高中数学导数题型分析及解题方法

合集下载

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用高考压轴题:导数题型及解题方法一、切线问题题型1:求曲线y=f(x)在x=x处的切线方程。

方法:f'(x)为在x=x处的切线的斜率。

题型2:过点(a,b)的直线与曲线y=f(x)的相切问题。

方法:设曲线y=f(x)的切点(x,f(x)),由(x-a)f'(x)=f(x)-b求出x,进而解决相关问题。

注意:曲线在某点处的切线若有则只有一条,曲线过某点的切线往往不止一条。

例题:已知函数f(x)=x-3x。

1)求曲线y=f(x)在点x=2处的切线方程;(答案:9x-y-16=0)2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围。

提示:设曲线y=f(x)上的切点(x,f(x)),建立x,f(x)的等式关系。

将问题转化为关于x,m的方程有三个不同实数根问题。

答案:m的范围是(-3,-2))练1:已知曲线y=x-3x。

1)求过点(1,-3)与曲线y=x-3x相切的直线方程。

(答案:3x+y=0或15x-4y-27=0)2)证明:过点(-2,5)与曲线y=x-3x相切的直线有三条。

题型3:求两个曲线y=f(x)、y=g(x)的公切线。

方法:设曲线y=f(x)、y=g(x)的切点分别为(x1,f(x1))、(x2,g(x2)),建立x1,x2的等式关系,(x2-x1)f'(x1)=g(x2)-f(x1),(x2-x1)f'(x2)=g(x2)-f(x1);求出x1,x2,进而求出切线方程。

解决问题的方法是设切点,用导数求斜率,建立等式关系。

例题:求曲线y=x与曲线y=2elnx的公切线方程。

(答案:2ex-y-e=0)练1:求曲线y=x与曲线y=-(x-1)的公切线方程。

(答案:2x-y-1=0或y=0)2.设函数f(x)=p(x-2)-2lnx,g(x)=x,直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于(1,0),求实数p的值。

高中导数题所有题型及解题方法

高中导数题所有题型及解题方法

高中导数题所有题型及解题方法一、导数的概念1.1 导数的定义•导数的定义公式:f′(x)=limℎ→0f(x+ℎ)−f(x)ℎ•导数表示函数在某一点的变化率1.2 导数的几何意义•函数图象在某一点的切线斜率•函数图象在某一点的局部线性近似二、导数的基本运算法则2.1 基本导数公式•常数函数:d dx (C)=0•幂函数:d dx (x n)=nx n−1•指数函数:ddx(a x)=a x ln(a)2.2 函数和、差、积、商的导数•和的导数:(u+v)′=u′+v′•差的导数:(u−v)′=u′−v′•积的导数:(uv)′=u′v+uv′•商的导数:(uv)′=u′v−uv′v2,其中v≠02.3 复合函数的导数•复合函数的求导公式:如果y=f(u)及u=g(x), 则dy dx =dy dududx三、导数的应用3.1 函数的单调性•若f′(x)>0,则函数f(x)在该区间上单调递增•若f′(x)<0,则函数f(x)在该区间上单调递减3.2 函数的极值与最值•极大值:若f′(x0)=0,且f″(x0)<0,则f(x0)是函数f(x)在x0处的极大值•极小值:若f′(x0)=0,且f″(x0)>0,则f(x0)是函数f(x)在x0处的极小值3.3 函数的拐点•拐点:若f″(x0)=0,则f(x)在x0处的图像有拐点3.4 函数的图像•函数图象的基本性质–若f′(x)>0,则函数的图像上的点随x的增大而上升–若f′(x)<0,则函数的图像上的点随x的增大而下降–若f″(x)>0,则函数的图像在该区间上凹–若f″(x)<0,则函数的图像在该区间上凸四、基础导数题型4.1 求导数•题型1:求函数的导数y=f(x)•题型2:求函数的高阶导数y(n)=f(x)4.2 高阶导数应用•题型1:求函数的极值和拐点•题型2:求函数在某点的切线方程•题型3:求函数的图像4.3 求解极值问题•题型1:求一定范围内函数的极大值和极小值•题型2:求满足一定条件的函数极值4.4 函数的单调性•题型1:判断函数的单调区间•题型2:填空题,填写使函数单调递增或递减的区间五、综合题型5.1 数学建模•题型1:利用导数求解实际生活中的问题5.2 物理应用•题型1:利用导数求解物理问题,如速度、加速度等5.3 函数的变化率•题型1:求函数在某点的变化率•题型2:求函数在某段区间的平均变化率六、总结本篇文章主要介绍了高中阶段导数相关的内容,包括导数的基本定义、几何意义、基本运算法则,以及导数在函数的单调性、极值与最值、图像以及物理应用中的运用。

高中数学《导数的四则运算法则》专题突破含解析

高中数学《导数的四则运算法则》专题突破含解析

5.2.2 导数的四则运算法则课标要求素养要求能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数.在利用导数的运算法则求函数的导数的过程中,发展学生的数学运算素养.新知探究已知f (x )=x ,g (x )=1x . Q (x )=f (x )+g (x ),H (x )=f (x )-g (x ) 问题1 f (x ),g (x )的导数分别是什么? 提示 f ′(x )=1,g ′(x )=-1x 2.问题2 试求y =Q (x ),y =H (x )的导数.并观察Q ′(x ),H ′(x )与f ′(x ),g ′(x )的关系. 提示 ∵Δy =(x +Δx )+1x +Δx -⎝ ⎛⎭⎪⎫x +1x =Δx +-Δx x (x +Δx ),∴Δy Δx =1-1x (x +Δx ).∴Q ′(x )=错误!未指定书签。

