新人教版八年级上册数学常考题型

合集下载

新人教版八年级上册数学知识点归纳及常考题型

新人教版八年级上册数学知识点归纳及常考题型
方案二:乙队单独工作时完成这一工程要比规定时间多用5天; 方案三:假设甲乙两队合作4天后,余下的由乙队单独工作也正 好如期完成。
问:〔1〕求甲乙两队单独工作完成这一工程各需多少天?
〔2〕在不耽误工期的情况下,你认为哪种施工方案较节省 工程款?
第二十四页,共24页。
教学资料整理
• 仅供参考,
只需增加的一个条件是
.A
D
B
图3
C
第七页,共24页。
考点2.如图2,∠1=∠2,要得到
△ABD≌△ACD,还需从以下条件中补选一个,
则错误的选法是〔 〕
A、AB=AC
B、DB=DC
C、∠ADB=∠ADC D、∠B=∠C
考点3.如右图所示,点A、D、B、F在一
条直线上,AC=EF,AD=FB,要使
△ABC≌△FDE,还需添加一个条件,
第十七页,共24页。
第十五章分式考点归纳
1、分式的判断 P127
考点 1.下列各式中, 1 x+ 1 y, 1 , 1 ,—4xy , x , x
3 2 xy 5 a
x2
是分式有
2、分式方程的判断 P
考点 1:下列属于分式的是(
A. X-2
B. y 2x x 1
) C. 8 6 a3
D. 2X-7=16
新人教版八年级上册数学知识点 归纳及常考题型
第十一章三角形考点归纳
1、判断三边能否组成三角形。P3
考点1.以以下各组线段为边,能组成三角形的是〔

