎰⎰⎰1-11 某繁忙的汽车站,每天有大量的汽车进出。

设每辆汽车在一天内出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?,(01)p q λ→∞→→∞→−−−−−−−−→−−−−−−−−→−−−−−−−−→n=1n ,p 0,np=n 成立,0不成立-分布二项分布泊松分布高斯分布汽车站出事故的次数不小于2的概率()()P(2)101k P k P k ≥=-=-= 答案0.1P(2)1 1.1k e -≥=-100.1n p ≥≤实际计算中,只需满足,二项分布就趋近于泊松分布()np!k e P X k k λλλ-===1-12 已知随机变量(,)X Y 的概率密度为(34)0,0(,)0x y XY kex y f x y -+⎧>>⎪=⎨⎪⎩,,其它求:①系数k ?②(,)X Y 的分布函数?③{01,02}P X X <≤<≤?第③问 方法一:联合分布函数(,)XY F x y 性质:若任意四个实数1212,,,a a b b ,满足1212,a a b b ≤≤,则121222111221{,}(,)(,)(,)(,)XY XY XY XY P a X a b Y b F a b F a b F a b F a b <≤<≤=+--{01,02}(1,2)(0,0)(1,0)(0,2)XY XY XY XY P X Y F F F F ⇒<≤<≤=+--方法二:利用(){(,)},XY DP x y D f u v dudv∈∈⎰⎰)(210{01,02},XY P X Y f x y dxdy <≤<≤=⎰⎰1-13 已知随机变量(,)X Y 的概率密度为101,(,)0x y xf x y ⎧<<<=⎨⎩,,其它 ①求条件概率密度(|)X f x y 和(|)Y f y x ?②判断X 和Y 是否独立?给出理由。

随机信号分析(常建平李海林)习题答案解析

随机信号分析(常建平李海林)习题答案解析

y
y
0
1
1
e
e
y
3
2
1
0
else
1-17 已知随机变量 X,Y 的联合分布律为
P X m,Y n
m ne 5
32
, m,n 0,1,2,
m! n!
***
求: ① 边缘分布律
***
P X m (m 0,1,2, ) 和
②条 件分布律 P X m |Y
和 n
PY
n|X
m?
专业 知识分享
P Y n (n 0,1,2,
0.0001 ,若每天有 1000 辆汽车进
出汽车站,问汽车站出事故的次数不小于
2 的概率是多少?
二项分布
n=1
- 分布 (0 1)
n
,p 0,np=
泊松分布
n
成立 , 0 不成立
,p q
高斯分布
实际计算中,只需满足
,二项分布就趋近于泊松分布 n 10 p 0.1
ke PX k =
k!
= np
汽车站出事故的次数不小于
X
3
6
7
求: ①X 的分布函数
P 0.2 0.1 0.7 ② 随机变量 Y 3X 1 的分布律
1-15 已知随机变量 X 服从标准高斯分布。 求:①随机变量 Z X 的概率密度? 的概率密度? ② 随机变量
分析 : ① f Y (y)
h '(y)
f X h( y)
② f Y ( y) | h' 1 (y) | f X [h 1 ( y)]
第③问
fx Fx
1x 2e
0 x
1x
e 2
0 x

随机信号分析基础(第5章习题讲解)

随机信号分析基础(第5章习题讲解)

rect ( ) 2a a2 2 a a 2 2 2 a ( 0 ) a ( 0 )2 sin ( ) 2 ( )2 2
2
( 0 ) ( 0 )



系统所示的传函为:
t 1 RC j RC h(t ) (t ) e , H ( ) RC 1 j RC

5.31 解:由题可知
得到:
e j e j z z 1 cos 2 2
2
GY ( ) GX ( ) H ( )
2
1 H ( ) 1.64 1.6 cos
1 H (Z ) 1.64 0.8Z 0.8 Z 1 1 1 (0.8Z 1) (0.8Z 1 1)
p
k0 ai RY (k i), i 0 RY (k ) p a R (k i ) 2 , k 0 i Y i i 0
p
i 0
2 RY ( p) 1 X RY (0) RY (1) R (1) R (0) R (1) a R ( p 1 ) Y Y Y Y 1 0 RY (1) 0 a RY (1) RY (0) p RY ( p)
5.26 解:由题可知,所求的系统为一白化滤 波器,有:
GY ( ) H ( ) GX ( ) 1
H ( )
2
2
2 8 ( 8 j )( 8 j ) 2 3 ( 3 j )( 3 j )
稳定的最小相位系统的H(s)的极点在左半S平面,而 零点不在右半S平面。

