落球法测定液体的粘滞系数实验(精)
大物实验-落球法测定液体黏度(精品)
实验名称:落球法测定液体黏度(总分:100)实验成绩:87实验者: 周进 学号: 201918130227 实验日期: 2020-06-2 校 区:青岛校区 学院、专业:计算机科学与技术学院-计算机科学与技术一、实验目的(1)观察液体的内摩擦现象,明白测量液体粘度的原理及方法; (2)在虚拟实验平台用落球法测量不同温度下蓖麻油的黏度;(3)学习使用比重计测定液体的密度,用停表来计时,以及用螺旋测微器来测量直径。
二、实验仪器实验的主要装置有:PID 温控试验仪、小钢球、蓖麻油、米尺、螺旋测微器、停表、镊子、量筒、水箱。
三、实验原理1.落球法测定液体黏度的原理液体、气体都是具有黏滞性的流体.当液体稳定流动时,平行于流动方向的各层液体速度都不相同。
相邻流层间存在着相对滑动,于是在各层之间就有内摩擦力产生,这种内摩擦力称为黏滞力。
管道中流动的液体因受到黏滞阻力流速变慢,必须用泵的推动才能使其保持匀速流动;划船时用力划桨是为了克服水对小船前进的黏滞阻力。
这些都是液体具有黏滞性的表现。
实验表明,黏滞力的方向平行于接触面。
它的大小与接触面积及该处的速度梯度成正比,比例系数称为黏滞系数或黏度,通常用字母V 表示,在国际单位制中的单位为Pa • s 。
黏度是表征液体黏滞性强弱的重要参数,它与液体的性质和温度有关。
例如,现代医学发 现,许多心脑血管疾病都与血液黏度的变化有关。
因此,测量血黏度的大小是检査人体血液健 康的重要指标之一。
又如,黏度受温度的影响很大,温度升高时,液体的黏度减小,气体的黏度 增大,选择发动机润滑油时要考虑其黏度应受温度的影响较小。
所以,在输油管道的设计、发动 机润滑油的研究、血液流动的研究等方面,液体黏度的测量都是非常重要的。
测量液体黏度的方法很多,有落球法,扭摆法,转筒法及毛细管法。
本实验所采用的落球法 (也称斯托克斯法)是最常用的测量方法。
其实验原理总结如下:当一个小球在粘滞性液体中下落时,在铅直方向受到三个力的作用:向下的重力mg ,液体对小球的向上的浮力gV F 0ρ=(0ρ是液体的密度,V 是小球的体积),以及小球受到的与其速度方向相反的粘滞阻力f 。
大物实验-落球法测定液体黏度(精品)
实验名称:落球法测定液体黏度(总分:100)实验成绩:87实验者: 周进 学号: 201918130227 实验日期: 2020-06-2 校 区:青岛校区 学院、专业:计算机科学与技术学院-计算机科学与技术一、实验目的(1)观察液体的内摩擦现象,明白测量液体粘度的原理及方法; (2)在虚拟实验平台用落球法测量不同温度下蓖麻油的黏度;(3)学习使用比重计测定液体的密度,用停表来计时,以及用螺旋测微器来测量直径。
二、实验仪器实验的主要装置有:PID 温控试验仪、小钢球、蓖麻油、米尺、螺旋测微器、停表、镊子、量筒、水箱。
三、实验原理1.落球法测定液体黏度的原理液体、气体都是具有黏滞性的流体.当液体稳定流动时,平行于流动方向的各层液体速度都不相同。
相邻流层间存在着相对滑动,于是在各层之间就有内摩擦力产生,这种内摩擦力称为黏滞力。
管道中流动的液体因受到黏滞阻力流速变慢,必须用泵的推动才能使其保持匀速流动;划船时用力划桨是为了克服水对小船前进的黏滞阻力。
这些都是液体具有黏滞性的表现。
实验表明,黏滞力的方向平行于接触面。
它的大小与接触面积及该处的速度梯度成正比,比例系数称为黏滞系数或黏度,通常用字母V 表示,在国际单位制中的单位为Pa • s 。
黏度是表征液体黏滞性强弱的重要参数,它与液体的性质和温度有关。
例如,现代医学发 现,许多心脑血管疾病都与血液黏度的变化有关。
因此,测量血黏度的大小是检査人体血液健 康的重要指标之一。
又如,黏度受温度的影响很大,温度升高时,液体的黏度减小,气体的黏度 增大,选择发动机润滑油时要考虑其黏度应受温度的影响较小。
所以,在输油管道的设计、发动 机润滑油的研究、血液流动的研究等方面,液体黏度的测量都是非常重要的。
测量液体黏度的方法很多,有落球法,扭摆法,转筒法及毛细管法。
本实验所采用的落球法 (也称斯托克斯法)是最常用的测量方法。
其实验原理总结如下:当一个小球在粘滞性液体中下落时,在铅直方向受到三个力的作用:向下的重力mg ,液体对小球的向上的浮力gV F 0ρ=(0ρ是液体的密度,V 是小球的体积),以及小球受到的与其速度方向相反的粘滞阻力f 。
落球法测量液体的黏滞系数实验报告-资料类
落球法测量液体的黏滞系数实验报告-资料类关键信息项:1、实验目的2、实验原理3、实验器材4、实验步骤5、实验数据6、数据处理与分析7、误差分析8、实验结论11 实验目的本实验旨在通过落球法测量液体的黏滞系数,加深对黏滞现象的理解,并掌握相关实验技能和数据处理方法。
