高中数学 2二项式定理(带答案)

合集下载

《二项式定理》知识点总结+典型例题+练习(含答案)

《二项式定理》知识点总结+典型例题+练习(含答案)

二项式定理考纲要求1.了解二项式定理的概念.2.二项展开式的特征及其通项公式.3.会区别二项式系数和系数.4.了解二项式定理及简单应用,并运用二项式定理进行有关的计算和证明. 知识点一:二项式定理设a , b 是任意实数,n 是任意给定的正整数,则0011222333110()n n n n n m n m m n n n nn n n n n n n a b C a b C a b C a b C a b C a b C ab C a b------+=++++⋅⋅⋅++⋅⋅⋅++这个公式所表示的定理叫做二项式定理,其中右边的多项式叫的二项式展开式,每项的0n C ,1n C , 2n C ⋅⋅⋅ n n C 叫做该项的二项式系数.注意:二项式具有以下特征:1.展开式中共有1n +项,n 为正整数.2.各项中a 与b 的指数和为n ,并且第一个字母a 依次降幂排列,第二个字母b 依次升幂排列.3.各项的二项式系数依次为0n C , 1n C , 2n C ⋅⋅⋅ nn C . 知识点二:二项展开式通项公式二项展开式中的m n m mn C a b -叫做二项式的通项, 记作 1m T +. 即二项展开式的通项为 1m n m mm n T C a b -+=.注意:该项为二项展开式的第1m +项,而不是第m 项. 知识点三:二项式系数的性质二项式展开式的二项式系数是0n C , 1n C , 2n C ⋅⋅⋅ nn C .1.在二项展开式中,与首末两端距离相等的两项的二项式系数相等,即m n mn n C C -=.2.如果二项式()na b +的幂指数n 是偶数,那么它的展开式中间一项的二项式系数最大即12n+项的二项式系数最大. 3.如果二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.4.二项式()na b +的展开式中,所有二项式系数的和为01232m nn n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=.5.二项式()na b +的展开式中奇数项和偶数项的二项式系数和相等即02413512n n n n n n n C C C C C C -+++⋅⋅⋅=+++⋅⋅⋅=.知识点四:二项式系数与系数的区别 1.二项展开式中各项的二项式系数: mn C .2.二项展开式中各项的系数:除了字母外所有的数字因数的积. 题型一 二项式定理 例1 求51(2)x x-的展开式. 分析:熟记二项式定理.解答:51(2)x x-=05014123232355551111(2)()(2)()(2)()(2)()C x C x C x C x x x x x -+-+-+-4145055511(2)()(2)()C x C x x x+-+-533540101328080x x x x x x=-+-+-题型二 二项展开式通项公式 例2 求91(3)9x x+的展开式中第3项. 分析:灵活运用通项公式. 解答:272532191(3)()9729T T C x x x+===, 所以第3项为5972x . 题型三 二项式系数的性质例3 求7(2)x +的展开式中二项式系数最大的项.分析:根据二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.先求出二项式最大项的项数,再利用通项公式计算.解答:由于7为奇数,所以第4项和第5项的二项式系数最大.即3733343172560T T C x x -+=== 4744454172280T T C x x -+===题型四 二项式系数与系数的区别例4 二项式9(12)x -的二项式系数之和为 . 分析:二项式()na b +的展开式中,所有二项式系数的和为01232m n n n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=。

二项式定理(有答案)

二项式定理(有答案)

二项式定理36.若n 的展开式中第四项为常数项,则n= .37.已知2313n x x ⎛⎫- ⎪⎝⎭的展开式共有6项,则n 的值是______;其中常数项为______. 38.若8280128(2)(1)(1)(1)x a a x a x a x -=+-+-+⋯+-,则0128a a a a +++⋯+=______.39.在二项式))551x -的展开式中,各项系数和为______. 40.设5250125(12)x a a x a x a x +=+++⋅⋅⋅+,则3a =_____________. 41.若102310012310(32)x a a x a x a x a x -=+++++,则12341023410a a a a a +++++=________. 42.在8122x ⎛⎫- ⎪⎝⎭的展开式中,二项式系数最大的项为________. 43.若将函数5()f x x =表示为250125()(1)(1)(1)f x a a x a x a x =+++++++,其中0a ,1a ,2a ...,5a 为实数,则4a =________.44.已知()1nx +的二项式系数和为256,则展开式中二项式系数最大的项数是________. 45.已知*2,nn N x ⎛∈ ⎝的展开式中存在常数项,则n 的最小值为________.36.5【来源】2012届浙江省宁波市五校高三适应性考试理科数学试卷37.5 10 9【来源】2020年浙江省新高考名校交流模拟卷数学试题(二)38.0【来源】【省级联考】浙江省2019 年高考模拟训练卷数学(三)39.1【来源】专题12 二项式定理-2020年高考数学母题题源全揭秘(浙江专版)40.80【来源】浙江省“七彩阳光”新高考研究联盟2020届高三下学期5月阶段性评估数学试题41.20-【来源】浙江省金华一中2018届高三下学期5月高考模拟考试数学试题42.470x【来源】2019年浙江省名师原创预测卷(一)43.5-【来源】2019年浙江省新高考仿真演练卷(四)44.5【来源】2019年浙江省名师原创预测卷(二)45.5【来源】2019年浙江省新高考优化提升卷(一)。

(完整版)二项式定理(习题含答案)

(完整版)二项式定理(习题含答案)

二项式定理一、 求展开式中特定项 1、在的展开式中,的幂指数是整数的共有( ) A .项 B .项 C .项 D .项 【答案】C 【解析】,,若要是幂指数是整数,所以0,6,12,18,24,30,所以共6项,故选C .3、若展开式中的常数项为 .(用数字作答)【答案】10【解】由题意得,令,可得展示式中各项的系数的和为32,所以,解得,所以展开式的通项为,当时,常数项为, 4、二项式的展开式中的常数项为 . 【答案】112【解析】由二项式通项可得,(r=0,1,,8),显然当时,,故二项式展开式中的常数项为112.5、的展开式中常数项等于________.【答案】.【解析】因为中的展开式通项为,当第一项取时,,此时的展开式中常数为;当第一项取时,,此时的展开式中常数为;所以原式的展开式中常数项等于,故应填. 6、设,则的展开式中常数项是 .【答案】 332,30x 4567()r r rrr r x C x x C T 6515303303011--+⋅=⎪⎪⎭⎫ ⎝⎛⋅⋅=30......2,1,0=r =r 2531()x x+1x =232n =5n =2531()x x+10515r rr T C x -+=2r =2510C=82)x3488838122rrr r rr r x C xx C --+-=-=)()()(T 2=r 1123=T 41(2)(13)x x--1441(2)(13)x x--4(13)x -4C (3)r rx -204C 1=21x-14C (3)12x -=-12141420sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰()622x ⎛⋅+ ⎝332=-()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ⎛⎫=-+=+=-+= ⎪⎝⎭⎰⎰的展开式的通项为,所以所求常数项为.二、 求特定项系数或系数和7、的展开式中项的系数是( )A .B .C .D . 【答案】A【解析】由通式,令,则展开式中项的系数是.8、在x (1+x )6的展开式中,含x 3项的系数是 . 【答案】15【解】的通项,令可得.则中的系数为15.9、在的展开式中含的项的系数是 . 【答案】-55【解析】的展开式中项由和两部分组成,所以的项的系数为. 10、已知,那么展开式中含项的系数为 . 【答案】135【解析】根据题意,,则中,由二项式定理的通项公式,可设含项的项是,可知,所以系数为.11、已知,则等于( )A .-5B .5C .90D .180【答案】D 因为,所以等于选D.12、在二项式 的展开式中,只有第5项的二项式系数最大,则________;展开式中的第4项=_______.6(=6663166((1)2r r r r r rr r T C C x ---+==-⋅⋅3633565566(1)22(1)2T C C --=-⋅⋅+-⋅332=-8()x 62x y 5656-2828-r r r y x C )2(88--2=r 62x y 56)2(228=-C ()61x +16r r r T C x +=2r =2615C =()61x x +3x 6(1)(2)x x -⋅-3x 6(1)(2)x x -⋅-3x 336)(2x C -226)(x -x C -⋅)(3x 552-2636-=-C C dx xn 16e 1⎰=nx x )(3-2x 66e111ln |6e n dx x x=⎰==n x x )(3-1r n r r r n T C a b -+=2x 616(3)r rr r T C x -+=-2r =269135C ⨯=()()()()10210012101111x a a x a x a x +=+-+-++-L 8a 1010(1)(21)x x +=-+-8a8210(2)454180.C -=⨯=1)2nx =n【答案】,.【解析】由二项式定理展开通项公式,由题意得,当且仅当时,取最大值,∴,第4项为. 13、如果,那么的值等于( ) (A )-1 (B )-2 (C )0 (D )2 【答案】A【解析】令,代入二项式,得,令,代入二项式,得,所以,即,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7 =﹣1, 15、(x ﹣2)(x ﹣1)5的展开式中所有项的系数和等于 【答案】0 解:在(x ﹣2)(x ﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0, 所以展开式中所有项的系数和等于0. 16、在的展开式中,所有项的系数和为,则的系数等于 .【答案】【解析】当时,,解得,那么含的项就是,所以系数是-270. 17、设,若,则.【答案】0. 【解析】由81937x -21()(2)33111()()22n r n r r r r r r r nn T C x x C x -++=-⋅=-4n =r n C 8n =119(163)333381()72C x x +-=-7270127(12)x a a x a x a x -=++++L 017a a a +++L 1x =7270127(12)x a a x a x a x -=++++L 70127(12)1a a a a -=++++=-L 0x =7270127(12)x a a x a x a x -=++++L 70(10)1a -==12711a a a ++++=-L 1272a a a +++=-L *3)()n n N -∈32-1x 270-1=x ()322--=n5=n x1()x x C 1270313225-=-⨯⎪⎪⎭⎫ ⎝⎛⨯0(sin cos )k x x dx π=-⎰8822108)1(x a x a x a a kx ++++=-K 1238a a a a +++⋅⋅⋅+=0(sin cos )(cos sin )k x x dx x x ππ=-=--⎰,令得:,即 再令得:,即 所以18、设(5x ﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M ﹣N=240,则展开式中x 的系数为 . 【答案】150解:由于(5x ﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由二项式系数和为N=2n ,且M ﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0. 解得 2n =16,或 2n =﹣15(舍去),∴n=4. (5x ﹣)n 的展开式的通项公式为 T r+1=?(5x )4﹣r ?(﹣1)r ?=(﹣1)r ??54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r??54﹣r=1×6×25=150,19、设,则 . 【答案】【解析】, 所以令,得到, 所以 三、 求参数问题20、若的展开式中第四项为常数项,则( )A .B .C .D .【答案】B【解析】根据二项式展开公式有第四项为,第四项为常数,则必有,即,所以正确选项为B. 21、二项式的展开式中的系数为15,则( )(cos sin )(cos0sin 0)2ππ=-----=1x =80128(121)a a a a -⨯=++++K 01281a a a a ++++=K 0x =80128(120)000a a a a -⨯=+⨯+⨯++⨯K 01a =12380a a a a +++⋅⋅⋅+=8877108)1(x a x a x a a x ++++=-Λ178a a a +++=L 255178a a a +++=L 87654321a a a a a a a a +-+-+-+-1-=x =82876543210a a a a a a a a a +-+-+-+-2551256-20887654321=-==+-+-+-+-a a a a a a a a a nn =45672533333342)21()(---==n nn nxC xx C T 025=-n 5=n )()1(*N n x n ∈+2x =nA 、5B 、 6C 、8D 、10 【答案】B【解析】二项式的展开式中的通项为,令,得,所以的系数为,解得;故选B . 22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵,∴当,即时,. 23、若的展开式中的系数为10,则实数( ) A1 B .或1 C .2或 D . 【答案】B.【解析】由题意得的一次性与二次项系数之和为14,其二项展开通项公式,∴或,故选B . 24、设,当时,等于( )A .5B .6C .7D .8 【答案】C . 【解析】令,则可得,故选C . 四、 其他相关问题25、20152015除以8的余数为( ) 【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数. 试题解析:解:∵20152015=2015=?20162015﹣?20162014+?20162013﹣?20162012+…+?2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,)()1(*N n x n ∈+k n kn k x C T -+⋅=12=-k n 2-=n k 2x 152)1(22=-==-n n C C n n n 6=n 4r+14T =C r r r a x-43r -=1r =133324T =C 48,2ax ax x a ==∴=()()411x ax ++2x a =53-53-4(1)ax +14r r rr T C a x +=22144101C a C a a +=⇒=53-23(1)(1)(1)(1)n x x x x ++++++⋅⋅⋅++2012n n a a x a x a x =+++⋅⋅⋅+012254n a a a a +++⋅⋅⋅+=n 1x =2312(21)22222225418721n nn n n +-+++⋅⋅⋅+==-=⇒+=⇒=-。