A. 1,2,4
B. 4,6,8 C. 5,6,12 D.2,3,5
2、求第三边的取值范围。P3
考点1.三角形的三边长分别是2 ,5 ,x,则x的取值范围

人教版八年级数学上册期中常考精选30题

人教版八年级数学上册期中常考精选30题

人教版八年级数学上学期期中常考精选30题考试范围:第十一章-第十三章的内容,共30小题.一、选择题(共8小题)1.(2022·山东·滨州市滨城区教学研究室八年级期中)下列各线段能构成三角形的是()A.7cm、5cm、12cm B.6cm、7cm、14cmC.9cm、5cm、11cm D.4cm、10cm、6cm【答案】C【分析】根据三角形三边关系逐一判断即可【详解】A、7+5=12,不能组成三角形,故本选项不符题意;B、6+7<14,不能组成三角形,故本选项不符题意;C、9+5>11,能组成三角形,故本选项符合题意;D、4+6=10,不能组成三角形,故本选项不符题意故选:C【点睛】本题考查了三角形三边关系,关键是掌握在运用三角形三边关系判定三条线段能否构成三角形时要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判断这三条线段能构成三角形.2.(2021·重庆市璧山中学校八年级期中)在一些美术字中,有的汉字是轴对称图形.下列4个汉字中,可以看作“沿某一条直线折叠后,直线两旁的部分能够互相重合”的是()A.B.C.D.【答案】C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:选项A、B、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(2022·全国·八年级专题练习)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为( )A.2B.3【答案】B【分析】过点D作DE⊥AB于的面积列式计算即可得解.【详解】解:如图,过点D作【点睛】本题考查了三角形的面积和角平分线的性质,能熟记角平分线上的点到角两边的距离相等是解此题的关键.4.(2022·江苏扬州·七年级期末)在.B.C.D.【点睛】本题主要考查了三角形的高线的定义,是基础题,熟练掌握概念是解题的关键,三角形的高线初学者出错率较高,需正确区分,严格按照定义作图.5.(2022·黑龙江·兰西县红星乡第一中学校七年级期中)如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠2=80°,那么∠1的度数为()A.60°B.50°C.40°D.30°【答案】B【详解】解:如图,∵AB P CD,∴∠2=∠3=80°,∵∠3=∠1+30°,∴∠1=∠3-30°=80°-30°=50°.故选:B.【点睛】本题考查了平行线的性质和三角形外角的性质,关键是根据两直线平行,得出与∠2相等的角.6.(2022·黑龙江双鸭山·七年级阶段练习)小刚想做一个等腰三角形的相框,他已经找到两根长分别是10cm 和5cm的细木条,他找的第三根木条长应是()A.15cm B.7cm C.10cm D.5cm【答案】C【分析】根据等腰三角形的定义以及构成三角形三边的关系逐项判断即可.【详解】A项,以10cm、5cm、15cm为三边无法构成等腰三角形,故A项不符合题意;B项,以10cm、5cm、7cm为三边无法构成等腰三角形,故B项不符合题意;C项,以10cm、5cm、10cm为三边可以构成等腰三角形,故C项符合题意;D项,以10cm、5cm、5cm为三边,即有5+5=10即此时无法构成三角形,故D项不符合题意;故选:C.【点睛】本题考查了等腰三角形的定义以及构成三角形三边的关系的知识,掌握等腰三角形的定义以及构成三角形三边的关系是解答本题的关键.有两条边相等的三角形被称作等腰三角形.7.(2021·重庆·巴川初级中学校八年级期中)如图,△ABC 的面积为16,AD 为BC 边上的中线,E 为AD 上任意一点,连接BE 、CE ,图中阴影部分的面积为( )A .4B .5C .6D .8【答案】D 【分析】由D 是BC 的中点可得出△ABD 的面积等于△ACD 的面积等于8,再得出△BDE 的面积等于△CDE 的面积,即可得出阴影部分的面积.【详解】解:∵D 是BC 的中点,∴BD =CD ,∴8ABD ACD BDE CDE S S S S ===,V V V V ,∴8ACE BDE ACE CDE ACD S S S S S +=+==V V V V V ,故选:D .【点睛】本题主要考查三角形的中线的性质,关键是要牢记三角形的中线平分三角形的面积.8.(2022·黑龙江·肇东市第十中学八年级期末)如图,在△ABC 中,AD 平分∠BAC ,AD ⊥BD 于点D ,DE ∥AC 交AB 于点E ,若AB =8,则DE 的长度是( )A .6B .2C .3D .4【答案】D 【分析】分别延长AC 、BD 交于点F ,根据角平分线的性质得到∠BAD =∠FAD ,证明△BAD ≌△FAD ,根据全等三角形的性质得到BD =DF ,根据平行线的性质得到BE =ED ,EA =ED ,进一步计算即可求解.【详解】解:分别延长AC 、BD 交于点F ,∵AD平分∠BAC,AD⊥BD,∴∠BAD=∠FAD,∠ADB=∠ADF=90在△BAD和△FAD中,BADADADBÐìïíïÐ=î∴△BAD≌△FAD(ASA),∴∠ABD=∠F,∵DE∥AC,10.(2022·黑龙江·兰西县红星乡第一中学校七年级期中)如图所示的是自行车的三角形支架,这是利用三角形具有 ________________.【答案】稳定性【分析】根据三角形的特性即可解答.【详解】解:∵三角形具有稳定性,∴自行车三角形支架是利用了三角形稳定性的特性.故答案为:稳定性.【点睛】本题考查了三角形的特性,解决本题的关键是掌握三角形的特性.11.(2020·北京·垂杨柳中学八年级期中)已知点A (m +1,2)和点B (﹣2,n +1)关于y 轴对称,则m =___,n =___.