111 具体目标学会使用落球法测量液体的黏滞系数。
探究不同因素对液体黏滞系数的影响。
12 实验原理当一个小球在液体中匀速下落时,它受到重力、浮力和黏滞阻力的作用。
在小球下落速度较小时,黏滞阻力与小球下落速度成正比,即\(F = 6\pi\eta rv\),其中\(\eta\)为液体的黏滞系数,\(r\)为小球半径,\(v\)为小球下落速度。
当小球达到匀速下落时,重力等于浮力与黏滞阻力之和,可得\(\rho Vg =\rho_{液} Vg + 6\pi\etarv\),通过测量小球下落的速度\(v\)、小球半径\(r\)、液体密度\(\rho_{液}\)、小球密度\(\rho\),以及小球下落的距离\(h\)和所用时间\(t\),可计算出液体的黏滞系数\(\eta\)。
121 理论推导根据上述受力分析,可得:\\begin{align}\rho Vg &=\rho_{液} Vg + 6\pi\eta rv\\v &=\frac{(\rho \rho_{液})Vg}{6\pi\eta r}\\\end{align}\又因为小球做匀速运动,\(v =\frac{h}{t}\),所以:\\eta =\frac{(\rho \rho_{液})Vg t}{6\pi rh}\13 实验器材落球法黏滞系数测定仪小钢球游标卡尺千分尺秒表温度计待测液体(如甘油)131 器材规格及作用落球法黏滞系数测定仪:用于测量小球下落的距离。
游标卡尺:测量小球的直径,精度较高。
千分尺:更精确地测量小球的直径。
秒表:记录小球下落的时间。
温度计:测量液体的温度,因为液体的黏滞系数与温度有关。
用落球法测定液体的粘滞系数
用落球法测定液体的粘滞系数液体的粘滞系数又称为内摩擦系数或粘度。
是描述液体内摩擦力性质的一个重要物理量。
它表征液体反抗形变的能力,只有在液体内存在相对运动时才表现出来。
粘滞系数除了因材料而异之外还比较敏感的依赖温度,液体的粘滞系数随着温度升高而减少,气体则反之,大体上按正比例的规律增长。
研究和测定液体的粘滞系数,不仅在材料科学研究方面,而且在工程技术以及其他领域有很重要的作用。
◆【实验目的】1.学习用落球法测定液体的粘滞系数的原理和方法2.熟悉流动液体中的粘滞现象,掌握粘滞现象的一般规律3.测定蓖麻油的粘滞系数◆【仪器及用具】玻璃量筒、待测液体、游标卡尺、秒表、温度计、米尺、小钢球、读数显微镜◆【实验原理】当流体流动时,各层的流速不同,相邻两层中由于流体分子的热运动,流速慢的流层中的分子进入流速快的流层;同时,流速快的流层中的分子进入流速慢的流层,结果流速快的将变慢,流速慢的将变快。
在宏观上就相当于在两流层间产生了相互作用力,我们称这一对相互作用力为内摩擦力或者粘滞力。
流体中的这一现象称为粘滞现象。
一个半径为r的金属小球在无限广延的粘滞液体中自由下落时,它受到3个力的作用:(1)小球W=ρVg(V为小球体积;ρ为小球密度;g为重力加速度),方向向下;(2)液体作用于小球的浮力F=ρ0Vg(ρ0为液体的密度),方向向上;(3)由于附着于球面的液体与周围其他液层之间的摩擦力,即小球受到的粘滞阻力f,方向向上。
由于液体是无限广延的,而且小球的半径r很小,小球下落的速度v也很小,这由斯托克斯公式可知:f=6πrηv=3πdηv式中,d为小球直径;η为该液体在T℃时的粘滞系数,它只与液体性质和温度有关。
一般的,液体温度越高,η越小。
在CGS制中η的单位是泊(P),1P=1g/(cm•s);在SI制中,η的单位是帕斯卡•秒(Pa•s),1Pa•s=1kg/m•s=10P。
小球在液体中下落时重力ρVg和浮力ρ0Vg为恒力,而粘滞阻力f与小球下落的速度v 成正比。
实验11落球法测量液体的粘滞系数
福建农林大学物理实验要求及原始数据表格实验11落球法测量液体的粘滞系数专业___________________学号___________________姓名___________________一、预习要点1.落球法测定粘滞系数的基本原理是什么?2.表示粘滞阻力的斯托克斯公式受到怎样的局限?实验中如何修正?二、实验内容使用变温粘度仪测定不同温度下蓖麻油的粘滞系数。
三、实验注意事项1.控温时间至少保证10分钟以上,从而使得样品温度与加热水温一致;2.调节样品管的铅直,尽量保证小球沿样品管中心下落;3.测量过程中,尽量避免对液体的扰动;4.从0刻线开始,小球每下落5cm计时一次,计时要眼明手快,保证视线与管壁刻线水平。
5.为保证数据的一致性,选用唯一的小球进行实验,完成实验后,将小球保存于样品管中的蓖麻油里,防止氧化,以备下次实验使用。
四、原始数据记录表格组号________ 同组人姓名____________________ 成绩__________ 教师签字_______________温度每上升5°C左右测量一次,依照室温情况,测量范围可以在20°C ~55°C间任意选择,但40°C必做。