2021版新高考数学:节二项式定理含答案

2021版新高考数学:节二项式定理含答案

A .6B .-6C .24D .-24A [(1-2x )4展开式中第3项的二项式系数为C 24=6.故选A.]2.二项式⎝ ⎛⎭⎪⎫12x -2y 5的展开式中x 3y 2的系数是( ) A .5 B .-20 C .20 D .-5A [二项式⎝ ⎛⎭⎪⎫12x -2y 5的通项为T r +1=C r 5(12x )5-r (-2y )r .根据题意、得⎩⎨⎧5-r =3,r =2,解得r =2.所以x 3y 2的系数是C 25⎝ ⎛⎭⎪⎫123×(-2)2=5.故选A.] 3.C 02 019+C 12 019+C 2 019+…+C 2 019C 02 020+C 2 020+C 42 020+…+C 2 020的值为( ) A .1 B .2C .2 019D .2 019×2 020A [原式=22 01922 020-1=22 01922 019=1.故选A.]4.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4、则a 0+a 2+a 4的值为________. 8 [令x =1、则a 0+a 1+a 2+a 3+a 4=0、令x =-1、 则a 0-a 1+a 2-a 3+a 4=16、 两式相加得a 0+a 2+a 4=8.](对应学生用书第188页)考点1 二项式展开式的通项公式的应用(x 2+x +y )5为5个x 2+x +y 之积、其中有两个取y 、两个取x 2、一个取x 即可、所以x 5y 2的系数为C 25C 23C 1=30.故选C.]2.(x -13x-y )6的展开式中含xy 的项的系数为( )A .30B .60C .90D .120 B [展开式中含xy 的项来自C 16(-y )1(x -13x)5、(x -13x)5展开式通项为T r +1=(-1)rC r 5x 5-43r 、令5-43r =1⇒r =3、(x -13x)5展开式中x 的系数为(-1)3C 35、 所以(x -13x-y )6的展开式中含xy 的项的系数为C 16(-1)C 35(-1)3=60、故选B.]考点2 二项式系数的和与各项的系数和问题赋值法在求各项系数和中的应用(1)对形如(ax +b )n 、(ax 2+bx +c )m (a 、b 、c ∈R )的式子求其展开式的各项系数之和、常用赋值法.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n 、则f (x )展开式中各项系数之和为f (1)、奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2、偶数项系数之和为a 1+a 3-128[在(1-x)(1+x)4的展开式中、含x2项的系数是b、则b=C24-C14=2.在(2-2x)7=a0+a1x+…+a7x7中、令x=0得a0=27、令x=1、得a0+a1+a2+…+a7=0.∴a1+a2+…+a7=0-27=-128.]3.(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32、则a=________.3[设(a+x)(1+x)4=a0+a1x+a2x2+a3x3+a4x4+a5x5、令x=1、得16(a+1)=a0+a1+a2+a3+a4+a5、①令x=-1、得0=a0-a1+a2-a3+a4-a5.②①-②、得16(a+1)=2(a1+a3+a5)、即展开式中x的奇数次幂项的系数之和为a1+a3+a5=8(a+1)、所以8(a+1)=32、解得a=3.]考点3二项式系数的性质二项式系数的最值问题。

(完整版)二项式定理知识点和各种题型归纳带答案

(完整版)二项式定理知识点和各种题型归纳带答案

二项式定理1•二项式定理:(a b)n C 0a n C :a n1b L C ;a n r b r L C ;;b n (n N),2. 基本概念:① 二项式展开式:右边的多项式叫做 (a b)n 的二项展开式。

② 二项式系数:展开式中各项的系数 c n (r 0,1,2, ,n).③ 项数:共(r 1)项,是关于a 与b 的齐次多项式④ 通项:展开式中的第 r 1项C :a n r b r 叫做二项式展开式的通项。

用 T r 1 C ;a n r b r 表示。

3. 注意关键点:①项数:展开式中总共有 (n 1)项。

② 顺序:注意正确选择 a ,b ,其顺序不能更改。

(a b)n 与(b a)n 是不同的。

③ 指数:a 的指数从n 逐项减到0,是降幕排列。

b 的指数从0逐项减到n ,是升幕排列。

各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是数是a 与b 的系数(包括二项式系数)。

4. 常用的结论:令 a 1,b x, (1 x)n C 0 C :x C ;x 2 L C :x r L C :x n (n N )5.性质:①二项式系数的对称性: 与首末两端“对距离”的两个二项式系数相等, 即C C , • • • C n k Cn 1②二项式系数和:令 a b 1,则二项式系数的和为 C 0 C : C' L C n L C ;2n ,变形式 C 1 C2L C n rL c :2n1。

③奇数项的二项式系数和 =偶数项的二项式系数和:在二项式定理中,令 a 1,b 1,则 C 0 C : C 2C n 3 L(1)n c ;(1 1)n 0,从而得到:Cn CnCnC ;rc n C n 3L「2r 1C n丄 2n 2n 12④奇数项的系数和与偶数项的系数和:C n , C n ,C n ,, C n ,, C n-项的系令 a 1,b x, (1 x)n C° C 1x C 2x 2 L C :x r L(1)n C :x n (n N )n 22解:由条件知C n 45 ,即C n 45 ,2n n 90 0,解得 n9(舍去)或n 10,由(a x)n C °a n 0 xc n a n1xCna n 2 2x L n 0 n1C na x a 。

二项式定理习题(带答案)

二项式定理习题(带答案)

(A)-540
(B)-162
(C)162
(D)540
33、A 解析:令 x=1,得 2n=64,得 n=6.设常数项为 Tr+1= Cr6(3 )6-r·(- )r
=Cr636-r·(-1)r·x3-r 令 3-r=0 得 r=3.∴常数项 T4=-540.
36、在
的二项展开式中,若只有 的系数最大,则
6、C7、C8、A9、A
16、3.若
的展开式中 的系数是(
A.14 )A
B.-14
B
C
C.42 D
D.-42
17、在
的展开式中 的系数是 ( )A.-14 B.14 C.-28 D.28
16、B 解析:(x-1)(x+1)8=(x-1)(1+x)8,∴含 x5 的项为 x·C x4+(-1)C x5=14x5,∴x5 的系数是 14,故选 B. 17、B 解析:(x-1)(x+1)8=(x-1)(1+x)8,∴含 x5 的项为 x·C x4+(-1)C x5=14x5,∴x5 的系数是 14,故选 B.
(3)二项式系数的和:
C
0 n
C1 nCຫໍສະໝຸດ 2 nCk n
C
n n
2n
奇数项的二项式系数的和等于偶数项的二项式系数和.即
C0n +C2n +
=C1n +C3n +
=2n-1
对称性 (2)二项式系数的三个性质 增减性和最值
二项式系数和
基本题型
(一)通项公式的应用
1、 (2x 1 )6 的展开式中第三项的二项式系数为________;第三项的系数为_______; x

二项式定理经典题型及详细答案

二项式定理经典题型及详细答案

二项式定理经典考点例析考点1:二项式系数与项的系数1、在28(2x -的展开式中,求: (1)第5项的二项式系数及第5项的系数.(2)2x 的系数.2.若1()nx x+展开式中第2项与第6项的系数相同,则展开式的中间一项的系数为___________.3.已知二项式102)3x求 (1)第四项(2)展开式第四项的二项式系数(3)展开式第四项的系数考点2:二项式定理逆用1、5432(1)5(1)10(1)10(1)5(1)x x x x x -+-+-+-+-=_____________2、5432)12()12(5)12(10)12(10)12(51+-+++-+++-x x x x x =_____________考点3:求二项式展开式中的特定项、某一项【例题】 1、二项式3522()x x-的展开式中5x 的系数___________;2. 二项式43(1)(1x -的展开式中2x 的系数是___________.3.若4(1a +=+(,a b 为有理数),则a b +=___________.4.二项式8(2-展开式中不含4x 项的系数的和为___________.5、二项式53)31()21(x x -+的展开式中4x 的系数___________.【练习】1.二项式4(1)x +的展开式中2x 的系数为___________..2.二项式210(1)x -的展开式中,4x 的系数为___________.3.二项式6展开式中含2x 项的系数为___________. 4.二项式533)1()21(x x -+的展开式中x 的系数___________.、常数项和有理项【例题】 1. 二项式61(2)2x x-的展开式的常数项是___________.2、二项式100的展开式中x 的系数为有理数的项的个数___________.3. 二项式261(1)()x x x x++-的展开式中的常数项为___________.4.二项式5)12(++xx 的展开式中常数项是___________. 【练习】1.8(2x -的展开式中的常数项___________. 2.在261()x x+的展开式中,常数项是___________.3.二项式5)44(++xx 的展开式中常数项是___________. 4.二项式54)31()21(xx -+的展开式中常数项是___________. 考点4:求展开式中的各项系数之和的问题1、已知7270127(12)...x a a x a x a x -=++++.求:(1)0a ; (2)763210a a a a a a ++++++ ;(3)763210a a a a a a -++-+-(4)6420a a a a +++;(5)7531a a a a +++;(6)2753126420)()(a a a a a a a a +++-+++. (7)||||||||||||763210a a a a a a ++++++ .(8)7766321022842a a a a a a ++++++ ;(9)7766321022842a a a a a a ++++++; 2.在二项式9(23)x y -的展开式中,求:(1)二项式系数之和;(2)各项系数之和;(3)所有奇数项系数之和;(4)所有项的系数的绝对值之和.3.利用二项式nn n n n n n n x C x C x C x C C x +++++=+ 432210)1(展开式nn n n n n n n n nn n n n n n n n n n n n n nn n n n n C C C C C C C C C C C C C C C C C C C C C 32842)4(2)3(0)1()2(2)1(3210153142032103210=+++++=+++=+++=-++-+-=+++++-考点5:多项式的展开式最大项问题【例题】1、二项式9)21(x +展开式中,(1)二项式系数的最大项 (2)系数的最大项 2、二项式12)21(x -展开式中(1)求展开式中系数的绝对值最大的项.(2)求展开式中系数最大的项.(3)求展开式中系数最小的项.3、已知()(1)(12)(,)m n f x x x m n N +=+++∈的展开式中含x 项系数为11,求()f x 展开式中2x 项系数的最小值.4、n xx )1(4+展开式中含x 的整数次幂的项的系数之和为__________.【练习】1、2102()x x+的展开式中系数最大的项; 2、求7(12)x -展开式中系数最大的项.3、设x =50(1)x +展开式中第几项最大?4、已知()nx x 2323+展开式中各项系数的和比各项的二项式系数的和大992,(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.考点6:含参二次函数求解【例题】1.【特征项】在二项式25()a x x-的展开式中x 的系数是-10,则实数a 的值是___________.2.【常数项】若n的展开式中存在常数项,则n 的值可以是___________.3.【有理项】已知n的展开式中,前三项的系数成等差数列,展开式中的所有有理项________. 4.【特征项】在210(1)x px ++的展开式中,试求使4x 项的系数最小时p 的值.5.【系数最大】已知1(2)2nx +的展开式中,第5项、第6项、第7项的二项式系数成等差数列,求展开式中二项式系数最大的项. 【练习】1.若9()a x x-的展开式中3x 的系数是-84,则a =___________.2.已知2)n x的展开式中第5项系数与第3项的系数比56:3,则该项展开式中2x 的系数_____. 3.若二项式22()nx x-的展开式中二项式系数之和是64,则展开式中的常数项为___________ 4.已知(13)nx +的展开式中,末三项的二项式系数的和等于121,求展开式中系数最大的项.考点7:求解某些整除性问题或余数问题1. 求证22*389()n n n N +--∈能被64整除.2. 9291被100整除所得的余数为_________ 3. 设21(*)n k k N =-∈,则11221777...7nn n n n n n C C C ---+⋅+⋅++⋅被9除所得的余数为_________4. 求证:(1)51511-能被7整除;(2)2332437n n +-+能被64整除.5. 如果今天是星期一,那么对于任意的自然数n ,经过33(275)n n +++天是星期几?考点8:计算近似值1、求60.998的近似值,使误差小于0.001. 2、求51.997精确到的近似值.考点9:有关等式与不等式的证明化简问题1、求121010101010124...2C C C ++++的值. 2、化简:1231248...(2)nnn n n n C C C C -+-++-. 3、求证:01121*(2)!...()(1)!(1)!n nn n n n n n n C C C C C C n N n n -+++=∈-+.4、证明下列等式与不等式(1)123123 (2)nn n n n n C C C nC n -++++=⋅.(2)设,,a b c 是互不相等的正数,且,,a b c 成等差数列,*n N ∈,求证2nnna cb +>. 【练习】1、=++++nn n n n n C C C C 2222210 ;2、=-++-+-nn n n n n n n C C C C C 2)1(22232210 ; 3、求证:12122-⋅=+++n n n n n n nC C C4、求证:nn n n n n n C C C C C 22222120)()()()(=++++5、已知7292222210=++++nn n n n n C C C C ,求n n n n C C C +++ 21考点10:创新型题目1、对于二项式(1-x)1999,有下列四个命题:①展开式中T 1000= -C 19991000x999;②展开式中非常数项的系数和是1;③展开式中系数最大的项是第1000项和第1001项;④当x=2000时,(1-x)1999除以2000的余数是1.其中正确命题的序号是__________.(把你认为正确的命题序号都填上) 2、规定!)1()1(m m x x x C m x +--=,其中x ∈R,m 是正整数,且10=x C ,这是组合数m n C (n 、m 是正整数,且m ≤n )的一种推广.(1) 求315-C的值;(2) 设x >0,当x 为何值时,213)(xxC C 取得最小值(3) 组合数的两个性质;①m n n m n C C -=. ②mn m n m n C C C 11+-=+.是否都能推广到mx C (x ∈R,m 是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.3、对于任意正整数,定义“n的双阶乘n!!”如下:对于n是偶数时,n!!=n·(n-2)·(n-4)……6×4×2;对于n是奇数时,n!!=n·(n-2)·(n-4)……5×3×1.现有如下四个命题:①(2005!!)·(2006!!)=2006!;②2006!!=21003·1003!;③2006!!的个位数是0;④2005!!的个位数是5.正确的命题是________.。

