高中数学必修二第一章同步练习(含答案)
新人教高一数学必修2同步练习与单元测试第一章1.2.3
1.2.3 空间几何体的直观图一、基础过关1.下列结论:①角的水平放置的直观图一定是角;②相等的角在直观图中仍然相等;③相等的线段在直观图中仍然相等;④两条平行线段在直观图中对应的两条线段仍然平行.其中正确的有()A.①②B.①④C.③④D.①③④2.在用斜二测画法画水平放置的△ABC时,若∠A的两边分别平行于x轴、y轴,则在直观图中∠A′等于()A.45°B.135°C.90°D.45°或135°3.下面每个选项的2个边长为1的正△ABC的直观图不是全等三角形的一组是()4.如图甲所示为一个平面图形的直观图,则此平面图形可能是图乙中的()5.利用斜二测画法得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论中,正确的是______________.(填序号)6.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为____________.7.如图是一梯形OABC的直观图,其直观图面积为S.求梯形OABC的面积.8.如图所示,已知几何体的三视图,用斜二测画法画出它的直观图.二、能力提升9.如图,正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图,则原图的周长是()A.8 cm B.6 cmC.2(1+3) cm D.2(1+2) cm10.如图所示的是水平放置的△ABC在直角坐标系的直观图,其中D′是A′C′的中点,且∠A′C′B′≠30°,则原图形中与线段BD的长相等的线段有________条.11.如图所示,为一个水平放置的正方形ABCO,它在直角坐标系xOy中,点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为________.12.如图所示,梯形ABCD中,AB∥CD,AB=4 cm,CD=2 cm,∠DAB=30°,AD=3 cm,试画出它的直观图.三、探究与拓展13.在水平放置的平面α内有一个边长为1的正方形A′B′C′D′,如图,其中的对角线A′C′在水平位置,已知该正方形是某个四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.答案1.B 2.D 3.C 4.C 5.①② 6.2.57.解设O′C′=h,则原梯形是一个直角梯形且高为2h.过C′作C′D′⊥O′A′于D′,则C ′D ′=22h . 由题意知12C ′D ′(C ′B ′+O ′A ′)=S .即24h (C ′B ′+O ′A ′)=S . 又原直角梯形面积为S ′=12·2h (C ′B ′+O ′A ′)=h (C ′B ′+O ′A ′)=4S2=22S .所以梯形OABC 的面积为22S .8.解 (1)作出长方体的直观图ABCD -A 1B 1C 1D 1,如图a 所示;(2)再以上底面A 1B 1C 1D 1的对角线交点为原点建立x ′,y ′,z ′轴,如图b 所示,在z ′上取点V ′,使得V ′O ′的长度为棱锥的高,连接V ′A 1,V ′B 1,V ′C 1,V ′D 1,得到四棱锥的直观图,如图b ;(3)擦去辅助线和坐标轴,遮住部分用虚线表示,得到几何体的直观图,如图c.9.A 10.2 11.2212.解 画法:步骤:(1)如图a 所示,在梯形ABCD 中, 以边AB 所在的直线为x 轴,点A 为原点, 建立平面直角坐标系xOy .如图b 所示,画出对应的x ′轴,y ′轴,使∠x ′O ′y ′=45°. (2)在图a 中,过D 点作DE ⊥x 轴,垂足为E .在图b 中, 在x ′轴上取A ′B ′=AB =4 cm ,A ′E ′=AE =323≈2.598 cm ;过点E ′作E ′D ′∥y ′轴,使E ′D ′=12ED =12×32=0.75 cm ,再过点D ′作D ′C ′∥x ′轴,且使D ′C ′=DC =2 cm.(3)连接A ′D ′、B ′C ′,并擦去x ′轴与y ′轴及其他一些辅助线,如图c 所示,则四边形A ′B ′C ′D ′就是所求作的直观图.∵A′C′在水平位置,A′B′C′D′为正方形,=45°,∴在原四边形ABCD中,DA⊥AC,AC⊥BC,∵DA=2D′A′=2,AC=A′C′=2,∴S四边形ABCD=AC·AD=2 2.。
人教版高中数学必修2同步章节训练题及答案全册汇编
高中数学必修2全册同步练习题目录1-1-1 棱柱、棱锥、棱台的结构特征1-1-2 圆柱、圆锥、圆台、球的结构特征、简单组合体的结构特征1-2-1、2 中心投影与平行投影空间几何体的三视图1-2-3 空间几何体的直观图1-3-1-1 柱体、锥体、台体的表面积1-3-1-2 柱体、锥体、台体的体积1-3-2 球的体积和表面积高中数学第一章综合素能检测2-1-1 平面2-1-2 空间中直线与直线之间的位置关系2-1-3、4 空间中直线与平面之间的位置关系平面与平面之间的位置关系2-2-1 直线与平面平行的判定2-2-2 平面与平面平行的判定2-2-3 直线与平面平行的性质2-2-4 平面与平面平行的性质2-3-1 直线与平面垂直的判定2-3-2 平面与平面垂直的判定2-3-3 直线与平面垂直的性质2-3-4 平面与平面垂直的性质高中数学第二章综合素能检测3-1-1 倾斜角与斜率3-1-2 两条直线平行与垂直的判定3-2-1 直线的点斜式方程3-2-2 直线的两点式方程3-2-3 直线方程的一般式3-3-1 两条直线的交点坐标3-3-2 两点间的距离公式3-3-3、4 点到直线的距离两条平行直线间的距离高中数学第三章综合检测4-1-1 圆的标准方程4-1-2 圆的一般方程4-2-1 直线与圆的位置关系4-2-2 圆与圆的位置关系4-2-3 直线与圆的方程的应用4-3-1、2 空间直角坐标系空间两点间的距离公式高中数学第四章综合检测一、选择题1.在棱柱中()A.只有两个面平行B.所有的棱都平行C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行[答案] D2.下列几何体中,不属于多面体的是()A.立方体B.三棱柱C.长方体D.球[答案] D3.如图所示的几何体是()A.五棱锥B.五棱台C.五棱柱D.五面体[答案] C4.下列命题中,正确的是()A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱都相等,侧面是平行四边形[答案] D5.棱锥侧面是有公共顶点的三角形,若围成一个棱锥侧面的三角形都是正三角形,则这样侧面的个数最多有几个.() A.3B.4C.5D.6[答案] C[解析]由于顶角之和小于360°,故选C.6.下面描述中,不是棱锥的几何结构特征的为()A.三棱锥有四个面是三角形B.棱锥都是有两个面是互相平行的多边形C.棱锥的侧面都是三角形D.棱锥的侧棱交于一点[答案] B7.下列图形经过折叠不能围成一个棱柱的是()[答案] B8.(2012-2013·嘉兴高一检测)如下图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是()A.(1)(2) B.(2)(3)C.(3)(4) D.(1)(4)[答案] B[解析]在图(2)、(3)中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图(2)、(3)完全一样,而(1)、(4)则不同[解题提示]让其中一个正方形不动,其余各面沿这个正方形的各边折起,进行想象后判断.二、填空题9.图(1)中的几何体叫做________,AA1、BB1等叫它的________,A、B、C1等叫它的________.[答案]棱柱侧棱顶点10.图(2)中的几何体叫做________,P A、PB叫它的________,平面PBC、PCD叫做它的________,平面ABCD叫它的________.[答案]棱锥侧棱侧面底面11.图(3)中的几何体叫做________,它是由棱锥________被平行于底面ABCD的平面________截得的.AA′,BB′叫它的__________,平面BCC′B′、平面DAA′D′叫它的________.[答案]棱台O-ABCD A′B′C′D′侧棱侧面12.如图,在透明塑料制成的长方体ABCD-A1B1C1D1容器中灌进一些水,将容器底面一边BC置于地面上,再将容器倾斜,随着倾斜程度的不同,以下命题:①水的形状成棱柱形;②水面EFGH的面积不变;③水面EFGH始终为矩形.其中正确的命题序号是________.[答案]①③[解析]根据棱柱的定义及结构特征来判断.在棱柱中因为有水的部分和无水的部分始终有两个面平行,而其余各面易证是平行四边形,故①正确;而随着倾斜程度的不同,水面EFGH的面积是会改变的,但仍为矩形故②错误;③正确.三、解答题13.判断下列语句的对错.(1)一个棱锥至少有四个面;(2)如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等;(3)五棱锥只有五条棱;(4)用与底面平行的平面去截三棱锥,得到的截面三角形和底面三角形相似.[解析](1)正确.(2)不正确.四棱锥的底面是正方形,它的侧棱可以相等,也可以不相等.(3)不正确,五棱锥除了五条侧棱外,还有五条底边,故共有10条棱.(4)正确.14.如右图所示的几何体中,所有棱长都相等,分析此几何体的构成?有几个面、几个顶点、几条棱?[解析]这个几何体是由两个同底面的四棱锥组合而成的正八面体.有8个面,都是全等的正三角形;有6个顶点;有12条棱.15.已知正方体ABCD-A1B1C1D1,图(1)中截去的是什么几何体?图(2)中截去一部分,其中HG∥AD∥EF,剩下的几何体是什么?若再用一个完全相同的正方体放在第一个正方体的左边,它们变成了一个什么几何体?[解析]三棱锥五棱柱A1B1BEH-D1C1CFG长方体16.一个几何体的表面展开平面图如图.(1)该几何体是哪种几何体;(2)该几何体中与“祝”字面相对的是哪个面?与“你”字面相对的是哪个面?[解析](1)该几何体是四棱台;(2)与“祝”相对的面是“前”,与“你”相对的面是“程”.一、选择题1.下列说法不正确的是()A.圆柱的侧面展开图是一个矩形B.圆锥过轴的截面是一个等腰三角形C.直角三角形绕它的一条边旋转一周形成的曲面围成的几何体是圆锥D.圆台平行于底面的截面是圆面[答案] C[解析]由圆锥的概念知,直角三角形绕它的一条直角边所在直线旋转一周所围成的几何体是圆锥.强调一定要绕着它的一条直角边,即旋转轴为直角三角形的一条直角边所在的直线,因而C错.2.正方形绕其一条对角线所在直线旋转一周,所得几何体是()A.圆柱B.圆锥C.圆台D.两个圆锥[答案] D3.下列说法正确的是()A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心[答案] D[解析]圆锥的母线长与底面直径的大小不确定,则A项不正确;圆柱的母线与轴平行,则B项不正确;圆台的母线与轴相交,则C项不正确;很明显D项正确.4.如右图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为()A.一个球体B.一个球体中间挖出一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体[答案] B[解析]圆旋转一周形成球,圆中的矩形旋转一周形成一个圆柱,所以选B.5.一个圆柱的母线长为5,底面半径为2,则圆柱的轴截面的面积为()A.10 B.20C.40 D.15[答案] B[解析]圆柱的轴截面是矩形,其一边为圆柱的母线,另一边为圆柱的底面圆的直径.因而,轴截面的面积为5×4=20.6.在空间,到定点的距离等于定长的所有点的集合是()A.球B.正方体C.圆D.球面[答案] D7.(2012-2013·南京模拟)经过旋转可以得到图1中几何体的是图2中的()[答案] A[解析]观察图中几何体的形状,掌握其结构特征,其上部为一个圆锥,下部是一个与圆锥同底的圆台,圆锥可由一直角三角形以过一直角边的直线为轴旋转一周得到,圆台可由一直角梯形绕过垂直于两底的腰的直线为轴旋转而成,通过上述判断再对选项中的平面图形适当分割,只有A适合.故正确答案为A.8.图中最左边的几何体由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得.现用一个竖直的平面去截这个几何体,则截面图形可能是()A.(1)(2)B.(1)(3)C.(1)(4)D.(1)(5)[答案] D[解析]圆锥除过轴的截面外,其它截面截圆锥得到的都不是三角形.二、填空题9.图①中的几何体叫做________,O叫它的________,OA叫它的________,AB叫它的________.[答案]球球心半径直径10.图②中的几何体叫________,AB、CD都是它的________,⊙O和⊙O′及其内部是它的________.[答案] 圆柱 母线 底面11.图③中的几何体叫做________,SB 为叫它的________. [答案] 圆锥 母线12.图④中的几何体叫做________,AA ′叫它的________,⊙O ′及其内部叫它的________,⊙O 及其内部叫它的________,它还可以看作直角梯形OAA ′O ′绕它的________________旋转一周后,其他各边所形成的面所围成的旋转体.[答案] 圆台 母线 上底面 下底面 垂直于两底的腰OO ′ 三、解答题13.说出下列7种几何体的名称.[解析]a是圆柱,b是圆锥,c是球,d、e是棱柱,f是圆台,g 是棱锥.14.说出如图所示几何体的主要结构特征.[解析](1)是一个六棱柱中挖去一个圆柱;(2)是一个圆台与一个圆柱的组合体;(3)是两个四棱锥构成的组合体.15.如图所示,几何体可看作由什么图形旋转360°得到?画出平面图形和旋转轴.[解析]先出画几何体的轴,然后再观察寻找平面图形.旋转前的平面图形如下:16.如图所示,在长方体ABCD-A′B′C′D′中,AB=2 cm,AD=4 cm,AA′=3 cm.求在长方体表面上连接A、C′两点的诸曲线的长度的最小值.[解析]将长方体的表面展开为平面图,这就将原问题转化为平面问题.本题所求必在下图所示的三个图中,从而,连接AC′的诸曲线中长度最小的为41 cm(如图乙所示).一、选择题1.一个空间几何体的正视图与侧视图均为全等的等腰三角形,俯视图为一个圆及其圆心,那么这个几何体为()A.棱锥B.棱柱C.圆锥D.圆柱[答案] C2.已知某空间几何体的三视图如图所示,则此几何体为()A.圆台B.四棱锥C.四棱柱D.四棱台[答案] D3.下列几何体中,正视图、侧视图、俯视图都相同的几何体的序号是()A.(1)(2) B.(2)(3)C.(3)(4) D.(1)(4)[答案] D4.(2012-2013·安徽淮南高三模拟)下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④[答案] D[解析]①正方体,三视图均相同;②圆锥,正视图和侧视图相同;③三棱台,三视图各不相同;④圆台,正视图和侧视图相同.[点评]熟悉常见几何体的三视图特征,对于画几何体的直观图是基本的要求.下图是最基本的常见几何体的三视图.[答案] C[解析]结合俯视图的定义,仔细观察,易得答案C.6.一个几何体的三视图如图,则组成该组合体的简单几何体为()A.圆柱与圆台B.四棱柱与四棱台C.圆柱与四棱台D.四棱柱与圆台[答案] B[解析]该几何体形状如图.上部是一个四棱柱,下部是一个四棱台.7.如图所示几何体的正视图和侧视图都正确的是()[答案] B8.(2011·新课标全国高考)在一个几何体的三视图中,主视图和俯视图如右图所示,则相应的侧视图可以为()[答案] D[解析]此几何体为一个半圆锥和一个半三棱锥的组合体,只有D项符合题意.二、填空题9.下列图形:①三角形;②直线;③平行四边形;④四面体;⑤球.其中投影不可能是线段的是________.[答案]②④⑤[解析]三角形的投影是线段成三角形;直线的投影是点或直线;平行四边形的投影是线段或平行四边形;四面体的投影是三角形或四边形;球的投影是圆.10.由若干个小正方体组成的几何体的三视图如下图,则组成这个组合体的小正方体的个数是________.[答案] 5[解析]由三视图可作出直观图,由直观图易知共有5个小正方体.11.(2012~2013·烟台高一检测)已知某一几何体的正视图与侧视图如图所示,则下列图形中,可以是该几何体的俯视图的图形有________.[答案]①②③④12.(2012-2013·湖南高三“十二校联考”)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形,则用________个这样的几何体可以拼成一个棱长为4的正方体.[答案] 3[解析]该几何体是四棱锥,其底面是边长为4的正方形,高等于4,如图(1)所示的四棱锥A-A1B1C1D1,如图(2)所示,三个相同的四棱锥A-A1B1C1D1,A-BB1C1C,A -DD1C1C可以拼成一个棱长为4的正方体.三、解答题13.如图,四棱锥的底面是正方形,顶点在底面上的射影是底面正方形的中心,试画出其三视图.[解析]所给四棱锥的三视图如下图.[点评](1)画三视图时,务必做到正视图与侧视图的高度一致(即所谓的高平齐)、正视图与俯视图的长度一致(即所谓的“长对正”)、侧视图与俯视图的宽度一致(即所谓的“宽相等”).(2)习惯上将侧视图放在正视图的右侧,将俯视图放在正视图的下方.[拓展提高]1.三视图中各种数据的对应关系:(1)正视图中AB的长对应原四棱锥底面多边形的左右方向的长度,AC、BC的长则不对应侧棱的长,它们对应四棱锥的顶点到底面左、右两边的距离.(2)侧视图中,EF的长度对应原四棱锥底面的前后长度,GE、GF的长度则是四棱锥顶点与底面前后两边的距离.(3)俯视图中HIJK的大小与四棱锥底面的大小形状完全一致,而OK,OI,OJ,OH的大小,则为四棱锥的顶点在底面上的投影到底面各顶点的距离.2.误区警示:正视图、侧视图中三角形的腰长有的学生会误认为是棱锥的侧棱长,实则不然.弄清一些数据的对应关系,是后面进行相关计算的前提.14.依所给实物图的形状,画出所给组合体的三视图.[解析]图中所给几何体是一个圆柱和一个正六棱柱的组合体,在中心以中心轴为轴线挖去一个小圆柱,故其三视图如下:15.说出下列三视图表示的几何体:[解析]16.根据下列图中所给出的一个物体的三视图,试画出它的形状.[答案]所对应的空间几何体的图形为:一、选择题1.如果平面图形中的两条线段平行且相等,那么在它的直观图中对应的这两条线段()A.平行且相等B.平行不相等C.相等不平行D.既不平行也不相等[答案] A2.给出以下关于斜二测直观图的结论,其中正确的个数是()①角的水平放置的直观图一定是角.②相等的角在直观图中仍相等.③相等的线段在直观图中仍然相等.④若两条线段平行,则在直观图中对应的两条线段仍然平行.A.0 B.1C.2 D.3[答案] C[解析]由斜二测画法规则可知,直观图保持线段的平行性,∴④对,①对;而线段的长度,角的大小在直观图中都会发生改变,∴②③错.3.利用斜二测画法得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上说法正确的是()A.①B.①②C.③④D.①②③④[答案] B[解析]根据画法规则,平行性保持不变,与y轴平行的线段长度减半.4.如图所示的直观图是将正方体模型放置在你的水平视线的左上角而绘制的,其中正确的是()[答案] A[解析]由几何体直观图画法及立体图形中虚线的使用可知A正确.5.如图所示,△A′B′C′是水平放置的△ABC的直观图,则在△ABC的三边及中线AD中,最长的线段是()A.AB B.ADC.BC D.AC[答案] D[解析]△ABC是直角三角形,且∠ABC=90°,则AC>AB,AC >AD,AC>BC.6.