【答案】 1 1【分析】根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得m +1=2,n +1=2,再解方程即可.【详解】∵点A (m +1,2)和点B (﹣2,n +1)关于y 轴对称,∴m +1=2,n +1=2,解得m =1,n =1,故答案为:1;1.【点睛】此题主要考查了关于y 轴对称的点的坐标,关键是掌握点的坐标的变化规律.12.(2022·山东泰安·七年级期末)如图,AC ,BD 相交于点O ,∠A =∠D ,请补充一个条件,使△ACB ≌△DBC ,你补充的条件是______(填出一个即可).【答案】ABC DCB Ð=Ð(答案不唯一)【分析】本题要判定△ACB ≌△DBC ,已知∠A =∠D ,CB BC =,则可以添加ABC DCB Ð=Ð从而利用AAS 判定其全等.【详解】解:添加ABC DCB Ð=Ð,∵ABC DCB Ð=Ð,∠A =∠D ,CB BC=∴△ACB ≌△DBC .(AAS )故答案是:ABC DCB Ð=Ð(答案不唯一).【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(2022·黑龙江大庆·七年级期末)琪琪画了一个等腰三角形,量得两条边长分别为12cm 和5cm ,那么它的周长为______.【答案】29cm ##29厘米【分析】因为三角形为等腰三角形,应分两种情况:①12cm 是底边时;②5cm 是底边时分别求解.【详解】解:应分两种情况:当12cm 是底边,5cm 是腰时,此时等腰三角形的三边长分别为:12cm ,5cm ,5cm ,∵5512+<,∴此时不能构成三角形;当5cm 是底边,12cm 是腰时,等腰三角形的三边长分别为:12cm ,12cm ,5cm ,此时51212+>,满足三角形的任意两边之和大于第三边,能构成三角形,∴三角形的周长为:12cm +12cm +5cm =29cm ,综上可得三角形的周长为29cm .故答案为:29cm .【点睛】本题考查了三角形的三边之间的关系,等腰三角形的定义及分类讨论的思想,熟记三角形任意两边之和大于第三边是解题的关键.14.(2022·北京一七一中八年级阶段练习)如图,在△ABC 中,D ,E 分别是边AB ,AC 上的点,过点C 作平行于AB 的直线交DE 的延长线于点F .若DE =FE ,AB =5,CF =3,则BD 的长是________.【答案】2【分析】先根据平行线的性质可得,A ECF ADE F Ð=ÐÐ=Ð,再根据AAS 定理证出ADE CFE @V V ,然后根据全等三角形的性质可得3AD CF ==,最后根据线段和差即可得.【详解】解:CF AB Q ∥,,A ECF ADE F \Ð=ÐÐ=Ð,在ADE V 和CFE V 中,AECF ADE F DE FE Ð=ÐìïÐ=Ðíï=î,()AAS ADE CFE \@V V ,AD CF \=,5,3AB CF ==Q ,532BD AB AD AB CF \=-=-=-=,故答案为:2.【点睛】本题考查了平行线的性质、三角形全等的判定与性质,正确找出两个全等三角形是解题关键.15.(2022·江西吉安·八年级期末)如图,在四边形ABCD 中,AD BC ∥,E 为CD 的中点,连接AE 并延长交BC 的延长线于点F .若2AD =,6AB =,当BC =______时,点B 在线段AF 的垂直平分线上.【答案】4【分析】通过求证△FEC ≌△AED 来证明CF =AD ;若点B 在线段AF 的垂直平分线上,则应有AB =BF 因为AB =8,CF =AD =2,所以BC =BF -CF =6-2=4时有AB =BF .【详解】解:∵AD ∥BC ,∴∠DAE =∠CFE ,∠D =∠ECF ,∵E 为CD 的中点,∴DE =CE ,在△ADE 与△FCE 中,DAE CFE D ECF DE CE Ð=ÐìïÐ=Ðíï=î,∴△ADE ≅△FCE (AAS ),∴CF =AD ;连接BE ,∵BE 垂直平分AF ,∴AB =BF ,∵AD =CF ,∵AD =2,AB =6,∴BC =BF -CF ,【答案】2【分析】过P作PF∥BC交NF=AN,证△PFM≌△QCM【详解】解:过P作PF∥∵PF∥BC,△ABC是等边三角形,∴∠PFM=∠QCM,∠APF=∠B=∴△APF是等边三角形,∴AP=PF=AF,∵PN⊥AC,(1)求证:△BCE≌△BDE;(2)若30Ð=°,CE=1,求A【答案】(1)证明见解析()HL BCE BDE \@V V .(2)解:90,30C A Ð=°Ð=°Q ,9060ABC A \Ð=°-Ð=°,BE Q 平分ABC Ð,30CBE ABE \Ð=Ð=°,30ABE A \Ð=Ð=°,AE BE \=,又Q 在Rt BCE V 中,90,30,1C CBE CE Ð=°Ð=°=,22BE CE \==,2AE \=.【点睛】本题考查了直角三角形全等的判定、角平分线的性质、等腰三角形的判定、含30度角的直角三角形的性质,熟练掌握直角三角形全等的判定和等腰三角形的判定是解题关键.18.(2022·全国·八年级课时练习)如图,已知△ABC ≌△DEF ,点B ,E ,C ,F 在同一直线上.(1)若∠BED =130°,∠D =70°,求∠ACB 的度数;(2)若2BE =EC ,EC =6,求BF 的长.【答案】(1)60°(2)12【分析】(1)根据三角形的外角的性质求出∠F ,再根据全等三角形的对应角相等解答;(2)根据题意求出BE 、BC ,再根据全等三角形的性质解答.(1)解:∵∠BED =130°,∠D =70°,∴∠F =∠BED -∠D =60°,∵V ABC ≌V DEF ,∴∠ACB =∠F =60°;(2)∵2BE =EC ,EC =6,∴BE =3,∴BC =BE +EC =9,∵V ABC ≌V DEF ,∴EF =BC =9,∴BF =EF +BE =12.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.19.