五、数据处理要求1.计算出不同温度条件下小球下落的速度及蓖麻油的粘滞系数,结果填入表格中,保留三位有效数字;2.用坐标纸画出蓖麻油粘滞系数与温度的关系曲线;3.依照书本的理论值,求出40°C时蓖麻油粘滞系数的相对误差,并分析引起误差的原因。
1福建农林大学物理实验要求及原始数据表格六、数据处理注意事项1.画图时,粘滞系数 为纵坐标,温度T为横坐标,作一条平滑的曲线;2.相对误差保留二位有效数字。
七、思考题1.落球法为什么只适用于测量粘滞系数较高的液体?2.为什么落球要在圆筒中心轴线垂直下落?如果不满足该条件,会导致测量值偏大还是偏小?2。
实验一 落球法测液体的粘滞系数
第三章 基础性实验实验一 用落球法测量液体的黏滞系数【实验目的】1. 根据斯托克斯公式用落球法测定液体的黏滞系数。
2. 了解斯托克斯公式的修正方法。
【实验仪器】液体黏滞系数仪,米尺,游标卡尺,螺旋测微器,秒表,温度计,小钢球,比重计,镊子,蓖麻油,天平。
【实验原理】当半径为r 的光滑圆球以速度v 在液体中运动时,小球受到与运动方向相反的摩擦阻力的作用,这个阻力称为黏滞(阻)力。
黏滞力并不是小球和液体之间的摩擦力,而是由于黏附在小球表面的液层与相邻液层之间的内摩擦而产生的。
若小球的半径很小,液体是无限广延且黏性较大,如速度不大,在液体中不产生涡流的情况下,根据斯托克斯定律,小球在液体中受到的黏性力F 为:rv F πη6= (1-1)式子中r 为小球的半径,v 为小球的运动速度,η为液体的黏滞系数。
本实验采用落球法测液体的黏滞系数。
一质量为m 的小球落入液体后受到三个力的作用,即重力mg 、浮力gV 0ρ(0ρ为液体的密度,V 为小球的体积)和黏滞力F 。
在小球刚进入液体时,由于重力大于黏滞力和浮力之和,所以小球作加速运动。
随着小球运动速度的增加,黏滞力也增加,设当速度增加到0v 时,小球受到的合外力为零,此时有:gV rv mg 006ρπη+= (1-2)以后小球将以速度0v 匀速下降,此速度称为终极速度。
将小球的体积34()32d Vπ=代入式(1-2)可得: 200()18gd v ρρη-= (1-3) 式(1-3)是奥西斯—果尔斯公式的零级近似,适用于小球在无限广延的液体中运动的情况。
而在本实验中,小球是在半径为R 的装有液体的圆筒内运动的,这时测得的速度v 和理想条件下的速度0v 之间存在如下关系:)3.31)(4.21(0h r R r v v ++= (1-4) 式中,/2rd =,R 为盛液体圆筒的内半径,h 为液体的深度,将式(1-4)代入式(1-3)中,得出: )3.31)(4.21(18)(20hr R r gd ++-='ρρη (1-5) 实验时,先由式(1-3)求出近似值,再用式(1-5)求出经修正的值η'。
《医用物理》落球法测定液体的粘滞系数实验
1υπρηr g V m 6)(排-=2d r =tl =υ实验三落球法测定液体的粘滞系数【实验目的】(1)掌握用落球法测定液体粘滞系数的原理和方法。
(2)学会使用电子天平,并会称量固体、液体密度。
(3)用落球法实验仪测定液体实时温度下的粘滞系数。
【实验仪器】落球法粘滞系数测定仪,激光光电计时仪,电子天平,砝码,2mm 小钢球,蓖麻油,米尺,千分尺,电子秒表,电子温度计等。
【实验原理】当金属小球在粘滞性液体中铅直下落时,由于附着于球面的液层与周围其他液层之间存在着相对运动,因此小球受到粘滞阻力,它的大小与小球下落的速度有关。
如果液体无限深广,在小球下落速度υ较小的情况下斯托克斯给出:6f r πηυ=(1)式中:r 是小球的半径,υ是小球下落的速度;η为液体的粘度,单位是s Pa ⋅。
如图(一)所示,小球在液体中下落时受到三个竖直方向的力:小球的重力G =mg (m 为小球的质量);液体作用于小球的浮力F =排gV ρ(V 是小球的体积,ρ是液体的密度);粘滞阻力6f r πηυ=(其方向与小球运动方向相反);D 为量筒直径,H 为量筒中液体高度。
小球开始下落时,由于速度尚小,所以阻力f 也不大;但随着下落速度的增大,阻力也随之增大。
最后三个力达到平衡,即r gV mg πηυρ6+=排,于是,小球做匀速直线运动。
由上式可得:令小球的直径为d ,并用,代入上式得ρπ'=36d m2)6.11)(4.21(18)(2HdD d l tgd ++-'=ρρηlt gd 18)(2ρρη-'=ltgd 18)(2ρρη-'=)6.11)(4.21(1Hd D d ++(2)式中,ρ'为小钢球的密度,l 为小球匀速下落的距离(即两激光束之间的距离),t 为小球下落l 距离所用的时间。
实验时,待测液体盛于量筒中,如图(一)所示,不能满足无限深广的条件。