随机信号分析课后习题答案

随机信号分析课后习题答案

1第一次作业:练习一之1、2、3题1.1 离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。

求随机变量的数学期望和方差。

解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=ii ix X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F 求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。

解:⎪⎩⎪⎨⎧<≤-π==其他201)](2π[cos 2)()(x x A dx x dF x f由 1)(=⎰∞∞-dx x f得 2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P 1.3 试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。

(1)⎪⎩⎪⎨⎧<≥-=-00e1)(2x x x F x2(2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x xx x F (3)0)]()([)(>--=a a x u x u ax x F (4)0)()()(>---=a a x u ax a x u a x x F解:(1)⎪⎩⎪⎨⎧<≥-=-00e1)(2x x x F x当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数;1)(0≤≤x F 成立; )()(x F x F =+也成立。

随机信号分析(常建平,李林海)课后习题答案第二章习题讲解

随机信号分析(常建平,李林海)课后习题答案第二章习题讲解

A与 B独立 , f AB (a, b) f A (a) fB (b)
X (t) A Bt Y(t) A
A Y(t) X (t) Y (t)
B t
01 J1 1 1
t tt
1
xy 1
xy
f XY (x, y; t ) J f AB (a,b) t f AB ( y, t ) t f A ( y) f B ( t )
E X (t) E A cost XH cost EA XH
D X (t) E X 2 (t ) E2 X (t )
方法 2:
D X (t)
D Acost XH D Acost cos2 t DA cos2 t
12
D XH
公式: D aX+ bY a2 D X b2 D Y 2abC XY
RX (t1, t2 )=E Acost1 XH A cost2 XH
f X (x1;0)
1
x12 e 2,
2Байду номын сангаас
A
1
X (t)
~ N (0, )
t 30
2
4
f X ( x2; 3
)=
0
2 2
e
2
x2
2

X (t) t
=0,
f ( x3;2
)
0
20
( x3)
(离散型随机变量分布律 )
2-2 如图 2.23 所示,已知随机过程 X (t) 仅由四条样本函数组
成,出现的概率为
数 RX (t1, t2 ) ?②若已知随机变量相 A, B 互独立,
它们的概率密度分别为 f A (a) 和 f B (b) ,求 X (t) 的一

随机信号课后习题答案2

随机信号课后习题答案2

2.1 随机过程t B t A t X ωωsin cos )(+=,其中ω为常数,A 、B 是两个相互独立的高斯变量,并且0][][==B E A E ,222][][σ==B E A E 。

求X (t )的数学期望和自相关函数。

解: ]sin []cos []sin cos [)]([t B E t A E t B t A E t X E ωωωω+=+=t B E t A E ωωsin ][cos ][+= 0= (0][][==B E A E ))]sin cos )(sin cos [()]()([),(22112121t B t A t B t A E t X t X E t t R X ωωωω++==]sin sin cos sin sin cos cos cos [2122121212t t B t t AB t t AB t t A E ωωωωωωωω+++=2122121212sin sin ][cos sin ][][sin cos ][][cos cos ][t t B E t t B E A E t t B E A E t t A E ωωωωωωωω+++=212212sin sin ][cos cos ][t t B E t t A E ωωωω+= (22])[(][][X E X D X E +=) )(cos 122t t -=ωσ)(cos 2τωσ= (12t t -=τ)2.2 若随机过程X (t )在均方意义下连续,证明它的数学期望也必然连续。

证: 由均方连续的定义0])()([lim 2=-∆+→∆t X t t X E t ,展开左式为:)]()()()()()([lim 220t X t X t t X t X t t X t t X E t +∆+-∆+-∆+→∆=0))]()()((([))]()()((([{lim 0=-∆+--∆+∆+→∆t X t t X t X E t X t t X t t X E t固有0)]([)]([lim 0=-∆+→∆t X E t t X E t ,证得数学期望连续。