(2022·新疆乌鲁木齐·八年级阶段练习)用一条长41cm 的细绳围成一个三角形,已知此三角形的第一条边为xcm ,第二条边是第一条边的3倍少4cm .(1)请用含x 的式子表示第三条边的长度.(2)若此三角形恰好是一个等腰三角形,求这个等腰三角形的三边长.【答案】(1)()454x -cm(2)7cm ,17cm ,17cm【分析】(1)依据三角形的第一条边为xcm ,第二条边是第一条边的3倍少4cm ,即可用含x 的式子表示第三条边的长度.(2)依据三角形恰好是一个等腰三角形,分三种情况讨论,即可得到这个等腰三角形的三边长.(1)解:∵三角形的第一条边长为xcm ,第二条边长比第一条边长的3倍少4cm ,∴第二条边长为()34x -cm .∴第三条边长为()()4134454x x x ---=-cm .(2)解:若x =3x -4,则x =2,此时三边长分别为2cm ,2cm 和37cm ,根据三角形三边关系可知,2,2,37不能组成三角形;若x =45-4x ,则x =9,此时三边长分别为9cm ,9cm 和23cm ,根据三角形三边关系可知,9,9,23不能组成三角形;若3x -4=45-4x ,则x =7,此时三边长分别为7cm ,17cm ,17cm ,根据三角形三边关系可知,7,17,17可以组成三角形.∴这个等腰三角形的三边长分别为7cm ,17cm ,17cm .【点睛】本题主要考查了等腰三角形的性质以及三角形的三边关系,解题的关键是根据三角形的三边关系进行判断.20.(2022·重庆市巴渝学校八年级期中)如图,在ABC V 中,BA BC =,BF AC ^于点F .【点睛】本题主要考查了作轴对称图形,求三角形的面积,根据两点之间线段最短求线段和最小等,准确的画出图形是解题的关键.22.(2021·福建·莆田第七中学八年级期中)(1)〖问题背景〗如图1,B 、E 、M 三点共线,∠DEF =∠B =∠M ,DE =EF ,求证:△DBE ≌△EMF ;(2)〖变式运用〗如图2,B 、E 、C 三点共线,△DEF 为等边三角形,∠B =60°,∠C =30°,求证:EC =BD +BE .【答案】(1)见详解(2)见详解【分析】(1)根据∠DEM =∠B +∠BDE ,∠B =∠DEF ,可得∠BDE =∠MEF ,利用AAS 即可证明DBE EMF @V V ;(2)延长DB 至N 点,使得BE =BN ,连接EN ,根据BE =BN ,可得∠BNE =∠BEN ,即有∠BNE =∠BEN =30°,进而得∠C =∠BNE ,根据∠DEF +∠CEF =∠DBE +∠BDE ;根据△DEF 是等边三角形,可得DE =EF ,∠DEF =60°,即有∠CEF =∠BDE ,利用AAS 即可证明DNE ECF @V V ,则有EC =DN ,即可得EC =BD +BE .【详解】(1)证明:∵B 、E 、M 三点共线,∴∠DEM =∠B +∠BDE ,∴∠DEF +∠MEF =∠B +∠BDE ,∵∠B =∠DEF =∠M ,∴∠BDE =∠MEF ,∵DE =EF ,∠B =∠M ,∴DBE EMF @V V ;(2)证明:延长DB 至N 点,使得BE =BN ,连接EN ,如图,∵BE =BN ,∴∠BNE =∠BEN ,∵∠BNE +∠BEN =∠DBE =60°,∴∠BNE =∠BEN =30°,∵∠C =30°,∴∠C =∠BNE ,∵B 、E 、C 三点共线,∴∠DEC =∠DBE +∠BDE ,∴∠DEF +∠CEF =∠DBE +∠BDE ,∵△DEF 是等边三角形,∴DE =EF ,∠DEF =60°,∵∠DBE =60°,∴∠DBE =60°=∠DEF ,∴∠CEF =∠BDE ,∵∠C =∠BNE ,DE =EF ,∴DNE ECF @V V ,∴EC =DN ,∵BE =BN ,DN =BN +BD ,∴EC =BD +BE .【点睛】本题主要考查了等边三角形的性质和全等三角形的判定及其性质,构造辅助线BN 是解答本题的关键.23.(2022·上海·八年级开学考试)(1)如图1,在△ABC 中,BD 平分∠ABC ,CD 平分∠ACB .过D 作EF P BC 交AB 于E ,交AC 于F ,请说明EF =BE +CF 的理由.(2)如图2,BD 平分∠ABC ,CD 是△ABC 中∠ACB 的外角平分线,若仍然过点D 作EF P BC 交AB 于E ,交AC 于F ,第(1)题的结论还成立吗?如果成立,请说明理由;如果不成立,你能否找到EF 与BE 、CF 之间类似的数量关系?【答案】(1)见解析;(2)不成立,EF =BE ﹣CF .【分析】(1)利用角平分线的性质、平行线的性质、等腰三角形的判定与性质证明BE =ED ,CF =FD 即可;(2)利用角平分线的性质、平行线的性质、等腰三角形的判定与性质证明BE =DE ,DF =CF 即可.【详解】(1)∵在△ABC 中,BD 平分∠ABC ,CD 平分∠ACB ,∴∠EBD =∠DBC ,∠DCB =∠FCD .又∵EF P BC 交AB 于E ,交AC 于F ,∴∠EDB =∠DBC ,∠FDC =∠DCB∴∠EBD =∠EDB ,∠FDC =∠FCD ,∴BE =ED ,CF =FD ,∴EF =ED +DF =BE +CF .即:EF =BE +CF .(2)不成立.EF =BE ﹣CF .理由如下:∵BD 平分∠ABC ,CD 是△ABC 中∠ACB 的外角平分线,∠EBD =∠DBC ,∠FCD =∠DCG ,∵EF P BC 交AB 于E ,交AC 于F ,∴∠EDB =∠DBC ,∠FDC =∠DCG ,∴∠EBD =∠EDB ,∠FDC =∠FCD ,∴BE =DE ,DF =CF ,∴EF =ED ﹣DF =BE ﹣CF .【点睛】本题考查了角平分线的定义、平行线的性质、等腰三角形判定与性质等问题,解题的关键是上述知识点的综合应用.24.(2022·辽宁铁岭·八年级期末)如图,在ABC V 中,90ACB Ð=°,10cm AB =,6cm BC =,若动点P 从点A 出发,沿着三角形的三边,先运动到点C ,再运动到点B ,最后运动回到点A ,2cm/s P V =,设点P 的运动时间为ts .