一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,已知长方体的长、宽、高分别为20 m,5 m,10 m,四棱锥的高为8 m,若按的比例画出它的直观图,那么直观图中,长方体的长、宽、高和棱锥的高应分别为() A.4 cm,1 cm, 2 cm,1.6 cmB.4 cm,0.5 cm,2 cm,0.8 cmC.4 cm,0.5 cm,2 cm,1.6 cmD.2 cm,0.5 cm,1 cm,0.8 cm[答案] C[解析]由比例尺可知长方体的长、宽、高和四棱锥的高分别为4 cm,1 cm,2 cm和1.6 cm,再结合斜二测画法,可知直观图的相应尺寸应分别为4 cm,0.5 cm,2 cm,1.6 cm.7.如图为一平面图形的直观图,则此平面图形可能是选项中的()[答案] C[解析]由直观图一边在x′轴上,一边与y′轴平行,知原图为直角梯形.8.在下列选项中,利用斜二测画法,边长为1的正三角形ABC的直观图不是全等三角形的一组是( )[答案] C[解析] C 中前者画成斜二测直观图时,底AB 不变,原来高h 变为h 2,后者画成斜二测直观图时,高不变,边AB 变为原来的12.二、填空题9.斜二测画法中,位于平面直角坐标系中的点M (4,4)在直观图中的对应点是M ′,则点M ′的坐标为________,点M ′的找法是________.[答案] M ′(4,2) 在坐标系x ′O ′y ′中,过点(4,0)和y ′轴平行的直线与过点(0,2)和x ′轴平行的直线的交点即是点M ′.[解析] 在x ′轴的正方向上取点M 1,使O 1M 1=4,在y ′轴上取点M 2,使O ′M 2=2,过M 1和M 2分别作平行于y ′轴和x ′轴的直线,则交点就是M ′.10.如右图,水平放置的△ABC 的斜二测直观图是图中的△A ′B ′C ′,已知A ′C ′=6,B ′C ′=4,则AB 边的实际长度是________.[答案] 10[解析] 由斜二测画法,可知△ABC 是直角三角形,且∠BCA =90°,AC =6,BC =4×2=8,则AB =AC 2+BC 2=10.11.如图,是△AOB 用斜二测画法画出的直观图,则△AOB 的面积是________.[答案] 16[解析] 由图易知△AOB 中,底边OB =4, 又∵底边OB 的高为8, ∴面积S =12×4×8=16.12.如图所示,正方形O′A′B′C′的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是________?[答案]8[解析]原图形为OABC为平行四边形,OA=1,AB=OA2+OB2=3,∴四边形OABC周长为8.三、解答题13.用斜二测画法画出下列图形的直观图(不写画法).[解析]14.如图所示,四边形ABCD 是一个梯形,CD ∥AB ,CD =AO =1,三角形AOD 为等腰直角三角形,O 为AB 的中点,试求梯形ABCD 水平放置的直观图的面积.[解析] 在梯形ABCD 中,AB =2,高OD =1,由于梯形ABCD 水平放置的直观图仍为梯形,且上底CD 和下底AB 的长度都不变,如图所示,在直观图中,O ′D ′=12OD ,梯形的高D ′E ′=24,于是梯形A ′B ′C ′D ′的面积为12×(1+2)×24=328.15.已知几何体的三视图如下,用斜二测画法,画出它的直观图(直接画出图形,尺寸不作要求).[解析]如图.16.如图所示,直角梯形ABCD中,AD∥BC,且AD>BC,该梯形绕边AD所在直线EF旋转一周得一几何体,画出该几何体的直观图和三视图.[分析]该几何体是一个圆锥和一个圆柱拼接成的简单组合体.[解析]直观图如图a所示,三视图如图b所示.一、选择题1.轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的( )A .4倍B .3倍 C.2倍 D .2倍[答案] D[解析] 由已知得l =2r ,S 侧S 底=πrl πr 2=lr =2,故选D.2.长方体的高为1,底面积为2,垂直于底的对角面的面积是5,则长方体的侧面积等于( )A .27B .4 3C .6D .3[答案] C[解析] 设长方体的长、宽、高分别为a 、b 、c , 则c =1,ab =2,a 2+b 2·c =5, ∴a =2,b =1,故S 侧=2(ac +bc )=6.3.已知一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( )A.1+2π2πB.1+4π4πC.1+2ππD.1+4π2π[答案] A[解析] 设圆柱的底面半径为r ,高为h ,则由题设知h =2πr ,∴S 全=2πr 2+2πr ·h =2πr 2(1+2π)又S 侧=h 2=4π2r 2,∴S 全S 侧=1+2π2π.[点评] 圆柱的侧面展开图是一个矩形,矩形两边长分别为圆柱底面周长和高;圆锥侧面展开图是一个扇形,半径为圆锥的母线,弧长为圆锥底面周长;圆台侧面展开图是一个扇环,其两段弧长为圆台两底周长,扇形两半径的差为圆台的母线长,对于柱、锥、台的有关问题,有时要通过侧面展开图来求解.4.将一个棱长为a 的正方体,切成27个全等的小正方体,则表面积增加了( )A .6a 2B .12a 2C .18a 2D .24a 2[答案] B[解析] 原来正方体表面积为S 1=6a 2,切割成27个全等的小正方体后,每个小正方体的棱长为13a ,其表面积为6×⎝ ⎛⎭⎪⎫13a 2=23a 2,总表面积S 2=27×23a 2=18a 2,∴增加了S 2-S 1=12a 2.5.如图所示,圆台的上、下底半径和高的比为,母线长为10,则圆台的侧面积为( )A .81πB .100πC .14πD .169π[答案] B[解析] 圆台的轴截面如图,设上底半径为r ,则下底半径为4r ,高为4r .因为母线长为10,所以在轴截面等腰梯形中,有102=(4r )2+(4r -r )2.解得r =2.所以S 圆台侧=π(r +4r )·10=100π,故选B.6.如图,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的全面积为( )A.3π2 B .2π C .πD .4π[答案] A[解析] 由三视图可知,该几何体是底半径为12,高为1的圆柱,故其全面积S =2π×⎝ ⎛⎭⎪⎫122+2π×12×1=3π2.7.(2012-2013·安徽合肥一模)如图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为2和4,腰长为4的等腰梯形,则该几何体的侧面积是( )A .6πB .12πC .18πD .24π[答案] B[解析] 该几何体是两底面半径分别为1、2,母线长为4的圆台,则其侧面积是π(1+2)×4=12π.8.(2011·海南、宁夏高考)一个棱锥的三视图如图所示,则该棱锥的全面积(单位:cm 2)为( )A .48+12 2B .48+24 2C .36+12 2D .36+24 2[答案] A[解析] 由三视图可得:底面为等腰直角三角形,腰长为6,面积为18;垂直于底面的面为等腰三角形,面积为12×62×4=122;其余两个面为全等的三角形,每个三角形的面积都为12×6×5=15.所以全面积为48+12 2.二、填空题9.已知圆柱OO ′的母线l =4 cm ,全面积为42π cm 2,则圆柱OO ′的底面半径r = ________cm.[答案] 3[解析] 圆柱OO ′的侧面积为2πrl =8πr (cm 2),两底面积为2×πr 2=2πr 2(cm 2),∴2πr 2+8πr =42π, 解得r =3或r =-7(舍去),∴圆柱的底面半径为3 cm.10.一个几何体的三视图如图所示,其中俯视图为正三角形,则该几何体的表面积为________.[答案] 24+2 3[解析] 该几何体是三棱柱,且两个底面是边长为2的正三角形,侧面是全等的矩形,且矩形的长是4,宽是2,所以该几何体的表面积为2×(12×2×3)+3×(4×2)=24+2 3.11.如图所示,一圆柱内挖去一个圆锥,圆锥的顶点是圆柱底面的圆心,圆锥的底面是圆柱的另一个底面.圆柱的母线长为6,底面半径为2,则该组合体的表面积等于________.[答案] (410+28)π[解析] 挖去的圆锥的母线长为62+22=210,则圆锥的侧面积等于410π.圆柱的侧面积为2π×2×6=24π,圆柱的一个底面面积为π×22=4π,所以组合体的表面积为410π+24π+4π=(410+28)π.12.下图中,有两个相同的直三棱柱,高为2a ,底面三角形的三边长分别为3a 、4a 、5a (a >0).用它们拼成一个三棱柱或四棱柱,在所有可能的情况中表面积最小的是一个四棱柱,则a 的取值范围是________.[答案] 0<a <153[解析] 底面积为6a 2,侧面面积分别为6、8、10,拼成三棱柱时,有三种情况:S 1=2×6a 2+2(10+8+6)=12a 2+48, S 2=24a 2+2(10+8)=24a 2+36, S 3=24a 2+2(10+6)=24a 2+32. 拼成四棱柱时只有一种情况:表面积为(8+6)×2+4×6a 2=24a 2+28.由题意得24a 2+28<12a 2+48,解得0<a <153. 三、解答题13.已知各棱长为5,底面为正方形,各侧面均为正三角形的四棱锥S -ABCD ,如图所示,求它的表面积.[分析] 求各侧面的面积→ 求侧面积→求底面积→求表面积[解析] ∵四棱锥S -ABCD 的各棱长均为5, 各侧面都是全等的正三角形, 设E 为AB 的中点, 则SE ⊥AB ,∴S 侧=4S △SAB =4×12×5×532=253, S 底=52=25,∴S 表面积=S 侧+S 底=253+25=25(3+1). 14.正四棱台两底面边长分别为a 和b (a <b ).(1)若侧棱所在直线与上、下底面正方形中心的连线所成的角为45°,求棱台的侧面积;(2)若棱台的侧面积等于两底面面积之和,求它的高.[解析] (1)如图,设O 1、O 分别为上、下底面的中心,过C 1作C 1E ⊥AC 于E ,过E 作EF ⊥BC ,连接C 1F ,则C 1F 为正四棱台的斜高.由题意知∠C 1CO =45°,CE =CO -EO =CO -C 1O 1=22(b -a ), 在Rt △C 1CE 中,C 1E =CE =22(b -a ), 又EF =CE ·sin45°=12(b -a ), ∴C 1F =C 1E 2+EF 2 =[22(b -a )]2+[12(b -a )]2=32(b -a ).∴S 侧=12(4a +4b )×32(b -a )=3(b 2-a 2). (2)由S 侧=a 2+b 2,∴12(4a +4b )·h 斜=a 2+b 2, ∴h 斜=a 2+b 22(a +b ).又EF =b -a 2,∴h =h 2斜-EF 2=aba +b.15.(2012-2013·嘉兴高一检测)如图在底面半径为2,母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的表面积.[解析] 设圆锥的底面半径为R ,圆柱的底面半径为r ,表面积为S .则R =OC =2,AC =4, AO =42-22=2 3.如图所示易知△AEB ∽△AOC ,∴AE AO =EB OC ,即323=r 2,∴r =1S 底=2πr 2=2π,S 侧=2πr ·h =23π. ∴S =S 底+S 侧=2π+23π=(2+23)π.16.已知某几何体的三视图如图,求该几何体的表面积.(单位:cm)[解析] 几何体的直观图如图.这是底面边长为4,高为2的同底的正四棱柱与正四棱锥的组合体,易求棱锥的斜高h ′=22,其表面积S =42+4×4×2+⎝ ⎛⎭⎪⎫12×4×22×4=48+16 2 cm 2.一、选择题1.长方体三个面的面积分别为2、6和9,则长方体的体积是( ) A .6 3 B .3 6 C .11 D .12[答案] A[解析] 设长方体长、宽、高分别为a 、b 、c ,则ab =2,ac =6,bc =9,相乘得(abc )2=108,∴V =abc =6 3.2.已知正六棱台的上、下底面边长分别为2和4,高为2,则体积为( )A .32 3B .28 3C .24 3D .20 3 [答案] B[解析] 上底面积S 1=6×34×22=63, 下底面积S 2=6×34×42=243, 体积V =13(S 1+S 2+S 1S 2)·h=13(63+243+63·243)×2=28 3.3.(2012~2013学年枣庄模拟)一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,直角边长为1,则这个几何体的体积为( )。
数学必修二第一章习题 及答案
必修二第一章1.如果一个水平放置的图形的斜二测直观图是一个底面为045,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ) A . 22+ B .221+ C . 222+ D . 21+2.半径为R 的半圆卷成一个圆锥,则它的体积为( )A 3RB 3RC 3RD 3R 3.一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( )A.28cm π B.212cmπ C.216cm π D.220cm π 4.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A .7 B.6 C.5 D.35.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为( )A . 1:2:3B . 1:3:5C . 1:2:4D . 1:3:96.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则12:V V =( )A . 1:3B . 1:1C . 2:1 D. 3:17.如果两个球的体积之比为8:27,那么两个球的表面积之比为( )A . 8:27B . 2:3C . 4:9D . 2:98.一个半球的全面积为Q ,一个圆柱与此半球等底等体积,则这个圆柱的全面积是 .9.球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍.10.已知棱台的上下底面面积分别为4,16,高为3,则该棱台的体积为___________。
11.Rt ABC ∆中,3,4,5AB BC AC ===,将三角形绕直角边AB 旋转一周所成的几何体的体积为____________。
12.等体积的球和正方体,它们的表面积的大小关系是S 球___S 正方体13.若长方体的一个顶点上的三条棱的长分别为3,4,5,从长方体的一条对角线的一个端点出发,沿表面运动到另一个端点,其最短路程是______________。
高中数学第一章_立体几何初步_同步练习(二)北师大版必修二
第1章 立体几何初步 同步练习(二)一、选择题1.已知直线a 、b 、c ,平面α、β且a =βα ,βα≠⊂≠⊂c b ,,b 与c 没有公共点,则b 、 c 不平行的充分必要条件是( )A .b 、c 都与a 相交B .b 、c 中至少一条与a 相交C .b 、c 只有一条与a 相交D .b 、c 中至多一条与a 相交2.给出四个命题:①各侧面都是正方形的棱柱一定是正棱柱;②各对角面是全等矩形的平行六面体一定是长方体; ③有两个侧面垂直于底面的棱柱一定是直棱柱; ①长方体一定是正四棱柱. 其中正确命题的个数是( )A .0B .1C .2D .33.已知直线⊥l 平面α,直线≠⊂m 平面β,有下四个命题:①α∥β⇒m l ⊥;②⇒⊥βαl ∥m ;③l ∥m βα⊥⇒;④m l ⊥⇒α∥β. 其中正确的两个命题是( )A .①与③B .③与④C .②与④D .①与③4、①βαβα⊥⇒⊥a a ,//②a ,//βα≠⊂βα//a ⇒③b a b a //,,//⇒==γβγαβα ④βαβα////,//a a ⇒ 以上命题中,正确的个数是( )A 、3B 、4C 、1D 、25.下面四个命题:①分别在两个平面内的两直线平行;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面;③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行; ④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行.其中正确的命题是( )A .①②B .②④C .①③D .②③6.ωγβα、、、四个小同平面,若ωβωγγβγα⊥⊥⊥⊥,,,,则( ) A .α∥β,且γ∥ω B .α∥β,或γ∥ωC .这四个平面中可能任意两个都不平行D .这四个平面中至多有对平面平行7.菱形ABCD 在平面a 内,PC 上a .则PA 与对角线BD 的位置关系是( ) A .平行 B .相交但不垂直 C .垂直相交 D .异面垂直8.设a 、b 是异面直线,下列命题正确的是( ) A . 过a 一定可以作一个平面与b 平行B .过不在a 、b 上的一点P 一定可以作一个平面a 、b 都垂直C .过a 一定可以作一个平面与b 垂直D .过不在a 、b 上的一点P 一定可以作一条直线a 、b 都相交9.设三棱锥P-ABC 的顶点P 在底面ABC 内射影O 在△ABC 内部),且到三个侧面的距离相等,则O 是△ABC 的( )A .外心B .垂心C .内心D .重心10.AB 是圆O 的直径,C 是异于A 、B 两点的圆周上的任意一点.PA 垂直于圆O 所在的平面,则△PAB 、△PAC 、△ABC 、△PBC 中,共有直角三角形的个数为( )A .1B .2C .3D .4 11、圆锥的高自顶点起被分成3:2:1三部分,这两个分点作与底面平行的截面,则两截面将这个圆锥分成三部分体积之比是( )A 、27:125:216B 、27:98:64C 、27:8:1D 、27:98:9112、三棱台ABC C B A -'''上下底面面积之比为2:3,连接C A ',C B '及B A ',把三棱台分成三个棱锥,那么这些棱锥体积之比AB A C ABC C B B A C V V V '--''-::为( ) A 、2:3:6 B 、2:3:8 C 、1:4:6 D 、4:9:6二、填空题13.如图1-l5,所示,ABCD-1111D C B A 是正方体,若过A 、C 、1B 三点的平面与底面1111D C B A 的交线为l ,则l 与AC 的位置关系是____________.14.正方体的全面积是2a ,它的顶点都在球面上,这个球的表面积是___________.15.下列命题中正确的是_________.①一条直线和两条平行线中的条垂直,则它也和另一条垂直;②空间四点A 、B 、C 、D ,若直线AB 和直线CD 是异面直线,那么直线AC和直线BD 也是异面直线;③空间四点若不在同一平面内,则其中任意三点不在同条直线上;○4两条平行线中的条与一个平面平行,那么另-条也平行这个平面. 16.表面积为S 的多面体的每一个面都外切于半径为R 的一个球,则这个多面体的体积为__________.三、解答题17、两点的球面距离为5cm ,过这两点的球半径成 60的角,求这球的表面积和体积。
(完整版)高中数学必修二第一章同步练习(含答案).docx
(完整版)高中数学必修二第一章同步练习(含答案).docx.1.1.1 柱、锥、台、球的的结构特征练习一一、选择题1、下列命题中,正确命题的个数是()(1 )桌面是平面;( 2)一个平面长 2 米,宽 3 米;( 3)用平行四边形表示平面,只能画出平面的一部分;(4)空间图形是由空间的点、线、面所构成。