实验证明,若小球沿筒的中心轴线下降,式(2)需要做如下修正方能符合实际情况:•式中,D 为量筒直径,H 为量筒中液体高度。
落球法测液体粘滞系数实验报告
落球法测液体粘滞系数实验报告落球法测液体粘滞系数实验报告引言液体的粘滞性质是指其内部分子间的摩擦阻力,是液体流动过程中的重要参数。
粘滞系数是描述液体粘滞性质的物理量,它与液体的黏度密切相关。
本实验采用落球法测量液体的粘滞系数,通过实验数据的分析,探究不同液体的粘滞性质以及其与温度的关系。
实验步骤1. 实验器材准备:实验所需的器材包括落球仪、计时器、温度计、容器等。
2. 实验液体准备:选择不同液体进行实验,如水、甘油、酒精等,分别倒入容器中。
3. 实验环境准备:将实验室温度调整到稳定状态,并记录下实验开始时的温度。
4. 实验操作:将落球仪放置在容器中,将液体从仪器顶部注入,待液体稳定后,观察落球的速度,并用计时器记录下落球所需的时间。
5. 实验数据记录:根据实验操作的结果,记录下不同液体在不同温度下的落球时间。
实验结果与分析根据实验数据,我们可以计算出不同液体在不同温度下的粘滞系数。
通过对实验结果的分析,我们可以得出以下结论:1. 不同液体的粘滞系数不同:根据实验数据,我们可以发现不同液体的粘滞系数存在差异。
例如,水的粘滞系数较小,而甘油的粘滞系数较大。
这是因为液体的粘滞系数与其分子间的相互作用力有关,不同液体的分子结构和化学性质不同,因此其粘滞系数也会有所差异。
2. 温度对粘滞系数的影响:通过对不同温度下的实验数据进行比较,我们可以发现温度对液体的粘滞系数有一定的影响。
一般来说,随着温度的升高,液体的粘滞系数会减小。
这是因为温度的升高会增加液体分子的热运动能量,使得分子间的相互作用力减弱,从而降低了液体的粘滞性。
3. 实验误差的考虑:在实验过程中,由于各种因素的影响,可能会存在一定的误差。
例如,由于仪器的精度限制或操作不准确等原因,实验数据可能会有一定的偏差。
为了减小误差的影响,我们可以多次进行实验,并取平均值来提高数据的准确性。
结论通过落球法测量液体的粘滞系数,我们可以得出不同液体的粘滞性质以及其与温度的关系。
用落球法测量液体的粘度实验报告
一、实验名称:落球法测量液体粘度二、实验目的:1. 了解液体粘度的基本概念及其测量方法。
2. 掌握落球法测量液体粘度的原理和实验操作。
3. 学会使用实验器材,并对实验数据进行处理和分析。
三、实验原理:落球法测量液体粘度的原理基于斯托克斯公式。
当小球在液体中匀速下落时,所受的粘滞阻力与重力、浮力达到平衡。
根据斯托克斯公式,粘滞阻力F与液体的粘度η、小球半径r和速度v之间存在如下关系:\[ F = 6\pi \eta r v \]其中,F为粘滞阻力,η为液体粘度,r为小球半径,v为小球在液体中的速度。
实验中,通过测量小球下落的时间t和距离l,可以计算出小球的速度v,进而根据斯托克斯公式求得液体的粘度η。
四、实验器材:1. 落球法液体粘滞系数测定仪2. 小球3. 激光光电计时仪4. 读数显微镜5. 游标卡尺6. 温度计7. 记录纸和笔五、实验步骤:1. 将液体倒入实验装置的容器中,确保液体高度适中。
2. 将小球放入容器中,调整激光光电计时仪,使其发射的两束激光交叉于小球下落的路径上。
3. 启动计时仪,观察小球下落过程,记录下落时间t和距离l。
4. 使用读数显微镜测量小球的直径d,在不同方位测量6次,取平均值。
5. 使用游标卡尺测量容器内径D,记录数据。
6. 记录室温。
六、数据处理:1. 根据斯托克斯公式,计算小球的速度v:\[ v = \frac{l}{t} \]2. 根据斯托克斯公式,计算液体的粘度η:\[ \eta = \frac{2\pi r^3 (g - \frac{4\pi r^2\rho}{3\rho_{\text{液}}})}{9l} \]其中,r为小球半径,ρ为小球密度,ρ_{\text{液}}为液体密度,g为重力加速度。
3. 对实验数据进行处理,分析误差来源,并对结果进行讨论。
七、实验结果与分析:1. 根据实验数据,计算液体的粘度η。
2. 分析实验误差来源,如测量误差、仪器误差等。
3. 对实验结果进行讨论,与理论值进行比较,分析实验结果的准确性。
落球法测量液体粘滞系数
落球法测量液体粘滞系数落球法测量液体的粘滞系数实验报告一、问题背景液体流动时,平行于流动方向的各层流体速度都不相同,即存在着相对滑动,于是在各层之间就有摩擦力产生,这一摩擦力称为粘滞力(或粘滞系数),它的方向平行于接触面,其大小与速度梯度及接触面积成正比,比例系数η称为粘度,它是表征液体粘滞性强弱的重要参数。
液体的粘滞系数和人们的生产,生活等方面有着密切的关系,比如医学上常把血粘度的大小做为人体血液健康的重要标志之一。
又如,石油在封闭管道中长距离输送时,其输运特性与粘滞性密切相关,因而在设计管道前,必须测量被输石油的粘度。
