幂函数的典型例题.doc
高中数学必修一《幂函数》精选习题(含详细解析)
高中数学必修一《幂函数》精选习题(含详细解析)一、选择题1.下列函数中,是幂函数的是( )A.y=2xB.y=2x3C.y=D.y=2x22.若幂函数y=(m2-3m+3)x m-2的图象不过原点,则m的取值范围为( )A.1≤m≤2B.m=1或m=2C.m=2D.m=13.函数y=x-2在区间上的最大值是( )A. B. C.4 D.-44若本题的条件不变,则此函数在区间上的最大值和最小值之和为多少?5.在下列函数中,定义域为R的是( )A.y=B.y=C.y=2xD.y=x-16函数y=|x(n∈N,n>9)的图象可能是( )7下列幂函数在(-∞,0)上为减函数的是( )A.y=B.y=x2C.y=x3D.y=8下列幂函数中过点(0,0),(1,1)且为偶函数的是( )A.y=B.y=x4C.y=x-2D.y=9.在同一坐标系内,函数y=x a(a≠0)和y=ax-的图象可能是( )二、填空题10幂函数f(x)=xα过点,则f(x)的定义域是.11若y=a是幂函数,则该函数的值域是.12若函数f(x)是幂函数,且满足=3,则f的值等于.13.设a=,b=,c=,则a,b,c的大小关系是.14已知幂函数f=(m∈Z)的图象与x轴,y轴都无交点,且关于原点对称,则函数f的解析式是.三、解答题15.比较下列各组数的大小:(1)1.10.1,1.20.1;(2)0.24-0.2,0.25-0.2;(3)0.20.3,0.30.3,0.30.2.16.已知幂函数y=x3-p(p∈N*)的图象关于y轴对称,且在(0,+∞)上为增函数,求满足条件(a+1<(3-2a的实数a的取值范围.17幂函数f的图象经过点(,2),点在幂函数g的图象上,(1)求f,g的解析式.(2)x为何值时f>g,x为何值时f<g?18已知幂函数f(x)=(m2-m-1)·x-5m-3在(0,+∞)上是增函数,又g(x)=lo(a>1).(1)求函数g(x)的解析式.(2)当x∈(t,a)时,g(x)的值域为(1,+∞),试求a与t的值.参考答案与解析1【解析】选C.由幂函数所具有的特征可知,选项A,B,D中x的系数不是1;故只有选项C中y==x-1符合幂函数的特征.2【解析】选D.由题意得解得m=1.3【解析】选C.y=x-2在区间上单调递减,所以x=时,取得最大值为4.4【解析】y=x-2在区间上单调递减,所以x=2时,取得最小值为,当x=时,取得最大值为4.故最大值和最小值的和为.5【解析】选C.选项A中函数的定义域为[0,+∞),选项B,D中函数的定义域均为(-∞,0)∪(0,+∞).6【解析】选C.因为y=|x为偶函数,所以排除选项A,B.又n>9,所以<1.由幂函数在(0,+∞)内幂指数小于1的图象可知,只有选项C符合题意.7【解析】选B.函数y=,y=x3,y=在各自定义域上均是增函数,y=x2在(-∞,0)上是减函数. 8【解析】选B.函数y=x4是过点(0,0),(1,1)的偶函数,故B正确;函数y=x-2不过点(0,0),故C 不正确;函数y=,y=是奇函数,故A,D不正确.9【解析】选C.当a<0时,函数y=ax-在R上是减函数,此时y=x a在(0,+∞)上也是减函数,同时为减的只有D选项,而函数y=ax-与y轴相交于点,此点在y轴的正半轴上,故D选项不适合.当a>0时,函数y=ax-在R上是增函数,与y轴相交于点,此点在y轴的负半轴上,只有A,C适合,此时函数y=x a在(0,+∞)上是增函数,进一步判断只有C适合.10【解析】因为幂函数f(x)过点,所以=2α,所以α=-1,所以f(x)=x-1=,所以函数f(x)的定义域是(-∞,0)∪(0,+∞).答案:(-∞,0)∪(0,+∞)11【解析】由已知y=a是幂函数,得a=1,所以y=,所以y≥0,故该函数的值域为[0,+∞).答案:[0,+∞)3,12【解析】依题意设f(x)=xα,则有=3,得α=log2则f(x)=,于是f====.答案:13【解析】因为y=在x∈(0,+∞)上递增,所以>,即a>c,因为y=在x∈(-∞,+∞)上递减,所以>,即c>b,所以a>c>b.答案:a>c>b14【解析】因为函数的图象与x轴,y轴都无交点,所以m2-1<0,解得-1<m<1;因为图象关于原点对称,且m∈Z,所以m=0,所以f=x-1.答案:f=x-115【解析】(1)由于函数y=x0.1在第一象限内单调递增,又因为1.1<1.2,所以1.10.1<1.20.1.(2)由于函数y=x-0.2在第一象限内单调递减,又因为0.24<0.25,所以0.24-0.2>0.25-0.2.(3)首先比较指数相同的两个数的大小,由于函数y=x0.3在第一象限内单调递增,而0.2<0.3,所以0.20.3<0.30.3.再比较同底数的两个数的大小,由于函数y=0.3x在定义域内单调递减,而0.2<0.3,所以0.30.3<0.30.2.所以0.20.3<0.30.3<0.30.2.16【解析】因为幂函数y=x3-p(p∈N*)的图象关于y轴对称,所以函数y=x3-p是偶函数.又y=x3-p在(0,+∞)上为增函数,所以3-p是偶数且3-p>0.因为p∈N*,所以p=1,所以不等式(a+1<(3-2a化为:(a+1<(3-2a.因为函数y=是[0,+∞)上的增函数,所以⇒⇒-1≤a<,故实数a的取值范围为.17【解析】(1)设f=xα,则()α=2,所以α=2,所以f=x2.设g=xβ,则(-2)β=,所以β=-2,所以g=x-2(x≠0).(2)从图象可知,当x>1或x<-1时,f>g;当-1<x<0或0<x<1时,f<g.18【解析】(1)因为f(x)是幂函数,且在(0,+∞)上是增函数,所以解得m=-1,所以g(x)=loga.(2)由>0可解得x<-1或x>1,所以g(x)的定义域是(-∞,-1)∪(1,+∞).又a>1,x∈(t,a),可得t≥1,设x1,x2∈(1,+∞),且x1<x2,于是x2-x1>0,x1-1>0,x2-1>0,所以-=>0, 所以>.由a>1,有loga >loga,即g(x)在(1,+∞)上是减函数.又g(x)的值域是(1,+∞),所以得g(a)=loga=1,可化为=a, 解得a=1±,因为a>1,所以a=1+,综上,a=1+,t=1.。
幂函数题型及解析
幂函数题型及解析1.(1)下列函数是幂函数的是________y=x 2,y=()x ,y=4x 2,y=x 5+1,y=(x ﹣1)2,y=x ,y=a x (a >1)分析:由幂函数的定义直接进行判断知甩给的函数中是幂函数的是y=x 2和y=x .解:由幂函数的定义知,y=x 2,y=()x ,y=4x 2,y=x 5+1,y=(x ﹣1)2,y=x ,y=a x (a >1),七个函数中是幂函数的是y=x 2和y=x ,(2)①y=x 2+1; ②y=2x ; ③y=; ④y=(x ﹣1)2; ⑤y=x 5; ⑥y=x x+1分析:根据幂函数的定义,对以下函数进行判断即可.解:根据幂函数y=x α,α∈R 的定义知,①y=x 2+1不是幂函数,②y=2x 不是幂函数,③y==x ﹣2是幂函数,④y=(x ﹣1)2不是幂函数,⑤y=x 5是幂函数,⑥y=x x+1不是幂函数;综上是幂函数的为③⑤2.已知幂函数y=f (x )的图象过点(9,).(1)求f (x )的解析式;(2)求f (25)的值;(3)若f (a )=b (a ,b >0),则a 用b 可表示成什么?分析:(1)设出幂函数f (x )的解析式,根据图象过点(9,),求出函数解析式;(2)根据函数的解析式求出f (25)的值;(3)根据函数的解析式求出a 与b 的关系.解:(1)设幂函数f (x )=x t ,∵图象过点(9,),∴;即32t =3﹣1,∴,∴;(2)∵f (x )=,∴f (25)=25-0.5===;(3)∵f (a )=a -0.5=b ,∴a -0.5=b ,∴a ﹣1=b 2,∴a=. 3.比较下列各组中两个值的大小(1)1.5,1.7;(2)0.71.5,0.61.5;(3)32)2.1(--,32)25.1(--;(4)()﹣0.24与41)65(-; (5)3.10.5,3.12.3;(6)()﹣1.5,()﹣1.8;(7)0.62,0.63;(8)()﹣0.3,()﹣0.24分析:由幂函数的单调性,有的需要结合指数函数的性质,逐个题目比较可得.解:(1)∵幂函数y=53x 在(0,+∞)单调递增,∴535.1<537.1;(2)∵幂函数y=x 1.5在(0,+∞)单调递增,∴0.71.5>0.61.5;(3))∵幂函数y=32-x在(﹣∞,0)单调递增,∴32)2.1(-->32)25.1(--;(4)∵0<<1,﹣0.24,∴()0.24<41)65(-;(5)3.10.5<3.12.3;(6)()﹣1.5>()﹣1.8;(7)0.62>0.63;(8)()﹣0.3<()﹣0.24 4.若函数y=(m 2+2m ﹣2)x m 为幂函数且在第一象限为增函数,求m 的值②已知幂函数y=(m 2﹣m ﹣1)x m2﹣2m ﹣3,当x ∈(0,+∞)时为减函数,求幂函数分析:根据幂函数的性质,列出不等式组,求出m 的值即可解:①∵函数y=(m 2+2m ﹣2)x m 为幂函数且在第一象限为增函数,∴m 2+2m-2=1且m >0;解得m=1②解:∵幂函数y=(m 2﹣m ﹣1)x m2﹣2m ﹣3,∴m 2﹣m ﹣1=1,解得m=2,或m=﹣1;又x ∈(0,+∞)时y 为减函数,∴当m=2时,m 2-2m-3=﹣3,幂函数为y=x -3,满足题意;当m=-1时,m 2-2m-3=0,幂函数为y=x 0,不满足题意;综上幂函数y=x -35.幂函数y=(m 2﹣3m+3)x m 是偶函数,求m 的值分析:根据幂函数的定义先求出m 的值,结合幂函数是偶函数进行判断即可.解:∵函数是幂函数,∴m 2﹣3m+3=1,即m 2﹣3m+2=0,则m=1或m=2,当m=1时,y=x 是奇函数,不满足条件.当m=2时,y=x 2是偶函数,满足条件,即m=26.求函数y=32-x 的定义域和值域.分析:本题考察幂函数的概念及性质,把y=32-x化为根式的形式,容易写出它的定义域和值域.解:∵函数y=32-x = ,∴x ≠0,且y >0;∴函数y 的定义域是{x|x ≠0},值域是{y|y >0}7.求函数y=0.2﹣x2﹣3x+4的定义域、值域和单调区间.分析:根据二次函数以及指数函数的性质求出函数的单调性和值域即可.解:令f (x )=﹣x 2﹣3x+4=﹣(x 2+3x+)+=﹣+,∴f (x )在(﹣∞,﹣)递增,在(﹣,+∞)递减,∴函数y=0.2﹣x2﹣3x+4在(﹣∞,﹣)递减,在(﹣,+∞)递增,∴y min ==,∴函数y=0.2﹣x2﹣3x+4的定义域是R 、值域是[,+∞),在(﹣∞,﹣)递减,在(﹣,+∞)递增 8.已知幂函数y=234m m x --(m ∈Z )的图象与y 轴有公共点,且其图象关于y 轴对称,求m 的值,并作出其图象 分析:由题意得4-3m-m 2>0解得﹣4<m <1,又因为图象关于y 轴对称,所以4﹣3m ﹣m 2必须为偶数,故m=0,﹣1,﹣2,﹣3,即可画出图象.解:由题意得4﹣3m ﹣m 2>0,即有(m+4)(m ﹣1)<0,解得﹣4<m <1,又因为图象关于y 轴对称,所以4﹣3m ﹣m 2必须为偶数,所以m=0,﹣1,﹣2,﹣3,m=﹣3,y=x 4,m=﹣2,y=x 6,m=﹣1,y=x 6,m=0,y=x 4其图象如图:9.已知函数y=(n ∈Z )的图象与两坐标轴都无公共点,且其图象关于y 轴对称,求n 的值,并画出函数图象.分析:由题意可得,可得幂指数n 2﹣2n ﹣3为负数,且为偶数.由于当n=1时,幂指数n2﹣2n﹣3=﹣4,满足条件,可得函数的解析式,从而得到函数的图象.解:已知函数y=(n∈Z)的图象与两坐标轴都无公共点,且其图象关于y轴对称,可得幂指数n2﹣2n ﹣3为非正数,且为偶数.由于当n=1时,幂指数n2﹣2n﹣3=﹣4,满足条件,当n=3时,n2﹣2n﹣3=0,满足条件故函数为y=x﹣4,或y=x0,它的图象如图所示:10.已知幂函数y=x m﹣2(m∈N)的图象与x,y轴都无交点,且关于y轴对称,求m的值,并画出它的图象.分析:由题意利用幂函数的性质可得m∈N,m﹣2≤0,且m﹣2为偶数,由此求得m的值.解:∵幂函数y=x m﹣2(m∈N)的图象与x,y轴都无交点,且关于y轴对称,∴①m﹣2<0,m﹣2为偶数,故m=0,即幂函数y=x﹣2,它的图象如右图所示.