A 、 1B、2C、3D、42、下列说法正确的是()A、水平放置的平面是大小确定的平行四边形B、平面ABCD就是四边形ABCD 的四条边围来的部分C、100 个平面重叠在一起比10 个平面重叠在一起厚D、平面是光滑的,向四周无限延展的面3、下列说法中表示平面的是()A、水面B、屏面C、版面D、铅垂面4、下列说法中正确的是()A、棱柱的面中,至少有两个面互相平行B、棱柱的两个互相平行的平面一定是棱柱的底面C、棱柱的一条侧棱的长叫做棱柱的高D、棱柱的侧面是平行四边形,但它的底面一定不是平行四边形5、长方体的三条棱长分别是AA /=1 , AB=2 ,AD=4 ,则从 A 点出发,沿长方体的表面到C/的最短距离是()A、5C、29D、376、若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是()A、三棱锥B、四棱锥C、五棱锥D、六棱锥]7、过球面上两点可能作出球的大圆()A、0 个或 1 个B、有且仅有 1 个C、无数个D、一个或无数个8、一个圆柱的母线长为 5 ,底面半径为2,则圆柱的轴截面的面积为()A、10B、20二、填空题9、用一个平面去截一个正方体,截面边数最多是----------------条。
10、正三棱台的上、下底面边长及高分别为1、 2、 2,则它的斜高是------------。
11、一个圆柱的轴截面面积为Q,则它的侧面面积是----------------。
12、若圆锥的侧面面积是其底面面积的2 倍,则这个圆锥的母线与底面所成的角为----------------,圆锥的侧面展开图扇形的圆心角为----------------。
(好题)高中数学必修二第一章《立体几何初步》测试卷(答案解析)(1)
一、选择题1.如下图所示,在正方体1111ABCD A B C D -中,E 是平面11ADD A 的中心,M 、N 、F 分别是11B C 、1CC 、AB 的中点,则下列说法正确的是( )A .12MN EF =,且MN 与EF 平行 B .12MN EF ≠,且MN 与EF 平行 C .12MN EF =,且MN 与EF 异面 D .12MN EF ≠,且MN 与EF 异面 2.已知正方体1111ABCD A B C D -,E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则EF 和BD 所成的角的大小是( )A .30B .45C .60D .903.在正方体1111ABCD A B C D -中,点,E F 分别是梭BC ,CD 的中点,则1A F 与1C E 所成角的余弦值为( )A 5B 25C .515D .5154.已知m ,n 是两条直线,α,β是两个平面,则下列命题中错误的是( ) A .若m n ⊥,m α⊥,n β⊥,则αβ⊥B .若m α⊂,//αβ,则//m βC .若m n ⊥,m α⊥,βn//,则αβ⊥D .若l αβ=,//m α,//m β,则//m l5.已知正方体1111ABCD A B C D -,点,E F 分别是棱11B C ,11A D 的中点,则异面直线BE ,DF 所成角的余弦值为( )A 5B .35C .45D 25 6.一个底面为正三角形的棱柱的三视图如图所示,若在该棱柱内部放置一个球,则该球的最大体积为( )A .6πB .12πC .43πD .83π 7.一个几何体的三视图如图所示,则该几何体的外接球的表面积是( )A .2πB .3πC .4πD .16π8.如图正三棱柱111ABC A B C -的所有棱长均相等,O 是1AA 中点,P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC ,则直线OP 与平面ABC 所成角正弦值的最大值为( )A.22B.255C.3D.2779.下图中小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该四棱锥的体积为()A.64 B.48 C.32 D.1610.一个几何体的三视图如图所示,则该几何体的体积为()A.4 B.8 C.12 D.1411.蹴鞠,又名蹴球,筑球等,蹴有用脚踢、踏的含义,鞠最早系外包皮革、内实含米糠的球.因而蹴鞠就是指古人以脚踢、踏皮球的活动,类似现在的足球运动.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录.3D 打印属于快速成形技术的一种,它是一种以数字模型为基础,运用粉末状金属或塑料等可粘合材料,通过逐层堆叠积累的方式来构造物体的技术.过去常在模具制造、工业设计等领域被用于制造模型,现正用于一些产品的直接制造,特别是一些高价值应用(比如人体的髋关节、牙齿或飞机零部件等).已知某蹴鞠的表面上有四个点A .B .C .D ,满足任意两点间的直线距离为6cm ,现在利用3D 打印技术制作模型,该模型是由蹴鞠的内部挖去由ABCD 组成的几何体后剩下的部分,打印所用原材料的密度为31g/cm ,不考虑打印损耗,制作该模型所需原材料的质量约为( )(参考数据)π 3.14≈,2 1.41≈,3 1.73≈,6 2.45≈.A .101gB .182gC .519gD .731g12.在正方体1111ABCD A B C D -中,三棱锥11A B CD -的表面积为43,则正方体外接球的体积为( )A .43πB .6πC .323πD .86π二、填空题13.圆锥底面半径为1,母线长为4,轴截面为PAB ,如图,从A 点拉一绳子绕圆锥侧面一周回到A 点,则最短绳长为_________.14.在正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,①四边形1BFD E 一定是平行四边形;②四边形1BFD E 有可能是正方形;③四边形1BFD E 在底面ABCD 内的投影一定是正方形;④四边形1BFD E 有可能垂直于平面1BB D .以上结论正确的为___________.(写出所有正确结论编号)15.已知直三棱柱111ABC A B C -,14AB BC AA ===,42AC =,若点P 是上底面111 A B C 所在平面内一动点,若三棱锥P ABC -的外接球表面积恰为41π,则此时点P 构成的图形面积为________.16.在三棱锥P ABC -中,PA ⊥平面ABC ,22AB =,3BC =,4PA =,4ABC π∠=,则该三棱锥的外接球体积为___________.17.在正三棱锥P ABC -中,E ,F 分别为棱PA ,AB 上的点,3PE EA =,3BF FA =,且CE EF ⊥.若23PB =,则三棱锥P ABC -的外接球的体积为_________.18.如图,圆柱的体积为16π,正方形ABCD 为该圆柱的轴截面,F 为AB 的中点,E 为母线BC 的中点,则异面直线AC ,EF 所成的角的余弦值为______.19.祖恒是我国南北朝时代的伟大科学家,他总结了刘徽的有关工作,提出来体积计算的原理“幂势既同,则积不容异”,称为祖恒原理,意思是底面处于同一平面上的两个同高的几何体,若在等高处 的截面面积始终相等,则它们的体积相等,利用这个原理求半球O 的体积时,需要构造一个几何体,该几何体的三视图如图所示,则该几何体的体积为_________________20.若三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,23AB =,7SA SB SC ===,则该三棱锥的外接球的表面积为__________.三、解答题21.如图所示,在四棱锥P ABCD -中,//AD BC ,3AD =,4BC =,M 为线段AD 上点,且满足2AM MD =,N 为PC 的中点.(Ⅰ)证明://MN 平面PAB ;(Ⅱ)设三棱锥N BCM -的体积为1V ,四棱锥P ABCD -的体积为2V ,求12V V . 22.如图,在长方体1111ABCD A B C D -中,12AB BC AA ==,1O 是底面1111D C B A 的中心.(Ⅰ)求证:1//O B 平面1ACD ;(Ⅱ)求二面角1D AC D --的平面角的余弦值.23.在四棱锥P ABCD -中,四边形ABCD 为正方形,平面PAB ⊥平面,ABCD PAB 为等腰直角三角形,,2PA PB AB ⊥=.(1)求证:平面PBC ⊥平面PAC ;(2)设E 为CD 的中点,求点E 到平面PBC 的距离.24.在三棱柱111ABC A B C -中,侧面11BCC B 为矩形,AC ⊥平面11BCC B ,D ,E 分别是棱1AA ,1BB 的中点.(1)求证://AE 平面11B C D ;(2)求证:1CC ⊥平面ABC ;(3)若12AC BC AA ===,求直线AB 与平面11B C D 所成角的正弦值.25.如图,在直角梯形ABED 中,//BE AD ,DE AD ⊥,BC AD ⊥,4AB =,23BE =.将矩形BEDC 沿BC 翻折,使得平面ABC ⊥平面BCDE .(1)若BC BE =,证明:平面ABD ⊥平面ACE ;(2)当三棱锥A BCE -的体积最大时,求平面ADE 与平面ABC 所成的锐二面角的余弦值.26.如图,在平面四边形A ABC '中,90CAB CA A '∠=∠=,M 在直线AC 上,A A A C ''=,AB AM MC ==,A AC '绕AC 旋转.(1)若A AC '所在平面与ABC 所在平面垂直,求证:A C '⊥平面A AB '. (2)若二面角A AC B '--大小为60,求直线A B '与平面ABM 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】设正方体1111ABCD A B C D -的棱长为2,利用正方体性质可求得2MN =,3EF =知12MN EF ≠,再利用三角形中位线性质知1//MN B C ,从而//MN ED ,又EF 与ED 相交,可知MN 与EF 异面,即可选出答案.【详解】设正方体1111ABCD A B C D -的棱长为2,则22112MN MC C N =+=作E 点在平面ABCD 的投影点G ,即EG ⊥平面ABCD ,连接,EG GF ,在直角EGF △中,1EG =,222GF AG AF =+=2222123EF EG GF =+=+=以12MN EF ≠,故排除A 、C 连接DE ,由E 是平面11ADD A 的中心,得112DE A D = 又M N 、分别是11B C 、1CC 的中点,所以1//MN B C又11//A D B C ,所以//MN ED ,又EF ED E ⋂=,所以MN 与EF 异面故选:D.【点睛】关键点睛:本题考查正方体中的线面关系,线线平行的关系,及判断异面直线,解题的关键是熟记正方体的性质,考查学生的逻辑推理能力,属于基础题.2.C解析:C【分析】作出图形,连接1AD 、11B D 、1AB ,推导出1//EF AB ,11//BD B D ,可得出异面直线EF 和BD 所成的角为11AB D ∠,分析11AB D 的形状,即可得出结果.【详解】如下图所示,连接1AD 、11B D 、1AB ,设正方体1111ABCD A B C D -的棱长为1,则11112AD AB B D ===,所以,11AB D 为等边三角形,则1160AB D ∠=,因为E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则E 、F 分别是11B D 、1AD 的中点,所以,1//EF AB ,在正方体1111ABCD A B C D -中,11//BB DD 且11BB DD =,所以,四边形11BB D D 为平行四边形,则11//BD B D ,所以,异面直线EF 和BD 所成的角为1160AB D ∠=.故选:C.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角. 3.D解析:D【分析】延长DA 至G ,使AG CE =,可证11//A G C E ,得1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角).在1AGF △中,由余弦定理可得结论. 【详解】延长DA 至G ,使AG CE =,连接1,GE GA ,GF ,11,AC A C ,又//AG CE 所以AGEC 是平行四边形,//,GE AC GE AC =,又正方体中1111//,AC AC AC AC =,所以1111//,AC DE AC DE =,所以11AC EG 是平行四边形,则11//A G C E ,所以1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角).设正方体棱长为2,在正方体中易得1AG =GF =13A F ===,1AGF △中,22211111cos 2AG A F GF GA F AG A F+-∠===⋅. 故选:D .【点睛】方法点睛:本题考查空间向量法求异面直线所成的角,求异面直线所成角的方法: (1)定义法:根据定义作出异面直线所成的角并证明,然后解三角形得结论; (2)建立空间直角坐标系,由两异面直线的方向向量的夹角得异面直线所成的角.4.C解析:C 【分析】利用直二面角可判断A 的正误,利用面面平行或线面平行性质定理即判断定理可判断BD 的正误,从而可得正确的选项,利用反例可判断C 是错误的. 【详解】 对于A ,如图,设l αβ=,空间中取一点O (O 不在平面,αβ内,也不在直线,m n上),过O 作直线,a b ,使得,////a m b n ,且,a A b B αβ⋂=⋂=,故a b ⊥. 因为m α⊥,故a α⊥,而l α⊂,故a l ⊥,同理b l ⊥, 因为a b O ⋂=,故l ⊥平面OAB . 设平面OAB 交l 与C ,连接,AC BC ,因为,AC BC ⊂平面OAB ,故,,l AC l BC ⊥⊥所以ACB ∠为l αβ--的平面角. 因为a α⊥,AC α⊂,故OA AC ⊥,同理OB BC ⊥,而OA OB ⊥, 故在四边形OACB 中,90ACB ∠=︒即αβ⊥,故A 正确.对于B ,由面面平行的性质可得若m α⊂,//αβ,则//m β,故B 正确. 对于D ,如图,过m 作平面γ,使得a γα=,过m 作平面η,使得b ηβ⋂=,因为//m α,m γ⊂,故//a m ,同理//b m ,故//a b , 而a β⊄,b β⊂,故//a β,而a α⊂,l αβ=,故//a l ,所以//m l ,故D 正确.对于C ,在如图所示的正方体中,//AD 平面11A D CB ,1AA ⊥平面ABCD ,1AD AA ⊥,但是平面11A D CB 与平面ABCD 不垂直,故C 错误.故选:C. 【点睛】思路点睛:对于立体几何中与位置有关的命题的真假判断,一般根据性质定理和判定定理来处理,反例一般可得正方体中寻找.5.B解析:B 【分析】证明//BE AF ,得AFD ∠是异面直线BE ,DF 所成角或其补角,在三角形中求解即可. 【详解】连接,AF EF ,∵,E F 分别是棱11B C ,11A D 的中点,∴//EF AB ,EF AB =, ∴ABEF 是平行四边形,∴//BE AF ,∴AFD ∠是异面直线BE ,DF 所成角或其补角, 设正方体的棱长为2,则111A F D F ==,22215AF DF ==+=,2223cos 25255AF DF AD AFD AF DF +-∠===⋅⨯⨯,异面直线BE ,DF 所成角的余弦值为35. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.6.C【分析】先由三视图计算底面正三角形内切圆的半径,内切圆的直径和三棱柱的高比较大小,确定球的半径的最大值,计算球的最大体积. 【详解】由三视图知该直三棱柱的高为4,底面正三角形的高为33,易得底面正三角形内切圆的半径为高的三分之一,即3r =,由于234<,所以该棱柱内部可放置球的半径的最大值为3,它的体积()343433V ππ==.故选:C 【点睛】关键点点睛:本题的第一个关键是由三视图确定底面三角形的高是33,第二个关键是确定球的最大半径.7.C解析:C 【分析】由三视图还原出原几何体,确定其结构,再求出外接球的半径得球的表面积. 【详解】由三视图,知原几何体是一个四棱锥P ABCD -,如图,底面ABCD 是边长为1的正方形,PB ⊥底面ABCD ,由PB ⊥底面ABCD ,AD ⊂面ABCD ,得PB AD ⊥,又AD AB ⊥,AB PB B ⋂=,,AB PB ⊂平面PAB ,所以AD ⊥平面PAB ,而PA ⊂平面PAB ,所以AD PA ⊥,同理DC PC ⊥,同样由PB ⊥底面ABCD 得PB BD ⊥,所以PD 中点O 到四棱锥各顶点距离相等,即为其外接球球心,PD 为球直径,222222PD PB BD PA AD AB =+=++=,∴外接球半径为12ADr ==, 表面积为2414S ππ=⨯=. 故选:C .关键点点睛:本题考查由三视图还原几何体,考查棱锥的外接球表面积.解题关键是确定外接球的球心.棱锥的外接球球心在过各面外心(外接圆圆心)且与该面垂直的直线上.8.D解析:D 【分析】先找到与平面11A BC 平行的平面OEFG ,确定点P 在直线FG 上,作出线面角,求出正弦,转化为求AP 的最小值. 【详解】分别取1,,CC BC BA 的中点,连接,,,OE EF FG GO ,并延长FG ,如图,由中位线性质可知11//OE A C , 1//EF BC ,且OE EF E =,故平面11//A BC 平面OGFE ,又P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC 则点P 在直线FG 上,OA ⊥平面ABC ,OPA ∴∠是直线OP 与平面ABC 所成角, sin OAOPA OP∴∠=, OA 为定值,∴当OP 最小时,正弦值最大,而22OP OA AP +所以当AP 最小时,sin OPA ∠最大, 故当AP FG ⊥时,sin OPA ∠最大, 设棱长为2, 则1212AG =⨯=,而30GAP ∠=︒,32AP ∴=, 又1212OA =⨯=, 222sin 773()12OAOPA OP∴∠===+故选:D 【点睛】关键点点睛:由P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC ,转化为找过O 的平面与平面11A BC 平行,P 在所找平面与平面ABC 的交线上,从而容易确定出线面角,是本题解题的关键所在.9.C解析:C 【分析】在长方体中还原三视图后,利用体积公式求体积. 【详解】根据三视图还原后可知,该四棱锥为镶嵌在长方体中的四棱锥P -ABCD (补形法) 且该长方体的长、宽、高分别为6、4、4, 故该四棱锥的体积为1(64)4323V =⨯⨯⨯=. 故选C . 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整;(2)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.10.C解析:C【分析】根据三视图还原得其几何体为四棱锥,根据题意代入锥体体积公式计算即可. 【详解】解:根据三视图还原得其几何体为四棱锥,图像如下:根据图形可得ABCD 是直角梯形,PA ⊥平面ABCD ,2,4,2,6AB CD PA AD ==== 所以11246212332P ABCD ABCD V S PA -+=⋅=⨯⨯⨯= 故选:C 【点睛】 识别三视图的步骤(1)弄清几何体的结构特征及具体形状、明确几何体的摆放位置;(2)根据三视图的有关定义和规则先确定正视图,再确定俯视图,最后确定侧视图; (3)被遮住的轮廓线应为虚线,若相邻两个物体的表面相交,表面的交线是它们的分界线;对于简单的组合体,要注意它们的组合方式,特别是它们的交线位置.11.B解析:B 【分析】由题意可知所需要材料的体积即为正四面体外接球体积与正四面体体积之差,求出正四面体体积、外接球体积,然后作差可得所需要材料的体积,再乘以原料密度可得结果. 