测量液体粘度可用落球法,毛细管法,转筒法等方法,其中落球法适用于测量粘度较高的透明或半透明的液体,比如:蓖麻油、变压器油、甘油等。
二、实验目的1.学习和掌握一些基本物理量的测量。
2.学习激光光电门的校准方法。
3.用落球法测量蓖麻油的粘滞系数。
三、实验仪器DH4606落球法液体粘滞系数测定仪、卷尺、螺旋测微器、电子天平、游标卡尺、钢球若干。
四、实验原理处在液体中的小球受到铅直方向的三个力的作用:小球的重力mg(m 为小球质量)、液体作用于小球的浮力?gV(V是小球体积,?是液体密度)和粘滞阻力F(其方向与小球运动方向相反)。
如果液体无限深广,在小球下落速度v较小情况下,有F=6πηrv(1)上式称为斯托克斯公式,其中r是小球的半径;?称为液体的粘度,其单位是Pa?s。
小球在起初下落时,由于速度较小,受到的阻力也就比较小,随着下落速度的增大,阻力也随之增大。
最后,三个力达到平衡,即mg=ρgV+6πη??0??(2)此时,小球将以v0作匀速直线运动,由(2)式可得:η=()??6????0??(3)令小球的直径为d,并用m??3'6d?,vl0?t,r?d2代入(3)式得η=(??′)?2??18??(4)其中?'为小球材料的密度,l为小球匀速下落的距离,t为小球下落l距离所用的时间。
落球法测量液体的黏滞系数实验报告
落球法测量液体的黏滞系数实验报告在这次实验中,我们通过落球法来测量液体的黏滞系数,听起来很专业,但其实就是一个简单又有趣的过程。
我们选择了几种不同的液体,比如水、油和糖水。
每种液体都有自己的特性,尤其是黏滞性,简而言之,就是流动时的“粘性”。
这就像是水流得快,而蜂蜜则慢得像蜗牛。
一、实验准备1.1 材料准备首先,我们得准备好材料。
需要一个透明的量筒,这样可以清楚地看到液体。
再来是一个标准的小球,通常用钢球。
我们还需要一个计时器,当然了,纸和笔也不能少,记录数据可不能马虎。
1.2 液体选择液体的选择很关键。
我们选择水,油和浓糖水。
水流动性强,黏度低,油则有点粘稠,而糖水则更是浓厚,像是熬了很久的糖浆。
每种液体都有它的“脾气”,这让我们的实验更有趣。
二、实验步骤2.1 测量准备在实验开始之前,先把量筒装满液体。
注意,要确保液体的表面平整,没有气泡。
然后,准备好小球,确保它的直径和质量都符合标准。
我们需要准确地记录下这些数据。
2.2 投放小球接下来,开始实验。
将小球轻轻放入液体中,确保它垂直落下。
这一瞬间,时间仿佛静止。
小球像一颗流星,划破液体的宁静。
开始计时,记录小球下落的时间。
每一秒都充满期待,心中默默祈祷小球顺利落下。
2.3 数据记录与计算当小球到达底部,立刻停止计时。
记录下下落的时间。
然后,测量小球下落的距离。
根据这些数据,我们可以用公式计算出液体的黏滞系数。
公式听起来很复杂,但其实就是把小球的半径、密度、重力加速度和液体的密度结合起来,得出一个数字。
三、实验结果3.1 数据分析在实验中,我们发现水的黏滞系数最小,小球下落得飞快。
油则相对较慢,像是在水中游荡。
糖水则是最慢的,感觉小球像是被粘住了一样。
这些数据不仅让我们感受到不同液体的特点,也让我体会到“细节决定成败”的道理。
3.2 理论联系通过这个实验,我们可以看到理论与实际的结合。
牛顿流体理论告诉我们,黏滞系数和温度、压力等因素息息相关。
不同的液体在不同条件下表现出不同的黏滞性。
实验十二液体粘滞系数的测定(精)
实验十二 液体粘滞系数的测定实验目的1.了解用斯托克斯公式测定液体粘滞系数的原理,掌握其适用条件。
2.学习用落球法测定液体的粘滞系数。
实验器材玻璃圆筒,温度计,密度计,螺旋测微器,游标卡尺,天平,米尺,秒表,镊子,落球,蓖麻油等。
实验原理当物体球在液体中运动时,物体将会受到液体施加的与运动方向相反的摩擦阻力的作用,这种阻力称为粘滞阻力,简称粘滞力。
粘滞阻力并不是物体与液体间的摩擦力,而是由附着在物体表面并随物体一起运动的液体层与附近液层间的摩擦而产生的。
粘滞力的大小与液体的性质、物体的形状和运动速度等因素有关。
根据斯托克斯定律,光滑的小球在无限广延的液体中运动时,当液体的粘滞性较大,小球的半径很小,且在运动中不产生旋涡,那么小球所受到的粘滞阻力f 为vd f πη3= (12-1) 式中d 是小球的直径,v 是小球的速度,η为液体粘滞系数。
η就是液体粘滞性的度量,与温度有密切的关系,对液体来说,η随温度的升高而减少(见附表)。
本实验应用落球法来测量液体的粘滞系数。
如图12—1,密度为ρ的小球在液体密mg=g d 0361ρπ、浮力F=g d ρπ361、粘滞阻力f 。
开始下落时小球运动 的速度较小,相应的阻力也小,重力大于粘滞阻力和浮力,所以小球作 加速运动。