高中二项式定理专题(答案)

高中二项式定理专题(答案)

二项式定理1. 知识精讲:(1)二项式定理:()nn n r r n r n n n n n nb C b a C b a C a C b a +++++=+-- 110(*∈N n )其通项是=+1r T r r n r n b a C - (r=0,1,2,……,n ),知4求1,如:555156b a C T T n n -+== 亦可写成:=+1r T r n r n aba C )(()()()n n n n rr n r n r n n n n n b C b a C b a C a C b a 11110-++-++-=--- (*∈N n ) 特别地:()n n n r n r n n n n nx C x C x C x C x +++++=+- 101(*∈N n )其中,r n C ——二项式系数。

而系数是字母前的常数。

例1.n nn n n n C C C C 1321393-++++ 等于 ( ) A .n4 B 。

n43⋅ C 。

134-n D.314-n 解:设nnn n n n n C C C C S 1321393-++++= ,于是: n nn n n n n C C C C S 3333333221++++= =13333332210-+++++nn n n n n n C C C C C 故选D例2.(1)求7(12)x +的展开式的第四项的系数;(2)求91()x x-的展开式中3x 的系数及二项式系数解:(1)7(12)x +的展开式的第四项是333317(2)280T C x x +==,∴7(12)x +的展开式的第四项的系数是280. (2)∵91()x x-的展开式的通项是9921991()(1)r rr r r r r T C xC x x--+=-=-, ∴923r -=,3r =,∴3x 的系数339(1)84C -=-,3x 的二项式系数3984C =.(2)二项展开式系数的性质:①对称性,在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即 ,,,,2211kn nkn n n n n n n nn n C C C C C C C C ---====②增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。

(完整版)二项式定理(习题含答案)

(完整版)二项式定理(习题含答案)

(完整版)⼆项式定理(习题含答案)⼆项式定理⼀、求展开式中特定项 1、在的展开式中,的幂指数是整数的共有() A .项 B .项 C .项 D .项【答案】C 【解析】,,若要是幂指数是整数,所以0,6,12,18,24,30,所以共6项,故选C .3、若展开式中的常数项为.(⽤数字作答)【答案】10【解】由题意得,令,可得展⽰式中各项的系数的和为32,所以,解得,所以展开式的通项为,当时,常数项为, 4、⼆项式的展开式中的常数项为.【答案】112【解析】由⼆项式通项可得,(r=0,1,,8),显然当时,,故⼆项式展开式中的常数项为112.5、的展开式中常数项等于________.【答案】.【解析】因为中的展开式通项为,当第⼀项取时,,此时的展开式中常数为;当第⼀项取时,,此时的展开式中常数为;所以原式的展开式中常数项等于,故应填. 6、设,则的展开式中常数项是.【答案】 332,30x 4567()r r rrr r x C x x C T 6515303303011--+?==30......2,1,0=r =r 2531()x x+1x =232n =5n =2531()x x+10515r rr T C x -+=2r =2510C=82)x3488838122rrr r rr r x C xx C --+-=-=)()()(T 2=r 1123=T 41(2)(13)x x--1441(2)(13)x x--4(13)x -4C (3)r rx -204C 1=21x-14C (3)12x -=-12141420sin 12cos 2x a x dx π=-+()622x ??+ ?332=-()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ??=-+=+=-+= ??的展开式的通项为,所以所求常数项为.⼆、求特定项系数或系数和7、的展开式中项的系数是()A .B .C .D .【答案】A【解析】由通式,令,则展开式中项的系数是.8、在x (1+x )6的展开式中,含x 3项的系数是.【答案】15【解】的通项,令可得.则中的系数为15.9、在的展开式中含的项的系数是.【答案】-55【解析】的展开式中项由和两部分组成,所以的项的系数为. 10、已知,那么展开式中含项的系数为.【答案】135【解析】根据题意,,则中,由⼆项式定理的通项公式,可设含项的项是,可知,所以系数为.11、已知,则等于()A .-5B .5C .90D .180【答案】D 因为,所以等于选D.12、在⼆项式的展开式中,只有第5项的⼆项式系数最⼤,则________;展开式中的第4项=_______.6(=6663166((1)2r r r r r rr r T C C x ---+==-??3633565566(1)22(1)2T C C --=-??+-?332=-8()x 62x y 5656-2828-r r r y x C )2(88--2=r 62x y 56)2(228=-C ()61x +16r r r T C x +=2r =2615C =()61x x +3x 6(1)(2)x x -?-3x 6(1)(2)x x -?-3x 336)(2x C -226)(x -x C -?)(3x 552-2636-=-C C dx xn 16e 1=nx x )(3-2x 66e111ln |6e n dx x x=?==n x x )(3-1r n r r r n T C a b -+=2x 616(3)r rr r T C x -+=-2r =269135C ?=()()()()10210012101111x a a x a x a x +=+-+-++-L 8a 1010(1)(21)x x +=-+-8a8210(2)454180.C -=?=1)2nx =n【答案】,.【解析】由⼆项式定理展开通项公式,由题意得,当且仅当时,取最⼤值,∴,第4项为. 13、如果,那么的值等于()(A )-1 (B )-2 (C )0 (D )2 【答案】A【解析】令,代⼊⼆项式,得,令,代⼊⼆项式,得,所以,即,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代⼊⼆项式,可得(﹣2)7 =﹣1, 15、(x ﹣2)(x ﹣1)5的展开式中所有项的系数和等于【答案】0 解:在(x ﹣2)(x ﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0,所以展开式中所有项的系数和等于0. 16、在的展开式中,所有项的系数和为,则的系数等于.【答案】【解析】当时,,解得,那么含的项就是,所以系数是-270. 17、设,若,则.【答案】0. 【解析】由81937x -21()(2)33111()()22n r n r r r r r r r nn T C x x C x -++=-?=-4n =r n C 8n =119(163)333381()72C x x +-=-7270127(12)x a a x a x a x -=++++L 017a a a +++L 1x =7270127(12)x a a x a x a x -=++++L 70127(12)1 a a a a -=++++=-L 0x =7270127(12)x a a x a x a x -=++++L 70(10)1a -==12711a a a ++++=-L 1272a a a +++=-L *3)()n n N -∈32-1x 270-1=x ()322--=n5=n x1()x x C 1270313225-=-(sin cos )k x x dx π=-?8822108)1(x a x a x a a kx ++++=-K 1238a a a a ++++=0(sin cos )(cos sin )k x x dx x x ππ=-=--?,令得:,即再令得:,即所以18、设(5x ﹣)n 的展开式的各项系数和为M ,⼆项式系数和为N ,若M ﹣N=240,则展开式中x 的系数为 . 【答案】150解:由于(5x ﹣)n 的展开式的各项系数和M 与变量x ⽆关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由⼆项式系数和为N=2n ,且M ﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0. 解得 2n =16,或 2n =﹣15(舍去),∴n=4. (5x ﹣)n 的展开式的通项公式为 T r+1=(5x )4﹣r ?(﹣1)r ?=(﹣1)r ?54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为(﹣1)r54﹣r=1×6×25=150,19、设,则.【答案】【解析】,所以令,得到,所以三、求参数问题20、若的展开式中第四项为常数项,则()A .B .C .D .【答案】B【解析】根据⼆项式展开公式有第四项为,第四项为常数,则必有,即,所以正确选项为B. 21、⼆项式的展开式中的系数为15,则()(cos sin )(cos0sin 0)2ππ=-----=1x =80128(121)a a a a -?=++++K 01281a a a a ++++=K 0x =80128(120)000a a a a -?=+?+? ++?K 01a =12380a a a a ++++=8877108)1(x a x a x a a x ++++=-Λ178a a a +++=L 255178a a a +++=L 87654321a a a a a a a a +-+-+-+-1-=x =82876543210a a a a a a a a a +-+-+-+-2551256-20887654321=-==+-+-+-+-a a a a a a a a a nn =456725333342)21()(---==n nn nxC xx C T 025=-n 5=n )()1(*N n x n ∈+2x =nA 、5B 、 6C 、8D 、10 【答案】B【解析】⼆项式的展开式中的通项为,令,得,所以的系数为,解得;故选B . 22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵,∴当,即时,. 23、若的展开式中的系数为10,则实数() A1 B .或1 C .2或 D .【答案】B.【解析】由题意得的⼀次性与⼆次项系数之和为14,其⼆项展开通项公式,∴或,故选B . 24、设,当时,等于()A .5B .6C .7D .8 【答案】C .【解析】令,则可得,故选C .四、其他相关问题25、20152015除以8的余数为( ) 【答案】7【解析】试题分析:先将幂利⽤⼆项式表⽰,使其底数⽤8的倍数表⽰,利⽤⼆项式定理展开得到余数.试题解析:解:∵20152015=2015=?20162015﹣?20162014+20162013﹣20162012+…+2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,)()1(*N n x n ∈+k n kn k x C T -+?=12=-k n 2-=n k 2x 152)1(22=-==-n n C C n n n 6=n 4r+14T =C r r r a x-43r -=1r =133324T =C 48,2ax ax x a ==∴=()()411x ax ++2x a =53-53-4(1)ax +14r r rr T C a x +=22144101C a C a a +=?=53-23(1)(1)(1)(1)n x x x x ++++++++2012n n a a x a x a x =++++012254n a a a a ++++=n 1x =2 312(21)22222225418721n nn n n +-++++==-=?+=?=-。