【详解】由题意可知,几何体ABCD 是棱长为6cm 的正四面体, 所需要材料的体积即为正四面体外接球体积与正四面体体积之差,设正四面体的棱长为a 22236323aa a ⎛⎫-⨯= ⎪ ⎪⎝⎭, 设正四面体外接球半径为R ,则222623(()3a R R a =+,解得R =6a所以3D 打印的体积为:32334611366233212V a a a ππ⎫=-⋅=-⎪⎪⎝⎭,又336216a ==,所以276182207.71125.38182.331182V π=-≈-=≈, 故选:B 【点睛】关键点点睛:本题考查正四面体与正四面体的外接球,考查几何体的体积公式,解决本题的关键点是求出正四面体外接球体积与正四面体体积,考查学生空间想象能力和计算能力,属于中档题.12.B解析:B 【分析】根据三棱锥的表面积进一步求出正方体的棱长,最后求出正方体的外接球的半径,进一步求出结果. 【详解】解:设正方体的棱长为a ,则1111112B D AC AB AD B C D C a ======, 由于三棱锥11A B CD -的表面积为43, 所以()12133442242AB CS S a==⨯⨯=所以2a =()()()2222226++=, 所以正方体的外接球的体积为34663ππ⎛⎫= ⎪ ⎪⎝⎭故选:B . 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.二、填空题13.【分析】把圆锥侧面展开为一个平面图形利用平面上两点间线段最短可得【详解】由题意所以圆锥侧面展开图中心角为如图则故答案为:【点睛】关键点点睛:本题考查圆锥侧面上的最短距离问题空间几何体表面上两点间的最 解析:42【分析】把圆锥侧面展开为一个平面图形,利用平面上两点间线段最短可得. 【详解】由题意1,4r l ==,所以圆锥侧面展开图中心角为2142ππθ⨯==,如图,2APA π'∠=, 则2442AA '=⨯=.故答案为:42.【点睛】关键点点睛:本题考查圆锥侧面上的最短距离问题,空间几何体表面上两点间的最短距离问题的解决方法常常是把几何体的表面展开摊平为一个平面图形,利用平面上两点间线段最短求解.14.①③④【分析】由题意在正方体中结合几何关系逐一考查所给命题的真假即可求得最终结果【详解】对于①由平面平面并且四点共面同理可证故四边形一定是平行四边形故①正确;对于②若是正方形有又且平面又平面与经过平解析:①③④ 【分析】由题意,在正方体中,结合几何关系逐一考查所给命题的真假即可求得最终结果 【详解】对于①,由平面11//BCC B 平面11ADD A ,并且 B 、E 、F 、1D 四点共面,1//F ED B ∴,同理可证,1//FD EB ,故四边形1BFD E 一定是平行四边形,故①正确; 对于②,若1BFD E 是正方形,有1ED BE ⊥,又 11A D BE ⊥,且1111A D ED D =,BE ∴⊥平面11ADD A ,又 AB ⊥平面11ADD A ,与经过平面外一点作已知平面的垂线有且只有一条相矛盾,故②错误;对于③,由图得,1BFD E 在底面ABCD 内的投影一定是正方形ABCD ,故③正确; 对于④,当点E 和F 分别是对应边的中点时,:平面1BFD E ⊥平面11BB D D ,故④正确. 故答案为:①③④ 【点睛】方法点睛:本题主要考查了正方体的几何特征,利用面面平行和线线垂直,以及特殊情况进行判断,考查了学生的空间想象能力和逻辑思维能力,属于中档题.15.【分析】确定是等腰直角三角形的中点分别是和的外心由直棱柱性质得的外接球的球心在上外接球面与平面的交线是圆是以为圆心为半径的圆求出可得面积【详解】则设分别是的中点则分别是和的外心由直三棱柱的性质得平面 解析:4π【分析】确定ABC 是等腰直角三角形,11,AC A C 的中点1,D D 分别是ABC 和111A B C △的外心,由直棱柱性质得P ABC -的外接球的球心O 在1DD 上,外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,求出1PD 可得面积. 【详解】4,42AB BC AC ===,则90ABC ∠=︒,设1,D D 分别是11,AC A C 的中点,则1,D D 分别是ABC 和111A B C △的外心,由直三棱柱的性质得1DD ⊥平面ABC , 所以P ABC -的外接球的球心O 在1DD 上,如图,24()41OA ππ=,则412OP OA ==,2222413(22)22OD OA AD ⎛⎫=-=-= ⎪ ⎪⎝⎭, 所以11135422OD DD OD AA OD =-=-=-=, 222211415222PD OP OD ⎛⎫⎛⎫=-=-= ⎪⎪ ⎪⎝⎭⎝⎭, P ABC -的外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,其面积为224S ππ=⨯=. 故答案为:4π.【点睛】关键点点睛:本题考查立体几何中动点轨迹问题的求解,重点考查了几何体的外接球的有关问题的求解,关键是根据外接球的性质确定球心位置,结合勾股定理得出动点所满足的具体条件,结论:三棱锥的外接球的球心在过各面外心且与此面垂直的直线上.16.【分析】利用余弦定理求得利用正弦定理计算出的外接圆直径可计算出三棱锥的外接球半径然后利用球体体积公式可求得结果【详解】如下图所示圆柱的底面圆直径为圆柱的母线长为则的中点到圆柱底面圆上每点的距离都相等解析:13263π【分析】利用余弦定理求得AC,利用正弦定理计算出ABC的外接圆直径2r,可计算出三棱锥P ABC-的外接球半径R,然后利用球体体积公式可求得结果.【详解】如下图所示,圆柱12O O的底面圆直径为2r,圆柱的母线长为h,则12O O的中点O到圆柱底面圆上每点的距离都相等,所以,圆柱12O O的外接球直径为()2222R r h=+.本题中,作出ABC的外接圆2O,由于PA⊥平面ABC,可将三棱锥P ABC-放在圆柱12O O中,在ABC中,22AB=3BC=,4ABCπ∠=,由余弦定理可得222cos5AC AB BC AB BC ABC+-⋅∠=,由正弦定理可知,ABC的外接圆直径为5210sin2ACrABC===∠则三棱锥P ABC-的外接球直径为()222226R PA r=+=262R=,因此,三棱锥P ABC -的外接球的体积为334433V R ππ==⨯=⎝⎭.故答案为:3. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.17.【分析】证明与垂直得线面垂直从而得正三棱锥的三条侧棱两两垂直结合正方体的性质得三条侧棱的平方和为外接球直径的平方求得球半径后可得球体积【详解】∵∴∴又∴取中点连接如图由于是正三棱锥∴而平面∴平面又平 解析:36π【分析】证明PB 与,CE AC 垂直得线面垂直,从而得正三棱锥的三条侧棱两两垂直,结合正方体的性质得三条侧棱的平方和为外接球直径的平方,求得球半径后可得球体积. 【详解】∵3PE EA =,3BF FA =,∴AE AFAP AB=,∴//EF PB ,又CE EF ⊥,∴PB CE ⊥,取AC 中点D ,连接,PD BD ,如图,由于P ABC -是正三棱锥,∴,PD AC BD AC ⊥⊥,而PD BD D ⋂=,,PD BD ⊂平面PBD ,∴AC ⊥平面PBD ,又PB ⊂平面PBD , ∴AC PB ⊥,∵ACCE C =,,AC CE ⊂平面PAC ,∴PB ⊥平面PAC ,而,PA PC ⊂平面PAC ,∴,PB PA PB PC ⊥⊥,同理正三棱锥中,PA PC ⊥.设三棱锥P ABC -外接球半径为R ,则22222(2)3R PA PB PC =++=⨯,3R =,球的体积为343363V ππ=⨯=. 故答案为:36π.【点睛】结论点睛:三棱锥的外接球问题,解题关键是找到外接球的球心,三棱锥的外接球球心在过各面外心且与该面垂直的直线上.当从同一顶点出发的三条棱两两垂直时,可以把三棱锥补成一个长方体,而长方体的对角线就是三棱锥外接球的直径.18.【分析】由圆柱体积求得底面半径母线长设底面圆心为可得为异面直线与所成的角(或其补角)在对应三角形中求解可得【详解】设圆柱底面半径为则母线长为由得设底面圆心为连接则所以为异面直线所成的角在中所以故答案 6 【分析】由圆柱体积求得底面半径,母线长,设底面圆心为O ,可得OEF ∠为异面直线AC 与EF 所成的角(或其补角).在对应三角形中求解可得. 【详解】设圆柱底面半径为r ,则母线长为2r ,由2216r r ππ⋅=得2r.设底面圆心为O ,连接OE ,OF .则//OE AC ,所以OEF ∠为异面直线AC ,EF 所成的角.在Rt OEF △中,2OF =,22OE =3EF = 所以6cos OE OEF EF ∠==. 故答案为:63.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.19.【分析】根据给定的几何体的三视图得到该几何体为一个圆柱挖去一个圆锥得出圆柱的底面半径和高利用圆柱和圆锥的体积以及圆的公式即可求解【详解】解:根据给定的几何体的三视图可得该几何体表示一个圆柱挖去一个圆 解析:23π【分析】根据给定的几何体的三视图,得到该几何体为一个圆柱挖去一个圆锥,得出圆柱的底面半径和高,利用圆柱和圆锥的体积以及圆的公式,即可求解. 【详解】解:根据给定的几何体的三视图,可得该几何体表示一个圆柱挖去一个圆锥, 且底面半径1,高为1的组合体,所以几何体的体积为:2221311113πππ⨯⨯⨯=⨯-⨯. 故答案为:23π.【点睛】关键点点睛:本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.20.【详解】取的中点由题意可得:所以面ABC所以球心在直线上所以得所以解析:494π【详解】取AB的中点,由题意可得:2222,3,SD DC SD DC SC==+=,所以,SD AB SD DC⊥⊥,SD⊥面ABC.所以球心在直线SD上,所以()2232R R=+-,得74R=,所以24944S Rππ==.三、解答题21.(Ⅰ)证明见解析;(Ⅱ)1227VV=.【分析】(Ⅰ)要证明线面平行,需证明线线平行,取BP的中点T,连接AT,TN,证明//MN AT;(Ⅱ)利用锥体体积公式,分别求两个锥体底面积和高的比值,表示体积比值.【详解】(Ⅰ)如图,取BP的中点T,连接AT,TN.因为N为PC的中点,所以TN//BC,且122TN BC==.又因为223AM AD==,且//AD BC,所以TN//AM,TN AM=,即四边形AMNT为平行四边形,所以MN//AT,因为AT⊂平面PAB,MN⊄平面PAB,所以//MN平面PAB.(Ⅱ)设四棱锥P ABCD-的高为h,AD与BC间的距离为d.则()21117343326ABCDV h S h d hd=⨯⨯=⨯+=梯形,11114323223BCMh h hdV S d=⨯⨯=⨯⨯⨯=△因此1227VV=.【点睛】方法点睛:本题考查了线面平行的判断定理,意在考查转化与化归和计算求解能力,不管是证明面面平行,还是证明线面平行,都需要证明线线平行,证明线线平行的几种常见形式,1.利用三角形中位线得到线线平行;2.构造平行四边形;3.构造面面平行. 22.(Ⅰ)证明见解析;(Ⅱ6.【分析】(Ⅰ)连接BD交AC于点O,连接1D O,连接11B D,可证11//O B D O,即可得证;(Ⅱ)依题意可得1D OD∠是二面角1D AC D--的平面角,再根据锐角三角函数计算可得;【详解】(Ⅰ)证明:连接BD交AC于点O,连接1D O,连接11B D,由长方体的性质知11BO O D=,且11//BO O D,故四边形11BO D O是平行四边形,所以11//O B D O.。
(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总
(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总课后提升作业一棱柱、棱锥、棱台的结构特征(45分钟70分)一、选择题(每小题5分,共40分)1.下列说法中正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱的长就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形【解析】选A.棱柱的两底面互相平行,故A正确;棱柱的侧面也可能有平行的面(如正方体),故B错;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C错;由棱柱的定义知,棱柱的侧面一定是平行四边形,但它的底面可以是平行四边形,也可以是其他多边形,故D错.2.四棱柱有几条侧棱,几个顶点( )A.四条侧棱、四个顶点B.八条侧棱、四个顶点C.四条侧棱、八个顶点D.六条侧棱、八个顶点【解析】选C.结合正方体可知,四棱柱有四条侧棱,八个顶点.3.下列说法错误的是( )A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形【解析】选D.三棱柱的侧面是平行四边形,故D错误.4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.由一个棱柱与一个棱锥构成D.不能确定【解析】选 A.根据棱柱的结构特征,当倾斜后水槽中的水形成了以左右(或前后)两个侧面为底面的四棱柱.5.(2016·郑州高一检测)如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是( )A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【解题指南】让其中一个正方形不动,其余各面沿这个正方形的各边折起,进行想象后判断.【解析】选B.在图(2)(3)中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图(2)(3)完全一样,而(1)(4)则不同. 【补偿训练】下列图形经过折叠可以围成一个棱柱的是( )【解析】选D.A,B,C中底面多边形的边数与侧面数不相等.6.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )A.1∶2B.1∶4C.2∶1D.4∶1【解析】选 B.由棱台的概念知,上、下两底面是相似的多边形,故它们的面积之比等于对应边长之比的平方,故为1∶4.7.(2016·温州高一检测)在五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线的条数共有( )A.20条B.15条C.12条D.10条【解析】选 D.因为棱柱的侧棱都是平行的,所以过任意不相邻的两条侧棱的截面为一个平行四边形,共可得5个截面,每个平行四边形可得到五棱柱的两条对角线,故共有10条对角线.8.(2015·广东高考)若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.大于5B.等于5C.至多等于4D.至多等于3【解析】选 C.正四面体的四个顶点是两两距离相等的,即空间中n 个不同的点两两距离都相等,则正整数n的取值至多等于4.二、填空题(每小题5分,共10分)9.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.【解析】如图:①正确,如图四边形A1D1CB为矩形;②错误,任意选择4个顶点,若组成一个平面图形,则必为矩形或正方形,如四边形ABCD为正方形,四边形A1BCD1为矩形;③正确,如四面体A1ABD;④正确,如四面体A1C1BD;⑤正确,如四面体B1ABD;则正确的说法是①③④⑤.答案:①③④⑤10.(2016·天津高一检测)一个棱柱有10个顶点,所有的侧棱长的和为60cm,则每条侧棱长为________cm.【解析】因为n棱柱有2n个顶点,又此棱柱有10个顶点,所以它是五棱柱,又棱柱的侧棱都相等,五条棱长的和为60cm,可知每条侧棱长为12cm.答案:12三、解答题(每小题10分,共20分)11.根据下面对几何体结构特征的描述,说出几何体的名称.(1)由8个面围成,其中2个面是互相平行且全等的六边形,其他各面都是平行四边形.(2)由5个面围成,其中一个是正方形,其他各面都是有1个公共顶点的三角形.【解析】(1)根据棱柱的结构特征可知,该几何体为六棱柱.(2)根据棱锥的结构特征可知,该几何体为四棱锥.12.已知三棱柱ABC-A′B′C′,底面是边长为1的正三角形,侧面为全等的矩形且高为8,求一点自A点出发沿着三棱柱的侧面绕行一周后到达A′点的最短路线长.【解析】将三棱柱侧面沿侧棱AA′剪开,展成平面图形如图,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=3,A1A″=8,所以AA″==.【延伸探究】本题条件不变,求一点自A点出发沿着三棱柱的侧面绕行两周后到达A′点的最短路线长.【解析】将两个相同的题目中的三棱柱的侧面都沿AA′剪开,然后展开并拼接成如图所示,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=6,A1A″=8,所以AA″===10.【能力挑战题】如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?【解析】(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF均为直角三角形.(3)S△PEF=a2,S△DPF=S△DPE=×2a×a=a2,S△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2-a2-a2-a2=a2.关闭Word文档返回原板块温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案