0lim x ∆→Δy Δx =错误!未指定书签。

0lim x ∆→⎣⎢⎡⎦⎥⎤1-1x (x +Δx )=1-1x 2.同理,H ′(x )=1+1x 2.显然Q (x )的导数等于f (x ),g (x )的导数的和.H (x )的导数等于f (x ),g (x )的导数的差.导数运算法则 注意两函数商的导数中分式的分子上是“-”法则语言叙述[f (x )±g (x )]′=f ′(x )±g ′(x )两个函数和(或差)的导数,等于这两个函数的导数的和(或差)[微判断]1.函数f (x )=x e x 的导数是f ′(x )=e x (x +1).(√)2.当g (x )≠0时,⎣⎢⎡⎦⎥⎤1g (x )′=-g ′(x )g 2(x ).(√)3.函数f (x )=x ln x 的导数是f ′(x )=x .(×) 提示 f ′(x )=(x )′ln x +x (ln x )′=ln x +1. [微训练]1.(多选题)下列求导运算正确的是( ) A.⎝ ⎛⎭⎪⎫x +1x ′=1+1x 2 B.(sin x +cos x )′=cos x -sin x C.⎝ ⎛⎭⎪⎫ln x x ′=1-ln x x 2 D.(x 2cos x )′=-2x sin x解析 A 中⎝ ⎛⎭⎪⎫x +1x ′=1-1x 2,A 不正确;D 中,(x 2cos x )′=2x cos x -x 2sin x ,D 不正确;BC 正确. 答案 BC2.设f (x )=x 3+ax 2-2x +b ,若f ′(1)=4,则a 的值是( ) A.94 B.32 C.-1D.-52解析f′(x)=3x2+2ax-2,故f′(1)=3+2a-2=4,解得a=3 2.答案 B3.设f(x)=xe x,则f′(0)=________.解析f′(x)=e x-x e x(e x)2=1-xe x,故f′(0)=1.答案 1[微思考]1.设f(x)=tan x,如何求f′(x)?提示f(x)=tan x=sin xcos x,所以f′(x)=cos2x+sin2xcos2x=1cos2x.2.设f(x)=x4+2x3-3x2+1x2,如何求f′(x)?提示f(x)=x4+2x3-3x2+1x2=x2+2x-3+x-2,故f′(x)=2x+2-2x-3.题型一利用运算法则求函数的导数【例1】求下列函数的导数. (1)y=(2x2-1)(3x+1);(2)y=x2-x+1 x2+x+1;(3)y=3x e x-2x+e;(4)y=ln x x2+1.解(1)法一可以先展开后再求导:y=(2x2-1)(3x+1)=6x3+2x2-3x-1,∴y′=(6x3+2x2-3x-1)′=18x2+4x-3.法二可以利用乘法的求导法则进行求导:y′=(2x2-1)′(3x+1)+(2x2-1)(3x+1)′=4x(3x+1)+3(2x2-1)=12x2+4x+6x2-3=18x 2+4x -3.(2)把函数的解析式整理变形可得: y =x 2-x +1x 2+x +1=x 2+x +1-2x x 2+x +1=1-2x x 2+x +1, ∴y ′=-2(x 2+x +1)-2x (2x +1)(x 2+x +1)2=2x 2-2(x 2+x +1)2.(3)根据求导法则进行求导可得: y ′=(3x e x )′-(2x )′+e′=(3x )′e x +3x (e x )′-(2x )′ =3x ln 3·e x +3x e x -2x ln 2=(3e)x ln 3e -2x ln 2. (4)利用除法的求导法则进行求导可得: y ′=(ln x )′(x 2+1)-ln x ·(x 2+1)′(x 2+1)2=1x (x 2+1)-ln x ·2x (x 2+1)2=x 2(1-2ln x )+1x (x 2+1)2.规律方法 利用导数运算法则的策略(1)分析待求导式子符合哪种求导法则,每一部分式子是由哪种基本初等函数组合成的,确定求导法则,基本公式.(2)如果求导式比较复杂,则需要对式子先变形再求导,常用的变形有乘积式展开变为和式求导,商式变乘积式求导,三角函数恒等变换后求导等.(3)利用导数运算法则求导的原则是尽可能化为和、差,能利用和差的求导法则求导的,尽量少用积、商的求导法则求导. 【训练1】 求下列函数的导数. (1)y =(x 2+1)(x -1); (2)y =3x +lg x ; (3)y =x 2+tan x ; (4)y =e xx +1.解 (1)∵y =(x 2+1)(x -1)=x 3-x 2+x -1, ∴y ′=3x 2-2x +1.(2)y ′=(3x )′+(lg x )′=3x ln 3+1x ln 10.(3)因为y =x 2+sin xcos x , 所以y ′=(x 2)′+⎝ ⎛⎭⎪⎫sin x cos x ′=2x +cos 2x -sin x (-sin x )cos 2x =2x +1cos 2x . (4)y ′=(e x )′(x +1)-(x +1)′e x(x +1)2=e x (x +1)-e x (x +1)2=x e x (x +1)2.题型二 求导法则的应用 角度1 求导法则的逆向应用【例2-1】 已知f ′(x )是一次函数,x 2·f ′(x )-(2x -1)·f (x )=1对一切x ∈R 恒成立,求f (x )的解析式.解 由f ′(x )为一次函数可知,f (x )为二次函数,设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b ,把f (x ),f ′(x )代入关于x 的方程得x 2(2ax +b )-(2x -1)·(ax 2+bx +c )=1,即(a -b )x 2+(b -2c )x +c -1=0,又该方程对一切x ∈R 恒成立,所以⎩⎨⎧a -b =0,b -2c =0,c -1=0,解得⎩⎨⎧a =2,b =2,c =1,所以f (x )=2x 2+2x +1.规律方法 待定系数法就是用设未知数的方法分析所要解决的问题,然后利用已知条件解出所设未知数,进而将问题解决.待定系数法常用来求函数解析式,特别是已知具有某些特征的函数.【训练2】 设y =f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x +1.求y =f (x )的函数表达式. 解 ∵f ′(x )=2x +1, ∴f (x )=x 2+x +c (c 为常数),又∵方程f (x )=0有两个相等的实根,即x 2+x +c =0有两个相等的实根,Δ=12-4c =0,即c =14,∴f (x )=x 2+x +14.角度2 求导法则在导数几何意义中的应用【例2-2】 已知函数f (x )=ax 3-x 2-x +b (a ,b ∈R ,a ≠0),g (x )=3e4e x ,f (x )的图象在x =-12处的切线方程为y =34x +98. (1)求a ,b 的值.(2)直线y =34x +98是否与函数g (x )的图象相切?若相切,求出切点的坐标;若不相切,请说明理由. 解 (1)f ′(x )=3ax 2-2x -1.∵f (x )的图象在x =-12处的切线方程为y =34x +98,∴f ′⎝ ⎛⎭⎪⎫-12=34,即3a ·⎝ ⎛⎭⎪⎫-122+1-1=34,解得a =1,又f (x )的图象过点⎝ ⎛⎭⎪⎫-12,34, ∴⎝ ⎛⎭⎪⎫-123-⎝ ⎛⎭⎪⎫-122-⎝ ⎛⎭⎪⎫-12+b =34,解得b =58. 综上,a =1,b =58.(2)设直线y =34x +98与函数g (x )的图象相切于点A (x 0,y 0). ∵g ′(x )=3e 4e x ,∴g ′(x 0)=3e 4e x 0=34,解得x 0=-12,将x 0=-12代入g (x )=3e 4e x ,得点A 的坐标是⎝ ⎛⎭⎪⎫-12,34,∴切线方程为y -34=34⎝ ⎛⎭⎪⎫x +12,化简得y =34x +98,故直线y =34x +98与函数g (x )的图象相切,切点坐标是⎝ ⎛⎭⎪⎫-12,34. 规律方法 (1)此类问题主要涉及切点,切点处的导数、切线方程三个主要元素,解题方法为把其它题设条件转化为这三个要素间的关系,构建方程(组)求解.(2)准确利用求导法则求出函数的导数是解此类问题的第一步,也是解题的关键,务必做到准确.【训练3】 (1)已知函数f (x )=axx 2+b,且f (x )的图象在x =1处与直线y =2相切. (1)求函数f (x )的解析式;(2)若P (x 0,y 0)为f (x )图象上的任意一点,直线l 与f (x )的图象切于P 点,求直线l 的斜率k 的取值范围.解 (1)由题意得f ′(x )=(ax )′(x 2+b )-ax (x 2+b )′(x 2+b )2=a (x 2+b )-2ax 2(x 2+b )2=-ax 2+ab (x 2+b )2,因为f (x )的图象在x =1处与直线y =2相切, 所以⎩⎪⎨⎪⎧f ′(1)=-a +ab (1+b )2=0,f (1)=a 1+b =2,解得⎩⎨⎧a =4,b =1,则f (x )=4xx 2+1; (2)由(1)可得,f ′(x )=-4x 2+4(x 2+1)2,所以直线l 的斜率 k =f ′(x 0)=-4x 20+4(x 20+1)2=-4(x 20+1)+8(x 20+1)2=-4·1x 20+1+8(x 20+1)2设t =1x 20+1,则t ∈(0,1], 所以k =4(2t 2-t )=8⎝ ⎛⎭⎪⎫t -142-12,则在对称轴t =14处取到最小值-12,在t =1处取到最大值4, 所以直线l 的斜率k 的取值范围是⎣⎢⎡⎦⎥⎤-12,4.一、素养落地1.通过利用导数的运算法则求导数提升数学运算素养.2.导数的求法对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.首先,在化简时,要注意化简的等价性,避免不必要的运算失误;其次,利用导数公式求函数的导数时,一定要将函数化为基本初等函数中的某一个,再套用公式求导数. 3.和与差的运算法则可以推广[f (x 1)±f (x 2)±…±f (x n )]′=f ′(x 1)±f ′(x 2)±…±f ′(x n ). 4.积、商的求导法则(1)若c 为常数,则[cf (x )]′=cf ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ),⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0); (3)当f (x )=1时,有⎣⎢⎡⎦⎥⎤1g (x )′=-g ′(x )[g (x )]2(g (x )≠0).