二项式定理(题型及答案)

二项式定理(题型及答案)

⼆项式定理(题型及答案)1、(1) 已知92-x x a 的展开式中3x 的系数为49,常数a 的值为___________. (2)设k=1,2,3,4,5,则的展开式中的系数不可能是()A. 10B. 40C. 50D. 80(3)若展开式中含项的系数与含项的系数之⽐为-5,则n 等于()A. 4B. 6C. 8D. 102、求值: (1) =-++?-?+-nn n n n C C C 3)1(333133221(2) S=(x-1)4+4(x-1)3+6(x-1)2+4(x-1)+1= (3)=3、试求下列⼆项展开式中指定项的系数:(1)(a+b+c)10的展开式中,含a 5b 3c 2的系数为_________(2)求的常数项(3) 的展开式中项的系数(4) 的展开式中项的系数(5) 的展开式中项的系数(6) 的展开式中x 项的系数(7) 的展开式中项的系数(8)5)12)((xx x a x -+的展开式中各项系数的和为2,则该展开式中常数项为。

,其中b 0+b 1+b 2+……+b n =62, 则n=_________(Ⅱ)如果的展开式中各项系数之和为128,则展开式中的系数是()A. 7B. –7C. 21D. –21(Ⅲ)已知(1)求a 0, (2)求a 1+a 2+a 3+a 4+a 5(3)求(a 0+a 2+a 4)2-(a 1+a 3+a 5)2(4)求a 1+a 3+a 5 (5)|a 0|+|a 1|+……+|a 5|5、已知⼆项式展开式中,末三项的系数依次成等差数列,求此展开式中所有的有理项。

~6、已知nx x )3(232 的展开式各项系数和⽐它的⼆项式系数和⼤992. (1)展开式中⼆项式系数最⼤的项 (2)求展开式中系数最⼤的项.]*7、已知的展开式中奇数项的⼆项式系数之和等于512,试求:(1)⼆项式系数最⼤的项;(2)系数的绝对值最⼤的项;(3)系数最⼤的项。

(完整版)二项式定理(习题含答案)

(完整版)二项式定理(习题含答案)

二项式定理一、求展开式中特定项1、在30的展开式中,x 的幂指数是整数的共有( )A .4项 B .5项 C .6项 D .7项【答案】C【解析】()r r rrr r x C x x C T 6515303303011--+⋅=⎪⎪⎭⎫ ⎝⎛⋅⋅=,30......2,1,0=r ,若要是幂指数是整数,所以=r 0,6,12,18,24,30,所以共6项,故选C . 3、若2531()x x +展开式中的常数项为 .(用数字作答)【答案】10【解】由题意得,令1x =,可得展示式中各项的系数的和为32,所以232n =,解得5n =,所以2531()x x +展开式的通项为10515r r r T C x -+=,当2r =时,常数项为2510C =,4、二项式82x的展开式中的常数项为 .【答案】112【解析】由二项式通项可得,3488838122rrr r rr r x C xx C --+-=-=)()()(T (r=0,1,,8),显然当2=r 时,1123=T ,故二项式展开式中的常数项为112.5、41(23)x x--的展开式中常数项等于________.【答案】14.【解析】因为41(2)(13)x x--中4(13)x -的展开式通项为4C (3)r r x -,当第一项取2时,04C 1=,此时的展开式中常数为2;当第一项取1x-时,14C (3)12x -=-,此时的展开式中常数为12;所以原式的展开式中常数项等于14,故应填14.6、设20sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰,则()622x ⎛-⋅+ ⎝的展开式中常数项是 .【答案】332=-332()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ⎛⎫=-+=+=-+= ⎪⎝⎭⎰⎰,6(=6的展开式的通项为663166((1)2r r rr r r r r T C C x ---+==-⋅⋅,所以所求常数项为3633565566(1)22(1)2T C C --=-⋅⋅+-⋅332=-.二、求特定项系数或系数和7、8()x -的展开式中62x y 项的系数是( )A .56B .56-C .28D .28-【答案】A【解析】由通式r r r y x C )2(88--,令2=r ,则展开式中62x y 项的系数是56)2(228=-C .8、在x (1+x )6的展开式中,含x 3项的系数是 .【答案】15【解】()61x +的通项16r rr T C x +=,令2r =可得2615C =.则()61x x +中3x 的系数为15.9、在6(1)(2)x x -⋅-的展开式中含3x 的项的系数是 .【解析】6(1)(2)x x -⋅-的展开式中3x 项由336)(2x C -和226)(x -x C -⋅)(两部分组成,所以3x 的项的系数为552-2636-=-C C .10、已知dx x n 16e 1⎰=,那么nxx (3-展开式中含2x 项的系数为 .【答案】135【解析】根据题意,66e111ln |6e n dx x x=⎰==,则n x x )(3-中,由二项式定理的通项公式1r n r rr n T C a b -+=,可设含2x 项的项是616(3)r r r r T C x -+=-,可知2r =,所以系数为269135C ⨯=.11、已知()()()()10210012101111x a a x a x a x +=+-+-++-L ,则8a 等于( )A .-5B .5C .90D .180【答案】D 因为1010(1)(21)x x +=-+-,所以8a 等于8210(2)454180.C -=⨯=选D.12、在二项式1)2nx -的展开式中,只有第5项的二项式系数最大,则=n ________;展开式中的第4项=_______.【答案】8,1937x -.【解析】由二项式定理展开通项公式21()(2)33111()()22n r n r r r r r rr nn T C x x C x -++=-⋅=-,由题意得,当且仅当4n =时,rn C 取最大值,∴8n =,第4项为1193)333381()72C x x +-=-.13、如果7270127(12)x a a x a x a x -=++++ ,那么017a a a +++ 的值等于( )(A )-1 (B )-2 (C )0 (D )2【解析】令1x =,代入二项式7270127(12)x a a x a x a x -=++++ ,得70127(12)1a a a a -=++++=- ,令0x =,代入二项式7270127(12)x a a x a x a x -=++++ ,得70(10)1a -==,所以12711a a a ++++=- ,即1272a a a +++=- ,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7 =﹣1,15、(x﹣2)(x﹣1)5的展开式中所有项的系数和等于 【答案】0解:在(x﹣2)(x﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0,所以展开式中所有项的系数和等于0.16、在*3)()n n N ∈的展开式中,所有项的系数和为32-,则1x 的系数等于.【答案】270-【解析】当1=x 时,()322--=n,解得5=n ,那么含x1的项就是()x x C 1270313225-=-⨯⎪⎪⎭⎫ ⎝⎛⨯,所以系数是-270.17、设0(sin cos )k x x dx π=-⎰,若8822108)1(x a x a x a a kx ++++=- ,则1238a a a a +++⋅⋅⋅+= .【答案】0.【解析】由0(sin cos )(cos sin )k x x dx x x ππ=-=--⎰(cos sin )(cos 0sin 0)2ππ=-----=,令1x =得:80128(121)a a a a -⨯=++++ ,即01281a a a a ++++= 再令0x =得:80128(120)000a a a a -⨯=+⨯+⨯++⨯ ,即01a =所以12380a a a a +++⋅⋅⋅+=18、设(5x﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M﹣N=240,则展开式中x 的系数为 .【答案】150解:由于(5x﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由二项式系数和为N=2n ,且M﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0.解得 2n =16,或 2n =﹣15(舍去),∴n=4.(5x﹣)n 的展开式的通项公式为 T r+1=?(5x )4﹣r ?(﹣1)r ?=(﹣1)r?54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r?54﹣r =1×6×25=150,19、设8877108)1(x a x a x a a x ++++=- ,则178a a a +++= .【答案】255【解析】178a a a +++= 87654321a a a a a a a a +-+-+-+-,所以令1-=x ,得到=82876543210a a a a a a a a a +-+-+-+-,所以2551256-20887654321=-==+-+-+-+-a a a a a a a a a 三、求参数问题20、若n的展开式中第四项为常数项,则n =( )A .4B .5C .6D .7【答案】B【解析】根据二项式展开公式有第四项为2533333342)21()(---==n nn nxC xx C T ,第四项为常数,则必有025=-n ,即5=n ,所以正确选项为B.21、二项式)()1(*N n x n ∈+的展开式中2x 的系数为15,则=n ( )A 、5 B 、 6 C 、8 D 、10【答案】B【解析】二项式)()1(*N n x n ∈+的展开式中的通项为k n kn k x C T -+⋅=1,令2=-k n ,得2-=n k ,所以2x 的系数为152)1(22=-==-n n C C n n n ,解得6=n ;故选B .22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵4r+14T =C r r r a x -,∴当43r -=,即1r =时,133324T =C 48,2ax ax x a ==∴=.23、若()()411x ax ++的展开式中2x 的系数为10,则实数a =( )A1 B .53-或1 C .2或53- D. 【答案】B.【解析】由题意得4(1)ax +的一次性与二次项系数之和为14,其二项展开通项公式14r r rr T C a x +=,∴22144101C a C a a +=⇒=或53-,故选B .24、设23(1)(1)(1)(1)n x x x x ++++++⋅⋅⋅++2012n n a a x a x a x =+++⋅⋅⋅+,当012254n a a a a +++⋅⋅⋅+=时,n 等于( )A .5B .6C .7D .8【答案】C. 【解析】令1x =,则可得2312(21)22222225418721n nn n n +-+++⋅⋅⋅+==-=⇒+=⇒=-,故选C .四、其他相关问题25、20152015除以8的余数为( )【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数.试题解析:解:∵20152015=2015=?20162015﹣?20162014+?20162013﹣20162012+…+?2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,。

高中数学 2二项式定理(带答案)

高中数学 2二项式定理(带答案)