由于粘滞阻力随小球的运动速度增加而逐渐增加,加速度也 越来越小,当小球所受合外力为零时,趋于匀速运动,此时的速度称为 收尾速度,记为v 0。
根据受力分析有()d g d 003361πηυρρπ=- (12-2)经计算可得液体的粘滞系数为2018)(v gd ρρη-=(12-3) 上式成立的条件是小球在无限宽广的均匀液体中下落,但实验中小球是在内半径为D 的玻璃圆筒中的液体里下落,如图12-2,筒的直径和液体深度都是有限的,故实验时作用在小球上的粘滞阻力将与斯托克斯公式给出的不同。
当圆筒直径比小球直径大很多、液体高度远远大于小球直径时,其差异是微小的。
落球法测量液体粘滞系数
落球法测量液体得粘滞系数实验报告一、问题背景液体流动时,平行于流动方向得各层流体速度都不相同,即存在着相对滑动,于就是在各层之间就有摩擦力产生,这一摩擦力称为粘滞力(或粘滞系数),它得方向平行于接触面,其大小与速度梯度及接触面积成正比,比例系数η称为粘度,它就是表征液体粘滞性强弱得重要参数。
液体得粘滞系数与人们得生产,生活等方面有着密切得关系,比如医学上常把血粘度得大小做为人体血液健康得重要标志之一。
又如,石油在封闭管道中长距离输送时,其输运特性与粘滞性密切相关,因而在设计管道前,必须测量被输石油得粘度。
测量液体粘度可用落球法,毛细管法,转筒法等方法,其中落球法适用于测量粘度较高得透明或半透明得液体,比如:蓖麻油、变压器油、甘油等。
二、实验目得1.学习与掌握一些基本物理量得测量。
2.学习激光光电门得校准方法。
3.用落球法测量蓖麻油得粘滞系数。
三、实验仪器DH4606落球法液体粘滞系数测定仪、卷尺、螺旋测微器、电子天平、游标卡尺、钢球若干。
四、实验原理处在液体中得小球受到铅直方向得三个力得作用:小球得重力(为小球质量)、液体作用于小球得浮力(就是小球体积,就是液体密度)与粘滞阻力(其方向与小球运动方向相反)。
如果液体无限深广,在小球下落速度较小情况下,有(1)上式称为斯托克斯公式,其中就是小球得半径;称为液体得粘度,其单位就是。
小球在起初下落时,由于速度较小,受到得阻力也就比较小,随着下落速度得增大,阻力也随之增大。
最后,三个力达到平衡,即(2)此时,小球将以作匀速直线运动,由(2)式可得:(3)令小球得直径为,并用,,代入(3)式得(4)其中为小球材料得密度,为小球匀速下落得距离,为小球下落距离所用得时间。
实验过程中,待测液体放置在容器中,故无法满足无限深广得条件,实验证明上式应进行如下修正方能符合实际情况:(5) 其中为容器内径,为液柱高度。
当小球得密度较大,直径不就是太小,而液体得粘度值又较小时,小球在液体中得平衡速度会达到较大得值,奥西思果尔斯公式反映出了液体运动状态对斯托克斯公式得影响:(6)其中,Re称为雷诺数,就是表征液体运动状态得无量纲参数。
落球法测量液体的黏滞系数实验报告
落球法测量液体的黏滞系数实验报告一、实验目的1、学习使用落球法测量液体的黏滞系数。
2、掌握测量原理和实验方法,提高实验操作技能。
3、研究液体黏滞系数与温度等因素的关系。
二、实验原理当一个小球在液体中下落时,它会受到重力、浮力和黏滞阻力的作用。
在小球下落速度较小的情况下,黏滞阻力可以表示为:\(F = 6\pi\eta rv\)其中,\(\eta\)为液体的黏滞系数,\(r\)为小球半径,\(v\)为小球下落速度。
当小球下落达到收尾速度\(v_{0}\)时,重力、浮力和黏滞阻力三力平衡,即:\(mg \rho_{液}gV = 6\pi\eta rv_{0}\)其中,\(m\)为小球质量,\(\rho_{液}\)为液体密度,\(V\)为小球体积。
整理可得液体黏滞系数的表达式为:\(\eta =\frac{(m \rho_{液}V)g}{6\pi rv_{0}}\)通过测量小球的质量\(m\)、半径\(r\)、下落的收尾速度\(v_{0}\)以及液体的密度\(\rho_{液}\),就可以计算出液体的黏滞系数\(\eta\)。
三、实验器材1、落球法黏滞系数测定仪一套,包括盛液容器、测量筒、激光光电计时仪等。
2、不同直径的小钢球若干。
3、游标卡尺、螺旋测微器、电子天平。
4、温度计。
5、待测液体(例如甘油)。
四、实验步骤1、用电子天平测量小球的质量,多次测量取平均值。
2、用游标卡尺测量小球的直径,多次测量取平均值,然后计算小球的半径\(r\)。
3、用螺旋测微器测量测量筒的内径。
4、将待测液体倒入盛液容器中,使其高度超过测量筒的上沿。
5、将小球从液面中心轻轻放入液体中,让其自由下落。
6、打开激光光电计时仪,记录小球通过测量筒上两个光电门的时间间隔,多次测量取平均值,计算小球的收尾速度\(v_{0}\)。
7、用温度计测量液体的温度。
8、更换不同直径的小球,重复上述步骤。