描述:例题:描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章 空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征 组合体展开图 截面分析三、知识讲解1.典型空间几何体空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的结构特征多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.⋯⋯余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱或棱柱 .侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥 或者棱锥 .棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.⋯⋯⋯⋯ABCDEF−A′B′C′D′E′F′DA′⋯⋯⋯⋯S−ABCD S−AC棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征例题:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母 表示.O下列命题中,正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱,令四边形 是梯形,可知 ,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.ABCD−A1B1C1D1ABCD面AB∥面DCB1A1C1D1若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥解:D如下图,正六边形 中,,那么正六棱锥中,,即侧棱长大于底面边长.ABCDEF OA=OB=⋯=AB S−ABCDEF SA>OA=AB描述:3.组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.如图所示的几何体中,是台体的是( )A.①② B.①③ C.③ D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有( )A.个 B. 个 C. 个 D. 个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.1234例题:描述:4.展开图空间形体的表面在平面上摊平后得到的图形,是画法几何研究的一项内容.描述图中几何体的结构特征.解:图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.下图中的几何体是由哪个平面图形旋转得到的( )解:D)不在同一平面内的有______对.3内.解:C描述:例题:5.截面分析截面用平面截立体图形所得的封闭平面几何图形称为截面.平行截面、中截面与立体图形底面平行的截面称为平行截面,等分立体图形的高的平行截面称为中截面.轴截面包含立体图形的轴线的截面称为轴截面.球截面球的截面称为球截面.球的任意截面都是圆,其中通过球心的截面称为球的大圆,不过球心的截面称为球的小圆.球心与球的截面的圆心连线垂直于截面,并且有 ,其中 为球的半径, 为截面圆的半径, 为球心到截面的距离.+=r 2d 2R 2R r d 下面几何体的截面一定是圆面的是( )A.圆台 B.球 C.圆柱 D.棱柱解:B如图所示,是一个三棱台 ,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:如图,过 ,, 三点作一个平面,再过 ,, 作一个平面,就把三棱台分成三部分,形成的三个三棱锥分别是 ,,.ABC −A ′B ′C ′A ′B C A ′B C ′ABC −A ′B ′C ′−ABC A ′−B B ′A ′C ′−BC A ′C ′如图,正方体 中,,, 分别是 ,, 的中点,那么正方体中过点 ,, 的截面形状是( )A.三角形 B.四边形 C.五边形 D.六边形ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P QR作截面图如图所示,可知是六边形.ii)若两平行截面在球心的两侧,如图(2)所示,则 解:四、课后作业 (查看更多本章节同步练习题,请到快乐学)答案:1.如图,能推断这个几何体可能是三棱台的是 .A .B .C .D .C ()=2,AB =3,=3,BC =4A 1B 1B 1C 1=1,AB =2,=1.5,BC =3,=2,AC =3A 1B 1B 1C 1A 1C 1=1,AB =2,=1.5,BC =3,=2,AC =4A 1B 1B 1C 1A 1C 1AB =,BC =,CA =A 1B 1B 1C 1C 1A 1答案:2. 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标" "的面的方位是 .A .南B .北C .西D .下B △()3. 向高为 的水瓶中注水,注满为止,如果注水量 与水深 的函数关系的图象如图所示,那么水瓶的形状是.A .H V h ()高考不提分,赔付1万元,关注快乐学了解详情。
高中数学必修2第1章-1.3.2球的体积和表面积同步练习题及答案
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】1.3.2球的体积和表面积【课时目标】1.了解球的体积和表面积公式.2.会用球的体积和表面积公式解决实际问题.3.培养学生的空间想象能力和思维能力.1.球的表面积设球的半径为R,则球的表面积S=________,即球的表面积等于它的大圆面积的________倍.2.球的体积设球的半径为R,则球的体积V=________.一、选择题1.一个正方体与一个球表面积相等,那么它们的体积比是()A.6π6B.π2C.2π2D.3ππ2.把球的表面积扩大到原来的2倍,那么体积扩大到原来的() A.2倍B.22倍C.2倍D.32倍3.正方体的内切球和外接球的体积之比为()A.1∶ 3 B.1∶3C.1∶3 3 D.1∶94.若三个球的表面积之比为1∶2∶3,则它们的体积之比为()A.1∶2∶3 B.1∶2∶ 3C.1∶22∶3 3 D.1∶4∶75.长方体的一个顶点上的三条棱长分别为3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积为()A.25πB.50πC.125πD.以上都不对6.一个圆锥与一个球的体积相等,圆锥的底面半径是球半径的3倍,圆锥的高与球半径之比为()A.4∶9 B.9∶4C.4∶27 D.27∶4二、填空题7.毛泽东在《送瘟神》中写到:“坐地日行八万里”.又知地球的体积大约是火星的8倍,则火星的大圆周长约________万里.8.将一钢球放入底面半径为3 cm的圆柱形玻璃容器中,水面升高4 cm,则钢球的半径是________.9.(1)表面积相等的正方体和球中,体积较大的几何体是________;(2)体积相等的正方体和球中,表面积较小的几何体是________.三、解答题10.如图所示,一个圆锥形的空杯子上放着一个直径为8 cm的半球形的冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形的冰淇淋的直径,杯子壁厚忽略不计),使冰淇淋融化后不会溢出杯子,怎样设计最省材料?11.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.能力提升12.已知棱长都相等的正三棱锥内接于一个球,某学生画出了四个过球心的平面截球与三棱锥所得的图形,如图所示,则()A.以上四个图形都是正确的B.只有(2)(4)是正确的C.只有(4)是错误的D.只有(1)(2)是正确的13.有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,求这三个球的表面积之比.1.利用球的半径、球心到截面圆的距离、截面圆的半径可构成直角三角形,进行相关计算.2.解决球与其他几何体的切接问题,通常作截面,将球与几何体的各量体现在平面图形中,再进行相关计算.3.解答组合体问题要注意知识的横向联系,善于把立体几何问题转化为平面几何问题,运用方程思想与函数思想解决,融计算、推理、想象于一体.1.3.2 球的体积和表面积 答案知识梳理1.4πR 2 4 2.43πR 3作业设计1.A [先由面积相等得到棱长a 和半径r 的关系a =6π3r ,再由体积公式求得体积比为6π6.] 2.B [由面积扩大的倍数可知半径扩大为原来的2倍,则体积扩大到原来的22倍.] 3.C [关键要清楚正方体内切球的直径等于棱长a ,外接球的直径等于3a .] 4.C [由表面积之比得到半径之比为r 1∶r 2∶r 3=1∶2∶3,从而得体积之比为V 1∶V 2∶V 3=1∶22∶33.]5.B [外接球的直径2R =长方体的体对角线=a 2+b 2+c 2(a 、b 、c 分别是长、宽、高).]6.A [设球半径为r ,圆锥的高为h ,则13π(3r)2h =43πr 3,可得h ∶r =4∶9.]7.4解析 地球和火星的体积比可知地球半径为火星半径的2倍,日行8万里指地球大圆的周长,即2πR 地球=8,故R 地球=4π(万里),所以火星的半径为2π万里,其大圆的周长为4万里.8.3 cm解析 设球的半径为r ,则36π=43πr 3,可得r =3 cm .9.(1)球 (2)球解析 设正方体的棱长为a ,球的半径为r . (1)当6a 2=4πr 2时,V 球=43πr 3=6πa 3>a 3=V 正方体;(2)当a 3=43πr 3时,S 球=4πr 2=63π6a 2<6a 2=S 正方体.10.解 要使冰淇淋融化后不会溢出杯子,则必须V 圆锥≥V 半球,V 半球=12×43πr 3=12×43π×43,V 圆锥=13Sh =13πr 2h =13π×42×h .依题意:13π×42×h ≥12×43π×43,解得h ≥8.即当圆锥形杯子杯口直径为8 cm ,高大于或等于8 cm 时,冰淇淋融化后不会溢出杯子. 又因为S 圆锥侧=πrl =πr h 2+r 2,当圆锥高取最小值8时,S 圆锥侧最小,所以高为8 cm 时,制造的杯子最省材料.11.解 由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.根据切线性质知,当球在容器内时,水深为3r ,水面的半径为3r ,则容器内水的体积为V =V 圆锥-V 球=13π·(3r)2·3r -43πr 3=53πr 3,而将球取出后,设容器内水的深度为h ,则水面圆的半径为33h ,从而容器内水的体积是V ′=13π·(33h)2·h =19πh 3,由V =V ′,得h=315r .即容器中水的深度为315r .12.C [正四面体的任何一个面都不能外接于球的大圆(过球心的截面圆).] 13.解 设正方体的棱长为a .如图所示.①正方体的内切球球心是正方体的中心,切点是正方体六个面的中心,经过四个切点及球心作截面,所以有2r 1=a ,r 1=a 2,所以S 1=4πr 21=πa 2.②球与正方体的各棱的切点在每条棱的中点,过球心作正方体的对角面得截面,2r 2=2a ,r 2=22a ,所以S 2=4πr 22=2πa 2. ③正方体的各个顶点在球面上,过球心作正方体的对角面得截面,所以有2r 3=3a , r 3=32a ,所以S 3=4πr 23=3πa 2. 综上可得S 1∶S 2∶S 3=1∶2∶3.。
新人教高一数学必修2同步练习与单元测试第一章1.2.3.doc
1.2.3 空间几何体的直观图一、基础过关1.下列结论:①角的水平放置的直观图一定是角;②相等的角在直观图中仍然相等;③相等的线段在直观图中仍然相等;④两条平行线段在直观图中对应的两条线段仍然平行.其中正确的有()A.①②B.①④C.③④D.①③④2.在用斜二测画法画水平放置的△ABC时,若∠A的两边分别平行于x轴、y轴,则在直观图中∠A′等于()A.45°B.135°C.90°D.45°或135°3.下面每个选项的2个边长为1的正△ABC的直观图不是全等三角形的一组是()4.如图甲所示为一个平面图形的直观图,则此平面图形可能是图乙中的()5.利用斜二测画法得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论中,正确的是______________.(填序号)6.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为____________.7.如图是一梯形OABC的直观图,其直观图面积为S.求梯形OABC的面积.8.如图所示,已知几何体的三视图,用斜二测画法画出它的直观图.二、能力提升9.如图,正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图,则原图的周长是()A.8 cm B.6 cmC.2(1+3) cm D.2(1+2) cm10.如图所示的是水平放置的△ABC在直角坐标系的直观图,其中D′是A′C′的中点,且∠A′C′B′≠30°,则原图形中与线段BD的长相等的线段有________条.11.如图所示,为一个水平放置的正方形ABCO,它在直角坐标系xOy中,点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为________.12.如图所示,梯形ABCD中,AB∥CD,AB=4 cm,CD=2 cm,∠DAB=30°,AD=3 cm,试画出它的直观图.三、探究与拓展13.在水平放置的平面α内有一个边长为1的正方形A′B′C′D′,如图,其中的对角线A′C′在水平位置,已知该正方形是某个四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.答案1.B 2.D 3.C 4.C 5.①② 6.2.57.解设O′C′=h,则原梯形是一个直角梯形且高为2h.过C′作C′D′⊥O′A′于D′,则C ′D ′=22h . 由题意知12C ′D ′(C ′B ′+O ′A ′)=S .即24h (C ′B ′+O ′A ′)=S . 又原直角梯形面积为S ′=12·2h (C ′B ′+O ′A ′)=h (C ′B ′+O ′A ′)=4S2=22S .所以梯形OABC 的面积为22S .8.解 (1)作出长方体的直观图ABCD -A 1B 1C 1D 1,如图a 所示;(2)再以上底面A 1B 1C 1D 1的对角线交点为原点建立x ′,y ′,z ′轴,如图b 所示,在z ′上取点V ′,使得V ′O ′的长度为棱锥的高,连接V ′A 1,V ′B 1,V ′C 1,V ′D 1,得到四棱锥的直观图,如图b ;(3)擦去辅助线和坐标轴,遮住部分用虚线表示,得到几何体的直观图,如图c.9.A 10.2 11.2212.解 画法:步骤:(1)如图a 所示,在梯形ABCD 中, 以边AB 所在的直线为x 轴,点A 为原点, 建立平面直角坐标系xOy .如图b 所示,画出对应的x ′轴,y ′轴,使∠x ′O ′y ′=45°. (2)在图a 中,过D 点作DE ⊥x 轴,垂足为E .在图b 中, 在x ′轴上取A ′B ′=AB =4 cm ,A ′E ′=AE =323≈2.598 cm ;过点E ′作E ′D ′∥y ′轴,使E ′D ′=12ED =12×32=0.75 cm ,再过点D ′作D ′C ′∥x ′轴,且使D ′C ′=DC =2 cm.(3)连接A ′D ′、B ′C ′,并擦去x ′轴与y ′轴及其他一些辅助线,如图c 所示,则四边形A′B′C′D′就是所求作的直观图.13.解四边形ABCD的真实图形如图所示,∵A′C′在水平位置,A′B′C′D′为正方形,∴∠D′A′C′=∠A′C′B′=45°,∴在原四边形ABCD中,DA⊥AC,AC⊥BC,∵DA=2D′A′=2,AC=A′C′=2,∴S四边形ABCD=AC·AD=2 2.。
【创新设计】高中数学(人教版必修二)配套练习:第1章习题课(含答案解析)
习题课 空间几何体【课时目标】 熟练掌握空间几何体的结构,熟练掌握空间几何体的结构,以三视图为载体,以三视图为载体,以三视图为载体,进一步巩固几何体的体进一步巩固几何体的体积与表面积计算.积与表面积计算.1.圆柱、圆锥、圆台的侧面展开图及侧面面积公式..圆柱、圆锥、圆台的侧面展开图及侧面面积公式.2.空间几何体的表面积和体积公式..空间几何体的表面积和体积公式.名称名称 几何体几何体 表面积表面积 体积体积柱体柱体 (棱柱和圆柱)S表面积=S 侧+2S 底V =________锥体锥体 (棱锥和圆锥) S 表面积=S 侧+S 底 V =________台体台体(棱台和圆台)S 表面积=S 侧+S 上+S 下 V =_________ ____________ 球S =________V =43πR 3一、选择题一、选择题1.圆柱的轴截面是正方形,面积是S ,则它的侧面积是( ) A .1πS B .πS C .2πS D .4πS 2.若某空间几何体的三视图如图所示,则该几何体的体积是( )A .12B .23C .1D .2 3.如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )4.一个几何体的三视图如图,该几何体的表面积为( )A .280B .292C .360D .372 5.棱长为a 的正方体中,连接相邻面的中心,以这些线段为棱的八面体的体积为( )A .a 33B .a 34C .a 36D .a 312 6.已知一个球与一个正三棱柱的三个侧面和两个底面相切,已知一个球与一个正三棱柱的三个侧面和两个底面相切,若这个球的体积是若这个球的体积是32π3,则这个三棱柱的体积是( )A .96 3B .16 3C .24 3D .48 3二、填空题二、填空题7.一个几何体的三视图如图所示,则这个几何体的体积为________.8.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是________cm 3.9.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________cm .三、解答题三、解答题10.如下的三个图中,如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,上面的是一个长方体截去一个角所得多面体的直观图,上面的是一个长方体截去一个角所得多面体的直观图,它的正视它的正视图和侧视图在下面画出(单位:cm).(1)按照画三视图的要求画出该多面体的俯视图;按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积;按照给出的尺寸,求该多面体的体积;11.如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);(2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).能力提升12.设某几何体的三视图如下(尺寸的长度单位为m).则该几何体的体积为________m 3.13.如图所示,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,∠ACB =90°,AC =6,BC =CC 1= 2,P 是BC 1上一动点,则CP +P A 1的最小值是___________.1.空间几何体是高考必考的知识点之一,重点考查空间几何体的三视图和体积、表面积的计算,尤其是给定三视图求空间几何体的体积或表面积,更是近几年高考的热点.其中组合体的体积和表面积有加强的趋势,但难度也不会太大,解决这类问题的关键是充分发挥空间想象能力,由三视图得到正确立体图,进行准确计算.充分发挥空间想象能力,由三视图得到正确立体图,进行准确计算.2.“展”是化折为直,化曲为平,把立体几何问题转化为平面几何问题,多用于研究线面关系,求多面体和旋转体表面的两点间的距离最值等等.面关系,求多面体和旋转体表面的两点间的距离最值等等.习题课习题课 空间几何体空间几何体 答案答案知识梳理知识梳理1.2πrl πr πrl l π(r +r′)l2.Sh 13Sh 13(S 上+S 下+S 上S 下)h 4πR 2作业设计作业设计1.B [设圆柱底面半径为r ,则S =4r 2, S 侧=2πr·2r =4πr 2=πS .]2.C [由三视图可知,该空间几何体是底面为直角三角形的直三棱柱,三棱柱的底面直角三角形的直角边长分别为1和2,三棱柱的高为2,所以该几何体的体积V =12×1×2×2=1.]3.C [当俯视图为A 中正方形时,几何体为边长为1的正方体,体积为1;当俯视图为B 中圆时,几何体为底面半径为12,高为1的圆柱,体积为π4;当俯视图为C 中三角形时,几何体为三棱柱,且底面为直角边长为1的等腰直角三角形,高为1,体积为12;当俯视图为D 中扇形时,几何体为圆柱的14,且体积为π4.]4.C [由三视图可知该几何体是由下面一个长方体,上面一个长方体组合而成的几何体.体.∵下面长方体的表面积为8×8×10×10×10×22+2×2×8×8×8×22+10×10×2×2×2×22=232,上面长方体的表面积为8×8×6×6×6×22+2×2×8×8×8×22+2×2×6×6×6×22=152,又∵长方体表面积重叠一部分,∴几何体的表面积为232+152-2×2×6×6×6×22=360.]5.C [连接正方体各面中心构成的八面体由两个棱长为22a 的正四棱锥组成,正四棱锥的高为a 2,则八面体的体积为V =2×13×(22a)2·a 2=a 36.]6.D [由43πR 3=32π3,得R =2. ∴正三棱柱的高h =4.设其底面边长为a , 则13·32a =2,∴a =43. ∴V =34(43)2·4=483.] 7.103解析解析 该几何体是上面是底面边长为2的正四棱锥,下面是底面边长为1、高为2的正四棱柱的组合体,其体积为四棱柱的组合体,其体积为V =1×1×1×1×1×22+13×22×1=103. 8.144解析解析 此几何体为正四棱台与正四棱柱的组合体,而V 正四棱台=13(82+42+82×42)×)×33=112,V 正四棱柱=4×4×4×4×4×22=32,故V =112+32=144. 9.4解析解析 设球的半径为r cm ,则πr 2×8+43πr 3×3=πr 2×6r .解得r =4. 10.解.解 (1)如图所示.如图所示.(2)所求多面体体积V =V 长方体-V 正三棱锥=4×4×4×4×4×66-13×èæøö12×2×2×22×2=2843 (cm 3). 11.解.解 由题意可知矩形的高即圆柱的母线长为9.6-8×8×2r 2r 8=1.2-2r ,∴塑料片面积S=πr 2+2πr(1.2-2r)=πr 2+2.4πr -4πr 2=-3πr 2+2.4πr =-3π(r 2-0.8r)=-3π(r -0.4)2+0.48π.∴当r =0.4时,S 有最大值0.48π,约为1.51平方米.平方米.(2)若灯笼底面半径为0.3米,则高为1.2-2×2×00.3=0.6(米).制作灯笼的三视图如图.图.12.4解析解析 由三视图可知原几何体是一个三棱锥,且三棱锥的高为2,底面三角形的一边长为4,且该边上的高为3,故所求三棱锥的体积为V =13×12×3×3×4×4×4×22=4 m 3.13.5 2解析解析将△BCC 1沿BC 1线折到面A 1C 1B 上,如图.上,如图.连接A 1C 即为CP +P A 1的最小值,过点C 作CD ⊥C 1D 于D 点,△BCC 1为等腰直角三角形,角形,∴CD =1,C 1D =1,A 1D =A 1C 1+C 1D =7. ∴A 1C =A 1D 2+CD 2=49+1=5 2.。