随机信号分析基础第三章课后答案

随机信号分析基础第三章课后答案

da cos 0 t1 cos 0 t 2
0
2
a 2 e
0 2

2
2 2
d(
a de
0

a2 2 2
1 1 cos 0 t 2 t1 cos 0 t1 t 2 2 d 2 2 a2 a2 2 1 2 2 2 1 cos 0 t 2 t1 a e e 2 da 2 cos 0 t 2 t1 0 2 2 0 2 2 cos 0 t 2 t1 2 cos 0 t 2 t1 2 2
第三章 Chapter 3 ========================================== 3.2 随 机 过 程
t 为 t A cos 0 t 式 中 , A 具 有 瑞 利 分 布 , 其 概 率 密 度 为
a2 2 2
PA a
R Z 26e
2 3 2 cos 9 e
2 Z R Z 0 R Z 260
3.14 设 X(t)是雷达的发射信号,遇到目标后的回波信号 aX (t ), a 1, 1 是信号返回 时间,回报信号必然伴有噪声,计为 N(t), 于是接收到的全信号为:
R( t , t ) E A 2 cos( 0 t ) cos( 0 ( t ) ) E A 2 E cos( 0 t ) cos( 0 ( t ) )



E A2 E cos(( 2 0 t 0 ) 2 ) cos( 0 ) 2 E A2 cos( 0 ) 2

随机信号分析基础课后练习题含答案

随机信号分析基础课后练习题含答案

随机信号分析基础课后练习题含答案第一部分随机变量和概率分布练习题1设离散随机变量X的概率分布函数为:X0 1 2 3 4P X0.05 0.15 0.35 0.30 0.15求E(X)和D(X)。

答案1根据概率分布函数的公式有:$$E(X)=\\sum_{i=1}^n x_i P_X(x_i) = 0 \\times 0.05 + 1\\times 0.15 + 2 \\times 0.35 + 3 \\times 0.30 + 4 \\times 0.15 = 2.25$$$$D(X)=\\sum_{i=1}^n (x_i-E(X))^2P_X(x_i) = 0.710625$$ 练习题2已知随机变量X的概率密度函数为:$$f_X(x) = \\begin{cases} \\frac{1}{3}e^{-\\frac{x}{3}} & x \\geq 0 \\\\ 0 & x < 0 \\end{cases}$$求E(X)和D(X)。

答案2根据概率分布函数的公式有:$$E(X)=\\int_{-\\infty}^{+\\infty}xf_X(x)dx =\\int_{0}^{+\\infty}x\\frac{1}{3}e^{-\\frac{x}{3}}dx=3$$ $$D(X)=E(X^2)-(E(X))^2=\\int_{-\\infty}^{+\\infty}x^2f_X(x)dx-(E(X))^2=\\int_{0}^{+\\infty}x^2\\frac{1}{3}e^{-\\frac{x}{3}}dx-9=\\frac{27}{4}$$第二部分随机过程练习题3设二阶矩有限的离散时间随机过程X n的均值序列为m n,自相关函数为R n(i,j)=E(X i−m i)(X j−m j),其中 $0 \\leq i,j \\leq N$。

若m n=n2,R n(i,j)=ij(i+j),求 $E(\\sum_{n=0}^N X_n)$。

随机信号课后习题答案1

随机信号课后习题答案1

第一次作业:练习一之1、2、3题1.1 离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。

求随机变量的数学期望和方差。

解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=i i i x X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。

解:⎪⎩⎪⎨⎧<≤-π==其他0201)](2π[cos 2)()(x x A dx x dF x f 由1)(=⎰∞∞-dx x f得 2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P1.3 试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。

(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x (2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x x x x F (3)0)]()([)(>--=a a x u x u a xx F (4)0)()()(>---=a a x u axa x u a x x F解:(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x 当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数; 1)(0≤≤x F 成立;)()(x F x F =+也成立。

随机信号分析课后习题答案

随机信号分析课后习题答案

第一次作业:练习一之1、2、3题1.1离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。

求随机变量的数学期望和方差。

解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=ii ix X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F 求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。