五、实验数据记录与处理1、实验数据记录|小球编号|小球质量\(m\)(g)|小球直径\(d\)(mm)|半径\(r\)(mm)|测量筒内径\(D\)(mm)|通过时间\(t\)(s)|收尾速度\(v_{0}\)(mm/s)|液体温度\(T\)(℃)|||||||||||1|_____|_____|_____|_____|_____|_____|_____||2|_____|_____|_____|_____|_____|_____|_____||3|_____|_____|_____|_____|_____|_____|_____|2、数据处理(1)根据小球质量和直径的测量值,计算小球的体积和平均半径。
落球法测量液体的黏滞系数实验报告
落球法测量液体的黏滞系数实验报告一、实验题目落球法测量液体的黏滞系数二、实验目的学会使用PID温控试验仪掌握用落球法测量液体的黏滞系数的基本原理掌握实验的操作步骤及实验数据的处理三、实验器材变温黏度测量仪、,ZKY—PID温控实验仪、秒表、螺旋测微器,钢球若干实验仪器简介:1、变温黏度仪如右图所示,待测液体在细长的样品管中能使液体温度较快地与加热水温达到平衡,样品管壁上有刻度线,便于测量小球下落的距离。
样品管外的加热水套连接到温控仪,通过热循环水加热样品。
底座下有调节螺丝钉,用于调节样品管的铅直。
2、开放式PID温控实验仪温控实验仪包含水箱、水泵、加热器、控制及显示电路等部分。
本实验所用温控实验仪能根据实验对象选择PID参数以达到最佳控制,能显示温控过程的温度变化曲线和功率的实时值,能存储温度及功率变化曲线,控制精度高等特点。
仪器面板如右图所示:开机后水泵开始运转,显示屏显示操作菜单,可选择工作方式,输入序号及室温,设定温度及PID参数。
使用左右键选择项目,上下键设置参数,按确认进入下一屏,按返回键返回上一屏。
进入测量界面后屏幕上方的数据栏从左至右依次显示序号,设定温度、初始温度、当前温度、当前功率、调节时间等参数。
图形以横坐标代表时间,纵坐标代表温度(以及功率),并可用上下键改变温度坐标值.仪器每隔15秒采集一次温度及加热功率值,并将采得的数据示在图上。
温度达到设定值并保持2min温度波动小雨0.1℃,仪器自动判定达到平衡,并在图形区右边显示过渡时间t s,动态偏差σ,静态偏差e。
四、实验原理1、液体的黏滞系数:如果将黏滞流体分成许多很薄的流层,个流层的速度是不相同的.当流速不大时,流速是分层有规律变化的,流层之间仅有相对滑动而不混合。
这中流体在管内流动时,其质点沿着与管轴平行的方向做平滑直线运动的流动成为层流。
如下图所示实际流体在水平圆形管道中作层流时的速度分布情况,附着在管壁的一层流体流速为0,从管壁到管轴流体的速度逐渐增大,管轴出速度最大,形成不同流层。
落球法测量液体的粘滞系数
落球法测量液体的粘滞系数一、实验内容:熟悉斯托克斯定律,掌握用落球法测量液体的粘滞系数的原理和方法;二、实验仪器:落球法粘滞系数测定仪、小钢球、蓖麻油、千分尺、激光光电计时仪三、实验原理:如图1,当金属小球在粘性液体中下落时,它受到三个铅直方向的力:小球的重力mg、液体作用于小球的浮力gVρV为小球体积,ρ为液体密度和粘滞阻力F其方向于小球运动方向相反;如果液体无限深广,在小球下落速度v较小的情况下,有:rvFπη6= 1FfPL HD图1 液体的粘滞系数测量装置上式称为斯托克斯公式,式中η为液体的粘滞系数,单位是s Pa ⋅,r 为小球的半径;斯托克斯定律成立的条件有以下5个方面: 1媒质的不均一性与球体的大小相比是很小的;2球体仿佛是在一望无涯的媒质中下降; 3球体是光滑且刚性的; 4媒质不会在球面上滑过;5 球体运动很慢,故运动时所遇的阻力系由媒质的粘滞性所致,而不是因球体运动所推向前行的媒质的惯性所产生;小球开始下落时,由于速度尚小,所以阻力不大,但是随着下落速度的增大,阻力也随之增大;最后,三个力达到平衡,即:rv gV mg πηρ6+=于是小球开始作匀速直线运动,由上式可得:vrgV m πρη6)(-=令小球的直径为d ,并用ρπ36d m =,t l v =,2dr =代入上式得:其中ρ'为小球材料的密度,l 为小球匀速下落的距离,t 为小球下落l 距离所用的时间;实验时,待测液体盛于容器中,故不能满足无限深广的条件,实验证明上式应该进行修正;测量表达式为:其中D 为容器的内径,H 为液柱高度;四、实验步骤:1.调整粘滞系数测量装置及实验仪器1 调整底盘水平,在仪器横梁中间部位放重锤部件,调节底盘旋钮,使重锤对准底盘的中心圆点;2 将实验架上的两激光器接通电源,并进行调节,使其红色激光束平行对准锤线;3 收回重锤部件,将盛有待测液体的量筒放置到实验架底盘中央,并在实验中保持位置不变;4 在实验架上放上钢球导管;小球用酒精清洗干净,并用滤纸吸干;5 将小球放入钢球导管,看其能否阻挡光线,如不能,则适当调整激光器位置;2.