∵∴的角平分线上,过点∴△DBA≌△EAC(AAS),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE;【点睛】本题是三角形综合题,考查了全等三角形的判定与性质、直角三角形的性质,解题的关键是熟练掌握全等三角形的判定与性质.26.(2021·湖北·公安县教学研究中心八年级阶段练习)如图(1),AB=8cm,AC⊥AB,BD⊥AB,AC=BD=6cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】(1)当t=1时,△ACP与△BPQ是全等,理由见解析(2)存在当x=2,t=1或x=3,t=2时,△ACP与△BPQ全等.【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.(1)解:△ACP≌△BPQ,证明:∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,∵t=1,∴AP=BQ=2,∴BP=6,∴BP=AC,在△ACP和△BPQ中,(1)如图,连接CE.①若CE∥AB,求∠BEC的度数;②若CE平分∠ACD,求∠BEC的度数.(2)若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.【答案】(1)①42°;②30°;(2)∠BEC的度数为48°或132°或12°.质,正确的画出图形辅助解决问题是解题的关键.28.(2021·重庆市渝北区实验中学校八年级期中)在ABC V 中,,AB AC E =是BC 中点,,G H 分别为射线,BA AC 上一点,且满足180GEH BAC ÐÐ+=o(1)如图1,若45B Ð=o ,且,G H 分别在线段,BA AC 上,2CH =,求线段AG 的长度;(2)如图2,连接AE 并延长至点D ,使DE AE =,过点E 作EF BD ^于点F ,当点G 在线段BA 的延长线上,点H 在AC 延长线上时,求证:2BF CH BG+=【答案】(1)2(2)见解析【分析】(1)连接AE ,可证△ABC 是等腰直角三角形,进一步可得AE =CE ,∠C =∠EAG =45°,根据已知条件,可得∠CEH =∠AEG ,即可证明△CEH ≌△AEG (ASA ),从而求出AG ;(2)作EI ⊥AB 于I ,在BG 上截取IJ =BI ,连接EJ ,可知EI 是线段BJ 的垂直平分线,根据线段垂直平分线的性质以及等腰三角形的性质易证△ECH ≌△EJG (AAS ),可得CH =GJ ,再证明△BFE ≌△BIE (AAS ),可得BF =BI ,即可得证.(1)解:连接AE ,如图所示:∵∠B =45°,AB =AC ,∴∠B =∠C =45°,∴∠CAB =180°-∠B -∠C =90°,∴△ABC 是等腰直角三角形,∵E 为BC 的中点,∴AE =CE ,AE ⊥BC ,∠CAE =∠BAE =45°,∴∠C =∠BAE ,∴∠GEH =∠AEC =90°,∴∠CEH =∠AEG ,在△CEH 和△AEG 中,C BAC AE CECEH AEG Ð=Ðìï=íïÐ=Ðî∴△CEH ≌△AEG (ASA ),∴AG =CH =2;(2)证明:作EI ⊥AB 于I ,在BG 上截取IJ =BI ,连接EJ ,如图所示:则EI 是线段BJ 的垂直平分线,∴EJ =BE ,∵E 是BC 的中点,∴BE =EC ,∴EJ =EC ,∵∠GEH +∠BAC =180°,∠GAH +∠BAC =180°,∴∠GEH =∠GAH ,∴∠JGE =∠CHE ,∵EJ =EB ,AB =AC ,∴∠EJB =∠ABC =∠ACB ,∴∠EJG =∠ECH ,∴△ECH ≌△EJG (AAS ),∴CH =JG ,∵AC =AB ,点E 是BC 的中点,∴AE ⊥BC ,又DE =AE ,∴BD =AB ,∴∠ABE =∠DBE ,∵EF ⊥BD ,EI ⊥AB ,(1)若D恰好在BC的中点上(如图1)①求证CD=CE;②求证:△ADE是等边三角形;(2)若D为直线BC上任一点(如图2)其他条件不变,请给予证明;若不成立,请说明理由.△ADE是等边三角形的结论;(1)在AC上取点F,使CF=CD,连结DF,先证得△ADF≌△EDC得出AD=ED,再运用已证的结论“∠ADE=60°”和根据“有一个角是60°的等腰三角形是等边三角形”可证明出△ADE是等边三角形的结论.(1)①证明:∵a∥AB,且△ABC为等边三角形,∴∠ACE=∠BAC=∠ABD=60°,AB=AC,∵D是BC中点,即BD=CD,∴AD⊥BC,∴∠ADC=90°,∵∠ADE=60°,∴∠EDC=∠ADC-∠ADE=90°-60°=30°,∴∠DOC=180°-∠EDC-∠ACB=90°,∴∠DEC=∠DOC-∠ACE=90°-60°=30°,∴∠EDC=∠DEC,∴CD=CE;②∵BD=CD,CD=CE,∴BD=CE,在△ABD和△ACE中,∵AB ACABD ACEBD CE=ìïÐ=Ðíï=î,∴△ABD≌△ACE(SAS),∴AD=AE,又∵∠ADE=60°,∴△ADE是等边三角形;(2)解:“△ADE是等边三角形”的结论仍然成立.证明如下:在AC上取点F,使CF=CD,连结DF,如图2所示:,∵∠ACB=60°,∴△DCF是等边三角形,∴DF=CD,∵∠ADF+∠FDE=∠EDC+∠FDE=60°,∴∠ADF=∠EDC,∵∠DAF+∠ADE=∠DEC+∠ACE,∠ACE=∠ADE=60°,∴∠DAF=∠DEC,∴△ADF≌△EDC(AAS),∴AD=ED,又∵∠ADE=60°,∴△ADE是等边三角形.【点睛】本题考查的是等边三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角形内角和定理、三角形的外角性质、平行线的性质.解题关键是注意熟练掌握及熟练等边三角形的判定定理与性质定理、全等三角形的判定与性质.。