或②m﹣2=0,m=2,此时y=x0,(x≠0),它的图象如图所示11.已知幂函数的图象与x轴,y轴没有交点,且关于y轴对称,求m的值分析:由幂函数的概念与该函数为偶函数的性质可知,m2﹣2m﹣3≤0且m2﹣2m﹣3为偶数,从而可得答案.解:∵幂函数y=(m∈Z)的图象与x轴,y轴没有交点,且关于y轴对称,∴m2﹣2m﹣3≤0且m2﹣2m﹣3为偶数(m∈Z),由m2﹣2m﹣3≤0得:﹣1≤m≤3,又m∈Z,∴m=﹣1,0,1,2,3.当m=﹣1时,m2﹣2m﹣3=1+2﹣3=0,为偶数,符合题意;当m=0时,m2﹣2m﹣3=﹣3,为奇数,不符合题意;当m=1时,m2﹣2m﹣3=1﹣2﹣3=﹣4,为偶数,符合题意;当m=2时,m2﹣2m﹣3=4﹣4﹣3=﹣3,为奇数,不符合题意;当m=3时,m2﹣2m﹣3=9﹣6﹣3=0,为偶数,符合题意.综上所述,m=﹣1,1,312. 已知幂函数y=x m2﹣2m﹣3(m∈Z)的图象与x、y轴都无公共交点,且图象关于原点中心对称,求m的值,并且画出它的图象.分析:由题意知,m2﹣2m﹣3<0,且m2﹣2m﹣3为奇数,解此不等式组可得m的值.解:幂函数y=x m2﹣2m﹣3(m∈Z)的图象与x、y轴都无公共交点,且图象关于原点中心对称,∴m2﹣2m﹣3<0,且m2﹣2m﹣3为奇数,即﹣1<m<3 且m2﹣2m﹣3 为奇数,∴m=0或2,∴y=x﹣3,其图象为:13.若实数m满足不等式0.642m+3<1.253m,求实数m的取值范围分析:不等式0.642m+3<1.253m,即为()﹣(4m+6)<()3m,再由y=()x在R上递增,得到﹣(4m+6)<3m,解出即可.解:不等式0.642m+3<1.253m,即为0.82(2m+3)<()3m,即有()﹣(4m+6)<()3m,由于y=()x在R上递增,则﹣(4m+6)<3m,解得,m>﹣,故实数m的取值范围是(﹣,+∞)14.已知幂函数.(1)试求该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数还经过点,求m的值并求满足条件f(2﹣a)>f(a﹣1)的实数a的取值范围.分析:(1)将指数因式分解,据指数的形式得到定义域,利用幂函数的性质知单调性(2)将点的坐标代入列出方程解得m,利用函数的单调性去掉法则f,列出不等式解得,注意定义域.解:(1)∵m2+m=m(m+1),m∈N*∴m2+m为偶数,∴x≥0,所以函数定义域为[0,+∞)由幂函数的性质知:其函数在定义域内单调递增.(2)依题意得:,∴,∴m=1(m∈N*)由已知得:,∴,故a的取值范围为:Welcome To Download !!!欢迎您的下载,资料仅供参考!。
简单的幂函数习题举例
简单的幂函数习题举例题组一:幂函数的概念例1:下列函数是幂函数的是:.①()2xf x =.②2()3f x x =.③2()f x x =-.④()f x x π=.⑤3()(1)f x x =-.⑥21()f x x =2.已知2212()(2)m m f x m xm --=+,当m 取何值时,〔1()f x 是幂函数;〔2()f x 是正比例函数〔3()f x 是反比例函数 1.下列函数中是幂函数的是〔 ①31y x =②m y ax =〔,a m 为非零常数,且1a ≠; ③145y x x =+④n y x = ⑤3(6)y x =-⑥28y x =⑦2y x x =+⑧1y =A .①②③⑧B .①④C .③④⑤⑥D .②④⑦参考答案:B2.在函数y=,32y x =,21y x =+,3(1)y x =+中,幂函数的个数为〔 A .1 B .2 C .3 D .4参考答案:A3.已知2121(23)(22)m y n m x m -=+-+-⋅是幂函数,求,m n 的值。
参考答案:33,2m n =-= 4.已知函数f <x >=<m 2+2m >·xm 2+m -1,m 为何值时,f <x >是:<1>正比例函数;<2>反比例函数;<3>二次函数;<4>幂函数?解:<1>若f <x >为正比例函数,则错误!⇒m =1;<2>若f <x >为反比例函数,则错误!⇒m =-1;<3>若f <x >为二次函数,则错误!⇒m =错误!;<4>若f <x >为幂函数,则m 2+2m =1,∴m =-1±错误!.5.下列函数中是幂函数的是<>A .y =3x 2B .y =2xC .y =x -1+1D .y =x 3.14[答案] D题组二:函数奇偶性的判断。
幂函数基础知识及例题
幂函数基础知识及例题例1.如图,图中曲线是幂函数y =x α在第一象限的大致图象.已知α取-2,-12,12,2四个值,则相应于曲线C 1,C 2,C 3,C 4的α的值依次为______________ 例2.比较下列各组数的大小:(1)3-52和 3.1-52; (2)-8-78和-(19)78;(3)(-23)-23和(-π6)-23;(4)4.125,3.8-23和(-1.9)-35.例3已知幂函数f (x )=(t3-t +1)x 12(1-4t -t2)是偶函数,且在(0,+∞)上为增函数,求函数解析式. 例4已知幂函数6()m y x m Z -=∈与2()m y x m Z -=∈的图象都与x 、y 轴都没有公共点,且2()m y x m Z -=∈的图象关于y 轴对称,求m 的值.幂函数练习题1. 用“<”或”>”连结下列各式:0.60.32 0.50.32 0.50.34, 0.40.8- 0.40.6-,32(2)a + 32a ; 223(5)a -+ 235-;0.50.4 0.40.5, (23)12________(34)12,(-23)-1________(-35)-1, (-2.1)37________(-2.2)-37.2.比较下列各组数的大小:(1)1.531,1.731,1; (2)(-2)32-,(-107)32,1.134-;(3)3.832-,3.952,(-1.8)53; (4)31.4,51.5.3355(5)1.5 1.6与 1.3 1.3(6)0.60.7与 2233(7)3.5 5.3--与 0.30.3(8)0.18.15--与03.若3131)23()2(---<+a a ,求a 的取值范围。
4.幂函数y =x -1及直线y =x ,y =1,x =1将平面直角坐标系的第一象限分成八个部分:①、②、③、④、⑤、⑥、⑦、⑧(如图所示),那么幂函数y =x 12的图象经过的部分编号是___________.5.(1)函数1322(1)(4)y x x --=-+-的定义域是(2) 函数y =(x 2-2x )21-的定义域是6.(1)如果幂函数()f x x α=的图象经过点2(2,)2,则(4)f 的值等于(2) 幂函数()y f x =的图象过点1(4,)2,则(8)f 的值为 .7.(1)函数y =52x 的单调递减区间为 (2)幂函数的图象过点(2,14), 则它的单调递增区间是 .(3)函数y =34x -在区间上 是减函数.8.(1)若幂函数ay x =的图象在0<x<1时位于直线y=x 的下方,则实数a 的取值范围是 (2)设x ∈(0, 1),幂函数y =a x 的图象在y =x 的上方,则a 的取值范围是 . (3)已知3532x x >,x 的取值范围为9.(1)942--=a a xy 是偶函数,且在),0(+∞是减函数,则整数a 的值是 .(2)函数y =221m mx--在第二象限内单调递增,则m 的最大负整数是_______ _.10.若幂函数()f x 与函数g(x)的图像关于直线y=x 对称,且函数g(x)的图象经过3(33,)3,则()f x 的表达式为 11. 函数2()3x f x x +=+的对称中心是 ,在区间 是 函数(填“增、减”) 12若函数f (x )=(m 2-m -1)x -m +1是幂函数,且在x ∈(0,+∞)上是减函数,求实数m 的取值范围.13.幂函数273235()(1)t t f x t t x +-=-+是偶函数,且在(0,)+∞上为增函数,求函数解析式.14.一个幂函数y =f (x )的图象过点(3, 427),另一个幂函数y =g (x )的图象过点(-8, -2), (1)求这两个幂函数的解析式; (2)判断这两个函数的奇偶性; (3)作出这两个函数的图象,观察得f (x )< g (x )的解集.15.已知函数y =42215x x --.(1)求函数的定义域、值域; (2)判断函数的奇偶性; (3)求函数的单调区间.。
幂函数经典例题(答案)
幂函数经典例题(答案)A .-1<n<0<m<1B .n <-1,0<m <1C .-1<n <0,m >1D .n <-1,m >1解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0<m <1,n <-1.答案 B点评 在区间(0,1)上,幂函数的指数越大,图象越靠近x 轴;在区间(1,+∞)上,幂函数的指数越大,图象越远离x 轴.例4、已知x 2>x 13,求x 的取值范围.错解 由于x 2≥0,x 13∈R ,则由x 2>x 13,可得x ∈R.错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α在α>1和0<α<1两种情况下图象的分布.正解作出函数y=x2和y=31x 的图象(如右图所示),易得x<0或x>1.例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.分析 解答本题可严格根据幂函数的定义形式列方程求出m ,再由单调性确定m .解 根据幂函数定义得m 2-m -1=1,解得m =2或m =-1,当m =2时,f (x )=x 3在(0,+∞)上是增函数;当m =-1时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故f (x )=x 3. 点评 幂函数y =x α (α∈R),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数(也可以为0).这是判断一个函数是否为幂函数的重要依据和唯一标准.对本例来说,还要根据单调性验根,以免增根.变式 已知y =(m 2+2m -2)x 1m 2-1+2n -3是幂函数,求m ,n 的值.解由题意得⎩⎨⎧m 2+2m -2=1m 2-1≠02n -3=0,解得⎩⎪⎨⎪⎧m =-3n =32, 所以m =-3,n =32.例6、比较下列各组中两个数的大小:(1)535.1,537.1;(2)0.71.5,0.61.5;(3)32)2.1(--,32)25.1(--.解析:(1)考查幂函数y =53x 的单调性,在第一象限内函数单调递增, ∵1.5<1.7,∴535.1<537.1,(2)考查幂函数y =23x 的单调性,同理0.71.5>0.61.5. (3)先将负指数幂化为正指数幂可知它是偶函数, ∵32)2.1(--=322.1-,32)25.1(--=3225.1-,又322.1->3225.1-, ∴32)2.1(-->3225.1-.点评:比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.例7、比较下列各组数的大小(1) 3-52与3.1-52;(2)-8-78与-⎝ ⎛⎭⎪⎫1978.分析 比较大小问题一般是利用函数的单调性,当不便利用单调性时,可用0与1去比较,这种方法叫“搭桥”法.解 (1)函数y =x -52在(0,+∞)上为减函数,又3<3.1,所以3-52>3.1-52.(2)-8-78=-⎝ ⎛⎭⎪⎫1878,函数y =x 78在(0,+∞)上为增函数,又18>19,则⎝ ⎛⎭⎪⎫1878>⎝ ⎛⎭⎪⎫1978, 从而-8-78<-⎝ ⎛⎭⎪⎫1978.点评 比较大小的题,要综合考虑函数的性质,特别是单调性的应用,更善于运用“搭桥”法进行分组,常数0和1是常用的参数.变式 比较下列各组数的大小: (1)⎝ ⎛⎭⎪⎫-23-23与⎝ ⎛⎭⎪⎫-π6-23; (2)4.125,(-1.9)35与3.8-23.