高中同步创新课堂数学优化方案北师大必修2习题:第一章 3应用案巩固提升 含答案
[A 基础达标]1.把一个铁制的底面半径为r ,高为h 的实心圆锥熔化后铸成一个铁球,则这个铁球的半径为( )A.r h 2 B .r 2h 4C. 3r 2h 4D .r 2h 2解析:选C.因为13πr 2h =43πR 3,所以R = 3r 2h 4.2.把球的表面积扩大到原来的2倍,那么球的体积扩大到原来的( ) A .2倍 B .2倍 C .22倍D .32倍解析:选C.设原来球的半径为r ,扩大后球的半径为R ,依题意可知4πR 24πr 2=2,所以R =2r .所以43πR 343πr 3=R 3r 3=(2r )3r 3=2 2.即球的体积扩大到原来的22倍.故C 正确.3.如图是某几何体的三视图,则该几何体的体积为( )第3题图 第4题图A .9π+42B .36π+18C.92π+12 D .92π+18解析:选D .由三视图可知,该几何体是一个球体和一个长方体的组合体.其中,V 球=43π·⎝⎛⎭⎫323=9π2,V 长方体=2×3×3=18.所以V 总=92π+18. 4.一个几何体的三视图如图所示,其中主视图和左视图是腰长为4的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则该球的表面积是( )A .12πB .24πC .32πD .48π解析:选D .由三视图可知该几何体是有一条侧棱垂直于底面的四棱锥.其中底面ABCD 是边长为4的正方形,高为4,该几何体的所有顶点在同一球面上,则球的直径为3×4=43,即球的半径为23,所以该球的表面积是4π(23)2=48π. 5.如图,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则三棱锥P -DCE 的外接球的体积为( )A.43π27B .6π2 C.6π8D .6π24解析:选C.折起后的几何体是一个棱长为1的正四面体P CDE ,我们容易求得该正四面体外接球半径为64, 所以外接球的体积V =43π⎝⎛⎭⎫643=6π8.6. 圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________ cm.解析:设球的半径为x cm ,由题意得πx 2×8=πx 2×6x -43πx 3×3,解得x =4.答案:47.两个球的表面积之差为48π,它们的大圆周长之和为12π,则这两个球的半径之差为________.解析:由题意建立方程组,设两球半径分别为R 、r (R >r ),则⎩⎪⎨⎪⎧4πR 2-4πr 2=48π,2πR +2πr =12π,即⎩⎪⎨⎪⎧R 2-r 2=12,R +r =6,所以R -r =2.答案:28.已知一个表面积为24的正方体,设有一个与每条棱都相切的球,则此球的体积为________.解析:设正方体的棱长为a ,则6a 2=24,解得a =2.又球与正方体的每条棱都相切,则正方体的面对角线长22 等于球的直径,则球的半径是2,则此球的体积为43π(2)3=823π.答案:823π9.一试管的上部为圆柱形,底部为与圆柱底面半径相同的半球形.圆柱形部分的高为h cm ,半径为r cm.试管的容量为108π cm 3,半球部分容量为全试管容量的16.(1)求r 和h ;(2)若将试管垂直放置,并注水至水面离管口4 cm 处,求水的体积.解:(1)因为半球部分容量为全试管容量的16,所以半球部分与圆柱体部分容量比为15,即15=43πr 3×12πr 2×h , 所以h =103r ,43πr 3×12=108π×16,所以r =3(cm),h =10(cm). (2)V =43πr 3×12+πr 2×(h -4)=43π×33×12+π×32×6=72π(cm 3). 10.有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,求这三个球的表面积之比.解:设正方体的棱长为a .如图所示.图(1)中正方体的内切球球心是正方体的中心,切点是正方体六个面的中心,经过四个切点及球心作截面,所以有2r 1=a ,r 1=a2,所以S 1=4πr 21=πa 2.图(2)中球与正方体的各棱的切点是每条棱的中点, 过球心作正方体的对角面得截面, 所以有2r 2=2a ,r 2=22a , 所以S 2=4πr 22=2πa 2.图(3)中正方体的各个顶点在球面上, 过球心作正方体的对角面得截面, 所以有2r 3=3a ,r 3=32a , 所以S 3=4πr 23=3πa 2.综上可得S 1∶S 2∶S 3=1∶2∶3.[B 能力提升]1.若等边圆柱(轴截面是正方形)、球、正方体的体积相等,则它们的表面积的大小关系是( )A .S 球<S 圆柱<S 正方体B .S 正方体<S 球<S 圆柱C .S 圆柱<S 球<S 正方体D .S 球<S 正方体<S 圆柱解析:选A.设等边圆柱底面圆半径为r ,球半径为R ,正方体棱长为a ,则πr 2·2r =43πR 3=a 3,⎝⎛⎭⎫R r 3=32,⎝⎛⎭⎫a r 3=2π,S 圆柱=6πr 2,S 球=4πR 2,S 正方体=6a 2,S 球S 圆柱=4πR 26πr 2=23·⎝⎛⎭⎫R r 2=323<1,S 正方体S 圆柱=6a 26πr 2=1π·⎝⎛⎭⎫a r 2=34π>1.故选A. 2.正三棱锥的高和底面边长都等于6,则其外接球的表面积为________. 解析:如图,过正三棱锥P -ABC 的顶点P 作PM ⊥平面ABC 于点M ,则球心O 在PM 上,|PM |=6,连接AM ,AO ,则|OP |=|OA |=R ,在Rt △OAM 中,|OM |=6-R ,又|AB |=6,且△ABC 为等边三角形,故|AM |=2362-32=23,则R 2-(6-R )2=(23)2,则R =4,所以球的表面积S=4πR 2=64π.答案:64π3.若一个底面边长为32,侧棱长为6的正六棱柱的所有顶点都在一个球面上,求这个球的体积.解:如图,O 1O 2=6,OO 1=62, AO 1=32, 所以AO =⎝⎛⎭⎫322+⎝⎛⎭⎫622=32, 即R =32.所以V =43π⎝⎛⎭⎫323=92π.4.(选做题)已知四棱锥P -ABCD 中,底面ABCD 为正方形,边长为a ,PB =3a ,PD=a ,P A =PC =2a ,且PD 是四棱锥的高.在四棱锥内放入一球,求球的最大半径.解:当所放的球与四棱锥各面都相切时,球的半径最大,即球心到各面的距离均相等.设球的半径为R ,球心为S ,如图,连接SA ,SB ,SC ,SD ,SP . 因为最大球与四棱锥各面都相切,所以三棱锥S -P AB ,S PBC ,S PCD ,S P AD 与四棱锥S ABCD 的高都为R ,且它们恰好组合成四棱锥P -ABCD .因为PD 为四棱锥P -ABCD 的高,PD =AD =BC =a ,四边形ABCD 为正方形,又P A =PC =2a ,PB =3a ,所以PB 2=P A 2+AB 2=PC 2+BC 2, 所以△P AB ,△PCB 为直角三角形且全等.所以S △P AB =S △PCB =12·a ·2a =22a 2,S △PDA =S △PDC =12a 2,S 正方形ABCD =a 2,所以V P ABCD =13·a 2·a =13a 3.V S P AB =V S PBC =13·22a 2·R =26a 2R ,V S P AD =V S PDC =13·12a 2·R =16a 2R ,V S ABCD =13·a 2·R=13a 2R , 因为V P ABCD =V S P AB +V S PBC +V S P AD +V S PDC +V S ABCD , 所以13a 3=23a 2R +13a 2R +13a 2R ,即(2+2)R =a , 所以R =⎝⎛⎭⎫1-22a ,即球的最大半径为⎝⎛⎭⎫1-22a .。
2019_2020学年高中数学第一章立体几何初步1.1.3.1圆柱、圆锥、圆台练习(含解析)新人教B版必修2
第1课时圆柱、圆锥、圆台A.直线绕定直线旋转形成柱面B.半圆绕定直线旋转形成球体C.有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台D.圆柱的任意两条母线所在的直线是相互平行的答案 D解析两直线平行时,直线绕定直线旋转才形成柱面,故A错误;半圆以直径所在直线为轴旋转才形成球体,故B错误;C不符合棱台的定义.所以应选D.2.下列命题正确的是( )A.梯形绕一边所在直线旋转得到的旋转体是圆台B.夹在圆柱的两个平行截面间的几何体是圆柱C.棱锥截去一个小棱锥后剩余部分是棱台D.圆锥截去一个小圆锥后剩余部分是圆台答案 D解析绕梯形的一边所在直线旋转得到的旋转体也可能是组合体.当夹在圆柱的两个平行截面不与圆柱的底面平行时,不是圆柱.用与棱锥的底面不平行的平面截去一个小棱锥后,剩余部分不是棱台.圆锥是直角三角形绕其一条直角边所在的直线旋转而成的,圆锥截去一个小圆锥后剩余部分是圆台.A.10 B.20C.30 D.40答案 B解析如图轴截面为矩形,所以面积为(2+2)×5=20.4.下列说法中,不正确的是 ( ) A .圆桂的侧面展开图是一个矩形 B .圆锥中过轴的截面是一个等腰三角形C .等腰直角三角形绕它的一条边所在的直线旋转一周形成的曲面围成的几何体是圆锥D .圆台中平行于底面的截面是圆面 答案 C解析 等腰直角三角形绕它的一条直角边所在的直线旋转一周才能形成圆锥,此处必须说明是绕它的一条直角边所在的直线.若换成直角三角形的斜边,则旋转后产生的几何体不是圆锥,而是两个圆锥的组合体,且这两个圆锥同底.5.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积为392 cm 2,母线与轴的夹角为45°,求这个圆台的高、母线长和底面半径.解 圆台的轴截面如图所示,根据题意可设圆台的上、下底面半径分别为x cm 和3x cm ,即A′O′=x cm ,AO =3x cm(O′,O 分别为上、下底面圆心),过A′作AB 的垂线,垂足为点D .在Rt△AA′D 中,∠AA′D=45°,AD =AO -A′O′=2x cm , 所以A′D=AD =2x cm ,又S 轴截面=12(A′B′+AB)·A′D=12×(2x+6x)×2x=392 (cm 2),所以x =7.综上,圆台的高OO′=14 cm ,母线长AA′=2OO′=14 2 cm ,上、下底面的半径分别为7 cm 和21 cm .一、选择题1.下列命题正确的个数为( )①圆柱的轴是过圆柱上、下底面圆的圆心的直线;②圆柱的母线是连接圆柱上底面上一点和下底面上一点的直线;③矩形的任意一条边所在直线都可以作为轴,其他边绕其旋转形成圆柱;④矩形绕任何一条直线旋转,都可以围成圆柱.A .1B .2C .3D .4 答案 B解析 根据圆柱的定义可知命题①③正确,命题②④错误.2.一个圆锥的母线长为2,圆锥的轴截面的面积为3,则母线与轴的夹角为( ) A .30° B.60°C .30°或60° D.60°或75° 答案 C解析 设圆锥的高为h ,则底面圆的半径为4-h 2,由题意,得S =12h×24-h 2=3,平方整理得h 4-4h 2+3=0,解得h 2=1或h 2=3,∴h=1或h =3.母线与轴的夹角为30°或60°.3.上、下底面面积分别为36π和49π,母线长为5的圆台,其两底面之间的距离为( ) A .4 B .3 2 C .2 3 D .2 6 答案 D解析 设圆台的母线为l ,高为h ,上、下两底面圆的半径分别为r ,R ,则满足关系式l 2=h 2+(R -r)2,根据题意可得h =26,即两底面之间的距离为26.4.“两底面直径之差等于母线长”的圆台( ) A .是不存在的B .其母线与高线必成60°角C .其母线与高线必成30°角D .其母线与高线所成的角不是定值 答案 C解析 设圆台上、下底面半径分别为r 1,r 2,母线长为l ,则由题意可得2r 2-2r 1=l ,∴r 2-r 1l =12, 再设母线与高线所成的角为θ,∴sinθ=12,θ=30°.5.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比为1∶3,则截面把圆锥的母线分为上下两段的比是( )A .1∶3B .1∶9C .1∶ 3D .(1+3)∶2 答案 D解析 圆锥的上底面半径与下底面半径之比为1∶3,故截去小圆锥的母线与大圆锥的母线之比为1∶3,截面把圆锥的母线分为上下两段的比是1∶(3-1)=(1+3)∶2.二、填空题6.圆锥轴截面的顶角为120°,过顶点的截面三角形的最大面积为2,则圆锥的母线长为________.答案 2解析 对于该圆锥,过顶点的截面三角形中面积最大的三角形为等腰直角三角形,其腰为母线,所以母线长为2.7.用一张(6×10) cm 2的矩形硬纸卷成圆柱的侧面,则圆柱轴截面的面积等于________,轴截面的周长等于________.答案60π cm 212+20π cm 或20+12πcm 解析 若圆柱的母线长为6,则底面直径为10π,轴截面的面积为60π cm 2,周长为⎝ ⎛⎭⎪⎫12+20πcm ;若圆柱的母线长为10,则底面直径为6π,轴截面的面积为60π cm 2,周长为⎝⎛⎭⎪⎫20+12π cm .8.给出下列命题:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是________.答案②④解析由圆柱、圆锥、圆台的定义及母线的性质可知②④正确,①③错误.三、解答题9.轴截面为正方形的圆柱叫做等边圆柱,已知某等边圆柱的轴截面面积为16 cm2,求其底面周长和高.解如图所示,作出等边圆柱的轴截面ABCD,由题意知,四边形ABCD为正方形,设圆柱的底面半径为r,则AB=AD=2r.由题意可得轴截面的面积S=AB×AD=2r×2r=4r2=16,解得r=2.所以其底面周长C=2πr=2π×2=4π(cm),高h=2r=4(cm).10.如图所示,已知圆锥SO中,底面半径r=1,母线长l=4,M为母线SA上的一个点,且SM=x,从点M拉一根绳子,围绕圆锥侧面转到点A.求:(1)绳子的最短长度的平方f(x);(2)绳子最短时,顶点到绳子的最短距离;(3)f(x)的最大值.解将圆锥的侧面沿SA展开在平面上,如图所示,则该图为扇形,且弧AA′的长度L 就是圆O的周长,∴L=2πr=2π.∴∠ASM=L2πl×360°=2π2π×4×360°=90°.(1)由题意知绳子长度的最小值为展开图中的AM,其值为AM=x2+16(0≤x≤4).∴f(x)=AM 2=x 2+16(0≤x≤4).(2)绳子最短时,在展开图中作SR⊥AM,垂足为R ,则SR 的长度为顶点S 到绳子的最短距离,在△SAM 中,∵S △SAM =12SA·SM=12AM·SR,∴SR=SA·SM AM =4xx 2+16(0≤x≤4),即绳子最短时,顶点到绳子的最短距离为4xx 2+16(0≤x≤4). (3)∵f(x)=x 2+16(0≤x≤4)是增函数, ∴f(x)的最大值为f(4)=32.。
高中数学 必修二 同步练习 专题1.2.1中心投影与平行投影、空间几何体的三视图(解析版)
一、选择题1.以下关于投影的叙述不正确的是A.手影就是一种投影B.中心投影的投影线相交于点光源C.斜投影的投影线不平行D.正投影的投影线和投影面垂直【答案】C【解析】平行投影的投影线互相平行,分为正投影和斜投影两种,故C错.2.下列哪个实例不是中心投影A.工程图纸B.小孔成像C.相片D.人的视觉【答案】A3.一个几何体的三视图的形状都相同、大小均相等,那么这个几何体不可以是A.球B.三棱锥C.正方体D.圆柱【答案】D【解析】球的三视图均为圆,且大小均相等;对于三棱锥O−ABC,当OA,OB,OC两两垂直且OA=OB=OC 时,其三视图的形状可以都相同,大小均相等;正方体的三视图是三个大小均相等的正方形;圆柱的三视图中必有一个为圆,其他两个为矩形,故一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是圆柱,故选D.4.以下关于几何体的三视图的论述中,正确的是A.球的三视图总是三个全等的圆B.正方体的三视图总是三个全等的正方形C.水平放置的正四面体的三视图都是正三角形D .水平放置的圆台的俯视图是一个圆 【答案】A【解析】球的三视图总是三个全等的圆.5.小周过生日,公司为她预订的生日蛋糕(示意图)如下图所示,则它的正视图应该是【答案】B6.如图,在正方体1111ABCD A B C D -中,P 是线段CD 的中点,则三棱锥11P A B A -的侧视图为A .B .C .D .【答案】D【解析】由直观图可知,三棱锥11P A B A -的侧视图中线段11A B 的投影是线段11C D ,线段1B A 的投影是线段1C D ,是实线;而线段1A P 的投影是线段1D P ,是虚线. 故选D.7.如图是一个几何体的三视图,则此几何体的直观图是A .B .C .D .【答案】D【解析】由已知可得原几何体是一个圆锥和一个圆柱的组合体,上部分是一个圆锥,下部分是一个圆柱,而且圆锥和圆柱的底面积相等,故此几何体的直观图是:.故选D.8.若沿一个正方体三个面的对角线截得的几何体如图所示,则下列说法正确的是A .正视图与侧视图一样B .正视图与俯视图一样C .侧视图与俯视图一样D .正视图、侧视图、俯视图都不一样【答案】C9.如图,在正方体1111ABCD A B C D 中, M N 、分别是1BB 、BC 的中点,则图中阴影部分在平面11ADD A 上的投影为图中的A.B.C.D.【答案】A10.一个几何体的三视图如下图所示,这个几何体可能是一个A.三棱锥B.底面不规则的四棱锥C.三棱柱D.底面为正方形的四棱锥【答案】C【解析】根据三视图可知,该几何体是一个倒放的三棱柱.11.如图是一个几何体的三视图,则该几何体的所有棱中,最大值是A.2B.3C.32D.10【答案】C12.如图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h随时间t变化的图象可能是【答案】B【解析】由容器的三视图可知容器是由圆柱和圆台构成.由于水是匀速注入的,故水面的高度随着时间t的变化先是均匀增加,然后逐渐加快,故选B.二、填空题13.夜晚,人在路灯下的影子是________投影,人在月光下的影子是________投影.【答案】中心平行【解析】路灯的光是从一点发出的,故影子是中心投影;而月光可以近似看作平行的,月光下的影子是平行投影.14.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.【答案】①②③⑤15.一物体及其正视图如图:则它的侧视图与俯视图分别是图形中的________.【答案】③②【解析】侧视图是矩形中间有条实线,应选③;俯视图为矩形中间两条实线,且为上下方向,应选②. 16.如图,直三棱柱ABC-A1B1C1的侧棱长为2,底面是边长为2的正三角形,正视图是边长为2的正方形,则其侧视图的面积为________.【答案】2 317.如图,点O为正方体ABCD—A′B′C′D′的中心,点E为平面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的投影可能是(写出所有可能的序号).【答案】①②③【解析】要画出四边形D′OEF在该正方体的各个面上的投影,只需画出四个顶点D′,O,E,F在每个面上的投影,再顺次连接就可得到在该面上的投影.空间四边形D′OEF在正方体的面DCC′D′上的正投影是①;在面BCC′B′上的正投影是②;在面ABCD上的正投影是③.故填①②③.三、解答题18.如图所示的几何体是由一个长方体木块锯成的.(1)判断该几何体是否为棱柱;(2)画出它的三视图.【答案】(1)是棱柱;(2)见解析.【解析】(1)是棱柱.因为该几何体的前、后两个面互相平行,其余各面都是矩形,而且相邻矩形的公共边都互相平行.(2)该几何体的三视图如下图:19.用数个小正方体组成一个几何体,使它的正视图和俯视图如图所示,俯视图中小正方形中的字母表示在该位置的小正方体的个数.(1)你能确定哪些字母表示的数?(2)该几何体可能有多少种不同的形状?【答案】见解析.(2)当d,e,f中有一个是2时,有3种不同的形状;当d,e,f中有两个是2时,有3种不同的形状;当d,e,f都是2时,有1种形状. 所以该几何体可能有7种不同的形状.。