二、素养训练1.函数y =(x +1)(x -1)的导数等于( ) A.1 B.-12xC.12xD.-14x解析 因为y =(x +1)(x -1)=x -1, 所以y ′=x ′-1′=1. 答案 A2.已知函数f (x )=x e x +ax ,若f ′(0)=2,则实数a 的值为( ) A.-1 B.0 C.1D.2 解析 f ′(x )=e x (x +1)+a ,故f ′(0)=1+a =2,所以a =1.答案 C 3.函数y =cos x1-x的导数是( ) A.-sin x +x sin x(1-x )2B.x sin x -sin x -cos x(1-x )2C.cos x -sin x +x sin x(1-x )2D.cos x -sin x +x sin x1-x解析 y ′=⎝ ⎛⎭⎪⎫cos x 1-x ′=(-sin x )(1-x )-cos x ·(-1)(1-x )2=cos x -sin x +x sin x(1-x )2.答案 C4.曲线f (x )=x ln x 在点(1,f (1))处的切线的方程为________.解析 f ′(x )=1+ln x ,则在点(1,f (1))处切线的斜率k =f ′(1)=1,又f (1)=0,故所求的切线方程为y -0=1×(x -1),即x -y -1=0. 答案 x -y -1=05.已知f (x )=13x 3+3xf ′(0),则f ′(1)=________. 解析 由于f ′(0)是常数, 所以f ′(x )=x 2+3f ′(0), 令x =0,则f ′(0)=0, ∴f ′(1)=12+3f ′(0)=1. 答案 1基础达标一、选择题1.曲线f (x )=13x 3-x 2+5在x =1处的切线的倾斜角为( ) A.π6 B.3π4 C.π4D.π3解析 因为f ′(x )=x 2-2x ,k =f ′(1)=-1,所以在x =1处的切线的倾斜角为3π4. 答案 B2.函数y =x 2x +3的导数是( )A.x 2+6x (x +3)2B.x 2+6x x +3C.-2x (x +3)2D.3x 2+6x (x +3)2解析 y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2(x +3)′(x +3)2=2x (x +3)-x 2(x +3)2=x 2+6x(x +3)2.答案 A3.下列运算中正确的是( ) A.(ax 2+bx +c )′=a (x 2)′+b (x )′+(c )′ B.(sin x -2x 2)′=(sin x )′-2′(x 2)′C.⎝ ⎛⎭⎪⎫sin x x 2′=(sin x )′-(x 2)′x 2D.(cos x ·sin x )′=(sin x )′cos x +(cos x )′cos x解析 A 项中,(ax 2+bx +c )′=a (x 2)′+b (x )′+(c )′正确; B 项中,(sin x -2x 2)′=(sin x )′-2(x 2)′错误;C 项中,⎝ ⎛⎭⎪⎫sin x x 2′=(sin x )′x 2-sin x (x 2)′(x 2)2错误;D 项中,(cos x ·sin x )′=(cos x )′sin x +cos x (sin x )′错误. 答案 A4.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A.-1 B.-2 C.2D.0解析 f ′(x )=4ax 3+2bx ,f ′(x )是奇函数, 故f ′(-1)=-f ′(1)=-2. 答案 B5.已知f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x ,f ′(x )为f (x )的导函数,则f ′(x )的大致图象是( )解析 ∵f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x =14x 2+cos x ,∴f ′(x )=12x -sin x .易知f ′(x )=12x -sin x是奇函数,其图象关于原点对称,故排除B ,D.由f ′⎝ ⎛⎭⎪⎫π6=π12-12<0,排除C ,故选A. 答案 A 二、填空题6.函数f (x )=e x sin x 的图象在点(0,f (0))处切线的倾斜角为________.解析 由题意得,f ′(x )=e x sin x +e x cos x =e x (sin x +cos x ),∴函数f (x )的图象在点(0,f (0))处切线的斜率k =f ′(0)=1,则所求的倾斜角为π4. 答案 π47.已知函数f (x )=⎩⎪⎨⎪⎧13x 3-4x ,x <0,-1x -ln x ,0<x <1,若f ′(a )=12,则实数a 的值为________.解析 f ′(x )=⎩⎪⎨⎪⎧x 2-4,x <0,1x 2-1x ,0<x <1,若f ′(a )=12,则⎩⎪⎨⎪⎧0<a <1,1a 2-1a =12或⎩⎨⎧a <0,a 2-4=12,解得a=14或a =-4. 答案 14或-48.设f (5)=5,f ′(5)=3,g (5)=4,g ′(5)=1,若h (x )=f (x )+2g (x ),则h ′(5)=________.解析 由题意知f (5)=5,f ′(5)=3,g (5)=4,g ′(5)=1, ∵h ′(x )=f ′(x )g (x )-[f (x )+2]g ′(x )[g (x )]2,∴h ′(5)=f ′(5)g (5)-[f (5)+2]g ′(5)[g (5)]2=3×4-(5+2)×142=516.答案 516 三、解答题9.求下列函数的导数: (1)f (x )=(x 2+9)⎝ ⎛⎭⎪⎫x -3x(2)f (x )=sin xx n .解 (1)f (x )=x 3+6x -27x ,f ′(x )=3x 2+27x 2+6. (2)f ′(x )=(sin x )′x n -sin x ·(x n )′(x n )2=x n cos x -nx n -1sin x x 2n=x cos x -n sin xx n +1.10.已知抛物线f (x )=ax 2+bx -7经过点(1,1),且在点(1,1)处的切线方程为4x -y -3=0,求a ,b 的值.解 由抛物线f (x )=ax 2+bx -7经过点(1,1), 得1=a +b -7,即a +b -8=0.因为f ′(x )=2ax +b ,且抛物线在点(1,1)处的切线方程为4x -y -3=0,所以f ′(1)=4,即2a +b -4=0.由⎩⎨⎧a +b -8=0,2a +b -4=0,解得⎩⎨⎧a =-4,b =12.能力提升11.若曲线C 1:y =x 2与曲线C 2:y =e xa (a >0)存在公共切线,则实数a 的取值范围为( ) A.(0,1) B.⎝ ⎛⎦⎥⎤1,e 24 C.⎣⎢⎡⎦⎥⎤e 24,2 D.⎣⎢⎡⎭⎪⎫e 24,+∞解析 y =x 2在点(m ,m 2)处的切线斜率为2m ,y =e x a (a >0)在点⎝ ⎛⎭⎪⎫n ,1a e n 处的切线斜率为1a e n ,如果两个曲线存在公共切线,那么2m =1a e n.又由斜率公式可得2m =m 2-1a e nm -n,由此得到m =2n -2,则4n -4=1a e n 有解,所以函数y =4x -4与y =1a e x的图象有交点即可.当直线y =4x -4与函数y =1a e x 的图象相切时,设切点为(s ,t ),则1a e s =4,且t =4s -4=1a e s ,即有切点(2,4),a =e 24,故实数a 的取值范围是⎣⎢⎡⎭⎪⎫e 24,+∞.故选D. 答案 D12.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.(1)解 由7x -4y -12=0得y =74x -3. 当x =2时,y =12,∴f (2)=12,① 又f ′(x )=a +bx 2, ∴f ′(2)=74,②由①②得⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74.解得⎩⎨⎧a =1,b =3.故f (x )=x -3x .(2)证明 设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知 曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0). 令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪⎪⎪-6x 0||2x 0=6.故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.创新猜想13.(多选题)过点P (2,-6)作曲线f (x )=x 3-3x 的切线,则切线方程为( ) A.3x +y =0 B.24x -y -54=0 C.3x -y =0D.24x -y +54=0解析 设切点为(m ,m 3-3m ), f (x )=x 3-3x 的导数为f ′(x )=3x 2-3, 则切线斜率k =3m 2-3, 由点斜式方程可得切线方程为 y -m 3+3m =(3m 2-3)(x -m ),将点P (2,-6)代入可得-6-m 3+3m =(3m 2-3)(2-m ), 解得m =0或m =3.当m =0时,切线方程为3x +y =0; 当m =3时,切线方程为24x -y -54=0. 答案 AB14.(多空题)如图所示的图象中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R ,a ≠0)的导函数f ′(x )的图象,则这个图象的序号是________,f (-1)=________.解析∵f′(x)=x2+2ax+a2-1,∴f′(x)的图象开口向上,排除图象②④;又a≠0,∴f′(x)不是偶函数,其图象不关于y轴对称,故f′(x)的图象的序号为③.由图象特征可知,f′(0)=0,∴a2-1=0,且对称轴x=-a>0,∴a=-1,∴f(x)=13x3-x2+1,则f(-1)=-1 3.答案③-1 3。