二项式定理一.二项式定理1.右边的多项式叫做()n a b +的二项展开式2.各项的系数r n C 叫做二项式系数3.式中的r n r r n C a b -叫做二项展开式的通项,它是二项展开式的第1r +项,即1(0,1,2,,).r n r r r n T C a b r n -+==L4.二项展开式特点:共1r +项;按字母a 的降幂排列,次数从n 到0递减;二项式系数r n C 中r 从0到n 递增,与b 的次数相同;每项的次数都是.n二.二项式系数的性质性质1 ()n a b +的二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即m n m n n C C -=性质2 二项式系数表中,除两端以外其余位置的数都等于它肩上两个数之和,即11m m m n n n C C C -++=性质3 ()na b +的二项展开式中,所有二项式系数的和等于2n ,即012.n n n n n C C C +++=L (令1a b ==即得,或用集合的子集个数的两种计算方法结果相等来解释)性质4 ()na b +的二项展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和,即022132112.r r n n n n n n n C C C C C C +-++++=++++=L L L L (令1,1a b ==-即得)性质5 ()n a b +的二项展开式中,当n 为偶数时,中间一项的二项式系数2n n C 取得最大值;当n 为奇数时,中间两项的二项式系数12,n n C -12n n C +相等,且同时取得最大值.(即中间项的二项式系数最大)【题型精讲】题型一、展开式中的特殊项1.21()n x x -的展开式中,常数项为15,则n = A .3 B .4 C .5 D .62.在()()1n x n N *+∈的二项展开式中,若只有5x 的系数最大,则n = A .8 B. 9 C. 10 3.如果2323n x x ⎛⎫- ⎪⎝⎭的展开式中含有非零常数项,则正整数n 的最小值为( ) A.3B.5 C.6 D.10题型二、展开式的系数和1.已知()()()()100210001210012111.x a a x a x a x +=+-+-++-L 求:(1)0a ;(2)012100a a a a ++++L (3)13599a a a a ++++L ;2.(江西理4)已知33nx x ⎛⎫+ ⎪⎝⎭展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于( )A.4 B.5 C.6 D.7 3.(江西文5)设2921101211(1)(21)(2)(2)(2)x x a a x a x a x ++=+++++++L ,则01211a a a a ++++L 的值为( )A.2-B.1- C.1 D.2 4.(安徽文12)已知45235012345(1)x a a x a x a x a x a x -=+++++, ())(531420a a a a a a ++++ 的值等于 .题型三、一项展开:拆成两项除以9的余数是( )A .1B .2C .4D .8题型四、多项展开:1.(|x |+||1x -2)3展开式中的常数项是( ) A .12B .-12C .20D .-20 2.求()()()2111n x x x ++++++L 展开式中3x 项的系数.二项式定理1、展开式中的特殊项1.解.21()n x x -的展开式中,常数项为15,则223331()()15n n n n C x x -=,所以n 可以被3整除,当n=3时,13315C =≠,当n=6时,2615C =,选D 。

高二数学二项式定理与性质试题答案及解析

高二数学二项式定理与性质试题答案及解析

高二数学二项式定理与性质试题答案及解析1.已知,则.【答案】31【解析】令,可得;令,可得;两式结合可得.【考点】二项式定理的应用.2.在的二项式展开式中,只有第5项的二项式系数最大,则A.6B.7C.8D.9【答案】C【解析】因为在的二项式展开式中,只有第5项的二项式系数最大所以由此可得:,即所以即.【考点】二项式系数的应用.3.在二项式的展开式中(1)求展开式中含项的系数;(2)如果第项和第项的二项式系数相等,试求的值.【答案】(1)264;(2)或【解析】(1)写出二项式的展开式的特征项,当x的指数是3时,把3代入整理出的值,就得到这一项的系数的值.(2)根据上一问写出的特征项和第项和第项的二项式系数相等,表示出一个关于的方程,解方程即可.解题的关键是写出展开式的特征项,利用特征项的特点解决问题,注意代数式的整理,特别是当分母上带有变量时,注意整理.试题解析:(1)展开式第项:令,解得,∴展开式中含项的系数为(2)∵第项的二项式系数为,第项的二项式系数∴故或解得或【考点】(1)展开式项的系数;(2)二项式系数.4.在的展开式中,x6的系数是()A.﹣27B.27C.﹣9D.9【答案】D【解析】在的展开式中通项为,故x6为r=6,即第7项.代入通项公式得系数为.,故选D.【考点】二项式定理及二项式系数的性质.5.展开式中的常数项为.(用数字作答)【答案】40【解析】由二项式定理可知为常数项,则即,所以常数项为,答案为40.【考点】二项式定理)的展开式中含有常数项为第( )项6.(n∈N+A.4B.5C.6D.7【答案】B【解析】由二项展开式公式:,当,即时,为常数项,所以常数项为第5项.故选B【考点】二项展开式的应用.7.如果的展开式中各项系数之和为128,则展开式中的系数是()A.-2835B.2835C.21D.-21【答案】A【解析】由二项式定理可知展开式中各项系数和为解得,,由得,因此系数为,答案选A。

二项式定理(习题含答案)

二项式定理(习题含答案)

二项式定理一、 求展开式中特定项 1、在的展开式中,的幂指数是整数的共有( ) A .项 B .项 C .项 D .项 【答案】C 【解析】,,若要是幂指数是整数,所以0,6,12,18,24,30,所以共6项,故选C .3、若展开式中的常数项为 .(用数字作答)【答案】10【解】由题意得,令,可得展示式中各项的系数的和为32,所以,解得,所以展开式的通项为,当时,常数项为, 4、二项式的展开式中的常数项为 . 【答案】112【解析】由二项式通项可得,(r=0,1,,8),显然当时,,故二项式展开式中的常数项为112.5、的展开式中常数项等于________.【答案】.【解析】因为中的展开式通项为,当第一项取时,,此时的展开式中常数为;当第一项取时,,此时的展开式中常数为;所以原式的展开式中常数项等于,故应填. 6、设,则的展开式中常数项是 .【答案】 332,30x 4567()r r rrr r x C x x C T 6515303303011--+⋅=⎪⎪⎭⎫ ⎝⎛⋅⋅=30......2,1,0=r =r 2531()x x+1x =232n =5n =2531()x x+10515r rr T C x -+=2r =2510C=82)x3488838122rrr r rr r x C xx C --+-=-=)()()(T 2=r 1123=T 41(2)(13)x x--1441(2)(13)x x--4(13)x -4C (3)r rx -204C 1=21x-14C (3)12x -=-12141420sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰()622x ⎛⋅+ ⎝332=-()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ⎛⎫=-+=+=-+= ⎪⎝⎭⎰⎰的展开式的通项为,所以所求常数项为.二、 求特定项系数或系数和7、的展开式中项的系数是( )A .B .C .D . 【答案】A【解析】由通式,令,则展开式中项的系数是.8、在x (1+x )6的展开式中,含x 3项的系数是 . 【答案】15【解】的通项,令可得.则中的系数为15.9、在的展开式中含的项的系数是 . 【答案】-55【解析】的展开式中项由和两部分组成,所以的项的系数为. 10、已知,那么展开式中含项的系数为 . 【答案】135【解析】根据题意,,则中,由二项式定理的通项公式,可设含项的项是,可知,所以系数为.11、已知,则等于( )A .-5B .5C .90D .180【答案】D 因为,所以等于选D.12、在二项式 的展开式中,只有第5项的二项式系数最大,则________;展开式中的第4项=_______.6(=6663166((1)2r r r r r rr r T C C x ---+==-⋅⋅3633565566(1)22(1)2T C C --=-⋅⋅+-⋅332=-8()x 62x y 5656-2828-r r r y x C )2(88--2=r 62x y 56)2(228=-C ()61x +16r r r T C x +=2r =2615C =()61x x +3x 6(1)(2)x x -⋅-3x 6(1)(2)x x -⋅-3x 336)(2x C -226)(x -x C -⋅)(3x 552-2636-=-C C dx xn 16e 1⎰=nx x )(3-2x 66e111ln |6e n dx x x=⎰==n x x )(3-1r n r r r n T C a b -+=2x 616(3)r rr r T C x -+=-2r =269135C ⨯=()()()()10210012101111x a a x a x a x +=+-+-++-8a 1010(1)(21)x x +=-+-8a8210(2)454180.C -=⨯=1)2nx =n【答案】,.【解析】由二项式定理展开通项公式,由题意得,当且仅当时,取最大值,∴,第4项为. 13、如果,那么的值等于( )(A )-1 (B )-2 (C )0 (D )2 【答案】A【解析】令,代入二项式,得,令,代入二项式,得,所以,即,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7 =﹣1, 15、(x ﹣2)(x ﹣1)5的展开式中所有项的系数和等于 【答案】0 解:在(x ﹣2)(x ﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0, 所以展开式中所有项的系数和等于0. 16、在的展开式中,所有项的系数和为,则的系数等于 .【答案】【解析】当时,,解得,那么含的项就是,所以系数是-270. 17、设,若,则.【答案】0. 【解析】由81937x -21()(2)33111()()22n r n r r r r r r r nn T C x x C x -++=-⋅=-4n =r n C 8n =119(163)333381()72C x x +-=-7270127(12)x a a x a x a x -=++++017a a a +++1x =7270127(12)x a a x a x a x -=++++70127(12)1a a a a -=++++=-0x =7270127(12)x a a x a x a x -=++++70(10)1a -==12711a a a ++++=-1272a a a +++=-*3)()n n N -∈32-1x 270-1=x ()322--=n5=n x1()x x C 1270313225-=-⨯⎪⎪⎭⎫ ⎝⎛⨯0(sin cos )k x x dx π=-⎰8822108)1(x a x a x a a kx ++++=- 1238a a a a +++⋅⋅⋅+=0(sin cos )(cos sin )k x x dx x x ππ=-=--⎰,令得:,即再令得:,即所以18、设(5x ﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M ﹣N=240,则展开式中x 的系数为 . 【答案】150解:由于(5x ﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由二项式系数和为N=2n ,且M ﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0. 解得 2n =16,或 2n =﹣15(舍去),∴n=4. (5x ﹣)n 的展开式的通项公式为 T r+1=?(5x )4﹣r ?(﹣1)r ?=(﹣1)r ?54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r??54﹣r=1×6×25=150,19、设,则 .【答案】 【解析】,所以令,得到, 所以 三、 求参数问题20、若的展开式中第四项为常数项,则( )A .B .C .D .【答案】B【解析】根据二项式展开公式有第四项为,第四项为常数,则必有,即,所以正确选项为B. 21、二项式的展开式中的系数为15,则( )(cos sin )(cos0sin 0)2ππ=-----=1x =80128(121)a a a a -⨯=++++01281a a a a ++++=0x =80128(120)000a a a a -⨯=+⨯+⨯++⨯01a =12380a a a a +++⋅⋅⋅+=8877108)1(x a x a x a a x ++++=- 178a a a +++=255178a a a +++=87654321a a a a a a a a +-+-+-+-1-=x =82876543210a a a a a a a a a +-+-+-+-2551256-20887654321=-==+-+-+-+-a a a a a a a a a nn =45672533333342)21()(---==n nn nxC xx C T 025=-n 5=n )()1(*N n x n ∈+2x =nA 、5B 、 6C 、8D 、10 【答案】B【解析】二项式的展开式中的通项为,令,得,所以的系数为,解得;故选B . 22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵,∴当,即时,. 23、若的展开式中的系数为10,则实数( ) A1 B .或1 C .2或 D . 【答案】B.【解析】由题意得的一次性与二次项系数之和为14,其二项展开通项公式,∴或,故选B . 24、设,当时,等于( )A .5B .6C .7D .8 【答案】C . 【解析】令,则可得,故选C . 四、 其他相关问题25、20152015除以8的余数为( ) 【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数. 试题解析:解:∵20152015=2015=?20162015﹣?20162014+?20162013﹣?20162012+…+?2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,)()1(*N n x n ∈+k n kn k x C T -+⋅=12=-k n 2-=n k 2x 152)1(22=-==-n n C C n n n 6=n 4r+14T =C r r r a x-43r -=1r =133324T =C 48,2ax ax x a ==∴=()()411x ax ++2x a =53-53-4(1)ax +14r r rr T C a x +=22144101C a C a a +=⇒=53-23(1)(1)(1)(1)n x x x x ++++++⋅⋅⋅++2012n n a a x a x a x =+++⋅⋅⋅+012254n a a a a +++⋅⋅⋅+=n 1x =2312(21)22222225418721n nn n n +-+++⋅⋅⋅+==-=⇒+=⇒=-。