高中数学同步讲义必修二——第一章 1.3.2 球的体积和表面积
1.3.2 球的体积和表面积学习目标 1.掌握球的表面积和体积公式.2.能解决与球有关的组合体的计算问题.知识点 球的表面积和体积公式1.球的表面积公式S =4πR 2(R 为球的半径); 2.球的体积公式V =43πR 3.1.球的表面积等于它的大圆面积的2倍.( × )2.两个球的半径之比为1∶2,则其体积之比为1∶4.( × ) 3.球心与其截面圆的圆心的连线垂直于截面.( √ )类型一 球的体积和表面积例1 (1)已知球的表面积为64π,求它的体积; (2)已知球的体积为5003π,求它的表面积.解 (1)设球的半径为R ,则4πR 2=64π,解得R =4, 所以球的体积V =43πR 3=43π·43=2563π.(2)设球的半径为R ,则43πR 3=5003π,解得R =5,所以球的表面积S =4πR 2=4π×52=100π.反思与感悟 (1)公式是计算球的表面积和体积的关键,半径与球心是确定球的条件. (2)两个结论:①两个球的表面积之比等于这两个球的半径比的平方;②两个球的体积之比等于这两个球的半径比的立方.跟踪训练1 (1)两个球的体积之比为8∶27,那么这两个球的表面积之比为( ) A .2∶3 B .4∶9 C.2∶ 3D.8∶27(2)两个半径为1的铁球,熔化成一个球,则这个大球的半径为________. 答案 (1)B (2)32解析 (1)由两球的体积之比为8∶27, 可得半径之比为2∶3, 故表面积之比是4∶9.(2)设大球的半径为R ,由题意得 43πR 3=2×43π×13,得R =32. 类型二 球的截面及切接问题 命题角度1 球的截面问题例2 如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,若不计容器的厚度,则球的体积为( )A.500π3 cm 3B.866π3 cm 3C.1 372π3 cm 3D.2 048π3cm 3答案 A解析 如图,作出球的一个截面,则MC =8-6=2(cm),BM =12AB =12×8=4(cm).设球的半径为R cm ,则R 2=OM 2+MB 2=(R -2)2+42, ∴R =5.∴V 球=43π×53=5003π(cm 3).反思与感悟 (1)有关球的截面问题,常画出过球心的截面圆,将问题转化为平面中圆的问题. (2)解题时要注意借助球半径R ,截面圆半径r ,球心到截面的距离d 构成的直角三角形,即R 2=d 2+r 2.跟踪训练2 用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的表面积为________. 答案 12π解析 用一平面去截球所得截面的面积为2π,所以小圆的半径为2,已知球心到该截面的距离为1,所以球的半径为3,所以球的表面积为4π(3)2=12π. 命题角度2 与球有关的切、接问题例3 (1)将棱长为2的正方体木块削成一个体积最大的球,则该球的体积为( ) A.4π3 B.2π3 C.3π2 D.π6 答案 A解析 由题意知,此球是正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为2,故半径为1,其体积是43×π×13=4π3.(2)长方体的共顶点的三个侧面面积分别为3,5,15,则它的外接球表面积为______. 答案 9π解析 设长方体共顶点的三条棱长分别为a ,b ,c , 则⎩⎪⎨⎪⎧ab =3,bc =5,ac =15,解得⎩⎪⎨⎪⎧a =3,b =1,c =5,∴外接球半径为a 2+b 2+c 22=32,∴外接球表面积为4π×⎝⎛⎭⎫322=9π. 反思与感悟 (1)正方体的内切球球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为r 1=a2,过在一个平面上的四个切点作截面如图①. (2)球与正方体的各条棱相切球与正方体的各条棱相切于各棱的中点,过球心作正方体的对角面有r 2=22a ,如图②. (3)长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,长方体的体对角线是球的直径,若长方体过同一顶点的三条棱长为a ,b ,c ,则过球心作长方体的对角面有球的半径为r 3=12a 2+b 2+c 2,如图③.(4)正方体的外接球正方体棱长a 与外接球半径R 的关系为2R =3a . (5)正四面体的外接球正四面体的棱长a 与外接球半径R 的关系为2R =62a . 跟踪训练3 (1)正方体的内切球与其外接球的体积之比为( ) A .1∶ 3 B .1∶3 C .1∶3 3D .1∶9(2)表面积为433的正四面体的各个顶点都在同一个球面上,则此球的体积为( )A.23π B.13π C.23π D.223π答案 (1)C (2)A解析 (1)设正方体的棱长为1,则正方体内切球的半径为棱长的一半即为12,外接球的直径为正方体的体对角线, ∴外接球的半径为32, ∴其体积比为43π×⎝⎛⎭⎫123∶43π×⎝⎛⎭⎫323=1∶3 3.(2)如图所示,将正四面体补形成一个正方体.设正四面体的棱长为a .∵正四面体的表面积为433,∴4×34a 2=433, 解得a =233,∴正方体的棱长是63, 又∵球的直径是正方体的体对角线,设球的半径是R , ∴2R =63×3, ∴R =22, ∴球的体积为43π·⎝⎛⎭⎫223=23π,故选A.1.若球的体积与其表面积数值相等,则球的半径等于( ) A .3 B .2 C .1 D.12答案 A解析 设球的半径为R ,则4πR 2=43πR 3,所以R =3.2.一个球的表面积是16π,则它的体积是( ) A .64π B.64π3 C .32π D.32π3 答案 D解析 设球的半径为R ,则由题意可知4πR 2=16π,故R =2.所以球的半径为2,体积V =43πR 3=323π. 3.如图,圆柱形容器内盛有高度为6 cm 的水,若放入3个相同的铁球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,则球的半径为( )A .4 cmB .3 cmC .2 cmD .1 cm答案 B解析 由题意可得,设球的半径为r ,依题意得三个球的体积和水的体积之和等于圆柱体的体积,∴3×43πr 3=πr 2(6r -6),解得r =3,故选B.4.两个球的表面积之差为48π,它们的大圆周长之和为12π,则这两个球的半径之差为( ) A .1 B .2 C .3 D .4答案 B解析 设两球半径分别为R 1,R 2,且R 1>R 2,则4π(R 21-R 22)=48π,2π(R 1+R 2)=12π,所以R 1-R 2=2.5.正方体的外接球的体积是其内切球的体积的______倍. 答案 3 3解析 设正方体的棱长为1,则正方体内切球的半径为棱长的一半即为12,外接球的直径为正方体的体对角线, ∴外接球的半径为32. ∴外接球的体积为43π×⎝⎛⎭⎫323,内切球的体积为43π×⎝⎛⎭⎫123,∴外接球的体积是内切球的体积的33倍.1.球的体积和表面积公式 设球的半径为R (1)体积公式:V =43πR 3.(2)表面积公式:S =4πR 2.2.用一个平面截球所得截面的特征 (1)用一个平面去截球,截面是圆面. (2)球心和截面圆心的连线垂直于截面.(3)球心到截面的距离d 与球的半径R 以及截面的半径r ,有下面的关系r =R 2-d 2.3.常见的几何体与球的切、接问题的解决策略:解决此类问题的实质就是根据几何体的相关数据求球的直径或半径,关键是根据“切点”和“接点”,作出轴截面图,把空间问题转化为平面问题来计算.一、选择题1.若两球的体积之和是12π,经过两球球心的截面圆周长之和为6π,则两球的半径之差为( ) A .1 B .2 C .3 D .4答案 A解析 设两球的半径分别为R ,r (R >r ),则由题意得⎩⎪⎨⎪⎧43πR 3+43πr 3=12π,2πR +2πr =6π,解得⎩⎪⎨⎪⎧R =2,r =1,∴R -r =1.2.如图所示的是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为豪的发现,则圆柱的体积与球的体积之比和圆柱的表面积与球的表面积之比分别为( )A.32,32B.43,1C.32,1 D.43,43答案 A解析 设球的半径为R ,则圆柱的底面半径为R ,高为2R , ∴V 圆柱=πR 2×2R =2πR 3,V 球=43πR 3,则V 圆柱V 球=2πR 343πR 3=32, S 圆柱S 圆=6πR 24πR 2=32. 3.一个正四棱柱的各个顶点都在一个半径为2 cm 的球面上,如果正四棱柱的底面边长为2 cm ,那么该棱柱的表面积为( ) A .(2+42) cm 2 B .(8+162) cm 2 C .(4+82) cm 2 D .(16+322) cm 2 答案 B解析 ∵一个正四棱柱的各个顶点都在一个半径为2 cm 的球面上,正四棱柱的底面边长为2 cm ,球的直径为正四棱柱的体对角线,∴正四棱柱的体对角线为4 cm ,正四棱柱的底面对角线长为2 2 cm , ∴正四棱柱的高为16-8=2 2 cm ,∴该棱柱的表面积为2×22+4×2×22=8+16 2 (cm 2),故选B.4.一平面截一球得到直径为6 cm 的圆面,球心到这个圆面的距离是4 cm ,则该球的体积是( ) A.100π3 cm 3B.208π3 cm 3C.500π3 cm 3D.4163π3cm 3答案 C解析 如图,根据题意,OO 1=4 cm ,O 1A =3 cm , ∴OA =R =OO 21+O 1A 2=5(cm),故球的体积V =43πR 3=500π3(cm 3).故选C.5.若与球外切的圆台的上、下底面半径分别为r ,R ,则球的表面积为( ) A .4π(r +R )2 B .4πr 2R 2 C .4πRr D .π(R +r )2答案 C解析 方法一 如图,设球的半径为r 1,则在Rt △CDE 中,DE =2r 1,CE =R -r ,DC =R +r .由勾股定理得4r 21=(R +r )2-(R -r )2,解得r 1=Rr .故球的表面积为S 球=4πr 21=4πRr .方法二 如图,设球心为O ,球的半径为r 1,连接OA ,OB ,则在Rt △AOB 中,OF 是斜边AB 上的高.由相似三角形的性质得OF 2=BF ·AF =Rr ,即r 21=Rr ,故r 1=Rr ,故球的表面积为S 球=4πRr .6.等体积的球和正方体的表面积S 球与S 正方体的大小关系是( ) A .S 正方体>S 球 B .S 正方体<S 球 C .S 正方体=S 球 D .无法确定答案 A解析 设正方体的棱长为a ,球的半径为R ,由题意,得V =43πR 3=a 3,∴a =3V ,R =33V 4π,∴S 正方体=6a 2=63V 2=3216V 2,S 球=4πR 2=336πV 2<3216V 2.7.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一球面上,则该球的体积为( ) A.32π3 B .4π C .2π D.43π 答案 D解析 ∵正四棱柱的底面边长为1,侧棱长为2,∴正四棱柱的体对角线的长为1+1+(2)2=2.又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,∴球的半径R =1. 故球的体积为V =43πR 3=43π.二、填空题8.如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径相等,这时圆柱、圆锥、球的体积之比为________.答案 3∶1∶2解析 设球的半径为R ,则 V 柱=πR 2·2R =2πR 3, V 锥=13πR 2·2R =23πR 3,V 球=43πR 3,故V 柱∶V 锥∶V 球=2πR 3∶23πR 3∶43πR 3=3∶1∶2.9.圆柱形容器的内壁底半径是10 cm ,有一个实心铁球浸没于容器的水中,若取出这个铁球,测得容器的水面下降了53 cm ,则这个铁球的表面积为________cm 2.答案 100π解析 设该铁球的半径为r ,则由题意得43πr 3=π×102×53,解得r =5,∴这个铁球的表面积S =4π×52=100π(cm 2).10.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为________.答案 3π4 解析 由题意得,该圆柱底面圆周半径r =12-⎝⎛⎭⎫122=32. ∴该圆柱的体积为V =πr 2h =π⎝⎛⎭⎫322×1=3π4. 11.如果一个球的外切圆锥的高是这个球的半径的3倍,则圆锥的侧面积和球的表面积之比为________.答案 3∶2⎝⎛⎭⎫或32解析 如图,△ABC 为圆锥的轴截面,截球面得圆O ,由题意知AD =3OE ,则OA =2OE ,设OE =r ,则OA =2r ,AD =3r , 在Rt △AEO 中,sin ∠EAO =12, 又∵0°<∠EAO <90°,∴∠EAO =30°.在Rt △ABD 中,tan ∠BAD =BD AD =BD 3r =33,BD =3r . 则AB =AD 2+BD 2=(3r )2+(3r )2=23r ,圆锥的侧面积为π×BD ×AB =6πr 2,球的表面积为4πr 2,∴所求的比值为6πr 2∶4πr 2=3∶2.12.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上.若AC =3,AB =4,AB ⊥AC ,AA 1=12,则球O 的半径为________.答案 132解析 可将直三棱柱ABC -A 1B 1C 1补形到长方体ABEC -A 1B 1E 1C 1中如图所示,则BC 1为直三棱柱ABC -A 1B 1C 1的外接球的直径,∴BC 1=32+42+122=13,∴球O 的半径为132. 三、解答题13.一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球,求:(1)圆锥的侧面积;(2)圆锥的内切球的体积.解 (1)如图作轴截面,则等腰三角形CAB 内接于⊙O ,⊙O 1内切于△ABC .设⊙O 的半径为R ,由题意,得43πR 3=972π, 所以R 3=729,R =9,所以CE =18.已知CD =16,所以ED =2.连接AE ,因为CE 是直径,所以CA ⊥AE ,所以CA 2=CE ·CD =18×16=288,所以CA =122,因为AB ⊥CD ,所以AD 2=CD ·DE =16×2=32,所以AD =42,S 圆锥侧=π×42×122=96π.(2)设内切球O 1的半径为r ,因为△ABC 的周长为2×(122+42)=322,所以S △ABC =12r ·322=12×82×16,解得r =4, 所以内切球O 1的体积V 球=43πr 3=2563π. 四、探究与拓展14.已知长方体共顶点的三个侧面面积分别为3,5,15,则它的外接球表面积为________. 答案 9π解析 如图,是过长方体的一条体对角线AB 的截面,设长方体有公共顶点的三条棱的长分别为x ,y ,z ,则由已知,得⎩⎪⎨⎪⎧ xy =3,yz =5,zx =15,解得⎩⎪⎨⎪⎧ x =3,y =1,z = 5.所以球的半径R =12AB =12x 2+y 2+z 2=32, 所以S 球=4πR 2=9π. 15.有三个球,第一个球内切于正方体的六个面,第二个球与这个正方体各条棱都相切,第三个球过这个正方体的各个项点,求这三个球的表面积之比.解 设正方体棱长为a ,三个球的半径依次为R 1,R 2,R 3,则有2R 1=a ,R 1=a 2,2a =2R 2,R 2=22a ,3a =2R 3,R 3=32a ,所以R 1∶R 2∶R 3=1∶2∶ 3. 所以S 1∶S 2∶S 3=R 21∶R 22∶R 23=1∶2∶3.即这三个球的表面积之比为1∶2∶3.。
人教版高一数学必修二-第一章综合测评题(答案解析)