解 (1)⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23,⎝ ⎛⎭⎪⎫-π6-23=⎝ ⎛⎭⎪⎫π6-23,∵函数y =x -23在(0,+∞)上为减函数,又∵23>π6,∴⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23<⎝ ⎛⎭⎪⎫π6-23=⎝ ⎛⎭⎪⎫-π6-23. (2)(4.1)25>125=1,0<3.8-23<1-23=1,(-1.9)35<0,所以(-1.9)35<3.8-23<(4.1)25.例8、 已知幂函数y =x 3m -9 (m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m3的a 的范围.解 ∵函数在(0,+∞)上递减, ∴3m -9<0,解得m <3, 又m ∈N *,∴m =1,2.又函数图象关于y 轴对称, ∴3m -9为偶数,故m =1,∴有(a +1)-13<(3-2a )-13.又∵y =x -13在(-∞,0),(0,+∞)上均递减,∴a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a ,解得23<a <32或a <-1.点评 (1)解决与幂函数有关的综合题时,一定要考虑幂函数的定义.(2)幂函数y =x α,由于α的值不同,单调性和奇偶性也就不同.变式 已知幂函数y =xm 2-2m -3 (m ∈Z)的图象与x 轴、y 轴都无公共点,且关于y 轴对称,求m 的值,且画出它的图象.解 由已知,得m 2-2m -3≤0,∴-1≤m ≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3,当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不符合题意.当m =-1或m =3时,有y =x 0,其图象如图①所示. 当m =1时,y =x -4,其图象如图②所示.练习一、选择题 1.下列命题:①幂函数的图象都经过点(1,1)和点(0,0);②幂函数的图象不可能在第四象限;③n =0时,y =x n 的图象是一条直线;④幂函数y =x n ,当n >0时,是增函数;⑤幂函数y =x n ,当n <0时,在第一象限内函数值随x 值的增大而减小. 其中正确的是( )A .①和④B .④和⑤C .②和③D .②和⑤ 答案 D2.下列函数中,不是幂函数的是( )A .y =2xB .y =x -1C .y =xD .y =x 2 答案 A3.设α∈⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,则使f (x )=x α为奇函数且在(0,+∞)内单调递减的α值的个数是( )A .1B .2C .3D .4 答案 A4.当x ∈(1,+∞)时,下列函数图象恒在直线y =x 下方的偶函数是( )A .y =x 12B .y =x -2C .y =x 2D .y =x -1答案 B5.如果幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2B .m =1或m =2C .m =2D .m =1 答案 B解析 由已知⎩⎨⎧m 2-3m +3=1m 2-m -2≤0∴m =1或m =2.6.在函数y =1x2,y =2x 2,y =x 2+x ,y =1 (x ≠0)中幂函数的个数为( )A .1B .0C .2D .3 答案 C解析 依据幂函数的定义判定,应选C.7.幂函数f (x )的图象过点⎝ ⎛⎭⎪⎫4,12,那么f (8)的值为( )A .2 6B .64 C.24 D.164答案 C解析 设f (x )=x α (α为常数),将⎝ ⎛⎭⎪⎫4,12点代入得12=4α,∴α=-12,f (x )=x-12,∴f (8)=8-12=24. 8.下列函数中,值域为[0,+∞)的函数是( ) A .y =2x B .y =x 2 C .y =x -2 D .y =log a x (a >0,且a ≠1) 答案 B解析 根据函数图象,选B. 二、填空题1.若幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫9,13,则f (25)=_____________.答案 15解析 设f (x )=x α,则9α=13,α=-12.∴f (25)=25-12=15.2.设幂函数y =x α的图象经过点(8,4),则函数y =x α的值域是______________.答案 [0,+∞)解析 由4=8α,得α=23,∴y =x 23≥0.3. 如图所示是幂函数y=x α在第一象限内的图象,已知α取±2,± 四个值,则相应于曲线C1,C2,C3,C4的α依次为 .答案 2,12,-12,-24.若幂函数y =f (x )的图象经过点(2,2),则f (25)的值是________. 答案 5解析 设y =x α,∵点(2,2)在y =x α的图象上,∴2=2α,∴α=12,∴f (x )=x 12.故f (25)=2512=5.5.幂函数y =x α (α∈R)的图象一定不经过第________象限. 答案 四6.把下列各数223,⎝ ⎛⎭⎪⎫53-13,⎝ ⎛⎭⎪⎫-233,⎝ ⎛⎭⎪⎫150,⎝ ⎛⎭⎪⎫3223,按由小到大的排列顺序为__________________.答案 ⎝ ⎛⎭⎪⎫-233<⎝ ⎛⎭⎪⎫53-13<⎝ ⎛⎭⎪⎫150<⎝ ⎛⎭⎪⎫3223<223.7.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则a 的取值范围是________.答案 3<a <5解析 f (x )=x -12=1x(x >0),由图象知x ∈(0,+∞)时为减函数,又f (a+1)<f (10-2a ),∴⎩⎨⎧a +1>0,10-2a >0,a +1>10-2a .得⎩⎨⎧a >-1,a <5,a >3.∴3<a <5.三、解答题1.求函数y =52x +2x 51+4(x ≥-32)值域.解析:设t =x 51,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3.∴函数y =52x +2x 51+4(x ≥-32)的值域为[3,+∞).点评:这是复合函数求值域的问题,应用换元法.2.已知f (x )=(m 2+2m )·xm 2+m -1,m 是何值时,f (x )是(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.解 (1)若f (x )为正比例函数,则 ⎩⎨⎧ m 2+m -1=1m 2+2m ≠0,∴m =1. (2)若f (x )为反比例函数,则 ⎩⎨⎧m 2+m -1=-1m 2+2m ≠0,∴m =-1. (3)若f (x )为二次函数,则 ⎩⎨⎧m 2+m -1=2m 2+2m ≠0,∴m =-1±132.(4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2。
高一幂函数的试题及答案
高一幂函数的试题及答案一、选择题1. 下列哪个函数是幂函数?- A. \( y = x^2 + 1 \)- B. \( y = \sqrt{x} \)- C. D. \( y = \frac{1}{x} \)2. 幂函数 \( y = x^3 \) 的图像通过哪个点?- A. (0, 1)- B. (1, 1)- C. (-1, 1)- D. (0, 0)3. 如果幂函数 \( y = x^n \) 的图像关于y轴对称,那么 \( n \) 的值是多少?- A. 1- B. 2- C. -1- D. 任意实数二、填空题4. 幂函数 \( y = x^2 \) 的图像是一个_________。
5. 当 \( n > 0 \) 时,幂函数 \( y = x^n \) 的图像在第一象限内随着 \( x \) 值的增加而_________。
三、解答题6. 已知幂函数 \( y = x^n \) 通过点 (3, 27),请确定 \( n \) 的值。
7. 讨论幂函数 \( y = x^n \) 图像的变化趋势,并说明 \( n \) 的不同取值对图像的影响。
四、计算题8. 计算幂函数 \( y = x^{-2} \) 在 \( x = 2 \) 处的导数。
9. 假设幂函数 \( y = x^n \) 的图像经过点 (2, 8),求 \( n \)的值,并描述其图像的特点。
答案一、选择题1. 正确答案:B. \( y = \sqrt{x} \)(因为 \( \sqrt{x} = x^{1/2} \))2. 正确答案:C. (-1, 1)3. 正确答案:B. 2二、填空题4. 幂函数 \( y = x^2 \) 的图像是一个抛物线。
5. 当 \( n > 0 \) 时,幂函数 \( y = x^n \) 的图像在第一象限内随着 \( x \) 值的增加而增加。
三、解答题6. 由于 \( y = x^n \) 通过点 (3, 27),我们有 \( 27 = 3^n \)。
幂函数经典例题(答案)
幕函数的概念例1、下列结论中,正确的是()A.幕函数的图象都通过点(0,0), (1,1)B.幕函数的图象可以出现在第四象限C.当幕指数。
取1,3,少寸,幕函数),=对是增函数D.当幕指数G= — 1时,幕函数y=/在定义域上是减函数解析当幕指数6(= - 1时,幕函数y = 的图象不通过原点,故选项A不正确;因为所有的幕函数在区间(0 , +8)上都有定义,且)'=寸(aGR) , y>0 , 所以幕函数的图象不可能出现在第四象限,故选项B不正确;而当«= - 1时,y = x-!在区间(・8,0)和(0 , + 8)上是减函数,但它在定义域上不是减函数.答案C例2、已知幕函数冷)=(尸一/+1)*7 + 3/—2户)(作Z)是偶函数且在(0, +8)上为增函数,求实数,的值.分析关于氨函数),=寸(aUR,。
尹0)的奇偶性问题,设富(Ipl、Igl互质),当g为偶数时,p必为奇数,),=.*是非奇非偶函数;当q是奇数时,y=/的奇偶性与p的值相对应.解 ..顶>)是嘉函数,."./ + 1 = 1 ,.•"= • 1,1 或0.7当,=。
时,/W = y是奇函数;2当/=・1时顶x) = y是偶函数;Q 2 R当L1时,/u)= y是偶函数,且i和M都大于0 ,在(0 , +8)上为增函数.故t= 1且/U)=碍或t= -1且.冏=%|.点评如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条件给予足够的重视.例3、如图是幕函数与y=?在第一象限内的图象,贝ij()m>\解析 在(0,1)内取同一值A-o ,作直线A=XO ,与各图象有交点,则“点低指数 大”.如图,0</»<1 ,/?<-!.答案B点评 在区间(0,1)上,羸函数的指数越大,图象越靠近x 轴:在区间(1, + 8)上,篆函数的指数越大,图象越远离工轴.例4、已知^>4,求x 的取值范围.1 1错解 由于,则由X 2〉* ,可得XER错因分析 上述错解原因是没有掌握篆函数的图象特征,尤其是),=普在 O>\和0<GVl 两种情况下图象的分布.正解作出函数y=x2和y=G 的图象(如右图所示),易得xvO 或x>l.例5、函数/(A ) = (nr —m — 1 )xm 2+m — 3是幕函数,且当x 『(0, +8)时,处)是 增函数,求人工)的解析式.分析 解答本题可严格根据簸函数的定义形式列方程求出m,再由单调性确 定in.解根据嘉函数定义得H12 ・ 〃?・ 1 = 1 ,解得 = 2 或〃7 = - 1 , 当〃7 = 2时,f(x) = x 3在(0 , +8)上是增函数;当〃7=・1时,/U)=X-3在(0 , +8)上是减函数,不符合要求.故必)=日点评 簸函数y=A-a («GR),其中G 为常数,其本质特征是以兼的底X 为自 变量,指数a 为常数(也可以为0).这是判断一个函数是否为簸函数的重要依据 和唯一标准.对本例来说,还要根据单调性验根,以免增根.D. n<— 1,B.—lv 〃vO, m>\变式 已知y=(m 2 3 4+2m —2也〃二j +2〃—3是己函数,求〃?,〃的值.nr + 2m -2=1解由题意得尹0,2/7 -3 = 0〃? = - 3 3 , ,?-23所以 m = - 3 , n =例6、比较下列各组中两个数的大小:33_2_2(1) 1.5S 1.7?; (2) 0. 715, 0. 615; (3) (一1.2)二,(一1.25)乙.解析:(1)考查慕函数y=‘G 的单调性,在第一象限内函数单调递增,33V1.5<1.7, ...1.5§<1.7弓(2) ・8〈=.(聚,函数y = £在(0 , + 8)上为增函数,又抖,则(哉>(*) 7 从而・8 - r ■(9)8-点评 比较大小的题,要综合考虑函数的性质,特别是单调性的应用,更善 于运用“搭桥”法进行分组,常数。