高中数学导数大题八类题型总结

高中数学导数大题八类题型总结

导数-大题导数在大题中一般作为压轴题出现,其复杂的原因就在于对函数的综合运用:1.求导,特别是复杂函数的求导2.二次函数(求根公式的运用)3.不等式:基本不等式、均值不等式等4.基本初等函数的性质:周期函数、对数函数、三角函数、指数函数5.常用不等式的巧妙技巧:1/2<ln2<1,5/2<e<3导数大题最基本的注意点:自变量的定义域1.存在性问题2.韦达定理的运用3.隐藏零点4.已有结论的运用5.分段讨论6.分类讨论7.常见不等式的应用8.导数与三次函数的利用1. 存在性问题第(1)问有两个未知数,一般来说,双未知数问题要想办法合并成一个未知数来处理合并成一个未知数后利用不等式1.存在性问题(2)问将有且仅有一个交点分成两部分证明,分别证至多存在一个交点与必然存在交点:证明必然存在交点是单纯的找“特殊点”问题高考导数大题中的存在性问题,最后几乎都会变成零点的存在性问题要点由于只关注零点的存在性,因此就没有必要对t(x)求导讨论其单调性,直接使用零点定即可。

(2)问先对要证明的结论进行简单变形:证毕韦达定理的使用(1)问是常规的分类讨论问题隐零点设而不求,代换整体证明对称轴已经在-1右侧,保证有零点且-1处二次函数值大于0两道例题都是比较简单的含参“隐零点”问题,总之就是用零点(极值点)反过来表示参数再进行计算一些比较难的题目,一般问题就会进行一定提示,如利用(2)问提示(3)问,其难点就在于知道要利用已有结论,但无从下手第(1)问分类讨论问题,分离变量做容易导致解题过于复杂(2)问将不等式两边取对数之后思路就很清晰了(1)(2)分别证明两个不等号即可化到已知的结论上()()()()()()()()()()()()''''1101,0,1,0;1,,00,11,110f x x xx f x x f x x f x f x x x x f x f =->=∈>∈+∞<∈∈+∞==为的零点于是在上单调递增,在上单调递减是的极大值点,(3)问需要利用(2)问结论才能比较顺利的证明利用(2)中结论第(1)问是一个比较简单的存在型问题分段)高考导数大题除求导外,隐藏零点、韦达定理、极值点偏移、二,三阶导等技巧,都是附加的技巧,导数的核心,是分类讨论的考察,高考题多数绕不开分类讨论。

高中数学导数知识总结+导数七大题型答题技巧

高中数学导数知识总结+导数七大题型答题技巧

高中数学导数知识总结+导数七大题型答题技巧知识总结一. 导数概念的引入1. 导数的物理意义:瞬时速率。

一般的,函数y=f(x)在x=处的瞬时变化率是2. 导数的几何意义:曲线的切线,当点趋近于P时,直线 PT 与曲线相切。

容易知道,割线的斜率是当点趋近于 P 时,函数y=f(x)在x=处的导数就是切线PT的斜率k,即3. 导函数:当x变化时,便是x的一个函数,我们称它为f (x)的导函数. y=f(x)的导函数有时也记作,即。

二. 导数的计算基本初等函数的导数公式:导数的运算法则:复合函数求导:y=f(u)和u=g(x),则称y可以表示成为x的函数,即y=f(g(x))为一个复合函数。

三、导数在研究函数中的应用1. 函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(a,b)内(1) 如果>0,那么函数y=f(x)在这个区间单调递增;(2) 如果<0,那么函数y=f(x)在这个区间单调递减;2. 函数的极值与导数:极值反映的是函数在某一点附近的大小情况。

求函数y=f(x)的极值的方法有:(1)如果在附近的左侧>0 ,右侧<0,那么是极大值;(2)如果在附近的左侧<0 ,右侧>0,那么是极小值;3. 函数的最大(小)值与导数:求函数y=f(x)在[a,b]上的最大值与最小值的步骤:(1)求函数y=f(x)在[a,b]内的极值;(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的是最大值,最小的是最小值。

四. 推理与证明(1)合情推理与类比推理根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理。

根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理。

类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的;(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠。

高中导数题所有题型及解题方法

高中导数题所有题型及解题方法

高中导数题所有题型及解题方法在高中数学中,导数是一个非常重要的概念。

导数是描述曲线在某一点处的切线斜率的指标。

在高中数学中,学生需要掌握不同类型的导数题。

以下是高中导数题中的所有题型及解题方法:1.求函数的导数:这是最基本的导数问题。

对于一个函数,需要求出它的导数函数。

为此,需要使用导数的定义公式,即极限。

例如,对于函数f(x) = x^2 + 2x + 1,其导数是f’(x) = 2x + 2。

2.求函数的导数在某一点处的值:这个类型的问题需要计算函数在一定点处的导数值。

为此,需要使用导数的定义公式,并将x的值代入到函数中计算。

例如,对于函数f(x) = x^2 + 2x + 1,在x = 2处的导数值为f’(2) = 6。

3.求函数的极值:极值是函数在某一点处的最大值或最小值,即导数为0的点。

为了找到函数的极值,需要计算函数的导数,并找到导数为0的点。

例如,对于函数f(x) = x^3 - 3x^2 + 2x + 1,其导数为f’(x) =3x^2 - 6x + 2。

为了找到函数的极值,需要找到导数为0的点。

计算可得,x = 1或x = 2是导数为0的点。

因此,函数的极值为f(1) = 1和f(2) = 3。

4.求函数的拐点:拐点是函数曲线从凸向上到凹向上或从凸向下到凹向下的点。

为了找到函数的拐点,需要计算函数的二阶导数,即导数的导数。

例如,对于函数f(x) = x^3 - 3x^2 + 2x + 1,其一阶导数为f’(x) = 3x^2 - 6x + 2,二阶导数为f’’(x) = 6x - 6。

为了找到函数的拐点,需要找到二阶导数为0的点。

计算可得,x = 1是二阶导数为0的点。

因此,函数在x = 1处有一个拐点。

5.求函数与直线的交点:这个类型的问题需要找出函数和直线的交点。

为此,需要先将直线方程代入到函数中,然后解方程。

例如,对于函数f(x) = x^2 + 2x + 1和直线y = 3x - 1,将直线方程代入到函数中可得x^2 + 2x + 1 = 3x - 1。

高中数学解题方法系列:导数解参数问题的8种策略

高中数学解题方法系列:导数解参数问题的8种策略


1 2 2

1 4

1 t


1 2
,


f t f 2 3 a2 a 3 1 a 3
min
4
4
2
2
策略二:主次元变换法
案例 1、设函数 f (x) xekx (k 0)(Ⅰ)求曲线 y f (x) 在点 (0, f (0)) 处的切线方程;(Ⅱ)
max
只需 t ≥ g (1) 即可,即 t ≥5. 即 t 的取值范围是[5,∞).
利用导数与函数单调性的关系求解参数问题的题型,是高考命题的一种趋势,它充分体
现了高考 “能力立意”的思想。对此,复习中不能忽视。
案例
6、已知函数
f
x

lg

x

a x

2

,若对任意
x 2, 恒有

3 x2

1 x3

g x

3 x2

1 x3
,则
g' x

31 2x
x4

所以 g x
在区间

0,
1 2

上单调递增,在区间

1 2
,1
上单调递减,
因此
g x max

g

1 2

4 ,从而 a

4;
当1
x

0 时,
f
(x)

ax3
案例 3、设 a R ,若函数 y eax 3x , x R 有大于零的极值点,则(

A. a 3

高考数学题型归纳之导数题型解题方法

高考数学题型归纳之导数题型解题方法

高考数学题型归纳之导数题型解题方法高考数学题型归纳之导数题型解题方法导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