用温度计测量油温,在全部小球下落完后再测一次油温,取其平均值;3.测量上下两激光束之间的距离l;4.将小球放入钢球导管,当小球落下,阻挡上面的红色激光束,秒表开始记时,到小球落到阻挡下面的红色激光束时,停止记时,读出下落时间,重复6次;5.计算蓖麻油的粘滞系数;五、数据记录和数据处理表格一表格二 T= 0Cη为测量室温下的公认值;六、思考题:1)为什么要对测量表达式2进行修正提示:斯托克斯定律成立的条件是球体仿佛是在一望无涯的媒质中下降,而实验采用的有限的油柱,故应进行修正;2)本实验中如果钢球表面粗糙对实验会有影响吗提示:有;斯托克斯定律成立的条件要求球体是光滑且刚性的;3)激光束为什么一定要通过玻璃圆筒的中心轴提示:激光束如果不通过玻璃圆筒的中心轴,小球下落时就不会阻挡激光束,激光计时器就得不到启动信号而不能计时;4)本实验中不少的同学每次测量的时间完全一样,由此你能够对电子计时仪器提出什么要求5如何判断小球在作匀速运动提示:让小球贴近液面下落,测量其经过测量区域一定距离的时间,然后再将小球液面上面一定高度处下落,测量通过同样距离的时间,若两次时间相同,则可判断小球在作匀速运动;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 注意事项: • 1,实验时液体中应无气泡。 • 2,将小钢球在液体中浸一下,然后 用镊子把小钢球沿量筒中心轴线放 入液体中。 • 3,液体粘滞系数随温度的变化而变 化,因此测量中不要用手摸量筒。 • 4,在观察小钢球通过量筒标志线 时,要使视线水平,以减小误差。
• 五、数据表格和数据处理
测量小钢球的直径d和下落时间t 2 3 4 5 6 7 8 9
测量 值
d/mm
1
10 平 均 值
d-d0/mm
t/s
测量D、T、h、H(查表填写ρ、ρ0、g)
次数 1 2 3 D/mm T/℃ H/mm h/mm ρ/(g· cm -3 ) ρ0/(g· cm-3 ) g/(cm· s -2 )
4
5 平均值
• 液体流动时,其质点之间存在着相对运动, 会产生内摩擦力反抗它们之间的相对运动, 液体的这种性质称为粘滞性。质点之间的内 摩擦力称为粘滞力。粘滞系数反映液体流动 行为的特征。粘滞系数与液体的性质、温度 和流速有关,因此,粘滞系数的测量在工程 技术方面有着广泛的使用价值。如机械的润 滑,石油在管道中的传输,油脂涂料,医疗 和药物等方面,都需要测定粘滞系数。
0 d
无限宽 广的条件,因此对上式加以修正: • 则,
η=(ρ-ρ。)gd t /[18h(1+2.4d/D)(1+1.6d/H) -(3ρ。hd) /(16t) • 式中,ρ——小球密度,ρ。——液体密度, g——重力加速度,d——小球直径, • t——下落时间,h——下落高度,D——筒内 径,H——液面高度
2
• 三、实验仪器 • 盛有被测液体的量筒、温度计、 小钢球10个、秒表、卡尺和千分 尺等。
• 四、操作指南 • 1,选取10个一样的小球,测量它的直径, 取平均值。 • 2,在盛液体的量筒上取定测量小球匀速下落 的高度h的上下标志A和B。注意A点要保证 小球已经匀速下降,应在5厘米以下,而B点 不能太靠近底部。 • 3,用秒表多次测量下落时间,取平均值。 • 4,用卡尺多次测量量筒的内径,取平均值。 用米尺测量H和h. • 5,在开始和结束时各测一次温度,取平均值。
• R——小球半径,v——运动速度,η粘滞系 数——与液体种类和温度有关,F——小球表 面附着的液体与周围液体之间的摩擦力。
• 小球在被测液体中竖直下落速度增到一定值 时,小球受到的粘滞阻力和与液体对其产生 的浮力,将与重力达到平衡。 • 有Mg=6πηrv+ρ。Vg • 由此得η=(m-ρ。V)g/(6πrv) 3 • 式中m=ρV=(4/3) πr ρ, 因此
• 测量液体粘滞系数的常用方 法有落球法、扭摆法、转筒 法和毛细管法等。前三种方 法是利用摩擦阻力来确定粘 滞系数的,最后一种方法是 通过测定一定的时间内流过 毛细管的液体体积来确定粘 滞系数的。
• 二、实验原理
• 半径为r的小球以速度v在无限宽广的液 体中运动,当速度较小(不产生漩涡) 时,根据斯托克斯公式,它受到的粘滞 阻力为: • F=6πηrv
大学物理实验-预习导航
落球法测定液体的粘滞系数实验
北京工业大学 苏丽娅
2006年2月
内容介绍
• • • • • 1,背景介绍 2,实验原理 3,仪器介绍 4,操作指南 5,数据处理要求
• 一、背景知识 • 19世纪物理学家 斯托克斯(George Gabriel Stokes)建 立了著名的流体力学 方程组“斯托克斯 组”,系统地反映了 流体在运动过程中质 量、动量和能量之间 的关系:一个在液体 中运动的物体所承受 力的大小与物体的几 何形状、速度以及液 体的内摩擦力有关。