新人教版八年级(上册)全等三角形经典题型

新人教版八年级(上册)全等三角形经典题型

第十二卓全等三角形题型一:全等三角形的概念和性质1、下面的图形中,形状和大小完全相同的图形有哪几对?2、巳知△ ABC^ADEF, /A = 60° , /B = 70° , AB= 2cm0求DE、/D. /F 的值・3、如图,巳知AABE也△ACD,AB=AC, BE=CD, ZB=50° , ZAEC=120° ,贝ijZDAC=()A 120°B 60°C 50°D 70°4、A OAB是由ZkOAB绕点O逆时针旋转60°得到的,那么△OA3与△OAB是什么关系?若ZAOB=40° , ZB=30° ,则上A与AOB是多少度?5、如图1, ^AABC^AADE, ZEAC=35°,则/BAD= ______________ 度;6、如图2,沿AM折査,使D点落在BC上的N点处,如果AD=7cm,DM=5cm, Z DAM=30°,则AN= ______ cm, NM= _____ cm, Z NAM= _______ ;7.如图3, AABC^AAED, ZC=40°, ZEAC=30°, ZB=30°,则/D= __________________ ,ZEAD= ____ ;& 如图4, AABC^AADE, ZE和/C是对应角,AB与AD是对应边,写出另外两组对应边和对应角;9、巳知AABC也若AABC的周长为23, AB=8, BC=6,贝lj AC= , 。