知识整合1.导数概念的理解。

2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。

这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。

要求学生抽空抄录并且阅读成诵。

其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。

如此下去,除假期外,一年便可以积累40多则材料。

如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?复合函数的求导法则是微积分中的重点与难点内容。

课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

要练说,先练胆。

说话胆小是幼儿语言发展的障碍。

不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。

总之,说话时外部表现不自然。

我抓住练胆这个关键,面向全体,偏向差生。

一是和幼儿建立和谐的语言交流关系。

每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。

二是注重培养幼儿敢于当众说话的习惯。

或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励他把话说完、说好,增强其说话的勇气和把话说好的信心。

高中导数题解题技巧

高中导数题解题技巧

导数题的解题技巧【命题趋向】导数命题趋势:导数应用:导数-函数单调性-函数极值-函数最值-导数的实际应用. 【考点透视】1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念.2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数.3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】考点1 导数的概念对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2006年辽宁卷)与方程221(0)x x y e e x =-+≥的曲线关于直线y x =对称的曲线的方程为A.ln(1y =B.ln(1y =C. ln(1y =-D. ln(1y =-[考查目的]本题考查了方程和函数的关系以及反函数的求解.同时还考查了转化能力 [解答过程]2221(0)(1)x x x y e e x e y =-+≥⇒-=,0,1x x e ≥∴≥,即:1ln(1x e x ==,所以1()ln(1f x -=. 故选A.例2. ( 2006年湖南卷)设函数()1x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实数a 的取值范围是 ( )A.(-∞,1)B.(0,1)C.(1,+∞)D. [1,+∞)[考查目的]本题主要考查函数的导数和集合等基础知识的应用能力. [解答过程]由0,,1;, 1.1x a x a a x x -<∴<<<<-当a>1时当a<1时()()()//2211,0.11111.x x a x a x a a y y x x x x a ------⎛⎫=∴===> ⎪--⎝⎭--∴> 综上可得M P 时, 1.a ∴>考点2 曲线的切线(1)关于曲线在某一点的切线求曲线y=f(x)在某一点P (x,y )的切线,即求出函数y=f(x)在P 点的导数就是曲线在该点的切线的斜率. (2)关于两曲线的公切线若一直线同时与两曲线相切,则称该直线为两曲线的公切线. 典型例题例3.(2004年重庆卷)已知曲线y =31x 3+34,则过点P (2,4)的切线方程是_____________.思路启迪:求导来求得切线斜率.解答过程:y ′=x 2,当x =2时,y ′=4.∴切线的斜率为4.∴切线的方程为y -4=4(x -2),即y =4x -4. 答案:4x -y -4=0.例4.(2006年安徽卷)若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++= [考查目的]本题主要考查函数的导数和直线方程等基础知识的应用能力.[解答过程]与直线480x y +-=垂直的直线l 为40x y m -+=,即4y x =在某一点的导数为4,而34y x '=,所以4y x =在(1,1)处导数为4,此点的切线为430x y --=. 故选A.例5. ( 2006年重庆卷)过坐标原点且与x 2+y 2 -4x +2y +25=0相切的直线的方程为 ( )A.y =-3x 或y =31x B. y =-3x 或y =-31x C.y =-3x 或y =-31x D. y =3x 或y =31x[考查目的]本题主要考查函数的导数和圆的方程、直线方程等基础知识的应用能力. [解答过程]解法1:设切线的方程为,0.y kx kx y =∴-= 又()()()22521,2,1.2x y -++=∴-圆心为213830., 3.3k k k k =+-=∴==- 1,3.3y x y x ∴==-或故选A.解法2:由解法1知切点坐标为1331(,),,,2222⎛⎫- ⎪⎝⎭由 ()()//22////113231(,)(,)22225(2)1,22(2)210,2.113,.313,.3x xx x x x x y x y y x y y k y k y y x y x -⎛⎫⎡⎤-++= ⎪⎣⎦⎝⎭∴-++=-∴=-+∴==-==∴=-=故选A.例6.已知两抛物线a x y C x x y C +-=+=2221:,2:, a 取何值时1C ,2C 有且只有一条公切线,求出此时公切线的方程. 思路启迪:先对a x y C x x y C +-=+=2221:,2:求导数.解答过程:函数x x y 22+=的导数为22'+=x y ,曲线1C 在点P(12112,x x x +)处的切线方程为))(2(2)2(11121x x x x x y -+=+-,即 211)1(2x x x y -+= ①曲线1C 在点Q ),(222a x x +-的切线方程是)(2)(222x x x a x y --=+--即a x x x y ++-=2222 ② 若直线l 是过点P 点和Q 点的公切线,则①式和②式都是l 的方程,故得1,1222121+=--=+x x x x ,消去2x 得方程,0122121=+++a x x若△=0)1(244=+⨯-a ,即21-=a 时,解得211-=x ,此时点P 、Q 重合.∴当时21-=a ,1C 和2C 有且只有一条公切线,由①式得公切线方程为14y x =- .考点3 导数的应用中学阶段所涉及的初等函数在其定义域内都是可导函数,导数是研究函数性质的重要而有力的工具,特别是对于函数的单调性,以“导数”为工具,能对其进行全面的分析,为我们解决求函数的极值、最值提供了一种简明易行的方法,进而与不等式的证明,讨论方程解的情况等问题结合起来,极大地丰富了中学数学思想方法.复习时,应高度重视以下问题:1.. 求函数的解析式;2. 求函数的值域;3.解决单调性问题;4.求函数的极值(最值);5.构造函数证明不等式.典型例题例7.(2006年天津卷)函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( )A .1个B .2个C .3个D . 4个[考查目的]本题主要考查函数的导数和函数图象性质等基础知识的应用能力. [解答过程]由图象可见,在区间(,0)a 内的图象上有一个极小值点. 故选A.例8. 设y f x =()为三次函数,且图象关于原点对称,当x =12时,f x ()的极小值为-1,求出函数f x ()的解析式.思路启迪:先设f x ax bx cx d a ()()=+++≠320,再利用图象关于原点对称确定系数. 解答过程:设f x ax bx cx d a ()()=+++≠320,因为其图象关于原点对称,即f x ()-=-f x (),得ax bx cx d ax bx cx d b d f x ax cx3232300+++=-+-∴===+,,,即() 由f x ax c '()=+32,依题意,f a c '()12340=+=,f a c()121821=+=-, 解之,得a c ==-43,.故所求函数的解析式为f x x x ()=-433.例9.函数y x x =+-+243的值域是_____________.思路启迪:求函数的值域,是中学数学中的难点,一般可以通过图象观察或利用不等式性质求解,也可以利用函数的单调性求出最大、最小值。

高中导数解题方法归纳总结

高中导数解题方法归纳总结

高中导数解题方法归纳总结导数是微积分中的重要概念,是描述函数在某一点处变化率的数学工具。

在解题过程中,运用正确的导数解题方法能够有效地解决各种导数相关问题。

本文将对高中导数解题方法进行归纳总结,旨在帮助同学们更好地理解和应用导数。

一、函数求导法则在导数的计算过程中,掌握函数求导的基本法则是非常重要的。

以下是几个常见的函数求导法则:1. 常数法则:对于常数函数f(x)=c,导数恒为0,即f'(x)=0。

2. 幂函数求导法则:对于幂函数f(x)=x^n,其中n为常数,导数为f'(x)=nx^(n-1)。

3. 指数函数求导法则:对于指数函数f(x)=a^x,其中a为常数且a>0且a≠1,导数为f'(x)=a^x * ln(a)。

4. 对数函数求导法则:对于对数函数f(x)=log_a(x),其中a为常数且a>0且a≠1,导数为f'(x)=1 / (x * ln(a))。

5. 三角函数求导法则:对于常见的三角函数(如sin(x),cos(x),tan(x)等),可以利用导数定义或相关恒等式来求导。

二、导数的基本运算法则导数运算法则是在函数求导法则的基础上发展起来的,它能够简化复杂函数的求导过程。

以下是几个常见的导数运算法则:1. 和差法则:对于两个函数f(x)和g(x)的和函数,其导数为(f+g)'(x)=f'(x)+g'(x);对于两个函数f(x)和g(x)的差函数,其导数为(f-g)'(x)=f'(x)-g'(x)。