幂函数经典例题(答案解析)
幂函数的概念例1、下列结论中,正确的是( )A.幂函数的图象都通过点(0,0),(1,1) B.幂函数的图象可以出现在第四象限C.当幂指数α取1,3,12时,幂函数y=xα是增函数D.当幂指数α=-1时,幂函数y=xα在定义域上是减函数解析当幂指数α=-1时,幂函数y=x-1的图象不通过原点,故选项A 不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y=xα (α∈R),y>0,所以幂函数的图象不可能出现在第四象限,故选项B不正确;而当α=-1时,y=x-1在区间(-∞,0)和(0,+∞)上是减函数,但它在定义域上不是减函数.答案 C例2、已知幂函数f(x)=(t3-t+1)x 15(7+3t-2t2) (t∈Z)是偶函数且在(0,+∞)上为增函数,求实数t的值.分析关于幂函数y=xα(α∈R,α≠0)的奇偶性问题,设pq(|p|、|q|互质),当q为偶数时,p必为奇数,y=x pq是非奇非偶函数;当q是奇数时,y=x pq的奇偶性与p的值相对应.解∵f(x)是幂函数,∴t3-t+1=1,∴t=-1,1或0.当t=0时,f(x)=x75是奇函数;当t=-1时,f(x)=x25是偶函数;当t=1时,f(x)=x85是偶函数,且25和85都大于0,在(0,+∞)上为增函数.故t=1且f(x)=x85或t=-1且f(x)=x25.点评如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条件t∈Z给予足够的重视.例3、如图是幂函数y =x m 与y =x n 在第一象限内的图象,则( )A .-1<n<0<m<1B .n <-1,0<m <1C .-1<n <0,m >1D .n <-1,m >1 解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0<m <1,n <-1.答案 B点评 在区间(0,1)上,幂函数的指数越大,图象越靠近x 轴;在区间(1,+∞)上,幂函数的指数越大,图象越远离x 轴.例4、已知x 2>x 13,求x 的取值范围.错解 由于x 2≥0,x 13∈R ,则由x 2>x 13,可得x ∈R .错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α在α>1和0<α<1两种情况下图象的分布.正解作出函数y=x2和y=31x 的图象(如右图所示),易得x<0或x>1.例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.分析 解答本题可严格根据幂函数的定义形式列方程求出m ,再由单调性确定m .解 根据幂函数定义得m 2-m -1=1,解得m =2或m =-1,当m =2时,f (x )=x 3在(0,+∞)上是增函数;当m =-1时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故f (x )=x 3.点评 幂函数y =x α (α∈R ),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数(也可以为0).这是判断一个函数是否为幂函数的重要依据和唯一标准.对本例来说,还要根据单调性验根,以免增根.变式 已知y =(m 2+2m -2)x 1m 2-1+2n -3是幂函数,求m ,n 的值.解由题意得⎩⎨⎧m 2+2m -2=1m 2-1≠02n -3=0,解得⎩⎨⎧m =-3n =32,所以m =-3,n =32.例6、比较下列各组中两个数的大小:(1)535.1,537.1;(2)0.71.5,0.61.5;(3)32)2.1(--,32)25.1(--.解析:(1)考查幂函数y =53x 的单调性,在第一象限内函数单调递增, ∵1.5<1.7,∴535.1<537.1,(2)考查幂函数y =23x 的单调性,同理0.71.5>0.61.5. (3)先将负指数幂化为正指数幂可知它是偶函数, ∵32)2.1(--=322.1-,32)25.1(--=3225.1-,又322.1->3225.1-, ∴32)2.1(-->3225.1-.点评:比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.例7、比较下列各组数的大小(1) 3-52与3.1-52;(2)-8-78与-⎝ ⎛⎭⎪⎫1978.分析 比较大小问题一般是利用函数的单调性,当不便利用单调性时,可用0与1去比较,这种方法叫“搭桥”法.解 (1)函数y =x -52在(0,+∞)上为减函数,又3<3.1,所以3-52>3.1-52.(2)-8-78=-⎝ ⎛⎭⎪⎫1878,函数y =x 78在(0,+∞)上为增函数,又18>19,则⎝ ⎛⎭⎪⎫1878>⎝ ⎛⎭⎪⎫1978, 从而-8-78<-⎝ ⎛⎭⎪⎫1978.点评 比较大小的题,要综合考虑函数的性质,特别是单调性的应用,更善于运用“搭桥”法进行分组,常数0和1是常用的参数.变式 比较下列各组数的大小: (1)⎝ ⎛⎭⎪⎫-23-23与⎝ ⎛⎭⎪⎫-π6-23;(2)4.125,(-1.9)35与3.8-23.解 (1)⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23,⎝ ⎛⎭⎪⎫-π6-23=⎝ ⎛⎭⎪⎫π6-23,∵函数y =x -23在(0,+∞)上为减函数,又∵23>π6,∴⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23<⎝ ⎛⎭⎪⎫π6-23=⎝ ⎛⎭⎪⎫-π6-23. (2)(4.1)25>125=1,0<3.8-23<1-23=1,(-1.9)35<0,所以(-1.9)35<3.8-23<(4.1)25.例8、 已知幂函数y =x 3m -9 (m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m3的a 的范围.解 ∵函数在(0,+∞)上递减, ∴3m -9<0,解得m <3, 又m ∈N *,∴m =1,2.又函数图象关于y 轴对称, ∴3m -9为偶数,故m =1,∴有(a +1)-13<(3-2a )-13.又∵y =x -13在(-∞,0),(0,+∞)上均递减,∴a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a ,解得23<a <32或a <-1.点评 (1)解决与幂函数有关的综合题时,一定要考虑幂函数的定义.(2)幂函数y =x α,由于α的值不同,单调性和奇偶性也就不同.变式 已知幂函数y =xm 2-2m -3 (m ∈Z )的图象与x 轴、y 轴都无公共点,且关于y 轴对称,求m 的值,且画出它的图象.解 由已知,得m 2-2m -3≤0,∴-1≤m ≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3, 当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不符合题意. 当m =-1或m =3时,有y =x 0,其图象如图①所示. 当m =1时,y =x -4,其图象如图②所示.练习一、选择题 1.下列命题:①幂函数的图象都经过点(1,1)和点(0,0);②幂函数的图象不可能在第四象限;③n =0时,y =x n 的图象是一条直线;④幂函数y =x n ,当n >0时,是增函数;⑤幂函数y =x n ,当n <0时,在第一象限内函数值随x 值的增大而减小. 其中正确的是( )A .①和④B .④和⑤C .②和③D .②和⑤ 答案 D2.下列函数中,不是幂函数的是( )A .y =2xB .y =x -1C .y =xD .y =x 2 答案 A3.设α∈⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-2,-1,-12,13,12,1,2,3,则使f (x )=x α为奇函数且在(0,+∞)内单调递减的α值的个数是( )A .1B .2C .3D .4 答案 A 4.当x ∈(1,+∞)时,下列函数图象恒在直线y =x 下方的偶函数是( )A .y =x 12B .y =x -2C .y =x 2D .y =x -1答案 B 5.如果幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2B .m =1或m =2C .m =2D .m =1 答案 B解析 由已知⎩⎨⎧m 2-3m +3=1m 2-m -2≤0∴m =1或m =2.6.在函数y =1x2,y =2x 2,y =x 2+x ,y =1 (x ≠0)中幂函数的个数为( )A .1B .0C .2D .3 答案 C解析 依据幂函数的定义判定,应选C.7.幂函数f (x )的图象过点⎝ ⎛⎭⎪⎫4,12,那么f (8)的值为( )A .2 6B .64 C.24 D.164答案 C解析 设f (x )=x α (α为常数),将⎝⎛⎭⎪⎫4,12点代入得12=4α,∴α=-12,f (x )=x -12,∴f (8)=8-12=24.8.下列函数中,值域为[0,+∞)的函数是( )A .y =2xB .y =x 2C .y =x -2D .y =log a x (a >0,且a ≠1) 答案 B解析 根据函数图象,选B. 二、填空题1.若幂函数y =f (x )的图象经过点⎝⎛⎭⎪⎫9,13,则f (25)=_____________.答案 15解析 设f (x )=x α,则9α=13,α=-12.∴f (25)=25-12=15.2.设幂函数y =x α的图象经过点(8,4),则函数y =x α的值域是______________.答案 [0,+∞)解析 由4=8α,得α=23,∴y =x 23≥0.3. 如图所示是幂函数y=x α在第一象限内的图象,已知α取±2,± 四个值,则相应于曲线C1,C2,C3,C4的α依次为 .答案 2,12,-12,-24.若幂函数y =f (x )的图象经过点(2,2),则f (25)的值是________.答案 5解析 设y =x α,∵点(2,2)在y =x α的图象上,∴2=2α,∴α=12,∴f (x )=x 12.故f (25)=2512=5.5.幂函数y =x α(α∈R )的图象一定不经过第________象限. 答案 四6.把下列各数223,⎝ ⎛⎭⎪⎫53-13,⎝ ⎛⎭⎪⎫-233,⎝ ⎛⎭⎪⎫150,⎝ ⎛⎭⎪⎫3223,按由小到大的排列顺序为__________________.答案 ⎝ ⎛⎭⎪⎫-233<⎝ ⎛⎭⎪⎫53-13<⎝ ⎛⎭⎪⎫150<⎝ ⎛⎭⎪⎫3223<223.7.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则a 的取值范围是________.答案 3<a <5解析 f (x )=x -12=1x (x >0),由图象知x ∈(0,+∞)时为减函数,又f (a+1)<f (10-2a ),∴⎩⎨⎧a +1>0,10-2a >0,a +1>10-2a .得⎩⎨⎧a >-1,a <5,a >3.∴3<a <5.三、解答题1.求函数y =52x +2x 51+4(x ≥-32)值域.解析:设t =x 51,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3.∴函数y =52x +2x 51+4(x ≥-32)的值域为[3,+∞).点评:这是复合函数求值域的问题,应用换元法.2.已知f (x )=(m 2+2m )·xm 2+m -1,m 是何值时,f (x )是(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.解 (1)若f (x )为正比例函数,则⎩⎨⎧m 2+m -1=1m 2+2m ≠0,∴m =1. (2)若f (x )为反比例函数,则 ⎩⎨⎧m 2+m -1=-1m 2+2m ≠0,∴m =-1. (3)若f (x )为二次函数,则⎩⎨⎧m 2+m -1=2m 2+2m ≠0,∴m =-1±132. (4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2。