解:⎪⎩⎪⎨⎧<≤-π==其他201)](2π[cos 2)()(x x A dx x dF x f由 1)(=⎰∞∞-dx x f得 2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P 1.3试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。

(1)⎪⎩⎪⎨⎧<≥-=-000e1)(2x x x F x (2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x xx x F(3)0)]()([)(>--=a a x u x u ax x F (4)0)()()(>---=a a x u ax a x u a x x F解:(1)⎪⎩⎪⎨⎧<≥-=-00e1)(2x x x F x当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数;1)(0≤≤x F 成立; )()(x F x F =+也成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由于百度文库格式转换的原因,不能整理在一个word 文档里面,下面是三四章的答案。

给大家造成的不便,敬请谅解随机信号分析 第三章习题答案、随机过程 X(t)=A+cos(t+B),其中A 是均值为2,方差为1的高斯变量,B 是(0,2π)上均匀分布的随机变量,且A 和B 独立。

求(1)证明X(t)是平稳过程。

(2)X(t)是各态历经过程吗?给出理由。

(3)画出该随机过程的一个样本函数。

(1)(2)3-1 已知平稳过程()X t 的功率谱密度为232()(16)X G ωω=+,求:①该过程的平均功率?②ω取值在(4,4)-范围内的平均功率?解[][]()[]2()cos 211,cos 5cos 22X E X t E A E t B A B R t t EA τττ=++=⎡⎤⎣⎦+=+=+与相互独立()()()21521()lim2TT T E X t X t X t X t dt AT-→∞⎡⎤=<∞⇒⎣⎦==⎰是平稳过程()()[]()()4112211222222242'4(1)24()()444(0)41132(1)224414414(2)121tan 13224X X XE X t G d RFG F e R G d d d arc x x ττωωωωωππωωπωωπωπωω∞----∞∞-∞-∞∞--∞∞⎡⎤⨯⎡⎤==⋅=⋅⎢⎥+⎣⎦====+==⎛⎫+ ⎪==⎣⎦=++⎝⎭=⎰⎰⎰⎰⎰P P P P 方法一()方:时域法取值范围为法二-4,4内(频域的平均率法功)2d ω=3-7如图3.10所示,系统的输入()X t 为平稳过程,系统的输出为()()()Y t X t X t T =--。

证明:输出()Y t 的功率谱密度为()2()(1cos )Y X G G T ωωω=-[][]:()[()()]{()()}{()(}2()()()()()()()()2(()[)()(()()]()())Y X X X Y X X Y Y Y X X X Y Y j T j T R E Y t Y t E X t X t T X t X t T R R R R E Y t Y t G F R T T e e G R G R G G G G ωωτττττωτωττωττττωωωω-⇒⇒=+=--+-+-=--=+=-⇔⇔∴=-+-=已知平稳过程的表达式利用定义求利用傅解系统输入输出立叶平变稳换的延时特性2()2()22()(1cos )j T j T X X X e e G G G T ωωωωωω-⎡⎤+-⎢⎥⎣⎦=-3-9 已知平稳过程()X t 和()Y t 相互独立,它们的均值至少有一个为零,功率谱密度分别为216()16X G ωω=+22()16Y G ωωω=+令新的随机过程()()()()()()Z t X t Y t V t X t Y t =+⎧⎨=-⎩ ①证明()X t 和()Y t 联合平稳; ②求()Z t 的功率谱密度()Z G ω? ③求()X t 和()Y t 的互谱密度()XY G ω? ④求()X t 和()Z t 的互相关函数()XZ R τ? ⑤求()V t 和()Z t 的互相关函数()VZ R τ 解:()()4124(1)()()()2[()]()0[()]0()2[()]0()()(,)[()][()]0()()(2)()()()()[()()][()()][()X X X Y XY Z X t Y t R F G e E X t R E X t R eE Y t X t Y t R t t E X t E Y t X t Y t Z t X t Y t R E Z t Z t E X t Y t X t τττωτδττττττ---==∞=⇒=⎡⎤⎣⎦=-⇒=∴+=⋅+=⇒=+=+=++、都平稳=与与联合独平立稳[][]{}2214||()]()()()()()0()()()16()()()116(3)()0()0(4)()[()()]()()()()()()[()]2(5)(X YX XY Y XY Z X Y Z X Y XY XY XZ X XY X X VZ Y t R R R R R R R R G G G R G R E X t Z t E X t X t Y t R R R F G e R ττττττττττωωωωωτωτττττττωτ--++=+++=∴=++∴=+==+=→==+=+++=+==={}4||)[()()][()()][()()]()()()4X Y E V t Z t E X t Y t X t Y t R R e ττττττδτ-=+=-+++=-=+-3-11 已知可微平稳过程()X t 的自相关函数为2()2exp[]X R ττ=-,其导数为()()Y t X t '=。