2. 积法则:对于两个函数f(x)和g(x)的乘积函数,其导数为(fg)'(x)=f'(x)g(x)+f(x)g'(x)。

3. 商法则:对于两个函数f(x)和g(x)的商函数,其导数为(f/g)'(x)=(f'(x)g(x)-f(x)g'(x)) / (g(x))^2。

高中数学导数难题七大题型答题技巧全解析

高中数学导数难题七大题型答题技巧全解析

高中数学导数难题七大题型答题技巧全解析,转给所有高中生
在考试过程中,很多高中生由于没有掌握适用的解题技巧,尤其是对相关的知识点掌握不够牢固的同学,只能放弃,今天,小编为大家总结了导数七大题型,帮助大家在高考数学中多拿一分,轻松拿下140+!
1 导数单调性、极值、最值的直接应用
2 交点与根的分布
3 不等式证明
(一)做差证明不等式
(二)变形构造函数证明不等式
(三)替换构造不等式证明不等式
4 不等式恒成立求字母范围(一)恒成立之最值的直接应用
(二)恒成立之分离参数
(三)恒成立之讨论字母范围
5 函数与导数性质的综合运用
6 导数应用题
7 导数结合三角函数。

高中导数七大题型解题技巧

高中导数七大题型解题技巧

高中导数七大题型解题技巧高中导数七大题型解题技巧1. 导数的定义与计算•理解导数的定义:导数表示函数在某一点的变化率,可以通过极限的方法求得。

•使用导数的基本计算公式:对于常见的函数,可以根据函数的性质和导数的定义来计算导数。

2. 函数的求导法则•使用求导法则简化求导过程:如常数法则、幂函数法则、指数函数法则、对数函数法则、三角函数法则等。

•注意链式法则的应用:当函数由多个复合函数组成时,可以使用链式法则简化求导过程。

3. 高阶导数的计算•理解高阶导数的概念:高阶导数表示导数的导数,可以通过多次求导得到。

•使用链式法则和求导法则计算高阶导数:根据函数的性质和导数的法则,可以计算出高阶导数。

4. 函数的极值与单调性•寻找函数的极值点:通过判断导数的正负来确定函数的增减性和极值点。

•判断函数的单调性:根据导数的正负判断函数的单调递增和单调递减区间。

5. 函数的凹凸性与拐点•判断函数的凹凸性:通过求导数的二阶导数和符号判断函数的凹凸性。

•寻找函数的拐点:通过判断导数的二阶导数的变化来确定函数的拐点。

6. 函数的渐近线与极限•理解函数的渐近线:渐近线是函数在无穷远点或某一点趋近于无穷时的极限情况。

•计算函数的极限:根据导数和高阶导数的性质计算函数在某一点的极限。

7. 应用题的解题方法•理解应用题的背景和要求:应用题通常涉及到实际问题,需要将问题转化为数学模型进行求解。

•使用导数解决应用题:根据问题的要求,建立函数模型并使用导数来解决问题。

以上是高中导数七大题型解题的一些基本技巧和方法,希望可以帮助到你在学习导数时的理解和应用。

高中数学导数大题题型总结

高中数学导数大题题型总结

关于数学中导数题型总结导数是高中数学的一种重要题型,虽然每年的高考考的不是很多,但它是必考题型,也是分值占比最大的题型。

导数部分相对简单,大多数学生在接触它的时候是不太适应的,特别是导数求导速度和导数运算题都非常棘手。

很多学生在做这类题目的时候只能靠运气或者是其他因素来解决问题,很多学生往往没想清楚为什么要做这个题,认为是简单的导数计算题又不重要。

我想对这部分同学做一个详细的总结汇报,希望对你们有所帮助。

一、求导速度求导速度也就是求的各个节点的距离等于节点的坐标,而每个节点所对应的计算量也就是这个知识点要完成多少道题目,所以这个知识点就是一个考点:最小行程问题。

对于求导速度比较快的问题可以利用等式关系求解解题,特别喜欢求导过程中不需要等待或者没有注意到节点的坐标和距离不需要等待,这样不仅能节省时间也能提高解的准确率。

对于求导速度慢的问题,可利用参数化问题的方法进行求导,这样就可以大大缩短你计算出结论的时间。

另外还有一些特殊复杂的求导运算也是需要注意的,比如导数的实数解和虚数解的计算方法,一定要清楚。

实数解一般利用的都是原函数的解析式来计算,而虚数解一般是利用定理方程或者导数方程的求导来进行求导,所以对于一些没有解出来的题就不要着急了,可以用一些方法进行求导即可完成解题而不需要考虑到解析的思想和方法,比如一些特殊导数中可以利用一些特殊的符号进行计算。

二、导数形式1、正态分布:求导问题一般以正态分布形式出现,这类题目一般有三种常见的形式:极坐标、双曲对称性、椭圆对称性。

根据上述定义,这三种形式是正态分布和坐标对称性求导方法中的两种简单方法,在求导问题中,常以椭圆对称性求导方法为主,这类求导方法一般可以用到积分求导法则、周期律求导法则等。

2.直线方程:导数中直线方程的求导过程是求解直线方程的关键,可以直接通过求导公式来求导,比如下面的求导公式:3、等式与不等式:当满足给定的等式中有一条不等式的时候,可以利用等式求导的性质进行求导,比如下面的等式与不等式都可以直接求导来求解:其实很多同学对这类题不是很熟悉和了解,下面我们简单分析一下各种形式分别有哪些优缺点。

高中数学导数难题怎么解题

高中数学导数难题怎么解题

高中数学导数难题怎么解题1高中数学导数难题解题技巧1.导数在判断函数的单调性、最值中的应用利用导数来求函数的最值的一般步骤是:(1)先根据求导公式对函数求出函数的导数;(2)解出令函数的导数等于0的自变量;(3)从导数性质得出函数的单调区间;(4)通过定义域从单调区间中求出函数最值。

2.导数在函数极值中的应用利用导数的知识来求函数极值是高中数学问题比较常见的类型。

利用导数求函数极值的一般步骤是:(1)首先根据求导法则求出函数的导数;(2)令函数的导数等于0,从而解出导函数的零点;(3)从导函数的零点个数来分区间讨论,得到函数的单调区间;(4)根据极值点的定义来判断函数的极值点,最后再求出函数的极值。

3.导数在求参数的取值范围时的应用利用导数求函数中的某些参数的取值范围,成为近年来高考的热点。

在一般函数含参数的题中,通过运用导数来化简函数,可以更快速地求出参数的取值范围。

2高中数学解题中导数的妙用导数知识在函数解题中的妙用函数知识是高中数学的重点内容,其中包括极值、图像、奇偶性、单调性等方面的分析,具有代表性的题型就是极值的计算和单调性的分析,按照普通的解题过程是通过图像来分析,可是对于较难的函数来说,制作图像不仅浪费时间,而且极容易出错,而在函数解题中应用导数简直就是手到擒来。

例如:函数f(x)=x3+3x2+9x+a,分析f(x)的单调性。

这是高中数学中常见的三次函数,在对这道题目进行单调性分析时,很多学生根据思维定式会采用常规的手法画图去分析单调区间,但由于未知数a的存在而遇到困难。

如果考虑用导数的相关知识解决这一问题,解:f’(x)=-3x2+6x+9,令f’(x)>0,那么解得x<-1或者x>3,也就是说函数在(-∞,-1),(3,+∞)这个单调区间上单调递减,这样就能非常容易的判断函数的单调性。