高考数学《二项式定理》真题含答案

高考数学《二项式定理》真题含答案

高考数学《二项式定理》真题含答案一、选择题1.(x +1)6的展开式中的第二项为( )A .6xB .15x 2C .6x 5D .15x 4答案:C2.⎝⎛⎭⎫x 2-2x 3 5 的展开式中的常数项为( ) A .80 B .-80C .40D .-40答案:C解析:由二项展开式通项知T k +1=(-2)k C k 5 ·(x 2)5-k ⎝⎛⎭⎫1x 3 k=(-2)k C k 5 x 10-5k ,令10-5k =0,得k =2.∴常数项为T 3=(-2)2C 25 =40.3.(多选)已知(a +2b )n 的展开式中第6项的二项式系数最大,则n 的值可能为( )A .8B .9C .10D .11答案:BCD4.若(x +2)⎝⎛⎭⎫a x -x 5 展开式中的常数项为80,则a =( )A .-2B .2C .±2D .4答案:B解析:⎝⎛⎭⎫a x -x 5 的展开式的通项公式为T k +1=C k 5 ·(-1)k ·a 5-k ·x 2k -5,显然,2k -5为奇数,故(x +2)⎝⎛⎭⎫a x -x 5 展开式中的常数项为C 25 ·a 3=80,所以a =2. 5.若(x -2y )6的展开式中的二项式系数和为S ,x 2y 4的系数为P ,则P S为( ) A .152 B .154C .120D .240答案:B解析:由题意得S =26=64,P =C 46 (-2)4=15×16=240,∴P S =24064 =154. 6.在二项式⎝⎛⎭⎫x +3x n 的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且A +B =72,则展开式中常数项的值为( )A .6B .9C .12D .18答案:B解析:在⎝⎛⎭⎫x +3x n的展开式中令x =1,得A =4n ,各项二项式系数之和为B =2n ,由 4n +2n =72,得n =3,∴⎝⎛⎭⎫x +3x n =⎝⎛⎭⎫x +3x 3 ,其通项为T k +1=C k 3 (x )3-k ⎝⎛⎭⎫3x k =3k C k 3 x 3-3k 2,令3-3k 2=0,得k =1,故展开式的常数项为T 2=3C 13 =9. 7.⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数为( ) A .5 B .10C .15D .20答案:C解析:要求⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数,只要分别求出(x +y )5的展开式中x 2y 3和x 4y 的系数再相加即可,由二项式定理可得(x +y )5的展开式中x 2y 3的系数为C 35 =10,x 4y 的系数为C 15 =5,故⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数为10+5=15.故选C. 8.设S =(x -1)4+4(x -1)3+6(x -1)2+4(x -1)+1,则S =( )A .(x -2)4B .(x -1)4C .x 4D .(x +1)4答案:C解析:S =C 04 (x -1)4+C 14 (x -1)3+C 24 (x -1)2+C 34 (x -1)1+C 44 (x -1)0=(x -1+1)4=x 4.9.(多选)已知(2+x )(1-2x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则( )A .a 0的值为2B .a 5的值为16C .a 1+a 2+a 3+a 4+a 5+a 6的值为-5D .a 1+a 3+a 5的值为120答案:ABC解析:对于A ,令x =0,得a 0=2×1=2,故A 正确;对于B ,(1-2x )5的展开式的通项T k +1=C k 5 (-2x )k =(-2)k C k 5 x k ,所以a 5=2×(-2)5C 55 +1×(-2)4C 45 =-64+80=16,故B 正确;对于C ,令x =1,得(2+1)(1-2×1)5=a 0+a 1+a 2+a 3+a 4+a 5+a 6 ①,即a 1+a 2+a 3+a 4+a 5+a 6=-3-a 0=-3-2=-5,故C 正确;对于D ,令x =-1,得(2-1)[1-2×(-1)]5=a 0-a 1+a 2-a 3+a 4-a 5+a 6 ②,由①②解得a 1+a 3+a 5=-123,故D 不正确.综上所述,选ABC.二、填空题10.[2024·全国甲卷(理)](13+x )10的展开式中,各项系数中的最大值为______. 答案:5解析:方法一 二项式(13 +x )10的展开式的通项为T k +1=C k 10 (13)10-k x k . 由⎩⎨⎧Ck 10 (13)10-k >C k -110 (13)11-k ,C k 10 (13)10-k >C k +110 (13)9-k ,解得294 <k <334. 又k ∈N *,所以k =8.所以所求系数的最大值为C 810 (13 )2=5.方法二 展开式中系数最大的项一定在下面的5项中:C 510 (13 )5x 5,C 610 (13)4x 6,C 710 (13 )3x 7,C 810 (13 )2x 8,C 910 (13 )1x 9,计算可得,所求系数的最大值为C 810 (13)2=5. 11.在二项式(2 +x )9的展开式中,常数项是________,系数为有理数的项的个数是______________.答案:162 5解析:该二项展开式的第k +1项为T k +1=C k 9 (2 )9-k x k ,当k =0时,第1项为常数项,所以常数项为(2 )9=162 ;当k =1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5.12.在(x -1x)7的展开式中,系数最大的是第________项. 答案:5解析:二项式⎝⎛⎭⎫x -1x 7的展开式的通项为T k +1=C k 7 ·x 7-k ·(-1)k x -k =(-1)k C k 7 x 7-2k ,故第k +1项的系数为(-1)k C k 7 ,当k =0,2,4,6时,系数为正,因为C 07 <C 67 <C 27 <C 47 ,所以当k =4时,系数最大,是第5项.。

高中数学选择性必修三 专题02二项式定理(含答案)高二数学下学期期中专项复习

高中数学选择性必修三 专题02二项式定理(含答案)高二数学下学期期中专项复习

专题02二项式定理一、单选题1.(2020·吐鲁番市高昌区第二中学高二期末)101x x ⎛⎫+ ⎪⎝⎭展开式中的常数项为( ) A .第5项 B .第5项或第6项 C .第6项D .不存在【答案】C 【详解】解:根据题意,101()x x +展开式中的通项为10102110101()()()r r r rr r T C x C x x--+==, 令1020r -=,可得=5r ;则其常数项为第516+=项; 故选C .2.(2021·全国高二课时练习)在521x x ⎛⎫+- ⎪⎝⎭的展开式中,2x 项的系数为( )A .50-B .30-C .30D .50【答案】B 【详解】521x x ⎛⎫+- ⎪⎝⎭表示5个因式21x x ⎛⎫+- ⎪⎝⎭的乘积,在这5个因式中,有2个因式都选x -,其余的3个因式都选1,相乘可得含2x 的项; 或者有3个因式选x -,有1个因式选1x,1个因式选1,相乘可得含2x 的项, 故2x 项的系数为()231552230C C C +-⋅⋅=-, 故选B .3.(2020·江苏高一期中)二项式43123nx x ⎛⎫- ⎪⎝⎭的展开式中含有非零常数项,则正整数n 的最小值为( ) A .8 B .7C .6D .5【答案】B 【详解】由43123nx x ⎛⎫- ⎪⎝⎭得:展开式的通项为471123rn r r n rr n T C x--+⎛⎫=- ⎪⎝⎭, 令470n r -=, 据题意此方程有解,74r n ∴=, 当4r =时,n 最小为7,故选:B.4.(2021·山东济宁市·高三一模)若()52mx m⎫-∈⎪⎭R 的展开式中5x 的系数是80,则实数m =( ) A .2- B .1-C .1D .2【答案】A 【详解】二项式展开式的通项为()()552552215r rrrr r r T C m C mx x--+-=-=,令55522r -=,得3r =, 则()33554580T m C x x =-=,所以()33580m C -=,解得2m =-.故选:A5.(2020·山东枣庄市·高二期末)若()712x ax x ⎛⎫+- ⎪⎝⎭展开式的常数项等于280- ,则a =( )A .3-B .2-C .2D .3【答案】C 【详解】解:71ax x ⎛⎫- ⎪⎝⎭展开式的通项公式为:()()7271771kkkk kk k T C ax C a x x --+⎛⎫=-=- ⎪⎝⎭,所以当3k =时,1x项的系数为:()337C a -, 71ax x ⎛⎫- ⎪⎝⎭的展开式无常数项,所以()712x ax x ⎛⎫+- ⎪⎝⎭展开式的常数项为:()337280C a -=-,解得:2a =故选:C.6.(2021·贵州高三开学考试(理))已知二项式1nx x ⎛⎫- ⎪⎝⎭的展开式中,第二项和第四项的二项式系数相等,则n =( ) A .6 B .5 C .4 D .3【答案】C 【详解】因为二项式展开式中第二项和第四项的二项式系数相等, 所以31n n C C =, 所以4n =, 故选:C7.(2021·湖北黄冈市·高二期末)已知二项式()21nx -的展开式中仅有第4项的二项式系数最大,则展开式中3x 项的系数为( ) A .-80 B .80 C .-160 D .-120【答案】C 【详解】解:因为二项式()21nx -的展开式中仅有第4项的二项式系数最大,所以6n =,所以()621x -的展开式的通项为()()61621rrrr T C x -+=-,令6r 3-=,得3r =,故()()333331621160T C x x +=-=-,故展开式中3x 的系数为160- 故选:C8.(2020·安徽省太和第一中学高二月考(理))已知7280128(2)(1)(1)(1)x x a a x a x a x -=+-+-+⋯⋯+-,则56a a +=( )A .14-B .0C .14D .28-【答案】B 【详解】解:由题知,7280128(2)(1)(1)(1)x x a a x a x a x -=+-+-+⋯⋯+-,且()()77(2)1111x x x x -=-+--⎡⎤⎡⎤⎣⎦⎣⎦,则()()235457711114a C C =⋅-+⋅⋅-=-, ()()126567711114a C C =⋅-+⋅⋅-=,所以5614140a a +=-+=. 故选:B.9.(多选)(2021·全国高三其他模拟)已知7270127(12)x a a x a x a x -=+++⋅⋅⋅+,则( ) A .01a = B .3280a =-C .1272a a a ++⋅⋅⋅+=-D .127277a a a ++⋅⋅⋅+=- 【答案】ABC 【详解】因为7270127(12)x a a x a x a x -=+++⋅⋅⋅+ 令0x =,得01a =,故选项A 正确; 令1x =,得01271a a a a -=+++⋅⋅⋅+, 所以1272a a a ++⋅⋅⋅+=-,故选项C 正确;易知该二项展开式的通项 7177C 1(2)(2)C r r r r r rr T x x -+=-=-,所以3337(2)C 280a =-=-,故选项B 正确;对7270127(12)x a a x a x a x -=+++⋅⋅⋅+两边同时求导,得6612714(12)27x a a x a x --=++⋅⋅⋅+, 令1x =,得1272714a a a ++⋅⋅⋅+=-,故选项D 错误. 故选::ABC10.(多选)(2021·全国高二课时练习)(多选题)若二项式6(x+展开式中的常数项为15,则实数m 的值可能为( ) A .1B .-1C .2D .-2【答案】AB 【详解】二项式6x⎛⎝展开式的通项为,661rr r r C x T -+=3626rr r x m C -=,令3602r -=,得4r =, 常数项为44615C m =,41m =,得1m =±,故答案为±1.故选:AB11.(多选)(2020·江苏宿迁市·宿迁中学高二期中)对于()()N na b n *+∈展开式的二项式系数下列结论正确的是( )A .m n m n n C C -=B .11m m mn n n C C C -++=C .当n 为偶数时,012...2n n n n n n C C C C ++++=D .012...2n nn n n n C C C C ++++= 【答案】ABCD 【详解】解:选项A :由组合数的运算直接可得m n mn n C C -=,故选项A 正确; 选项B :由杨辉三角直接可得11m m mn n n C C C -++=,故选项B 正确;选项C :二项式展开式中,令1a b ==,不论n 为奇数还是偶数,都可得012...2n nn n n n C C C C ++++=,故选项C 正确;选项D :由选项C 可知012...2nnn n n n C C C C ++++=,故选项D 正确. 故选:ABCD12.(多选)(2021·江苏省天一中学高三二模)已知6112a x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则下列结论正确的有( )A .1a =B .展开式中常数项为160C .展开式系数的绝对值的和1458D .若r 为偶数,则展开式中r x 和1r x -的系数相等 【答案】ACD 【详解】对于A , 6112a x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭ 令二项式中的x 为1得到展开式的各项系数和为1a +,12a ∴+=1a ,故A 正确;对于B ,661111212a x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+-=+- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ 6611122x x x x x ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,612x x ⎛⎫- ⎪⎝⎭展开式的通项为66621(1)2r r r r r T C x --+=-,当612x x ⎛⎫- ⎪⎝⎭展开式是中常数项为:令620r -=,得3r = 可得展开式中常数项为:33346(1)2160T C =-=-,当6112x x x ⎛⎫- ⎪⎝⎭展开式是中常数项为: 662665261(1)2(1)2r r r r r r r rC xC x x ----=⋅-- 令520r -=,得52r =(舍去) 故6112a x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中常数项为160-.故B 错误; 661111212a x xx x x x ⎛⎫⎛⎫⎛⎫⎛⎫+-=+- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭对于C ,求其展开式系数的绝对值的和与61112x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式系数的绝对值的和相等 61112xx x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭,令1x =,可得:66111112231458⎛⎫⎛⎫++⨯ ⎪⎪⎝⎭⎝==⎭ ∴61112x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式系数的绝对值的和为:1458.故C 正确; 对于D ,66611111222a x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+-=-+- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭612x x ⎛⎫- ⎪⎝⎭展开式的通项为66621(1)2r r r r r T C x --+=-, 当r 为偶数,保证展开式中r x 和1r x -的系数相等 ①2x 和1x 的系数相等,61112x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式系数中2x 系数为:622226(1)2C x -- 展开式系数中1x 系数为:622226(1)2C x --此时2x 和1x 的系数相等, ②4x 和3x 的系数相等,61112x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式系数中4x 系数为:15146(1)2C x - 展开式系数中3x 系数为:15146(1)2C x -此时4x 和3x 的系数相等, ③6x 和5x 的系数相等,61112x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式系数中6x 系数为:66600(1)2C x -展开式系数中5x 系数为:66600(1)2C x -此时6x 和5x 的系数相等,故D 正确;综上所在,正确的是:ACD 故选:ACD. 二、填空题13.(2020·全国高二课时练习)在如图所示的三角形数阵中,从第3行开始,每一行除1以外,其他每一个数字都是其上一行的左、右两个数字之和.若在此数阵中存在某一行,满足该行中有三个相邻的数字之比为4:5:6,则这一行是第______行(填行数). 第0行 1 第1行 1 1 第2行 1 2 1 第3行 1 3 3 1 第4行 1 4 6 4 1 第5行 1 5 10 10 5 1 第6行 1 6 15 20 15 6 1 【答案】98 【详解】三角形数阵中,第n 行的数由二项式系数(),,kn C k N N k n n ∈∈≤组成,如果第n 行中有1415k n k n C k C n k -==-+,1156kn k n C k C n k ++==-, 那么9445116k n n k -=⎧⎨-=⎩,解得9844n k =⎧⎨=⎩,故答案为:98.14.(2020·湖南高二月考)如图中的杨辉三角最早出现于我国南宋数学家杨辉1261年所著的《详解九章算法》.它有很多奇妙的性质,如除1以外的每个数等于它“肩上”两数之和、揭示了()na b +(n 为非负整数)展开式的项数及各项系数的有关规律等.由此可得图中第7行从左到右数第4个数是______;第n 行的所有数字之和为______.【答案】35 2n 【详解】解:根据除1以外的每个数等于它“肩上”两数之和得第7行从左到右数第4个数是第6行从左到右数第3个与第4个数之和,即152035+=;第n 行的所有数字之和为()na b +的展开式的所有项的二项式系数和2n .。