幂函数练习题及答案解析
幂函数练习题及答案解析1.下列幂函数中为偶函数的是 y = x^2.解析:定义域为实数集,f(-x) = (-x)^2 = x^2,因此是偶函数。
2.若 a < 1,则 5a < 0.5a < 5-a。
解析:因为 a < 1,所以 y = x 是单调递减函数且 0.5 < 5 < 5-a,因此 5a < 0.5a < 5-a。
3.α 可能的取值为 1 和 3,使得函数y = x^α 的定义域为实数集且为奇函数。
解析:只有函数 y = x 和 y = x^3 的定义域是实数集且为奇函数,因此α 可能的取值为 1 和 3.4.当 n = -1 或 n = 2 时,满足 (-2)^n。
(-3)^n。
解析:因为 (-2)^n。
0 且 (-3)^n < 0,所以 y = x^n 在 (-∞。
+∞) 上为减函数。
因此 n = -1 或 n = 2.1.函数 y = (x+4)^2 的递减区间是 (-∞。
-4)。
解析:函数的开口向上,关于 x = -4 对称,因此在 (-∞。
-4) 上递减。
2.幂函数的图像过点(2.4),则其单调递增区间是(-∞。
0)。
解析:因为 y = x^2 的图像是开口向上的抛物线,过点(2.4),因此其单调递增区间为 (-∞。
0)。
3.正确的说法有 2 个。
解析:①错误;②中 y = x^-1 的图像不过点 (1.1);③正确;④正确,因此有 2 个正确的说法。
4.使f(x) = x^α 为奇函数且在(0.+∞) 上单调递减的α 的值的个数是 1.解析:因为f(x) = x^α 为奇函数,所以α 为奇数,因此α可能的取值为 -3.-1.1.3.因为在(0.+∞) 上单调递减,所以只有α = -1 满足条件。
因此个数为 1.1.α=-1,1,3.由于f(x)在(,+∞)上为减函数,所以α=-1.2.使(3-2x-x^2)/4有意义的x的取值范围是(-3<x<1)。
幂函数的典型例题
经典例题透析类型一、求函数解析式例1.已知幂函数2223(1)m m y m m x --=--,当(0)x ∈+,∞时为减函数,则幂函数y =__________.解析:由于2223(1)mm y m m x --=--为幂函数,所以211m m --=,解得2m =,或1m =-.当2m =时,2233m m --=-,3y x -=在(0)+,∞上为减函数;当1m =-时,2230m m --=,01(0)y x x ==≠在(0)+,∞上为常数函数,不合题意,舍去.故所求幂函数为3y x -=.总结升华:求幂函数的解析式,一般用待定系数法,弄明白幂函数的定义是关键. 类型二、比较幂函数值大小 例2.比较下列各组数的大小. (1)433.14-与43π-; (2)35(2)-与35(3)-.解:(1)由于幂函数43y x -=(x>0)单调递减且3.14π<,∴44333.14π-->.(2)由于35y x -=这个幂函数是奇函数. ∴f(-x)=-f(x)因此,3355(2)2)--=-,3355(3)3)--=-,而35y x-=(x>0)23<,∴ 333355552)3)2)3)---->⇒-<-.即3355(2)(3)---<. 总结升华:(1)各题中的两个数都是“同指数”的幂,因此可看作是同一个幂函数的两个不同的函数值,从而可根据幂函数的单调性做出判断.(2)题(2)中,我们是利用幂函数的奇偶性,先把底数化为正数的幂解决的问题.当然,若直接利用x<0上幂函数的单调性解决问题也是可以的.举一反三【变式一】比较0.50.8,0.50.9,0.50.9-的大小.思路点拨:先利用幂函数0.5y x =的增减性比较0.50.8与0.50.9的大小,再根据幂函数的图象比较0.50.9与0.50.9-的大小.解:0.5y x =在(0)+,∞上单调递增,且0.80.9<,0.50.50.80.9∴<.作出函数0.5y x =与0.5y x-=在第一象限内的图象,易知0.50.50.90.9-<.故0.50.50.50.80.90.9-<<.例 3.已知幂函数1ny x =, 2ny x =, 3ny x =, 4ny x =在第一象限内的图象分别是C 1,C 2,C 3,C 4,(如图),则n 1,n 2,n 3,n 4,0,1的大小关系?解:应为n 1<n 2<0<n 3<1<n 4. 总结升华:对于幂函数()y x R αα=∈的图象,其函数性质的正确把握主要来源于对图象的正确处理,而幂函数的图象,最重要的是搞清第一象限的图象类型及分布;反过来,也能通过第一象限的图象判断指数的取值范围.举一反三【变式一】(2011 陕西文4) 函数13y x =的图像是( )思路点拨:已知函数解析式和图像,可以用取点验证的方法判断. 解:取11,88x =-,则11,22y =-,选项B ,D 符合;取1x =,则1y =,选项B 符合题意. 类型三、求参数的范围 例4.已知幂函数2()m y x m -=∈N 的图象与x y ,轴都无交点,且关于y 轴对称,求m 的值,并画出它的图象.解:图象与x y ,轴都无交点, 2m ∴-≤0,即2m ≤.又m ∈N ,012m ∴=,,.幂函数图象关于y 轴对称,0m ∴=,或2m =.当0m =时,函数为2y x -=,图象如图1;当2m =时,函数为01(0)y x x ==≠,图象如图2.举一反三【变式一】若()()22132a a --+>-,求实数a 的取值范围.解法1:∵()()22132a a --+>-, 考察2y x -=的图象,得以下四种可能情况:(1)⎪⎩⎪⎨⎧+>->+>-12301023a a a a (2)⎪⎩⎪⎨⎧+<-<+<-12301023a a a a (3)⎪⎩⎪⎨⎧+->-<+>-)1(2301023a a a a (4)⎪⎩⎪⎨⎧+>-->+<-1)23(01023a a a a分别解得:(1)213a -<<. (2)无解. (3)1a <-. (4)4a >.∴a 的取值范围是()()21143⎛⎫-∞--+∞ ⎪⎝⎭,,,. 解法2:画出2y x -=的图象,认真观察图象,可得:越接近y 轴,y 值越大,即|x|越小,y 值越大,∴要使()()22132a a --+>-, 即10320|1||32|a a a a +≠⎧⎪-≠⎨⎪+<-⎩, 解得:()()21143⎛⎫-∞--+∞ ⎪⎝⎭,,,. 总结升华:以上两种方法都是运用函数的单调性,但显然第二种方法更好.而这种方法的应用,必须对图象的特征有深刻的认识.可见,能很好地运用数形结合是解决函数问题的重要途径.【变式二】当m 为何值时,幂函数y=(m 2-5m+6)322--m mx 的图象同时通过点(0,0)和(1,1).解:∵y=(m 2-5m+6)322--m mx 是幂函数.∴m 2-5m+6=1.得:m=255±, 又∵函数图象过(0,0)和(1,1)点,∴m 2-2m-3>0,得m>3或m<-1, ∴ m=255-(舍去) 即:m=255+. 类型四、讨论函数性质 例5.求函数y=3221)3()2(x x -+的定义域.解:原函数可化为 y=32)3(2x x -+ ⎩⎨⎧≠-≥+0302x x ∴x ∈[-2,3)∪(3,+∞). 总结升华:正确判断函数的定义域是完成函数的图象,讨论函数的性质的前提,必须加以重视. 例6.讨论函数324(23)y x x -=--的单调性.解:324(23)y x x -=--可看作是由34y u-=与u=x 2-2x-3复合而成,∵34y u -=中,u ∈(0,+∞).∴ x 2-2x-3>0, 得到x>3或x<-1.当x>3时,∵u=(x-1)2-4, ∴随着x 的增大u 增大, 又∵34y u-=在定义域内为减函数,∴y 随着u 的增大而减小,即()3x ∈+∞,时,324(23)y x x -=--是减函数,而()1x ∈-∞-,时,原函数为增函数.总结升华:1.复合函数的讨论一定要理清x ,u ,y 三个变量的关系.2.对于这样的幂函数与二次函数的复合,要先考虑幂函数的定义域对自变量x 的限制.举一反三【变式一】讨论函数211()()m m f x x m *++=∈N 的定义域、奇偶性和单调性.解:(1)2(1)()m m m m m *+=+∈N 是正偶数,21m m ∴++是正奇数. ∴函数()f x 的定义域为R .(2)21m m ++是正奇数,221111()()()m m m m f x x xf x ++++∴-=-=-=-,且定义域关于原点对称.()f x ∴是R 上的奇函数.(3)2101m m >++,且21m m ++是正奇数, ∴函数()f x 在()-+,∞∞上单调递增.。
幂函数练习题及答案
幂函数练习题及答案幂函数是数学中常见的一类函数,其形式为 f(x) = a^x,其中 a 为常数且a ≠ 0。
幂函数在数学中有广泛的应用,涉及到各个领域的问题。
本文将通过一些幂函数的练习题及其答案,来帮助读者更好地理解和掌握幂函数的性质和运算。
1. 练习题一:简单的幂函数求值计算以下幂函数在给定点上的函数值:(a) f(x) = 2^x,当 x = 3;(b) g(x) = (-3)^x,当 x = -2;(c) h(x) = 0.5^x,当 x = 4。
答案:(a) f(3) = 2^3 = 8;(b) g(-2) = (-3)^(-2) = 1/((-3)^2) = 1/9;(c) h(4) = 0.5^4 = 1/2^4 = 1/16。
这些计算可以通过将给定的 x 值代入幂函数的定义中进行求解。
注意负指数的处理方式。
2. 练习题二:幂函数的图像与性质研究以下幂函数的图像,并回答相应问题:(a) f(x) = 2^x;(b) g(x) = (-2)^x;(c) h(x) = 3^x。
答案:(a) f(x) = 2^x 的图像是一条递增曲线,穿过点 (0, 1)。
当 x 取负值时,函数值逐渐趋近于 0,当 x 取正值时,函数值逐渐增大。
(b) g(x) = (-2)^x 的图像是一条交替变化的曲线。
当 x 为偶数时,函数值为正,当 x 为奇数时,函数值为负。
(c) h(x) = 3^x 的图像是一条递增曲线,穿过点 (0, 1)。
函数值随 x 的增大而迅速增大。
通过观察这些幂函数的图像,我们可以发现幂函数的一些共同性质,如递增或递减性、穿过点 (0, 1)、趋近于 0 等。
3. 练习题三:幂函数的运算计算以下幂函数的运算结果:(a) f(x) = 2^x * 2^3;(b) g(x) = (2^x)^3;(c) h(x) = 2^(x+3)。
答案:(a) f(x) = 2^x * 2^3 = 2^(x+3);(b) g(x) = (2^x)^3 = 2^(3x);(c) h(x) = 2^(x+3) = 2^x * 2^3。
幂函数经典例题(问题详解)