第一章综合测评题时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的)1.下列命题中,正确的是( ) A.有两个侧面是矩形的棱柱是直棱柱 B.侧面都是等腰三角形的棱锥是正棱锥 C .侧面都是矩形的直四棱柱是长方体D.底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱2.一个圆柱的侧面展开图是一个正方形,这个圆柱的表面积与侧面积的比是( ) A.1+2π2πB.错误!C.错误! ﻩD.错误!3.有下列四种说法:①平行投影的投影线互相平行,中心投影的投影线相交于一点;②空间图形经过中心投影后,直线变成直线,但平行线可能变成相交的直线;③空间几何体在平行投影与中心投影下有不同的表现方式.其中正确的命题有( )A .1个 B.2个 C.3个D.0个4.长方体AB CD -A 1B1C 1D 1中截去一角B 1-A1BC1,则它的体积是长方体体积的( )A .错误! B.错误! C .错误! ﻩD.错误!5.底面是边长为4的正方形,侧棱长都为25的四棱锥的侧面积和体积依次为( ) A.24,错误! B .8,错误! C.32,错误! D.32,错误! 6.若圆台两底面周长的比是14,过高的中点作平行于底面的平面,则圆台被分成两部分的体积比是( )A.错误! B .错误! C.1D.错误!7.(2012·新课标全国卷)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为错误!,则此球的体积为( )A.\r (6)π B.4错误!π C.4错误!π D.6错误!π8.如图所示,梯形A 1B 1C 1D 1是一平面图形ABC D的直观图(斜二测),若A 1D 1∥O1y1,A 1B 1∥C 1D 1,A1B1=\f(2,3)C 1D 1=2,A 1D 1=1,则四边形ABCD 的面积是( )A.10 ﻩB.5C .5\r(2) ﻩD .10错误!9.若某空间几何体的三视图如图所示,则该几何体的体积是( )A.\f(1,3)B.23C .1D.210.一个棱锥的三视图如图,则该棱锥的表面积(单位:cm 2)为( )A .48+12 2B .48+24错误! C.36+12错误! D.36+24错误! 11.等边三角形的边长为a ,它绕其一边所在的直线旋转一周,则所得旋转体的体积为( )A.错误!πa 3 B.错误!πa 3 C.错误!πa 3D.错误!πa 312.已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该几何体的体积是()A.8 B.错误! C.错误!ﻩD.错误!二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知OA为球O的半径,过OA的中点M且垂直于OA的平面截球面得到圆M,若圆M的面积为3π,则球O的表面积等于________.14.把边长为1的正方形ABCD沿对角线BD折起形成三棱锥C-ABD,其正视图与俯视图如图所示,则其侧视图的面积为________.15.一个母线长为2的圆锥侧面展开图为一个半圆,则此圆锥的体积为________.16.一个正四棱柱(底面是正方形,各个侧面均为矩形)的各个顶点都在一个直径为2cm的球面上,如果正四棱柱的底面边长为1cm,那么该棱柱的表面积为________cm2.三、解答题(本大题共6小题,共70分,17题10分,18~22题,每题12分,解答应写出文字说明,证明过程或演算步骤)17.画出下图中三个图形的指定三视图之一.18.如图所示,为一建筑物的三视图,现需将其外壁用油漆刷一遍,已知每平方米用漆0.2kg,问需要油漆多少千克?(尺寸如图所示,单位:m,π取3.14,结果精确到0.01 kg)19.已知四棱锥P-ABCD,其三视图和直观图如图,求该四棱锥的体积.20.一几何体按比例绘制的三视图如图所示(单位:m).(1)试画出它的直观图;(2)求它的表面积和体积.21.正三棱锥的高为1,底面边长为2\r(6),内有一个球与它的四个面都相切, 求:(1)棱锥的表面积;(2)内切球的表面积与体积.22.如图,一个圆锥的底面半径为2cm,高为6cm,在其中有一个高为x cm的内接圆柱.(1)试用x表示圆柱的侧面积;(2)当x为何值时,圆柱的侧面积最大?第一章综合测评题(答案)1、解析:认识棱柱一般要从侧棱与底面的垂直与否和底面多边形的形状两方面去分析,故A,C都不够准确,B中对等腰三角形的腰是否为侧棱未作说明,故也不正确.答案:D2、解析:利用侧面展开图与底面圆的联系解题.设底面圆半径为r,母线即高为h,则h=2πr,所以错误!=错误!=错误!=错误!=错误!.故选A.答案:A3、解析:本题考查中心投影与平行投影的有关概念及性质.利用中心投影与平行投影的概念判断,①③正确;利用中心投影与平行投影的性质判断,②也正确.故正确的命题有3个.故选C.答案:C4、解析:VB1-A1BC1=VC1-A1B1B=\f(1,3)·S△A1B1B·B1C1=13×12S四边形AA1B1B×B1C1=错误!VABCD-A1B1C1D1.答案:B5、解析:如图,O为正方形ABCD的中心,VO为四棱锥的高,E为边BC中点,所以VE⊥BC.由BC=AB=4,VB=VC=2错误!可得VE=4,VO=2错误!,∴S侧=4S△VBC=32,V=错误!S正方形ABCD·VO=错误!.答案:D6、解析:圆台的轴截面如图,∵圆台的两底面周长之比为1:4,∴两底面半径之比1:4.设上底面半径为r ,则下底面半径为4r .∴经过高的中点与底面平行的截面半径为52r.∴圆台被分成两部分的体积比为 错误!=错误!. 答案:D7、解析:设球O 的半径为R,则R = 错误!=错误!,故V 球=错误!πR3=4错误!π. 答案:B 8、解析:四边形AB CD 是直角梯形,其中AD =2,AB =2,CD =3,所以四边形ABC D的面积为\f(1,2)·(2+3)×2=5. 答案:B9、解析:由三视图可知,该空间几何体是底面为直角三角形的直三棱柱,三棱柱的底面直角三角形的直角边长分别为1和2,三棱柱的高为错误!,所以该几何体的体积V =错误!×1×错误!×错误!=1.答案:C10、解析:由三视图知,该几何体可看做由两个全等的小三棱锥侧面重合放置而成.每个小三棱锥的高为4,底面是腰长为3错误!、底边长为6的等腰三角形,斜高为5,所以每个三棱锥的底面积为错误!×3×6=9,侧面积为错误!×5×6=15或错误!×4×3错误!=6错误!,所以组合体的表面积为9×2+15×2+6错误!×2=48+12错误!.答案:A11、解析:所得的旋转体为以等边三角形的高为底面半径的两个相同底的圆锥,每个圆锥的高都为a2,∴V =2×错误!×π×错误!2·错误!=错误!πa 3. 答案:A12、解析:几何体是正方体截去一个三棱台, V =23-\f(1,3)·错误!×2=错误!. 答案:C13、解析:设球半径为R ,圆M 的半径为r ,则πr2=3π,即r 2=3, 由题得R 2-错误!2=3,所以R 2=4⇒4πR2=16π. 答案:16π14、解析:由题意可知,侧视图为等腰直角三角形,腰长为错误!,故其面积为错误!×错误!2=错误!.答案:错误!15、解析:由题意可知,圆锥的底面周长为2πr =12·2π×2,得r =1.∴圆锥的高h =错误!=错误!,∴圆锥的体积V=错误!×π×12×错误!=错误!π. 答案:33π16、解析:设正四棱柱的高为a cm,则22=12+12+a 2, ∴a =2.∴S 表面积=1×1×2+4×1×2=(2+4\r(2))(cm 2). 答案:2+4 217、解:如图所示.18、解:由三视图知建筑物为一组合体,自上而下分别是圆锥和四棱柱,并且圆锥的底面半径为3m,母线长5m,四棱柱的高为4m,底面是边长为3 m的正方形.∴圆锥的表面积为πr2+πrl=3.14×32+3.14×3×5=28.26+47.1=75.36(m2).四棱柱的一个底面积为32=9(m2),四棱柱的侧面积为4×4×3=48(m2).∴建筑物的外壁面积为75.36-9+48=114.36(m2).∴需要油漆114.36×0.2=22.872≈22.87(kg).19、解:由三视图知底面ABCD为矩形,AB=2,BC=4,顶点P在面ABCD内的射影为BC中点E,即棱锥的高为2,则体积V P-ABCD=\f(1,3)S矩形ABCD×PE=错误!×2×4×2=错误!.20、解:(1)直观图如图所示.(2)解法一:由三视图可知该几何体是长方体被截去一个角得到的,且该几何体的体积是以A 1A、A1D 1、A 1B 1为棱的长方体的体积的错误!.在直角梯形AA 1B 1B 中,作BE ⊥A 1B 1,则四边形AA 1E B是正方形,∴AA 1=B E=1. 在Rt △BEB 1中,BE =1,E B1=1,∴BB 1=错误!.∴几何体的表面积S =S 正方形AA1D 1D +2S 梯形AA 1B 1B+S矩形BB 1C 1C +S 正方形ABCD +S矩形A 1B 1C1D1=1+2×错误!(1+2)×1+1×错误!+1+1×2=(7+错误!)(m2).∴几何体的体积V =\f (3,4)×1×2×1=错误!(m3).∴该几何体的表面积为(7+\r(2))m2,体积为32m 3. 解法二:几何体也可以看作是以AA 1B 1B 为底面的直四棱柱,其表面积求法同解法一,V 直四棱柱D1C 1CD -A 1B 1BA =Sh =32×1=32(m3). 21、解:(1)底面正三角形中心到一边的距离为13×错误!×2错误!=错误!, 则正棱锥侧面的斜高为\r (12+(\r(2))2)=\r(3).∴S侧=3×错误!×2错误!×错误!=9错误!.∴S表=S 侧+S 底=92+\f(1,2)×错误!×(2错误!)2=92+6错误!.(2)如图所示,设正三棱锥P-ABC 的内切球球心为O ,连接OP 、OA 、OB 、OC ,而O点到三棱锥的四个面的距离都为球的半径r .∴V P -A BC =V O -P AB +VO -PBC +V O -P A C+V O -ABC =错误!·S 侧·r+错误!·S △ABC ·r=错误!·S表·r =(3错误!+2错误!)r .又V P-ABC =\f(1,3)×错误!×错误!×(2错误!)2×1=2错误!,∴(32+2错误!)r =2错误!,得r =错误!=错误!=错误!-2.∴S 内切球=4π(6-2)2=(40-16错误!)π.V内切球=错误!π(错误!-2)3=错误!(9错误!-22)π.22、解:设圆柱的底面半径为r .由题意知,错误!=错误!,∴r =2-错误!x .(1)S 圆柱侧=2πr ·x =2π·错误!·x=-2π3x2+4πx =-\f(2π,3)(x -3)2+6π(0<x <6). (2)当x=3时,圆柱的侧面积最大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.1 柱、锥、台、球的的结构特征练习一一、选择题1、下列命题中,正确命题的个数是()(1)桌面是平面;(2)一个平面长2米,宽3米;(3)用平行四边形表示平面,只能画出平面的一部分;(4)空间图形是由空间的点、线、面所构成。
A 、1 B、 2 C、 3 D、 42、下列说法正确的是()A、水平放置的平面是大小确定的平行四边形B、平面ABCD就是四边形ABCD的四条边围来的部分C、100个平面重叠在一起比10个平面重叠在一起厚D、平面是光滑的,向四周无限延展的面3、下列说法中表示平面的是()A、水面B、屏面C、版面D、铅垂面4、下列说法中正确的是()A、棱柱的面中,至少有两个面互相平行B、棱柱的两个互相平行的平面一定是棱柱的底面C、棱柱的一条侧棱的长叫做棱柱的高D、棱柱的侧面是平行四边形,但它的底面一定不是平行四边形5、长方体的三条棱长分别是AA/=1,AB=2,AD=4,则从A点出发,沿长方体的表面到C/的最短距离是()A、 5B、7C、D、6、若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是()A、三棱锥B、四棱锥C、五棱锥D、六棱锥]7、过球面上两点可能作出球的大圆()A、0个或1个B、有且仅有1个C、无数个D、一个或无数个8、一个圆柱的母线长为5,底面半径为2,则圆柱的轴截面的面积为()A、10B、20C、40D、15二、填空题9、用一个平面去截一个正方体,截面边数最多是----------------条。
10、正三棱台的上、下底面边长及高分别为1、2、2,则它的斜高是------------。
11、一个圆柱的轴截面面积为Q,则它的侧面面积是----------------。
12、若圆锥的侧面面积是其底面面积的2倍,则这个圆锥的母线与底面所成的角为----------------,圆锥的侧面展开图扇形的圆心角为----------------。
13、在赤道上,东经1400与西经1300的海面上有两点A、B,则A、B两点的球面距离是多少海里---------------。
(1海里是球心角1/所对大圆的弧长)。
三、解答题14、一个正三棱柱的底面边长是4,高是6,过下底面的一条棱和该棱所对的上底面的顶点作截面,求这截面的面积。
15、圆锥底面半径是6,轴截面顶角是直角,过两条母线的截面截去底面圆周的16,求截面面积。
1.1.2 简单组合体的结构特征练习一一、选择题1、平面是绝对的平、无厚度、可以无限延展的抽象的数学概念。
其中正确命题的个数是()A、1个B、2个C、3个D、4个2、在空间中,下列说法中正确的是()A、一个点运动形成直线B、直线平行移动形成平面或曲面C、直线绕定点运动形成锥面D、矩形上各点沿同一方向移动形成长方体3、在四面体中,平行于一组相对棱,并平分其余各棱的截面的形状是()A、等边三角形B、等腰梯形C、长方体 D 、正方形4、在四棱锥的四个侧面中,直角三角形最多可有()A、1个B、2个C、3个D、4个5、设有三个命题:甲:底面是平行四边形的四棱柱是平行六面体乙:底面是矩形的平行六面体是长方体丙:直四棱柱是直平行六面体以上命题中,真命题的个数是()A、0个B、1个C、2个D、3个6、边长为5cm的长方形EFGH是圆柱的轴截面,则从E点沿圆柱的侧面到相对顶点G的最短距离是()A、10cmB、cmC、cmD、cm7、半径为5的球,截得一条直线的线段长为8,则球心到直线的距离是()A、B、 2 C、D、 3二、填空题8、、空间中构成几何体的基本元素是------------、--------------、---------------------。
9、、用六根长度相等的火柴,最多搭成----------------个正三角形。
10、下列关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱。
其中真命题的序号是----------------。
11、能否不通过拉伸把球面切割为平面图形-----------------(填能、否)三、解答题12、圆锥的底面半径为r,母线长是底面半径的3倍,在底在圆周上有一点A,求一个动点P自A出发在侧面上绕一周到A点的最短距离。
13、已知棱棱锥的底面积是150cm2,平行于底面的一个截面面积是54cm2,截得棱台的高为12cm,求棱锥的高。
14、如图,侧棱长为23的正三棱锥V—ABC中,AVB=BVC=CVA=400,过A作截面AEF,求截面三角形AEF周长的最小值。
15、从北京(靠近北纬400,东经1200,以下经纬度均取近似值)飞往南非首都约翰内斯堡(南纬300,东经300)有两条航空线可选择:甲航空线:从北京沿纬度弧向西飞到土耳其首都安卡拉(北纬400,东经300),然后向南飞到目的地;乙航空线:从北京向南飞到澳大利亚的珀斯(南纬300,东经1200),然后向西飞到目的地。
请问:哪一条航空线最短?(地球视为半径R=6370km的球)(提示:把北京、约翰内斯堡、安卡拉、珀斯分别看作球面上的A、B、C、D四点,则甲航程为A、»AC与C、B两地间的球面距离»BC之和,乙航程是A、D两地间的球面距离»AD加C两地间的纬度长上D、B两地间的纬度线长。
)1.2.1 空间几何体的三视图练习一一、选择题1、关于三视图,判断正确的是()A、物体的三视图唯一确定物体B、物体唯一确定它的三视图C、俯视图和左视图的宽相等D、商品房广告使用的三视图的主视图一定是正面的投影2、下列说法正确的是()A、作图时,虚线通常表达的是不可见轮廓线B、视图中,主视图反映的是物体的长和高,左视图反映的是长和宽,而俯视图反映的是高和宽C、在三视图中,仅有点的两个面上的投影,不能确定点的空间位置D、用2:1的比例绘图时,这是缩小的比例3、一个几何体由几个相同的小正方体组合而成,它的主视图、左视图、俯视图如图所示,则这个组合体包含的小正方体的个数是()A、7B、 6C、 4D、 54、一个物体的三视图如图所示,则该物体形状的名称为()A、三棱柱B、四棱柱C、圆柱D、圆锥二、填空题5、对于一个几何体的三视图要证主视图与左视图一样________,主视图和俯视图一样________,俯视图和左视图一样________.6、对于正投影,垂直于投射面的直线或线段的正投影是---------------------。
7、一个几何体的三视图是全等的平面图形,这样的几何体可能是------------。
(写出符合的一种几何体即可)8、如果一个几何体的视图之一是三角形,那么这个几何体可能是--------------。
(写出两个几何体即可)。
三、做图9、画出下面几何体的三视图。
10、据下面三视图,想象物体的原形。
11、画出下面几何体的三视图。
12、画出下面几何体的三视图13、画出下面几何体的三视图14、已知某几何体的主视图,左视图和俯视图,求作此几何体。
主视图左视图俯视图15、已知某几何体,求作此几何体的主视图,左视图和俯视图。
1.2.1 空间几何体的三视图练习二一、选择题1、若一个几何体的主视图和左视图都是等腰三角形,俯视图是圆,则这个几何体可能是()A、圆柱B、三棱柱C、圆锥D、球体2、若一个几何体的主视图和左视图都是等腰三角形,俯视图是圆,则这个几何体可能是()A、圆柱B、三棱柱C、圆锥D、球体3、甲、乙、丙、丁四人分别面对面坐在一个四边形桌子旁边,桌上一张纸上写着数字“9”,甲说他看到的是“6”,乙说他看到的是“”,丙说他看到的是“”,丁说他看到的是“9”,则下列说法正确的是( )A、甲在丁的对面,乙在甲的左边,丙在丁的右边B、丙在乙的对面,丙的左边是甲,右边是乙C、甲在乙的对面,甲的右边是丙,左边是丁D、甲在丁的对面,乙在甲的右边,丙在丁的右边二、填空题4、一个几何体的三视图是全等的平面图形,这样的几何体可能是------------------。
(写出符合的一种几何体即可)。
5、对于一个几何体的三视图要保证主视图和左视图一样---------------,主视图和俯视图一样---------------,俯视图和左视图一样-------------------。
6、对于正投影,垂直于投射面的直线或线段的正投影是---------------------。
三、做图7、画出下图所示几何体的三视图。
8、如图是一些立体图形的视图,但是观察的方向不同,试说明下列图是哪一种立体图形的视图。
9、如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置上的小正方块的个数,请画出这个几何体的主视图、左视图。
四、判断题10、两条平行的直线的水平放置直观图仍然是相等线段。
()11、两条长度相等的线段水平放置的直观图仍是相等线段。
()12、正视图、侧视图、俯视图相同的几何体只有球。
()五、解答题13、下图(1)、(2)、(3)中哪一幅是主视图?14、已知某几何体,求做其主视图,左视图,俯视图15、已知某几何体,求做其主视图,左视图,俯视图1.2.2 空间几何体的直观图练习一一、选择题1、水平放置的ABC ∆有一边在水平线上,他的直观图是正111A B C ∆,则ABC ∆是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、任意三角形2、已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积是( )A 、 16B 、 64C 、 16或64D 、 都不对3、已知正方形ABCD 的边长为1cm ,它是水平放置的一个平面图形的直观图,则原图形的周长是( )A 、6cmB 、8cmC 、(2cm +D 、(2cm +4、一个三角形斜二测画法画出来是一个正三角形,边长为2,则此三角形的面积是( )A 、B 、C 、D 、 都不对5、用斜二测画法做出一个三角形的直观图,其直观图的面积是原三角形面积的( )A 、12B 、2C 、2D 、4 6、已知ABC 的平面直观图///A B C ∆是的边长为a 的正三角形,那么原ABC 的面积为( )A 2B 2C 2D 2 二、填空题7、斜二测画法画圆,得到直观图的形状是-------------------。
8、根据斜二测画法的规则画直观图时,把ox ,oy ,oz 轴画成对应的o /x /,o /y /,o /z /,使∠x /o / y /=-----------------, ∠x /o / z /=-----------------。
9、用斜二测画法作直观图时,原图中平行且相等的线段,在直观图中对应的两条线段____________。