求互谱密度()XY G ω和功率谱密度()Y G ω?Ⅰ.平稳过程 维纳-辛钦定理()1()F X X F G R ωτ-Ⅱ.2-17 已知平稳过程()X t 的均方可导,()()Y t X t '=。

证明(),()X t Y t 的互相关函数和()Y t 的自相关函数分别为Ⅲ.傅立叶变换的微分性质222222222222227928exp 24:()[()][2]4()()()()4()()()()2)(X X XY X XY X Y XY X t e eet P G F R F e R j j R G G e R R G G e τωττσωωτσωωττωωωωττωωσωω-⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭⇔⎧⎫⎧⎫-⇔-⎨⎬⎨-===-'===⋅-''=-=-⎬⎩⎭⎩⎭⋅高斯脉冲表第解利用傅立叶变换的=个微分特性22()()()()XX XY Y dR d R R R d d ττττττ==-3-17 已知平稳过程()X t 的物理功率谱密度为()4X F ω=,①求()X t 的功率谱密度()X G ω和自相关函数()X R τ?画出(),(),()X X X F G R ωωτ的图形。

②判断过程()X t 是白噪声还是色噪声?给出理由()(1()()2,)22()2()[()]()0()X X X X X G F R E X t X G t F U ωωωδτωτωω-∞====<=⋅∴<∞=物理功率谱密度 定义式,是白噪声。