10、 若△ABCSADEF,且AABC 的周长为 20, AB = 5, BC = 8,则 DF 长为( )・A. 5 ;B. 8C ・ 7 ;C ・ 5 或8 •11、 如图,AABC^AADE, ZB = 35° , ZEAB = 21° , /C = 29° ,则/D= _______________________ , /DAC= 12.下列说法,正确的是()•A ・全等图形的面积相等13、 如图1,折査长方形ABCD ,使顶点Q 与BC 边上的N 点重合,如果AD=7C /H , DM=5C7H , Z DAM=39° , 则 AN = ____ cm , NM = ______ cm ,乙NAB =—.14、 如图 2, AABC^AAED, ZBAC=25° , ZB=35° , AB=3cm , BC=lc/w,则/E= _______________________ ,上17. _____________________________ 如图 4, AABC = ^ADE ,则 AB= ______________________________ , ZE= ________________________________ •若上BAE=120° , ZBAD=40°,则/BAC= ______________________ 18. 如图,AABC^AECD, AB 和EC 是对应边,C 和D 是对应顶点,则下列结论中错误的是( )A. AB = CEB. ZA=/E C ・ AC = DE D ・ ZB=/D 19•如图,AABC^ABAD, A 和B, C 和D 分别是对应顶点,20. 下列说法中正确的有( )①形状相同的两个图形是全等图形②对应角相等的两个三角形是全等三角形③全等三角形的面积相等④ 若厶ABC^ADEF, A DEF 仝△MNP, AABC^AMNP.A.O 个B.l 个 C ・2个 D.3个 21. 如图,△ABE^AACD,/B = 50° ,ZAEC=120°,则/DAC 的度数等干()A.1200B.70°C.600D.50°22. 巳知△ ABC^ADEF, BC = EF = 6cm, AABC 的面积为18平方厘米,则EF 边上的商是( )A.6cmB.7cmC.ScmD.9cm 23. 将一长方形纸片按如图所示的方式折査,BC 、BD 分别为折痕,则ZCBD 的度数为( )A. 60° E ・ 75° C ・ 90° D ・ 95° 25.如图,AABC 也△AED, AB=AE, /1=27° ,则/2= _______________________26. 巳知△ DEF^AABC, AB=AC,且AABC 的周长为23cm , BC = 4c 加,则厶DEF 的边中必有一条边等B.面积相等的两个图形是全等形C.形状相同的两个图形是全等形D.周长相等的两个图形是全等形若 AE = 6C 〃7, AC = 4cm , BC = 5c/n ,则 AD 的长为() A. 4 cm B. 5 cm C. 6cmD ・以上都不对ADE= _______ ;线段 DE= _____ cm , AE= _______ cm.r®4 ,DF= __________16.如图3,巳知AABC = ^ADE , AB = AD 9 BC = DE ,那么与ZBAE 相等的角是 _______________________于 _____ •27.如右图,如果将AABC向右平移CF的长度,则与△ DEF重合,那么图中相等的线段有____________ ;若上A=46° ,则ZD = __________ .28•巳知厶AECSAAWC,若AABC的面积为10 cm2 ,则△A'3'C的面积为_________________________ cm2 ,若厶A'3'C'的周长为16cm ,则AABC的周长为_____________ cm .29. A ABC 中,/A : ZC : /B = 4 : 3 : 2,且厶ABC^ADEF,则ZDEF= ______________ .31> 如图,巳知AA3C三AAED, AE = AB9 AD = AC9 ZD-ZE = 20°, Z3AC = 60°。

人教版数学八年级上册重点题型

人教版数学八年级上册重点题型

人教版数学八年级上册重点题型一、三角形全等证明题型。

题型1:已知:在△ABC和△DEF中,AB = DE,∠A = ∠D,AC = DF。

求证:△ABC≌△DEF。

解析:在△ABC和△DEF中,已知AB = DE,∠A = ∠D,AC = DF。

根据三角形全等判定定理中的“边角边”(SAS),即两边及其夹角对应相等的两个三角形全等。

所以可以得出△ABC≌△DEF。

题型2:如图,在△ABC中,AD是BC边上的中线,E是AD上一点,且BE = AC,延长BE 交AC于F。

求证:∠AEF = ∠EAF。

解析:延长AD到G,使DG = AD,连接BG。

因为AD是BC边上的中线,所以BD = CD。

在△BDG和△CDA中,BD = CD,∠BDG=∠CDA(对顶角相等),DG = DA。

所以△BDG≌△CDA(SAS)。

则BG = AC,∠G = ∠EAF。

又因为BE = AC,所以BE = BG,所以∠G = ∠AEF。

所以∠AEF = ∠EAF。

二、等腰三角形性质与判定题型。

题型3:已知等腰三角形的一个内角为70°,求这个等腰三角形的另外两个内角的度数。

解析:当70°角为顶角时,设底角为x。

根据等腰三角形两底角相等和三角形内角和为180°,可得2x+70° = 180°,解得x = 55°。

所以另外两个内角都是55°。

当70°角为底角时,另一个底角也是70°,则顶角为180° - 70°×2 = 40°。

所以另外两个内角为70°和40°。

题型4:在△ABC中,AB = AC,D是AC上一点,且AD = BD = BC。

求∠A的度数。

解析:设∠A=x。

因为AD = BD,所以∠ABD = ∠A=x。

则∠BDC = ∠A+∠ABD = 2x。

又因为BD = BC,所以∠C = ∠BDC = 2x。

新人教版八年级上册数学1.2综合训练三角形的高、中线、角平分线应用的十种常见题型优质课件

新人教版八年级上册数学1.2综合训练三角形的高、中线、角平分线应用的十种常见题型优质课件
新人教版八年级上册数学 1.2 综合训练 三角形科 目:数学
适用版本:新人教版
适用范围:【教师教学】
人教版 八年级上
期末提分练案
第1讲 三角形及其相关概念
第2课时 综合训练 三角形的高、中线、 角平分线应用的十种常见题型
第一页,共二十一页。
1.如图,在△ABC中,AC=8,BC=4,高BD=3,试作出BC边上
(3)△ACE和△ABE的周长的差. 解:(AC+CE+AE)-(AB+BE+AE)=AC-AB=8-6 =2(cm),即△ACE和△ABE的周长的差为2 cm.
第十四页,共二十一页。
9.如图,BE,CD相交于点A,CF为∠BCD的平分线,EF为∠BED的
平分线.
(1)图中共有_____6___个“8字形”;
第十八页,共二十一页。
(2)求∠DAE的度数.
解:∵AD⊥BC,∴∠ADE=90°. ∴∠B+∠BAD=90°. ∴∠BAD=90°-∠B=90°-70°=20°.
又由(1)可知∠BAE=40°,
∴∠DAE=∠BAE-∠BAD=40°-20°=20°.
第十九页,共二十一页。
第八页,共二十一页。
6.如图,△ABC的周长是21 cm,AB=AC,中线BD分△ABC为两 个三角形,且△ABD的周长比△BCD的周长大6 cm.求AB,BC
的长.
第九页,共二十一页。
解:∵BD是△ABC的中线,∴AD=CD= 12AC. ∵△ABD的周长比△BCD的周长大6 cm, ∴(AB+AD+BD)-(BD+CD+BC)=AB-BC=6 cm.① ∵△ABC的周长是21 cm,AB=AC, ∴2AB+BC=21 cm.② 联立①②,解得AB=9 cm,BC=3 cm.