导数知识在方程求根解题中的妙用导数知识在方程求根中的应用属于一项重点内容,在平时的数学练习中以及高考的考察中均曾以不同的难度形式出现过。

导数与微分题型与做题方法总结

导数与微分题型与做题方法总结

导数与微分题型与做题方法总结目录1. 导数与微分题型概述 (3)1.1 导数的概念 (4)1.2 微分的概念 (4)1.3 导数与微分的联系 (4)2. 导数题型分类及解题方法 (5)2.1 一阶导数求法 (6)2.1.1 利用导数定义求导 (6)2.1.2 利用导数公式求导 (7)2.1.3 利用求导法则求导 (7)2.2 高阶导数求法 (7)2.2.1 利用高阶导数公式求导 (8)2.2.2 利用求导法则求高阶导数 (9)2.3 复合函数求导 (9)2.3.2 分部积分求导 (10)2.4 隐函数求导 (11)2.4.1 直接求导法 (12)2.4.2 对数求导法 (13)2.5 参数方程求导 (13)3. 微分题型分类及解题方法 (14)3.1 微分公式及运算 (15)3.1.1 微分的基本公式 (15)3.1.2 微分的运算规则 (16)3.2 微分在近似计算中的应用 (16)3.2.1 微分近似计算公式 (17)3.2.2 微分近似计算的步骤 (17)3.3 微分在经济学中的应用 (18)3.3.1 边际分析 (19)4. 导数与微分综合题型及解题技巧 (21)4.1 导数与微分的综合应用 (22)4.1.1 导数与微分在几何中的应用 (23)4.1.2 导数与微分在物理中的应用 (24)4.2 解题步骤及注意事项 (25)4.2.1 分析题意,确定题型 (26)4.2.2 选择合适的求导方法 (27)4.2.3 注意细节,避免错误 (28)5. 案例分析及解题思路 (29)5.1 一阶导数求法案例分析 (29)5.2 高阶导数求法案例分析 (30)5.3 复合函数求导案例分析 (30)5.4 隐函数求导案例分析 (31)5.5 参数方程求导案例分析 (32)5.6 微分公式及运算案例分析 (32)5.7 微分在近似计算中的应用案例分析 (33)5.8 微分在经济学中的应用案例分析 (33)6. 常见错误及注意事项 (34)6.1 求导过程中的常见错误 (34)6.2 微分运算中的常见错误 (36)6.3 注意事项总结 (37)7. 总结与展望 (38)7.1 导数与微分的重要性 (39)7.2 学习建议及展望 (40)1. 导数与微分题型概述导数和微分是数学中的重要概念,用于描述函数的变化率和通过微小变化对函数值的影响。

导数题型及解题方法归纳

导数题型及解题方法归纳

导数题型及解题方法归纳一、导数的定义1. 导数的概念在微积分中,导数是用来描述函数变化率的量。

给定函数f(x),其导数可以看作是函数在某一点x 处的瞬时变化率。

导数的定义可以用以下式子表示:f′(x )=lim Δx→0f (x +Δx )−f (x )Δx2. 函数可导性一个函数在某一点可导的条件是该点邻近的间断点和极限不存在,且函数曲线经过该点处的切线存在。

二、导数的求解方法1. 基本导数公式可以通过基本导数公式来求常见函数的导数。

一些常用的基本导数公式包括: - 常数函数的导数为0:(c )′=0,其中c 为常数。

- 幂函数的导数:(x n )′=nx n−1,其中n 为常数。

- 指数函数的导数:(e x )′=e x 。

- 对数函数的导数:(lnx )′=1x 。

- 三角函数的导数: - (sinx )′=cosx - (cosx )′=−sinx - (tanx )′=sec 2x - (cotx )′=−csc 2x2. 求导法则为了更方便地求导,可以使用一些求导法则。

一些常用的求导法则包括: - 和差法则:(u ±v )′=u′±v′ - 乘法法则:(uv )′=u′v +uv′ - 商法则:(u v )′=u′v−uv′v 2,其中v 不等于0。

- 复合函数求导法则:若y = f(g(x)),则dy dx =dy du ⋅du dx ,其中u = g(x)。

3. 高阶导数高阶导数表示对函数进行多次求导得到的导数。

高阶导数可以通过多次使用导数公式和求导法则求解。

4. 隐函数求导有些函数可以通过隐函数形式表示,这时可以使用隐函数求导方法来求导。

隐函数求导的关键是利用导数的定义和求导法则,将相关变量分离并进行求导。

三、导数题型及解题方法1. 常函数的导数对于常函数f(x) = c,其导数为0,即f′(x)=0。

2. 幂函数的导数对于幂函数f(x) = x^n,其中n为常数,其导数为(x n)′=nx n−1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数题型分析及解题方法一、考试内容导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。

二、热点题型分析题型一:利用导数研究函数的极值、最值。

1.32()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2=-==x c x x x f y 在处有极大值,则常数c = 6 ;3.函数331x x y -+=有极小值 -1 ,极大值 3 题型二:利用导数几何意义求切线方程1.曲线34y x x =-在点()1,3--处的切线方程是 2y x =- 2.若曲线x x x f -=4)(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0)3.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --=4.求下列直线的方程:(1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2x y =过点P(3,5)的切线;解:(1)123|y k 23 1)1,1(1x /2/23===∴+=∴++=-=-上,在曲线点-x x y x x y P所以切线方程为0211=+-+=-y x x y 即, (2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则200x y =①又函数的导数为x y 2/=,所以过),(00y x A 点的切线的斜率为/2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有352000--=x y x ②,由①②联立方程组得,⎩⎨⎧⎩⎨⎧====255 110000y x y x 或,即切点为(1,1)时,切线斜率为;2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即,或 题型三:利用导数研究函数的单调性,极值、最值1.已知函数))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式;(Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值;(Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围解:(1)由.23)(,)(223b ax x x f c bx ax x x f ++='+++=求导数得过))1(,1()(f P x f y 上点=的切线方程为:而过.13)]1(,1[)(+==x y f P x f y 的切线方程为上故⎩⎨⎧-=-=+⎩⎨⎧-=-=++3023323c a b a c a b a 即∵124,0)2(,2)(-=+-∴=-'-==b a f x x f y 故时有极值在 ③由①②③得 a=2,b=-4,c=5 ∴.542)(23+-+=x x x x f(2)).2)(23(443)(2+-=-+='x x x x x f当;0)(,322;0)(,23<'<≤->'-<≤-x f x x f x 时当时13)2()(.0)(,132=-=∴>'≤<f x f x f x 极大时当 又)(,4)1(x f f ∴=在[-3,1]上最大值是13。

(3)y=f(x)在[-2,1]上单调递增,又,23)(2b ax x x f ++='由①知2a+b=0。

依题意)(x f '在[-2,1]上恒有)(x f '≥0,即.032≥+-b bx x①当6,03)1()(,16min ≥∴>+-='='≥=b b b f x f bx 时; ②当φ∈∴≥++=-'='-≤=b b b f x f bx ,0212)2()(,26min 时;③当.60,01212)(,1622min ≤≤≥-='≤≤-b b b x f b 则时综上所述,参数b 的取值范围是),0[+∞2.已知三次函数32()f x x ax bx c =+++在1x =和1x =-时取极值,且(2)4f -=-.(1) 求函数()y f x =的表达式; (2) 求函数()y f x =的单调区间和极值;(3) 若函数()()4(0)g x f x m m m =-+>在区间[3,]m n -上的值域为[4,16]-,试求m 、n 应满足① ②的条件.解:(1) 2()32f x x ax b '=++,由题意得,1,1-是2320x ax b ++=的两个根,解得,0,3a b ==-.再由(2)4f -=-可得2c =-.∴3()32f x x x =--.(2) 2()333(1)(1)f x x x x '=-=+-,当1x <-时,()0f x '>;当1x =-时,()0f x '=; 当11x -<<时,()0f x '<;当1x =时,()0f x '=;当1x >时,()0f x '>.∴函数()f x 在区间(,1]-∞-上是增函数; 在区间[1,]-1上是减函数;在区间[1,)+∞上是增函数. 函数()f x 的极大值是(1)0f -=,极小值是(1)4f =-.(3) 函数()g x 的图象是由()f x 的图象向右平移m 个单位,向上平移4m 个单位得到的, 所以,函数()f x 在区间[3,]n m --上的值域为[44,164]m m ---(0m >). 而(3)20f -=-,∴4420m --=-,即4m =.于是,函数()f x 在区间[3,4]n --上的值域为[20,0]-. 令()0f x =得1x =-或2x =.由()f x 的单调性知,142n --,即36n.综上所述,m 、n 应满足的条件是:4m =,且36n.3.设函数()()()f x x x a x b =--.(1)若()f x 的图象与直线580x y --=相切,切点横坐标为2,且()f x 在1x =处取极值,求实数,a b 的值;(2)当b=1时,试证明:不论a 取何实数,函数()f x 总有两个不同的极值点.解:(1)2()32().f x x a b x ab '=-++ 由题意(2)5,(1)0f f ''==,代入上式,解之得:a=1,b=1.(2)当b=1时,()0f x '=令得方程232(1)0.x a x a -++=因,0)1(42>+-=∆a a 故方程有两个不同实根21,x x . 不妨设21x x <,由))((3)(21'x x x x x f --=可判断)('x f 的符号如下:当时,1x x <)('x f >0;当时,21x x x <<)('x f <0;当时,2x x >)('x f >0 因此1x 是极大值点,2x 是极小值点.,当b=1时,不论a 取何实数,函数()f x 总有两个不同的极值点。