幂函数的概念例1、下列结论中,正确的是( ) A .幂函数的图象都通过点(0,0),(1,1) B .幂函数的图象可以出现在第四象限C .当幂指数α取1,3,12时,幂函数y =x α是增函数D .当幂指数α=-1时,幂函数y =x α在定义域上是减函数解析 当幂指数α=-1时,幂函数y =x -1的图象不通过原点,故选项A 不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y =x α (α∈R ),y >0,所以幂函数的图象不可能出现在第四象限,故选项B 不正确;而当α=-1时,y =x -1在区间(-∞,0)和(0,+∞)上是减函数,但它在定义域上不是减函数. 答案 C例2、已知幂函数f (x )=(t 3-t +1)x 15(7+3t -2t 2) (t ∈Z )是偶函数且在(0,+∞)上为增函数,数t 的值.分析 关于幂函数y =x α (α∈R ,α≠0)的奇偶性问题,设pq (|p |、|q |互质),当q 为偶数时,p 必为奇数,y =x p q 是非奇非偶函数;当q 是奇数时,y =x pq 的奇偶性与p 的值相对应.解 ∵f (x )是幂函数,∴t 3-t +1=1, ∴t =-1,1或0.当t =0时,f (x )=x 75是奇函数; 当t =-1时,f (x )=x 25是偶函数;当t =1时,f (x )=x 85是偶函数,且25和85都大于0, 在(0,+∞)上为增函数.故t =1且f (x )=x 85或t =-1且f (x )=x 25.点评 如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条件t ∈Z 给予足够的重视.例3、如图是幂函数y =x m 与y =x n 在第一象限的图象,则( )A .-1<n<0<m<1B .n <-1,0<m <1C .-1<n <0,m >1D .n <-1,m >1解析 在(0,1)取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0<m <1,n <-1.答案 B点评 在区间(0,1)上,幂函数的指数越大,图象越靠近x 轴;在区间(1,+∞)上,幂函数的指数越大,图象越远离x 轴.例4、已知x 2>x 13,求x 的取值围.错解 由于x 2≥0,x 13∈R ,则由x 2>x 13,可得x ∈R .错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α在α>1和0<α<1两种情况下图象的分布.正解作出函数y=x2和y=31x 的图象(如右图所示),易得x<0或x>1.例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.分析 解答本题可严格根据幂函数的定义形式列方程求出m ,再由单调性确定m .解 根据幂函数定义得m 2-m -1=1,解得m =2或m =-1, 当m =2时,f (x )=x 3在(0,+∞)上是增函数;当m =-1时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故f (x )=x 3.点评 幂函数y =x α (α∈R ),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数(也可以为0).这是判断一个函数是否为幂函数的重要依据和唯一标准.对本例来说,还要根据单调性验根,以免增根.变式 已知y =(m 2+2m -2)x 1m 2-1+2n -3是幂函数,求m ,n 的值.解由题意得⎩⎪⎨⎪⎧m 2+2m -2=1m 2-1≠02n -3=0,解得⎩⎨⎧m =-3n =32,所以m =-3,n =32.例6、比较下列各组中两个数的大小:(1)535.1,537.1;(2)0.71.5,0.61.5;(3)32)2.1(--,32)25.1(--.解析:(1)考查幂函数y =53x 的单调性,在第一象限函数单调递增, ∵1.5<1.7,∴535.1<537.1,(2)考查幂函数y =23x 的单调性,同理0.71.5>0.61.5. (3)先将负指数幂化为正指数幂可知它是偶函数, ∵32)2.1(--=322.1-,32)25.1(--=3225.1-,又322.1->3225.1-, ∴32)2.1(-->3225.1-.点评:比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.例7、比较下列各组数的大小(1) 3-52与3.1-52;(2)-8-78与-⎝ ⎛⎭⎪⎫1978.分析 比较大小问题一般是利用函数的单调性,当不便利用单调性时,可用0与1去比较,这种方法叫“搭桥”法.解 (1)函数y =x -52在(0,+∞)上为减函数, 又3<3.1,所以3-52>3.1-52.(2)-8-78=-⎝ ⎛⎭⎪⎫1878,函数y =x 78在(0,+∞)上为增函数,又18>19,则⎝ ⎛⎭⎪⎫1878>⎝ ⎛⎭⎪⎫1978,从而-8-78<-⎝ ⎛⎭⎪⎫1978.点评 比较大小的题,要综合考虑函数的性质,特别是单调性的应用,更善于运用“搭桥”法进行分组,常数0和1是常用的参数.变式 比较下列各组数的大小: (1)⎝ ⎛⎭⎪⎫-23-23与⎝ ⎛⎭⎪⎫-π6-23; (2)4.125,(-1.9)35与3.8-23.解 (1)⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23,⎝ ⎛⎭⎪⎫-π6-23=⎝ ⎛⎭⎪⎫π6-23,∵函数y =x -23在(0,+∞)上为减函数,又∵23>π6, ∴⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23<⎝ ⎛⎭⎪⎫π6-23=⎝ ⎛⎭⎪⎫-π6-23. (2)(4.1)25>125=1,0<3.8-23<1-23=1,(-1.9)35<0,所以(-1.9)35<3.8-23<(4.1)25.例8、 已知幂函数y =x 3m -9 (m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m3的a 的围.解 ∵函数在(0,+∞)上递减, ∴3m -9<0,解得m <3, 又m ∈N *,∴m =1,2. 又函数图象关于y 轴对称,∴3m -9为偶数,故m =1,∴有(a +1)-13<(3-2a )-13.又∵y =x -13在(-∞,0),(0,+∞)上均递减, ∴a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a ,解得23<a <32或a <-1.点评 (1)解决与幂函数有关的综合题时,一定要考虑幂函数的定义.(2)幂函数y =x α,由于α的值不同,单调性和奇偶性也就不同.变式 已知幂函数y =xm 2-2m -3 (m ∈Z )的图象与x 轴、y 轴都无公共点,且关于y 轴对称,求m 的值,且画出它的图象.解 由已知,得m 2-2m -3≤0,∴-1≤m ≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3,当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不符合题意.当m =-1或m =3时,有y =x 0,其图象如图①所示. 当m =1时,y =x -4,其图象如图②所示.练习一、选择题 1.下列命题:①幂函数的图象都经过点(1,1)和点(0,0);②幂函数的图象不可能在第四象限;③n =0时,y =x n 的图象是一条直线;④幂函数y =x n ,当n >0时,是增函数;⑤幂函数y =x n ,当n <0时,在第一象限函数值随x 值的增大而减小. 其中正确的是( )A .①和④B .④和⑤C .②和③D .②和⑤ 答案 D2.下列函数中,不是幂函数的是( )A .y =2xB .y =x -1C .y =xD .y =x 2 答案 A3.设α∈⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,则使f (x )=x α为奇函数且在(0,+∞)单调递减的α值的个数是( )A .1B .2C .3D .4 答案 A4.当x ∈(1,+∞)时,下列函数图象恒在直线y =x 下方的偶函数是( )A .y =x 12 B .y =x -2 C .y =x 2 D .y =x -1 答案 B5.如果幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2B .m =1或m =2C .m =2D .m =1 答案 B解析 由已知⎩⎪⎨⎪⎧m 2-3m +3=1m 2-m -2≤0∴m =1或m =2. 6.在函数y =1x 2,y =2x 2,y =x 2+x ,y =1 (x ≠0)中幂函数的个数为( ) A .1 B .0 C .2 D .3 答案 C解析 依据幂函数的定义判定,应选C.7.幂函数f (x )的图象过点⎝ ⎛⎭⎪⎫4,12,那么f (8)的值为( )A .2 6B .64 C.24 D.164 答案 C解析 设f (x )=x α (α为常数),将⎝ ⎛⎭⎪⎫4,12点代入得12=4α,∴α=-12,f (x )=x-12,∴f (8)=8-12=24.8.下列函数中,值域为[0,+∞)的函数是( ) A .y =2x B .y =x 2 C .y =x -2 D .y =log a x (a >0,且a ≠1) 答案 B解析 根据函数图象,选B. 二、填空题1.若幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫9,13,则f (25)=_____________. 答案 15解析 设f (x )=x α,则9α=13,α=-12.∴f (25)=25-12=15.2.设幂函数y =x α的图象经过点(8,4),则函数y =x α的值域是______________.答案 [0,+∞)解析 由4=8α,得α=23,∴y =x 23≥0.3. 如图所示是幂函数y=x α在第一象限的图象,已知α取±2,± 四个值,则相应于曲线C1,C2,C3,C4的α依次为 .答案 2,12,-12,-24.若幂函数y =f (x )的图象经过点(2,2),则f (25)的值是________. 答案 5解析 设y =x α,∵点(2,2)在y =x α的图象上,∴2=2α,∴α=12,∴f (x )=x 12.故f (25)=2512=5.5.幂函数y =x α (α∈R )的图象一定不经过第________象限. 答案 四6.把下列各数223,⎝ ⎛⎭⎪⎫53-13,⎝ ⎛⎭⎪⎫-233,⎝ ⎛⎭⎪⎫150,⎝ ⎛⎭⎪⎫3223,按由小到大的排列顺序为__________________.答案 ⎝ ⎛⎭⎪⎫-233<⎝ ⎛⎭⎪⎫53-13<⎝ ⎛⎭⎪⎫150<⎝ ⎛⎭⎪⎫3223<223.7.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则a 的取值围是________. 答案 3<a <5解析 f (x )=x -12=1x (x >0),由图象知x ∈(0,+∞)时为减函数,又f (a +1)<f (10-2a ),∴⎩⎪⎨⎪⎧a +1>0,10-2a >0,a +1>10-2a .得⎩⎪⎨⎪⎧a >-1,a <5,a >3.∴3<a <5.三、解答题1.求函数y =52x +2x 51+4(x ≥-32)值域.解析:设t =x 51,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3.∴函数y =52x +2x 51+4(x ≥-32)的值域为[3,+∞). 点评:这是复合函数求值域的问题,应用换元法.2.已知f (x )=(m 2+2m )·xm 2+m -1,m 是何值时,f (x )是(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.解 (1)若f (x )为正比例函数,则⎩⎪⎨⎪⎧ m 2+m -1=1m 2+2m ≠0,∴m =1. (2)若f (x )为反比例函数,则⎩⎪⎨⎪⎧m 2+m -1=-1m 2+2m ≠0,∴m =-1. (3)若f (x )为二次函数,则⎩⎪⎨⎪⎧m 2+m -1=2m 2+2m ≠0,∴m =-1±132.(4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2。
幂函数的典型例题
∴a
的取值范围是
,,,
1U
1
2 3
U
4
.
解法 2:画出 y x2 的图象,认真观察图象,可得:越接近 y 轴,y 值越大,即
小,y 值越大,
a 1 0
∴ 要使 a 1 2 3 2a2 ,
即 3 2a 0
,
解得:
总以结上升两华种:方法都是运用函数的单调性,但显然第| a二种1方||法3 更 2好a.|而这种方法的应
f (x) 是 R 上的奇函数.
(3)Q
1
0 ,且 m2 m 1 是正奇数,
m2 m 1
函数 f (x) 在 (∞,∞ ) 上单调递增.
3
4
5
,
2
又∵函数图象过(0,0)和(1,1)点,∴m2-2m-3>0,得 m>3 或 m<-1,
|x|越
,,,
1
U
用, 要途
2
5 5
5 5
∴ m=
(舍去) 即:m=
.
2
2
类型四、讨论函数性质
1
(x 2) 2
例 5.求函数 y=
的定义域.
2
(3 x) 3
x2
解:原函数可化为 y=
3 (3 x)2
x 3
2 x
0 0
∴x
[-2,3)∪(3,+∞).
总结升华:正确判断函数的定义域是完成函数的图象,讨论函数的性质的前提,必须加以重视.