精英教育-高中二项式定理(答案)

精英教育-高中二项式定理(答案)

精英教育学科教师辅导教案学员编号:所属年级:高一课时数:3学员姓名:辅导科目:数学学科教师:课程主题:LBFZ-一阶-030-二项式定理授课时间:2020-02-02 第四档学习目标1.会用二项式定理解决与二项展开式有关的简单问题教学内容一、二项式定理【知识梳理】1.展开式及通项公式:(1)等号右边的展开式叫的二项展开式,一共有n+1项,其中叫做二项式系数.(2)二项展开式中的第k+1项通项公式:.(3)性质①对称性:在的二项展开式中,与首末两端“等距离”的两项的二项式系数相等.②的二项展开式中,所有二项式系数的和等于.即:.③若是偶数,则中间项(第项)的二项式系数最大;若是奇数,则中间两项(第项和第项)的二项式系数和最大.④奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令,则,从而得到:⑤奇数项的系数和与偶数项的系数和:【例题精讲】例1.若将函数ff(xx)=xx6表示成ff(xx)=aa0+aa1(xx−1)+aa2(xx−1)2+aa3(xx−1)3+⋯+aa6(xx−1)6,则aa3的值等于.【答案】20例2.若二项式�xx+aa xx�6展开式的常数项为20,则aa=.【答案】1例3.若�2xx+√3�4=aa0+aa1xx+aa2xx2+aa3xx3+aa4xx4,(aa0+aa2+aa4)2−(aa1+aa3)2的值为.【答案】1例4.设(1−2xx)2019=aa0+aa1xx+aa2xx2+⋯+aa2019xx2019,则aa12+aa222+⋯+aa201922019的值为()A.2; B.0; C.−1; D.1.【答案】C例5.�1+1xx2�(1+xx)6展开式中xx2的系数为__________.【答案】30例6.已知(1+xx)+(1+xx)2+(1+xx)3+⋯+(1+xx)nn=aa0+aa1xx+aa2xx2+⋯+aa nn xx nn,且aa0+aa1+ aa2+⋯+aa nn=126,那么�√xx−1√xx�nn的展开式中的常数项为.【答案】−203+1xx�nn的展开式中各项系数的和为pp,二项式系数的和为qq,且pp+qq=272,则nn的例7.设二项式�3√xx值为.【答案】4例8.若�√xx+2xx2�nn的展开式中只有第六项的二项式系数最大,则展开式中的常数项是.【答案】180例9.(1+2xx)nn的二项展开式中,含xx3项的系数等于含xx项的系数的8倍,则正整数nn= .【答案】5例10.已知二项式展开式(1−2xx)7=aa0+aa1xx+aa2xx2+⋯+aa7xx7,且复数zz=12aa1+aa7128ii,则复数zz的模|zz|=_________.(其中ii是虚数单位)【答案】5√2例11.二项式(xx+1)6的展开式中的第三项为.【答案】15xx4例12.二项式�√xx+1√xx3�40的展开式中,其中是有理项的项数共有()A.4项;B.7项;C.5项;D.6项.【答案】B【巩固练习】1.若(1+2xx)nn(nn∈NN∗)展开式中各项系数和为243,则nn=【答案】52.“nn =4”是“�xx +1xx �nn的二项展开式中存在常数项”的()A.充分不必要条件;B.必要不充分条件;C.充要条件;D.既不充分也不必要条件.【答案】A3.二项展开式�xx +2xx2�6中第三项的系数是________.【答案】404.二项式(2+2bb )nn 的展开式中仅有第六项的二项式系数最大,则展开式中系数最大的是第____________项【答案】85.在�xx 3−1xx2�10的二项展开式中,常数项的值是.(结果用数值表示)【答案】210 6.已知二项式�√xx +12√xx4�nn的展开式中,前三项的二项式系数之和为37,则展开式中的第五项为.【答案】358xx二、二项式定理综合复习【知识梳理】1.【例题精讲】例1.2100被9除的余数为____________.【答案】7例2.若�xx+12xx�nn(nn≥4,nn∈NN∗)的二项展开式中前三项的系数依次成等差数列,则nn=_____.【答案】8例3.小聪同学在证明公式CC nn mm+CC nn mm−1=CC nn+1mm的过程中,想到了如下证法:从装有nn+1个球(其中nn个白球,1个黑球)的口袋中取出mm个球,0<mm<nn,mm,nn∈NN,共有CC nn+1mm种取法,在这CC nn+1mm取法中,可以分成两类:一类是取出的mm个球全部为白球,另一类是取出1个黑球和(mm−1)个白球,共有CC10CC nn mm+ 1mm−1种取法,即有等式CC mm mm−1mm成立,试根据上述思想,化简下列式子:CC mm1mm−1CC kk2CC nn nn−1+⋯+CC kk kk CC nn mm−kk= .(1≤kk<mm≤nn,kk,mm,nn∈NN)【答案】CC nn+kk mm例4.设nn∈NN∗,aa nn为(xx+4)nn−(xx+1)nn的展开式的各项系数之和,cc=34tt−2,tt∈RR,bb nn=�aa15�+�2aa252�+⋯+�nnaa nn5nn�([xx]表示不超过实数的最大整数).则(nn−tt)2+(bb nn+cc)2的最小值为 .【答案】425例5.若今天是星期天,则天后是星期__________ .【解答】略【答案】六例6.已知,则__________【解答】略【答案】<img class="kfformula"src=" NSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAFWSURBVEhL7ZQxTsMwFIYDN6jYGLlAD0CXMjJ DVTEjcQO2jr0CEicAiYWR例7.在由二项式系数所构成的杨辉三角中,第__________ 行中从左至右第14个数与第15个数的比为2:3.【解答】略【答案】34例8.的近似值为__________ .【解答】略【答案】0.988例9.二项式�√3ii−xx�10(ii为虚数单位)的展开式中第8项是()A.−135xx7; B.135xx7;C.360√3ii xx7; D.−360√3ii xx7.【答案】C【巩固练习】1.的二项展开式中所有二项式系数总和是__________【解答】略【答案】322.若,且,则__________ .【解答】略.【答案】3.3.的二项展开式中所有项系数总和是__________【解答】略【答案】<img class="kfformula"src=" SR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAHFSURBVFhH7ZY7LwVBGIYXP8CtREOJEAkSl0rFL3 AUWoUoaUSp1CokElFp4.已知(1+xx+xx2)�xx+1xx3�nn的展开式中没有常数项,nn∈NN∗且2≤nn≤8,则nn=_______【答案】55.已知数列的通项公式为,则__________ .【解答】略【答案】706.从个互异元素中每次取出不少于个元素的所有不同组合数的和为__________ .【解答】略【答案】1.在�2xx−xx�6的二项展开式中,常数项等于()A.−160;B.160;C.−150;D.150.【答案】A2.若(xx+aa)7的二项展开式中,含xx6项的系数为7,则实数aa=.【答案】13.在(xx+1)4的二项展开式中,xx2项的系数为()A.6B.4C.2D.1【答案】AA4.在�xx−12xx�6的展开式中,xx4的系数为()A.−3;B.−12;C.3;D.6.【答案】A5.�1−√xx�nn展开式的二项式系数之和为256,则展开式中xx的系数为【答案】−566.设(1+xx)nn=aa0+aa1xx+aa2xx2+aa3xx3+⋯+aa nn xx nn,若aa2aa3=13,则nn=.【答案】117.�√xx+1aa√xx4�nn的展开式中,奇数项的二项式系数之和为128,且前三项系数成等差数列.(1)求aa的值;(2)若aa<3,展开式有多少有理项?写出所有有理项.【解答】(1)因为奇数项的二项式系数之和为128,所以2nn−1=128,解得nn=8,所以二项式为�√xx+1aa√xx4�8第一项:TT1=TT0+1=CC80�√xx�8�1aa√xx4�0=xx4,系数为1,第二项:TT2=TT1+1=CC81�√xx�7�1aa√xx4�1=8aa xx134,系数为8aa,第三项:TT3=TT2+1=CC82�√xx�6�1aa√xx4�2=28aa2xx52,系数为28aa2,由前三项系数成等差数列得:2×8aa=1+28aa2,解得aa=2或aa=14.(2)若aa<3,由(1)得二项式为�√xx+12√xx4�8,通项为:TT rr+1=CC8rr�√xx�8−rr�12√xx4�rr=CC8rr2rr xx16−3rr4,其中rr=0,1,2…,8所以16−3rr4≤4,令16−3rr4=4即rr=0,此时TT1=CC80xx4=xx4;令16−3rr4=3即rr=43,不符题意;令16−3rr4=2即rr=83,不符题意;令16−3rr4=1即rr=4,此时TT5=CC8424xx=358xx;令16−3rr4=0即rr=163,不符题意;令16−3rr4=−1即rr=203,不符题意;令16−3rr4=−2即rr=8,此时TT9=CC8828xx−2=1256xx−2综上,有3项有理项,分别是:TT1=CC80xx4=xx4,TT5=CC8424xx=358xx,TT9=CC8828xx−2=1256xx−2.【答案】(1)2或14;(2)TT1=xx4,TT5=CC84124xx=358xx,TT9=CC88128xx=1256xx−2.8.设xx∈RR,用[xx]表示不超过xx的最大整数(如[2.32]=2,[−4.76]=−5),对于给定的nn∈NN∗,定义CC nn xx=nn(nn−1)⋯(nn−[xx]+1)xx(xx−1)⋯(xx−[xx]+1),其中xx∈[1,+∞),则当时,函数ff(xx)=CC10xx的值域是____________________.【答案】9.在(2xx−3yy)9的展开式中,求:(1)各项的系数之和;(2)各项系数的绝对值之和;(3)从中任取一项,二项式系数为奇数的概率PP.【解答】(1)在(2xx−3yy)9二项展开式中,令xx=1,yy=1,可得各项的系数和为(2−3)9=−1(2)由题意可得(2xx−3yy)9各项系数的绝对值之和即为(2xx+3yy)9展开式中各项系数之和,令xx=1,yy=1,得系数之和为59=1953125(3)依题意,(2xx−3yy)9展开式的系数的通项为CC9rr⋅29−rr⋅3rr,系数共有10个,当0≤rr≤8时,系数中含有2的次方项,该系数一定为偶数,当且仅当rr=9时,系数为奇数,所以二项式系数为奇数的概率PP=110.【答案】(1)−1;(2)59=1953125;(3)110.10.已知(aa+3bb)nn展开式中,各项系数的和与各项二项式系数的和之比为64,则nn=______.【答案】6●课堂错题收集●学霸笔记本:教师引导学生借助知识脑图总结重难点课后巩固●请将本次课错题组卷,进行二次练习,培养错题管理习惯●学霸笔记复习,培养复习习惯预习内容。