题型四:利用导数研究函数的图象1.如右图:是f (x )的导函数, )(/x f 的图象如右图所示,则f (x )的图象只可能是( D )(A ) (B ) (C ) (D ) 2.函数的图像为14313+-=x x y ( A )3.方程内根的个数为在)2,0(076223=+-x x ( B )A 、0B 、1C 、2D 、3 题型五:利用单调性、极值、最值情况,求参数取值范围1.设函数.10,3231)(223<<+-+-=a b x a ax x x f(1)求函数)(x f 的单调区间、极值.(2)若当]2,1[++∈a a x 时,恒有a x f ≤'|)(|,试确定a 的取值范围.解:(1)22()43f x x ax a '=-+-=(3)()x a x a ---,令()0f x '=得12,3x a x a ==列表如下:x (-∞,a ) a (a ,3a ) 3a (3a ,+∞) - 0 + 0 -极小极大∴()f x 在(a ,3a )上单调递增,在(-∞,a )和(3a ,+∞)上单调递减xyo 4 -4 2 4 -42 -2 -2x yo 4 -4 2 4 -4 2 -2 -2xyy 4 -4 2 4 -42-2 -26 6 6 6 yx-4-2 o4 2 24x a =时,34()3f x b a =-极小,3x a =时,()f x b =极小(2)22()43f x x ax a '=-+-∵01a <<,∴对称轴21x a a =<+,∴()f x '在[a+1,a+2]上单调递减∴22(1)4(1)321Maxf a a a a a '=-+++-=-,22min(2)4(2)344f a a a a a '=-+++-=-依题|()|f x a '≤⇔||Max f a '≤,min ||f a '≤ 即|21|,|44|a a a a -≤-≤解得415a ≤≤,又01a << ∴a 的取值范围是4[,1)52.已知函数f (x )=x3+ax2+bx +c 在x =-23与x =1时都取得极值(1)求a 、b 的值与函数f (x )的单调区间 (2)若对x ∈〔-1,2〕,不等式f (x )<c2恒成立,求c 的取值范围。

解:(1)f (x )=x3+ax2+bx +c ,f '(x )=3x2+2ax +b由f '(23-)=124a b 093-+=,f '(1)=3+2a +b =0得a =12-,b =-2f '(x所以函数f (x )的递增区间是(-∞,-23)与(1,+∞),递减区间是(-23,1) (2)f (x )=x3-12x2-2x +c ,x ∈〔-1,2〕,当x =-23时,f (x )=2227+c为极大值,而f (2)=2+c ,则f (2)=2+c 为最大值。

要使f (x )<c2(x ∈〔-1,2〕)恒成立,只需c2>f (2)=2+c ,解得c <-1或c >2 题型六:利用导数研究方程的根1.已知平面向量a =(3,-1). b =(21,23).(1)若存在不同时为零的实数k 和t ,使x =a +(t2-3)b ,y =-k a +t b ,x ⊥y , 试求函数关系式k=f(t) ;(2) 据(1)的结论,讨论关于t 的方程f(t)-k=0的解的情况. 解:(1)∵x ⊥y ,∴x y ⋅=0 即[a +(t2-3) b ]·(-k a +t b )=0. 整理后得-k 2a +[t-k(t2-3)] ab ⋅+ (t2-3)·2b =0∵a b ⋅=0,2a =4,2b =1,∴上式化为-4k+t(t2-3)=0,即k=41t(t2-3)(2)讨论方程41t(t2-3)-k=0的解的情况,可以看作曲线f(t)= 41t(t2-3)与直线y=k 的交点个数.于是f ′(t)= 43(t2-1)= 43(t+1)(t-1).t (-∞,-1) -1 (-1,1) 1 (1,+ ∞) f ′(t) + 0 - 0 + F(t)↗极大值↘极小值↗当t=-1时,f(t)有极大值,f(t)极大值=21. 当t=1时,f(t)有极小值,f(t)极小值=-21函数f(t)=41t(t2-3)的图象如图13-2-1所示,可观察出:(1)当k >21或k <-21时,方程f(t)-k=0有且只有一解; (2)当k=21或k=-21时,方程f(t)-k=0有两解; (3) 当-21<k <21时,方程f(t)-k=0有三解.题型七:导数与不等式的综合1.设ax x x f a -=>3)(,0函数在),1[+∞上是单调函数. (1)求实数a 的取值范围; (2)设x ≥1,)(x f ≥1,且00))((x x f f =,求证:00)(x x f =.解:(1) ,3)(2a x x f y -='='若)(x f 在[)+∞,1上是单调递减函数,则须,3,02x a y ><'即这样的实数a 不存在.故)(x f 在[)+∞,1上不可能是单调递减函数.若)(x f 在[)+∞,1上是单调递增函数,则a ≤23x , 由于[)33,,12≥+∞∈x x 故.从而0<a ≤3. (2)方法1、可知)(x f 在[)+∞,1上只能为单调增函数. 若1≤)(00x f x <,则,))(()(000矛盾x x f f x f =< 若1≤)(),())((,)(000000x f x x f x f f x x f <<<即则矛盾,故只有0)(x x f =成立.方法2:设0)(,)(x u f u x f ==则,,,03030x au u u ax x =-=-∴两式相减得00330)()(x u u x a u x -=---020200,0)1)((x a u u x x u x =-+++-∴≥1,u ≥1,30,32020≤<≥++∴a u u x x 又,012020>-+++∴a u u x x2.已知a 为实数,函数23()()()2f x x x a =++(1)若函数()f x 的图象上有与x 轴平行的切线,求a 的取值范围 (2)若'(1)0f -=,(Ⅰ)求函数()f x 的单调区间(Ⅱ)证明对任意的12(1,0)x x ∈-、,不等式125|()()|16f x f x -<恒成立解:3233()22f x x ax x a =+++,23'()322f x x ax ∴=++函数()f x 的图象有与x 轴平行的切线,'()0f x ∴=有实数解2344302a ∴∆=-⨯⨯≥,292a ≥,所以a的取值范围是3[22-∞+∞(,,)'(1)0f -=,33202a ∴-+=,94a =,2931'()33()(1)222f x x x x x ∴=++=++ 由'()0,1f x x ><-或12x >-;由1'()0,12f x x <-<<-()f x ∴的单调递增区间是1(,1),(,)2-∞--+∞;单调减区间为1(1,)2-- 易知()f x 的最大值为25(1)8f -=,()f x 的极小值为149()216f -=,又27(0)8f =()f x ∴在[10]-,上的最大值278M =,最小值4916m =∴对任意12,(1,0)x x ∈-,恒有1227495|()()|81616f x f x M m -<-=-=题型八:导数在实际中的应用1.请您设计一个帐篷。

相关文档
最新文档