例
6.讨论函数
y
(x2
2x
3)
幂函数习题带答案
练习:1.在第一象限内,函数y =x 2(x ≥0)与y =x 12的图象关于________对称.解析:∵y =x 2,x ≥0与y =x 12互为反函数,∴两函数图象关于y =x 对称.答案:直线y =x2.函数f (x )=(m 2-m -5)x m -1是幂函数,且当x ∈(0,+∞)时,f (x )是单调增函数,则m 的值为________.解析:根据幂函数的定义得:m 2-m -5=1,解得m =3或m =-2,当m =3时,f (x )=x 2在(0,+∞)上是单调增函数; 当m =-2时,f (x )=x -3在(0,+∞)上是单调减函数,不符合要求.故m =3.答案:33.函数f (x )=(1-x )0+(1-x )12的定义域为________. 解析:由题意,1-x ≠0且1-x ≥0,所以x <1. 答案:(-∞,1)4.如图,曲线C 1与C 2分别是函数y =x m 与y =x n 在第一象限内的图象,则m ,n 与0的大小关系是________.解析:由图象可知,两函数在第一象限内递减,故m <0,n <0.取x =2,则有2m >2n ,故n <m <0.答案:n <m <05.函数f (x )=x 1m 2+m +1(m ∈N +)为________函数. (填“奇”,“偶”,“奇且偶”,“非奇非偶”)解析:∵m ∈N +,∴m 2+m +1=m (m +1)+1为奇数, ∴f (x )为奇函数.答案:奇6.下面4个图象都是幂函数的图象,函数y =x -23的图象是________.解析:∵y =x -23为偶函数,且x ≠0,在(0,+∞)上为减函数,故符合条件的为②.答案:②7.写出下列四个函数:①y =x 13;②y =x -13;③y =x -1;④y =x 23.其中定义域与值域相同的是________.(写出所有满足条件的函数的序号)解析:函数y =x 13的定义域与值域都为R ;函数y =x -13与y =x -1的定义域与值域都为(-∞,0)∪(0,+∞);函数y =x 23的定义域为R ,值域为[0,+∞).答案:①②③8.已知函数f (x )=x -m +3(m ∈N *)是偶函数,且f (3)<f (5),求m 的值,并确定f (x )的函数解析式.解:(1)由f (3)<f (5),得3-m +3<5-m +3,所以(35)-m +3<1=(35)0. 因为y =(35)x 是减函数, 所以-m +3>0.解得,m <3.又因为m ∈N *,所以m =1或2;当m =2时,f (x )=x -m +3=x 为奇函数,所以m =2舍去.当m =1时,f (x )=x -m +3=x 2为偶函数,所以m =1,此时f (x )=x 2.9.已知函数f (x )=x 2+1x 2. (1)判断f (x )的奇偶性;(2)求f (x )的单调区间与最小值.解:(1)因为x ≠0,且f (-x )=(-x )2+1(-x )2=x 2+1x 2=f (x ), 所以f (x )是偶函数.(2)设x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 1)-f (x 2)=x 21+1x 21-x 22-1x 22=(x 21-x 22)+1x 21-1x 22=(x 21-x 22)(1-1x 21x22). 因为0<x 1<x 2,所以x 21-x 22<0.又当0<x 1<x 2<1时,1-1x 21x 22<0,。
幂函数的运算专项练习50题(有答案)
幂函数的运算专项练习50题(有答案)以下是50道关于幂函数运算的练题,每题都有详细的答案供参考。
1. 计算 2^3。
答案:2^3 = 8。
2. 计算 (-3)^4。
答案:(-3)^4 = 81。
3. 计算 (4^2)^3。
答案:(4^2)^3 = 4^6 = 4096。
4. 计算 (2^3)(2^4)。
答案:(2^3)(2^4) = 2^(3+4) = 2^7 = 128。
5. 计算 (2^3)^4。
答案:(2^3)^4 = 2^(3*4) = 2^12 = 4096。
6. 计算 (2^3)/2。
答案:(2^3)/2 = 2^(3-1) = 2^2 = 4。
7. 计算 (2^4)/(2^2)。
答案:(2^4)/(2^2) = 2^(4-2) = 2^2 = 4。
8. 计算 (-5^2)-3.答案:(-5^2)-3 = (-25)-3 = -28。
9. 计算 (-5)^2-3.答案:(-5)^2-3 = 25-3 = 22。
10. 计算 (-2)^3-(-2)^2.答案:(-2)^3-(-2)^2 = -8-4 = -12。
11. 计算 (-3)^2-(-3)^3.答案:(-3)^2-(-3)^3 = 9-(-27) = 36。
12. 计算 (2^3)^2/2^2.答案:(2^3)^2/2^2 = 2^6/2^2 = 64/4 = 16。
13. 计算 (2^3)^2/2^3.答案:(2^3)^2/2^3 = 2^6/2^3 = 64/8 = 8。
14. 计算 (2^3)^2-(2^2)^3.答案:(2^3)^2-(2^2)^3 = 2^6-2^6 = 64-64 = 0。
...(以下省略)这些练题旨在帮助您熟悉幂函数的运算规则和性质,通过练可以更好地掌握幂函数的计算方法。
每一题都有详细的答案解析,如果您有任何疑问或需要进一步讲解,请随时向我提问。
祝您练习顺利!。
简单的幂函数过关练习题(有答案)
简单的幂函数过关练习题(有答案)篇一:幂函数练习题2(含)幂函数练习题21.下列幂函数为偶函数的是( ) 3A.y=x2 B.y=xC.y=x2D.y=x-1 2.若a<0,则0.5a,5a,5-a的大小关系是( ) A.5-a<5a<0.5aB.5a<0.5a<5-a C.0.5a<5-a<5aD.5a<5-a<0.5a1α3.设α∈{-1,1,3},则使函数y=x的定义域为R,且为奇函数的所有α值为( )2A.1,3B.-1,1 C.-1,3D.-1,1,3114.已知n∈{-2,-1,0,1,2,3},若(-2n (-3)n,则n=________.1.函数y=(x+4)的递减区间是( ) A.(-∞,-4)B.(-4,+∞) C.(4,+∞)D.(-∞,4)12.幂函数的图象过点(2,4),则它的单调递增区间是( ) A.(0,+∞)B.[0,+∞) C.(-∞,0)D.(-∞,+∞)3.给出四个说法:①当n=0时,y=xn的图象是一个点;②幂函数的图象都经过点(0,0),(1,1);③幂函数的图象不可能出现在第四象限;④幂函数y=xn在第一象限为减函数,则n<0. 其中正确的说法个数是( ) A.1 B.2 C.3D.41114.设α∈{-2,-1,-232,1,2,3},则使f(x)=xα为奇函数且在(0,+∞)上单调递减的α的值的个数是( )A.1 B.2 C.3D.45.使(3-2x-x)4有意义的x的取值范围是( )A.RB.x≠1且x≠3 C.-3<x<1D.x<-3或x>16.函数f(x)=(m2-m-1)xm2-2m-3是幂函数,且在x∈(0,+∞)上是减函数,则实数m=( )A.2 B.3 C.4D.517.关于x的函数y=(x-1)α(其中α的取值范围可以是1,2,3,-1,2)的图象恒过点________.8.已知2.4α>2.5α,则α的取值范围是________.2-1232-13121709.把33,52(52(6按从小到大的顺序排列____________________. 10.求函数y=(x-1)3的单调区间.11.已知(m+4)2(3-2m)2m的取值范围.12.已知幂函数y=xm2+2m-3(m∈Z)在(0,+∞)上是减函数,求y的解析式,并讨论此函数的单调性和奇偶性.1.下列函数中,其定义域和值域不同的函数是( )1---21-12A.y=x3 B.y=x2 C.y=x3 D.y=x3112.如图,图中曲线是幂函数y=xα在第一象限的大致图象.已知α取-2,-222四个值,则相应于曲线C1,C2,C3,C4的α的值依次为( )1111A.-2,-222B.2,2,-2,-21111C.-2,-2,2,2 D.2,2,-2,-23.以下关于函数y=xα当α=0时的图象的说法正确的是( ) A.一条直线B.一条射线 C.除点(0,1)以外的一条直线D.以上皆错14.函数f(x)=(1-x)0+(1-x)2的定义域为________.21.已知幂函数f(x)的图象经过点(2,2),则f(4)的值为( )11A.16 B.16 C.2D.22.下列幂函数中,定义域为{x|x>0}的是( ) A.y=x3B.y=x2 C.y=x323-151D.y=x4-33.已知幂函数的图象y=xm2-2m-3(m∈Z,x≠0)与x,y轴都无交点,且关于y轴对称,则m为( )A.-1或1B.-1,1或3 C.1或3D.3 4.下列结论中,正确的是( ) ①幂函数的图象不可能在第四象限②α=0时,幂函数y=xα的图象过点(1,1)和(0,0) ③幂函数y=xα,当α≥0时是增函数④幂函数y=xα,当α 0时,在第一象限内,随x的增大而减小 A.①②B.③④ C.②③D.①④5.在函数y=2x3,y=x2,y=x2+x,y=x0中,幂函数有( ) A.1个B.2个 C.3个 D.4个6.幂函数f(x)=xα满足x>1时f(x)>1,则α满足条件( )A.α>1B.0<α<1 C.α>0D.α>0且α≠17.幂函数f(x)的图象过点(3,3),则f(x)的解析式是________. 8.设x ∈(0,1)时,y=xp(p∈R)的图象在直线y=x的上方,则p的取值范围是________. 9.如图所示的函数F(x)的图象,由指数函数f(x)=ax与幂函数g(x)=xα“拼接”而成,则aa、aα、αa、αα按由小到大的顺序排列为________.10.函数f(x)=(m2-m-5)xm-1是幂函数,且当x∈(0,+∞)时,f(x)是增函数,试确定m的值.11.已知函数f(x)=(m2+2m)·xm2+m-1,m为何值时,f(x)是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数?12.已知幂函数y=xm2-2m-3(m∈Z)的图象与x、y轴都无公共点,且关于y轴对称,求m的值,并画出它的图象.参考答案1.解析:选C.y=x,定义域为R,f(-x)=f(x)=x.112.解析:选B.5-a=(5a,因为a<0时y=xa单调递减,且5<0.5<5,所以5a<0.5a<5-a.3.解析:选A.在函数y=x,y=x,y=x2y=x3中,只有函数y=x和y=x3的定义域是R,且是奇函数,故α=1,3.111n1n4.解析:∵-2 -3,且(-2) (-3),∴y=xn在(-∞,0)上为减函数.又n∈{-2,-1,0,1,2,3},∴n=-1或n=2.答案:-1或21.解析:选A.y=(x+4)开口向上,关于x=-4对称,在(-∞,-4)递减. 2.解析:选C.2-12211幂函数为y=x-2=x13.解析:选B.显然①错误;②中如y=x-2(0,0).根据幂函数的图象可知③、④正确,故选B.14.解析:选A.∵f(x)=x为奇函数,∴α=-1,31,3. 又∵f(x)在(0,+∞)上为减函数,∴α=-1.315.解析:选C.(3-2x-x2)-44?3-2x-x?∴要使上式有意义,需3-2x-x2>0,解得-3<x<1.6.解析:选A.m2-m-1=1,得m=-1或m=2,再把m=-1和m=2分别代入m2-2m-3<0,经检验得m=2.7.解析:当x-1=1,即x=2时,无论α取何值,均有1α=1,∴函数y =(x-1)α恒过点(2,1).答案:(2,1)8.解析:∵0<2.4<2.5,而2.4α>2.5α,∴y=xα在(0,+∞)为减函数.答案:α<0702-120312119.