二项式定理(含答案)

二项式定理(含答案)

二项式定理1.若对于任意实数x ,有3230123(2)(2)(2)x a a x a x a x =+-+-+-,则2a 的值为( )A .3B .6C .9D .122. 在()()1n x n N *+∈的二项展开式中,若只有5x 的系数最大,则n =A .8B . 9 X. 10 D .113. 已知n 展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于( )A.4B.5C.6 D.74.设2921101211(1)(21)(2)(2)(2)x x a a x a x a x ++=+++++++ ,则01211a a a a ++++ 的值为( )A.2-B.1-C.1 D.25. 如果2323nx x ⎛⎫- ⎪⎝⎭的展开式中含有非零常数项,则正整数n 的最小值为( ) A.3B.5C.6D.106. (1+2x 2)(x -1x)8的展开式中常数项为 。

(用数字作答)7.若(ξ+12x)ν的展开式中前三项的系数成等差数,则展开式中ξ4项的系数为 (A)6(B)7(X)8 (∆)98. 若9m x⎛-⎝的展开式中3x 的系数是94,则常数m 的值为9. 已知n 展开式中,各项系数的和与其各项二项式系数的和之比为64, (1)求n ;(2)求二项式系数最大的项;(3)求关于x 的有理项;(4)是否存在常数项?若存在,求出常数项,若不存在,说明理由。

10.设*,m n N ∈,函数()(1)(1)m n f x x x =+++中的x 一次项系数是19,求()f x 的二次项系数的最小值.11.若(2)2011=220110122011a a x a x a x ++++ ,求20242010()a a a a ++++ - 2132011()a a a +++ 的值.答案:BCCA ;B (6)42-B (8)4(9)6=n ;(10)81;(11)1作业:1.若二项式⎝⎛⎭⎫x 2-2x n 的展开式中二项式系数的和是64,则展开式中的常数项为( )A .-240B .-160C .160D .2402.⎝⎛⎭⎫x 2+2x 8的展开式中x 4的系数是( )A .16B .70C .560D .1 1203.在⎝ ⎛⎭⎪⎫x2-13x n 的展开式中,只有第5项的二项式系数最大,则展开式中常数项是() A .-7 B .7 C .-28 D .284.如果⎝ ⎛⎭⎪⎫3x -13x 2n 的展开式中二项式系数之和为128,则展开式中1x3的系数是( )A .7B .-7C .21D .-21 5.(2010·全国⎺)(1+2x )3(1-3x )5的展开式中x 的系数是( )A .-4B .-2C .2D .46.C 22n +C 42n + +C 2k 2n + +C 2n 2n 的值为( )A .2nB .22n -1C .2n -1D .22n -1-17.(2010·湖北)在(x +43y )20的展开式中,系数为有理数的项共有________项.8.(x -y )10的展开式中,x 7y 3的系数与x 3y 7的系数之和等于________.9.(1+x )+(1+x )2+ +(1+x )6的展开式中x 2的系数为________.10.已知在⎝ ⎛⎭⎪⎪⎫3x -123x n 的展开式中,第6项为常数项.(1)求n ; (2)求含x 2项的系数;(3)求展开式中所有的有理项.11.设(3x -1)8=a 8x 8+a 7x 7+ +a 1x +a 0,求:(1)a 8+a 7+ +a 1;(2)a 8+a 6+a 4+a 2+a 0.12.(1)求⎝⎛⎭⎫x 2-12x 9的展开式中的常数项; (2)已知⎝⎛⎭⎫a x- x 29的展开式中x 3的系数为94,求常数a 的值; (3)求(x 2+3x +2)5的展开式中含x 的项.作业答案:1.D2.D3.B4.C5.C6.D7.68.-2409.3510. (1)n =10.(2) 454;(3)C 210⎝⎛⎭⎫-122x 2,C 510⎝⎛-125,C 810⎝⎛⎭⎫-128x -2. 11. 12(28+48);12. 解 (1) 2116;(2) a =4.(3)240x .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二项式定理
一.二项式定理
1.右边的多项式叫做()n
a b +的二项展开式
2.各项的系数r
n C 叫做二项式系数
3.式中的r n r
r n C a
b -叫做二项展开式的通项,它是二项展开式的第1r +项,即
1(0,1,2,
,).r n r r r n T C a b r n -+==
4.二项展开式特点:共1r +项;按字母a 的降幂排列,次数从n 到0递减;二项式系数r n C 中r 从0到
n 递增,与b 的次数相同;每项的次数都是.n
二.二项式系数的性质
性质1 ()n
a b +的二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即m n m n n C C -= 性质2 二项式系数表中,除两端以外其余位置的数都等于它肩上两个数之和,即11m m m
n n n C C C -++= 性质3 ()n
a b +的二项展开式中,所有二项式系数的和等于2n
,即012.n n n n n C C C ++
+=
(令1a b ==即得,或用集合的子集个数的两种计算方法结果相等来解释) 性质4 ()n
a b +的二项展开式中,奇数项的二项式系数的和等于偶数项
的二项式系数的和,即
02
213
21
12.r r n n n n n n n C C C C C C +-++
++
=++
++
=
(令1,1a b ==-即得)
性质5 ()n
a b +的二项展开式中,当n 为偶数时,中间一项的二项式系数2n n
C 取得最大值;当n 为奇数时,中间两项的二项式系数1
2,n n
C -1
2n n
C
+相等,且同时取得最大值.(即中间项的二项式系数最大)
【题型精讲】
题型一、展开式中的特殊项
1.2
1()n x x
-的展开式中,常数项为15,则n =
A .3
B .4
C .5
D .6 2.在()
()1n
x n N *
+∈的二项展开式中,若只有5
x
的系数最大,则n =
A .8
B . 9 C. 10 D .11
3.如果2323n
x x ⎛
⎫- ⎪⎝
⎭的展开式中含有非零常数项,则正整数n 的最小值为( )
A.3
B.5 C.6 D.10
题型二、展开式的系数和
1.已知()
()()()100
2
100
01210012111.x a a x a x a x +=+-+-+
+-
求:(1)0a ;(2)012100a a a a ++++(3)13599a a a a +++
+;
2.(江西理4)已知3
3n
x x ⎛
⎫+ ⎪⎝
⎭展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于( ) A.4
B.5
C.6 D.7
3.(江西文5)设292
1101211(1)(21)(2)(2)(2)x x a a x a x a x ++=+++++
++,则01211a a a a ++++的值为
( ) A.2- B.1- C.1
D.2
4.(安徽文12)已知45235
012345(1)x a a x a x a x a x a x -=+++++, ())(531420a a a a a a ++++ 的值等
于 .
题型三、一项展开:拆成两项
1.233
除以9的余数是( )
A .1
B .2
C .4
D .8
题型四、多项展开:
1.(|x |+
|
|1x -2)3
展开式中的常数项是( ) A .12 B .-12 C .20 D .-20
2.求()()()2
111n
x x x ++++++ 展开式中3x 项的系数.
二项式定理
1、展开式中的特殊项
1.解.2
1()n x x
-的展开式中,常数项为15,则22
3331()()15n n n
n C x x -=,所以n 可以被3整除,当n=3时,
13315C =≠,当n=6时,2
615C =,选D 。

2.答案】C 解析】只有5x 的系数最大,5
x 是展开式的第6项,第6项为中间项,展开式共有11项,故n=10
3.答案:选B
解析:由展开式通项有()
21323r
n r
r
r n T C x
x -+⎛⎫=- ⎪
⎝⎭
()2532r r n r
n r n C x --=⋅⋅-⋅ 由题意得()5
2500,1,2,,12
n r n r r n -=⇒==-,故当2r =时,正整数n 的最小值为5,故选B
2、展开式的系数和 1.100
3
、100
5
、2
15100-
2.解析:展开式中,各项系数的和为4n ,各项二项式系数的和为2n ,由已知得2n =64,所以n=6,选C
3.解析:令2x +=1,右边为01211a a a a +++
+;左边把1x =-代入
299(1)(21)2(1)2x x ++=-=-,01211 2.a a a a ∴+++
+=-选A.
4.解析:已知45235
012345(1)x a a x a x a x a x a x -=+++++,
∴024135()16a a a a a a ++=-++= 则 ())(531420a a a a a a ++++=-256 3、一项展开:拆成两项
1解析:1111101192111011111011111133C 9C 9C 9C 9C )19(82-+-+-=-== -=10
0119(C 9
)1C 9C 9C 9(C 91)C 9C 9C 10118211911110011101182119111-+-+-=-+-+ ,8+
故余数为8,选D . 4、多项展开:1.解法一:∵6
3)|
|1||()2||1|(|x x x x -=-+
∴展开式的通项为 r r
r x T -+=661)||(C ·r r
r x )1(C )|
|1(6-=-
·r x 26)||(-
令6-2r =0,得r =3
∴T 4=3
6C (-1)3
=-20 ∴所求常数项为-20.
解法二:∵(|x |+|
|1x -2)3
=3
6|||)|1(x x -
∴(1-|x |)6
中|x |3
的系数A =36C (-1)3
=-20就是展开式的常数项.
评注:此题也可把其中的某两项看作一项对待,然后用二项式定理展开,但较繁,以上两种转化方式是比较实用的.
2.3
3433n C C C ⋅⋅⋅⋅⋅⋅++。

相关文档
最新文档