白噪声的定义若平稳随机过程的均值为零,功率谱密度在整个频率轴(,)-∞+∞上均匀分布,满足(3-1)其中0N 为正实常数,则称此过程为白噪声过程,简称白噪声。

随机信号分析 第四章习题答案4-4设有限时间积分器的单位冲激响应h(t)=U(t)-U(t -0.5) 它的输入是功率谱密度为 210V Hz 的白噪声,试求系统输出的总平均功率、交流平均功率和输入输出互相关函数01()2NG N ω=()()()()()22221:()2[()][()]0Y Y Y Y XY X P E Y t G d D Y t E Y t m E Y R R R h ωωπτττ∞-∞⎡⎤==⎣⎦⎡⎤=-==⎣⎦=*⎰思路()()()10()()10()10[()(0.5)]()()10[()(0.5)]XY X YX XY R R h h h U U R R U U τττδτττττττττ=*=*==--=-=----解:输入输出互相关函数00020.025()0()10()10()0()()()()10(()00[()(0.)()10()()()10()()10101100.55[()5)]](0)X X X Y X Y X Y Y X t m G R m m h d R U R h h h h h h d R h h d d d E Y t R U ωτττττττττλτλδτλλλλλλλμ∞∞∞∞==⇔====**-=*-=+=+=-=-=⋅=⨯==⎰⎰⎰⎰⎰时域法平均功是白噪声,,,率面积法:225[()][()]5Y Y D Y t E Y t m ==-=P 交流:平均功率()Y R τ()()()2141224222Y 2(P1313711()2415()()()102424115112522242j j j Y X Y U t U t Sa e H e Sa G G H e Sa Sa G d Sa S d a d ωτωωωτττωωωωωωωωωωωππωωπ---∞∞∞-∞∞--∞⎛⎫--⎡⎤ ⎪⎣⎦⎝⎭-⎛⎫⇒= ⎪⎝⎭⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭⎛⎫===⎛⎫= ⎪ ⎭⎪⎭⎝⎝⎰⎰⎰P 矩形脉冲A 的频谱等于A 信号与线性系统书式域法)频()()2220000[()][()][()]5Y X Y Y m m H H D Y t E Y t m E Y t =⋅=⋅⇒=-===P 交直流分量为平均功率:流4-5 已知系统的单位冲激响应()(1)[()(1)]h t t U t U t =---,其输入平稳信号的自相关函数为()2()9X R τδτ=+,求系统输出的直流功率和输出信号的自相关函数?分析:直流功率=直流分量的平方解: 输入平稳输出的直流分量 输出的直流功率()2300X X m R σ==±==()()()10332Y X m m h t h t ττ=*=*=⎰=31-d ()()()()()()()()()()()()()()()2'''222'[()(1()(1)(1)F )]12122222j j j j Y h t t t d F j d d F j jd H A A U t U t A Sa ej A Sa eSa e Sa eG U t U t t j ωωωωωωωωωωωωωωωωωω----⋅↔⇒⋅↔-⇒=-⎛⎫--⇒=⎡⎤ ⎪⎣⎦⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⇒==+⋅-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝=-=-⎭⎣-=-⎦变换 频域的微分特性 -jt f t t f t =A t A t 矩形脉冲A 谱t 的频()()()()()()()()()()()2''21920222410001lim 022239024X X Y Y X G H G H H Sa Sa R j H A A j Sa m m H j ωωωωωωωωπδτω*→=⋅⋅⎡⎤⎛⎫⎛⎫=-+⇒ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎛⎫⎛⎫---== ⎪ ⎪⎝⎭⎝⎭=⋅=⇒==直流功率294Y m =()Y X m m h t =*4-7 已知如图4.21 所示的线性系统,系统输入信号是物理谱密度为0N 的白噪声,求:①系统的传递函数()H ω?②输出()Z t 的均方值?其中2222[sin()][()]2ax dx a ax dx ax Sa π∞∞==⎰⎰()()()()()()()112122121212()()()()()()()()()()()F ()(1)()()11()()()()()()()(()j T Y t X t X t T h t t t T t h t d U t Y X H Y H X H H H H H H e H j H h H t h t H ωωωωωωωωωωωωωωωπδωωωωδδωλδλω-∞-∆∆=--=--⇒=⋅==⇒⇒=-=+=⋅=⋅⋅=⎡⎤⎣⎦⎰Z Z 可以分别求冲激响应,输入为冲激函数:输入为冲激函数、,冲激响应=1(1)()1)[()](1)()j T j T j Te e e j j ωωωπδωπδωωω----=-+=-+()2222222220022022102(2)(1)(1)2()(1cos )2sin sin 2sin ((0)()()()21sin 21sin (0)2)()()()[()]j T j T Z X j Z Z Z Z Z Z e e H T j j T TN T G G H H N T N e d T R G R R F G R N ωωωτωωωωωωωωωωωωωωωωωπωωπωωττω+∞-∞----=⋅=-⋅=⇒⋅=⋅⋅=⋅-⋅⇒⋅==⋅⎰===求输出Z t 的均方值即,所以有2200000sin 2222j e d N TN N T d T τωωπωπωπ∞-∞∞=⋅⋅=⋅⋅=⎰⎰4-11 已知系统的输入为单位谱密度的白噪声,输出的功率谱密度为2424()109Y G ωωωω+=++求此稳定系统的单位冲激响应()h t ?解:()()()()()()()()()()()()()()()()()()()()()()242223211242()41092243311()()12231311112()0231921Y tY X X t G s s s s s s G H G H s H s H s s j H s H s s j j h t F H F e e U t j j s s j s H G s ωωωωωωωωωωωωωωωωω----⋅==⇒=-=++=⇒=++++⎛⎫ ⎪+=++-+-+====+ ⎪++ ⎪⎝⎭-+-+-+==系统稳定,则零头、极点都+在左半平面带入4-12 已知系统输入信号的功率谱密度为223()8X G ωωω+=+ 设计一稳定的线性系统()H ω,使得系统的输出为单位谱密度的白噪声?解:()()()()()221()11()Y X X G G H s s H s G s H s H ωωωω=⇒⋅=⇒==⇒==即4-14 功率谱密度为02N 的白噪声作用于(0)2H =的低通网络上,等效噪声带宽为XH MHz 。

相关文档
最新文档