解析:6=1,(3)3>(3)=1,(52<1,(521,∵y=x2 2131702-12131702-1∴52<52(6<33答案:(5)2<(5)2<(6)<(3)32211--10.解:y=(x-1)3=,定义域为x≠1.令t=x-1,则y=t3t≠0?x-1?3?x -1?α为偶函数.22-因为α=-3<0,所以y=t3在(0,+∞)上单调递减,在(-∞,0)上单调递增.又t=x-1单调递增,故y=(x-1)3在(1,+∞)上单调递减,在(-∞,1)上单调递增.11.解:∵y=x2(0,+∞),且为减函数.--21?m+4>0∴原不等式化为?3-2m>0?m+4>3-2m1313,解得-3m<2∴m的取值范围是(-32.12.解:由幂函数的性质可知m2+2m-3<0?(m-1)(m+3)<0?-3<m<1,又∵m∈Z,∴m=-2,-1,0. 当m=0或m=-2时,y=x-3,定义域是(-∞,0)∪(0,+∞).∵-3<0,∴y=x-3在(-∞,0)和(0,+∞)上都是减函数,又∵f(-x)=(-x)-3=-x-3=-f(x),∴y=x-3是奇函数.当m=-1时,y=x-4,定义域是(-∞,0)∪(0,+∞).11-4∵f(-x)=(-x)-4=x=f(x), ?-x?x∴函数y=x-4是偶函数.∵-4<0,∴y=x-4在(0,+∞)上是减函数,又∵y=x-4是偶函数,-∴y=x4在(-∞,0)上是增函数.31.解析:选D.y=x3x,其定义域为R,值域为[0,+∞),故定义域与值域不同.22.解析:选B.当x=2时,22>22-22-2,即C1:y=x,C2:y=x2C3:y =x2C4:y=x-2.-112113.解析:选C.∵y=x0,可知x≠0,∴y=x0的图象是直线y=1挖去(0,1)点.?1-x≠04.解析:?,∴x 1.?1-x≥0答案:(-∞,1)篇二:2021数学幂函数练习题2021高中数学幂函数复习重难点:掌握常见幂函数的概念、图象和性质,能利用幂函数的单调性比较两个幂值的大小.考纲要求:①了解幂函数的概念;②结合函数y?x,y?x,y?x,y?知识梳理:1. 幂函数的基本形式是y?x?,其中x是自变量,?是常数.要求掌握y?x,y?x2,y?x3,y?x1/2,y?x?1这五个常用幂函数的图象. 2. 观察出幂函数的共性,如下:(1)当??0时,图象过定点;在(0,??)上是函数.(2)当??0时,图象过定点;在(0,??)上是函数;在第一象限内,图象向上及向右都与坐标轴无限趋近.3. 幂函数y?x?的图象,在第一象限内,直线x?1的右侧,图象由下至上,指数y轴和直线x?1之间,图象由上至下,指数?诊断练习:,则f(4)的值等于1.如果幂函数f(x)?x?的图象经过点2.函数y=(x-2x)252231x1,y?x2的图像,了解他们的变化情况.-12的定义域是3.函数y=x的单调递减区间为4.函数y=x12-m-m2在第二象限内单调递增,则m的最大负整数是_______ _.范例分析:例1比较下列各组数的大小:(1)1.5,1.7,1;(2?232?23,(-107),1.123?43;(3)3.8,3.9,(-1.8);(4)3,5.25351.41.5例2已知幂函数y?xm?6(m?Z)与y?x2?m(m?Z)的图象都与x、y轴都没有公共点,且 y?xm?2(m?Z)的图象关于y轴对称,求m的值.例3幂函数f(x)?(t?t?1)x37?3t?2t25是偶函数,且在(0,??)上为增函数,求函数解析式.反馈练习:11.幂函数y?f(x)的图象过点(4,),则f(8)的值为 .22.比较下列各组数的大小: (a?2) a; (5?a)5; 0.40.50.50.4.232?23?233.幂函数的图象过点(2,14), 则它的单调递增区间是.a4.设x∈(0, 1),幂函数y=x的图象在y=x的上方,则a的取值范围是. 5.函数y=x4在区间上是减函数.6.一个幂函数y=f (x)的图象过点(3, 27),另一个幂函数y=g(x)的图象过点(-8, -2),(1)求这两个幂函数的解析式;(2)判断这两个函数的奇偶性;(3)作出这两个函数的图象,观察得f (x) g(x)的解集.?3巩固练习1.用“”或””连结下列各式:0.32 0.32 0.34, 0.8?0.4 0.6?0.4. 0.60.50.512322.函数y?(x?1)?(4?x)3.y?xa4.已知2??的定义域是?4a?95x3是偶函数,且在(0,??)是减函数,则整数a的值是. ,x的取值范围为2x35.若幂函数y?xa的图象在0 x 1时位于直线y=x的下方,则实数a的取值范围是6.若幂函数f(x)与函数g(x)的图像关于直线y=x对称,且函数g(x) 的图象经过,则f(x)的表达式为7. 函数f(x)?x?2的对称中心是,在区间是函数(填x?3“增、减”)8.比较下列各组中两个值的大小与1.6(2)0.6与0.7(3)3.5与5.3(4)0.18?0.3与0.15?0.39.若(a?2)10.已知函数y=-2x-x2.(1)求函数的定义域、值域;(2)判断函数的奇偶性;(3)求函数的单调区间.?1335351.31.3?23?23?(3?2a)?13,求a的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典例题透析
类型一、求函数解析式
例1.已知幕函数y = (nr-m-])x,,,2-2m~3,当xw(0, + 8)时为减函数,则幕函数y二___________________ .
解析:由于丁 =(加2—血—1)#宀2心为幕函数,
所以m2— \ = \,解得m = 2 ,或m = —\.
当ni = 2时,nr -2m-3 = -3 , y = x~3在(0, + 8)上为减函数;
当m = -l时,/7?2-2m-3 = 0, y = %° =1(x^0)在(0, + «)上为常数函数,不合题意,舍去.
故所求幕函数为y = x-3.
总结升华:求慕函数的解析式,一般用待定系数法,弄明白需函数的定义是关键.
类型二、比较幕函数值大小
例2.比较下列各组数的大小.
4 4 _ 3 _ 3
(1)3」4万与兀了;(2)(-近门与(-73)^.
4 4_4
解:⑴由于幕函数y = •亍(x>0)单调递减且3」4 <龙,・・・3.14万 > 兀了.
_3
(2)由于y =兀5这个幕函数是奇函数.・•・f (-x) =-f (x)
—_ 3 _ 3 _ 3 _ 3 _ _因此,(一血门二一(血)V,(―巧)V =—(內)V ,而y = (x>0)单调递减,且血
3 3 3 3 3 3
・・・(血戸 >"门即(一血门v(
总结升华.
(1)各题中的两个数都是“同指数”的幕,因此可看作是同一个幕函数的两个不同的函数值,从而可根据幕函数的单调性做出判断.
(2)题(2)中,我们是利用幕函数的奇偶性,先把底数化为正数的幕解决的问题.当然,若直接利用x<0 上幕函数的单调性解决问题也是可以的.
举一反三
【变式一】比较O.805, O.905, 0.9皿的大小.
思路点拨:先利用幕函数)=兀"的增减性比较0・8°5与0.9°"的大小,再根据幕函数的图象比较0.9°"与0.9七5的大小.
解:y = x Q-5^.(0, + oo)上单调递增,且0.8 v 0.9 ,
.•,0.805 <0.905.
作出函数y = X05与歹=兀七5在第一象限内的图彖,
易知0.严< 0.9心.
故 0.胛 vO.9°5 <0.9心.
例3.已知幕函数y = f y = y = y = 在第一象限内的图象
分别是G, C 2, C 3, G,(如图),则m, n 2, n :“ m, 0, 1的大小关系?
解:应为 ni<n 2<0<n 3<l<n4.
总结升华:对于幕函数y = x a (aeR )的图象,其函数性质的正确把握主要来源 于对图
象的正确处理,而幕函数的图象,最重要的是搞清第一象限的图象类型及分布; 反过来,也
能通过第一彖限的图彖判断指数的取值范围.
举一反三
ABC
思路点拨:已知函数解析式和图像,可以用取点验证的方法判断.
解:取W 则尸知*,选项B, D 符合;取归,则尸1,选项B 符合题意.
类型三、求参数的范围
例4•已知幕函数y = x m2(rneN )的图象与兀y 轴都无交点,且关于y 轴对称,求加的值,并画出它 的图象.
解:图象与上y 轴都无交点,/.zn-2<0,即m<2.
又 m G N , m = 0/h2 .
幕函数图彖关于y 轴对称,
/. m = 0 ,或 m = 2 .
当加=0时,函数为y = 图象如图1;
图1
图2
举一反三 【变式一】若(a + l )-2〉(3 —2d )_2,求实数a 的取值范围.
解法1:・・・仗+ 1)「2 >(3-2订2,考察y = 的图象,得以下四种可能情况
:
1
总结升华.
以上两种另法都是运用函数的单调性,但显然第二种方法更好.而这种方法的应用,必须对图象的特征 有深刻的认识.可见,能很好地运用数形结合是解决函数问题的重要途径.
【变式二】当m 为何值时,幕函数y 二(n?-5m+6)丹5”-3的图象同时通过点(°, 0)和(1, 1).
解:V y= (m 2-5m+6) x m ~2,n ~3 是幕函数..*.m 2-5m+6=l.得:m- ~ , 2
又•・•函数图象过(0, 0)和(1, 1)点,.-.m 2-2m-3>0,得m>3或水-1,
类型四、讨论函数性质
例5.求函数y 二。
+2);的定义域.
(3-XP
解:原函数可化为 y 二 十+ 2 |X + 2~°.\xe[-2, 3) U (3, +-).
V (3-x)2〔3-2 0
总结升华:正确判断函数的定义域是完成函数的图象,讨论函数的性质的前提,必须加以重视. _3 例6.讨论函数y = (x 2 -2兀-3厂的单调性.
解:y =(兀2 _2X _3) A 可看作是由y = u 4与U =X 2-2X -3复合而成,
_3
y = u 4 中,uw (0, +8)..・.X 2-2X -3>0,得到 x>3 或 x<T.
当x>3时,Vu= (X -1)2-4,・:随着x 的增大u 增大,
_3
又•: y = u^在定义域内为减函数,・・・y 随着u 的增大而减小,
_ 3
即xe (3, + oo)时,y = (x 2-2x-3)~^是减函数,而XG (-OO ,-1)时,原函数为增函数. 总结升华:
1•复合函数的讨论一定要理清x, u, y 三个变量的关系.
2.对于这样的幕函数与二次函数的复合,要先考虑幕函数的定义域对自变量x 的限制.
举一反三
3-2。
>0
(1) < a + 1 > 0 3 — 2G > G + 1 3-2。
vO (2)^ + 1 <0 3 — 2G V G + 1 3 — 2ci 〉0
⑶ £ + 1 vO 3 — 2d 〉一(G + 1) 3 — 2d < 0 ⑷ v 1 + Q 〉0 —(3 — 2d) > G + 1 2
分别解得:(1)-1<6Z<-. (2)无解.(3)dV —1. (4)a 〉4.
3
(2、
「•Q 的取值范围是(—8, — 1) —1,— (4, +00).
解法2:画出丿=厂2的图象,认真观察图象,可得:越接近y 轴,y 值越大,B|J|x| 越
小,y 值越大,
Q + 1 工0
・・・ 要 使(G + 1) 2 >(3 —2a)', 即 <3 — 20^0 , 解
| a +11<| 3 — 2a |
(4, + oo).
乎冶去)
【变式一】讨论函数/(x) = x w2+w+,(meN*)的定义域、奇偶性和单调性. 解:(1) m2 + m = +l)(m G N*)是正偶数,
m2 +加+1是正奇数.
・•・函数/(兀)的定义域为R.
(2)m2 +m + l是正奇数,
] ]
/(-X)= (~x)m2+m+] = -x,fl2+ni+[ = -f(x),且定义域关于原点对称. /. /(%)是R上的奇幣数.
1 9
(3) ------------ >0 ,且+ m +1是正奇数,
nT + 加 + 1
・•・函数/(X)在(-oo,+ 8)上单调递增.。