人教版八年级数学上学期期末常考精选30题(解析版)

人教版八年级数学上学期期末常考精选30题(解析版)

人教版八年级数学上学期期末常考精选30题考试范围:全册的内容,共30小题.)180360︒=,七边形的对角线条数为【点睛】此题考查了多边形的内角和与外角和、对角线的条数等知识,熟练掌握多边形的内角和与外角和A.4B.3C.2D.1x y x y =+101001010【点睛】本题考查了分式的基本性质;解题的关键是熟练运用分式的基本性质进行化简比较.湖北孝感·八年级期中)下列各图中,作出ABC 的AC A .B .C .D .【答案】C 不是ABC 边AC 不是ABC 边AC 上的高,故是ABC 边AC 上的高,故C 不是ABC 边AC 上的高,故.【点睛】本题考查的是三角形的高的概念,从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.江苏淮安·八年级期中)的长是( )A .1.5B .2C .4D .6【分析】根据全等三角形的性质得出1BC EC ==,,根据BD BC CD =+即可求解.【详解】解:∵ABC DEC ≌△△,1CE =,3CD =,∵1BC EC ==,∵134BD BC CD =+=+=,故选:C .【点睛】本题考查了全等三角形的性质,熟知全等三角形对应边相等是解本题的关键.7.(2022·山东济宁·八年级期中)已知,多项式2x mx n -+可因式分解为()()34x x +-,则m 的值为( ) A .1-B .1C .7-D .7【答案】B【分析】分解因式结果利用多项式乘以多项式法则计算,再利用多项式相等的条件求出m 的值即可.【详解】解:根据题意得:()()223412x mx n x x x x -+=+-=--, 则1m =,故选:B .【点睛】此题考查了因式分解和多项式的乘法,熟练掌握运算法则是解本题的关键.8.(2022·浙江省富阳市郁达夫中学八年级期中)在等腰三角形ABC 中,它的两边长分别为6cm 和3cm ,则它的周长为( )A .10cmB .12cmC .12cm 或15cmD .15cm【答案】D【分析】分两种情况:当等腰三角形的腰长为3cm ,底边长为6cm 时,当等腰三角形的腰长为6cm ,底边长为3cm 时,然后分别进行计算即可解答.【详解】解:分两种情况:当等腰三角形的腰长为3cm ,底边长为6cm 时,∵336+=,∵不能组成三角形;当等腰三角形的腰长为6cm ,底边长为3cm 时,∵等腰三角形的周长()66315cm =++=;综上所述:等腰三角形的周长为15cm ,故选:D .【点睛】本题主要考查了等腰三角形的定义与三角形的三边关系,掌握三角形任意两边之和大于第三边是解答本题的关键.二、填空题(共8小题)9.(2022·黑龙江·哈尔滨市虹桥初级中学校八年级阶段练习)把多项式39x x -分解因式的结果是___________.【答案】(3)(3)x x x +-【分析】根据提公因式法和公式法进行因式分解即可.【详解】解:32()()(9933)x x x x xx x-=-=+-故答案为:(3)(3)x x x +-【点睛】此题考查了因式分解,解题的关键是掌握因式分解的方法,提公因式法和公式法.10.(2022·广东·东莞市寮步镇香市中学八年级期中)如图,手机支架能非常稳定地支起手机,它的设计原理是三角形的__________.【答案】稳定性【分析】根据三角形的稳定性即可解答.【详解】解:手机支架能非常稳定地支起手机,它的设计原理是三角形的稳定性,故答案为:稳定性.【点睛】此题考查了三角形的稳定性,熟练掌握三角形的稳定性的特点是解题的关键.11.(2022·山东淄博·七年级期中)如图,已知,BD CE B C =∠=∠,若5,2AB AD ==,则DC =___.【答案】3【分析】由AAS 证明ABD ACE △△≌,得5AC AB ==,从而得出答案. 【详解】解:在ABD △与ACE △中,A ABC BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∵()AAS ABD ACE △△≌,∵5AC AB ==,∵523CD AC AD AB AD =-=-=-=,钦州市第四中学八年级阶段练习)如图,在ABC中,∠=__________70,19FAE∠,则C【答案】24【详解】解:DE∠,19C+︒19AF BAC,FAC=天长市实验中学八年级阶段练习)已知,ABC的三边长为当ABC的周长为偶数时,求【答案】(1)6<或10或12【分析】(1)根据两边之和大于第三边,两边之差小于第三边计算确定.)根据偶数【详解】(1)解:∵ABC的三边长为,∵ABC的周长为偶数,是偶数,,的值可以是8或10本题考查了三角形三边关系定理,广东·江门市新会尚雅学校八年级期中)如图,牧童在(1)牧童从A 处将牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短?(2)最短路程是多少?【答案】(1)见解析;(2)1000米【分析】(1)作点A 关于CD 的对称点A ',连接A B '与CD 相交于M ,则点M 是牛饮水的位置. (2)根据轴对称的性质和“两点之间线段最短”,连接A B ',得到最短距离为A B ',再根据全等三角形的判定和性质结合A 到河岸CD 的中点的距离为500米,即可求出A B '的值.【详解】(1)如图,作点A 关于CD 的对称点A ',连接A B '与CD 相交于M ,则牧童从A 处把牛牵到河边M 处饮水再回家,所走路程最短.即在点M 处饮水,所走路程最短;(2)根据作图结合题意可知A MC BMD '∠=∠,90A CM BDM '∠=∠=︒,AC BD A C '==,且A B '长为最短距离,∵()AAS A CM BDM '≌,∵A M BM CM DM '==,,∵M 为CD 的中点,∵A 到河岸CD 的中点的距离为500米,∵A '到M 的距离为500米,∵500A M BM '==米∵1000A B '=米.故最短距离是1000米.【点睛】本题考查轴对称-最短路线问题,全等三角形的判定和性质.掌握轴对称的性质是解题的关键. 24.(2022·江苏·姜堰区实验初中八年级)如图,B 、F 、C 、E 是直线l 上的四点,AB DE ∥,AB DE =,BF CE =,(1)求证:ABC DEF△△;≌七年级期中)如图,在ABC中,∠的度数;(1)求CBC AB =.【详解】(1)解:由三角形外角性质得12ADC ∠=∠+∠,∵1236∠=∠=︒,∵72ADC ∠=︒,∵AD AC =,∵ADC △是等腰三角形,∵ADC C ∠=∠,∵72C ∠=︒;(2)解:∵72ADC C ∠=∠=︒,∵180********CAD C ADC ∠=︒-∠-∠=︒-︒⨯=︒,∵1363672BAC CAD ∠=∠+∠=︒+︒=︒,∵BAC C ∠=∠,∵5BC AB ==.【点睛】本题主要考查了三角形内角和定理以及三角形外角性质的综合应用,解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.26.(2022·重庆丰都·八年级期中)如图,在ABC 中,90ACB ∠=︒,AC BC =,点E 是ACB ∠内部一点,连接CE ,作AD CE ⊥,BE CE ⊥,垂足分别为点D ,E .(1)证明:CAD BCE ≌△△; (2)若15cm AD =,6cm BE =,求DE 的长.【答案】(1)见解析(2)9cm【分析】(1)根据同角的余角相等得DAC ECB ∠=∠,由“AAS ”即可证CAD BCE ≌△△; (2)由全等三角形的性质可得BE DC =,AD CE =,即可求解.【详解】(1)证明:BE CE ⊥,AD CE ⊥,90ADC E ∠=∠=∴︒,90DAC ECA ∴∠+∠=︒,90ACB ∠=︒,90ECB ECA ∴∠+∠=︒,在CAD和BCE中,ADC EDAC ECBAC CB∠=∠∠=∠=,(AASCAD BCE∴≌(2)解:CAD BCE≌15cmAD CE∴==,BE CD=9cmDE CE CD∴=-=.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,掌握全等三角形的判定是本题的关键.·江苏江苏·八年级期中)如图,在ABC中,(1)求证:ABE DBE≌;100=︒,50C∠=︒,求(1)见解析(1)由角平分线定义得出由三角形内角和定理得出在ABE中,在ABE和DBE中,AB DBABE DBEBE BE=∠=∠=,ABE DBE△≌△(SAS2)解:∵100A∠=︒30ABC∠=︒,在ABE 中,【点睛】本题考查了全等三角形的判定与性质、角平分线的定义、三角形内角和定理;熟练掌握三角形内角和定理和角平分线定义,证明三角形全等是解题的关键..(2022·贵州黔东南是ABC 的角平分线,.连接EF ,(1)求证:AD 是EF 的垂直平分线;Rt ADE Rt ADF ≌得到AE )四边形对角线垂直,利用四边形的面积等于对角线乘积的一半解题.)证明:AD 是ABC 的角平分线,AC ,90︒,Rt DFA 中,Rt DEA ∵()Rt DFA HL ,EDA FDA =∠,DG 垂直EF ,且平分EF AD 是EF 的垂直平分线;)解:AD 垂直EF 12AEF S EF AG =⋅,DEF S =12AEF DEF S S EF +=20AD =,150AEDF S =四边形15EF ∴=,答:EF =【点睛】本题考查了角平分线的性质和线段垂直平分线的判定,以及全等三角形的判定和性质,解题的关键是灵活运用所学定理证明三角形全等.29.(2022分别是ABC 的高和中线(1)ABE 的面积;AD 的长度;ACE △与ABE 的周长的差.【答案】(1)227cm ;36cm 5; 3cm .)先根据三角形面积公式计算出 的周长-ABE 的周长)解:ABC 是直角三角形,254(cm )=, AE 是BC 上的中线,BE EC ∴=ABE S S ∆∴=ABE S ∆∴=(2)解:BAC ∠=)解:AE是BCCE,的周长-ABE的周长和ABE的周长差是【点睛】本题考查了三角形的面积公式,以及三角形的中线将三角形分成面积相等的两部分,熟练掌握相关的性质与公式是解决此题的关键.2022·江苏南通·八年级期中)如图,ABC和AHG都是等腰直角三角形,.(1)求证:ABH∵ACG;作EF BC∥,分别交的大小关系,并说明理由.(1)见解析GQ,理由见解析(1)根据等式性质证明先由平行线的性质得)证明:BAC∠=CAG HAQ∠+∠在ABH和ACG中,AB ACBAH CAGAH AG=∠=∠=,ABH∴∵ACG(SAS(2)解:AG GQ=,理由如下:ABC和AHG都是等腰直角三角形,45∴∠=∠=︒,ABC ACHEF BC,//∴∠=∠=︒,AEF ABC45=,AF EH∴∠=∠=︒,67.5EAH AHE∠=∠,BAH CAG67.5∴∠=︒,CAGAQC CAQ ACQ∴∠=︒-∠-∠=︒,18067.5∴∠=∠,GAQ GQA∴=.AG GQ【点睛】本题考查了等腰直角三角形的性质,全等三角形的性质与判定,平行线的性质,三角形内角和定理,等腰三角形的性质与判定,关键是综合应用这些知识解题.。

人教版八年级上册数学期末常考题型复习训练 含答案

人教版八年级上册数学期末常考题型复习训练   含答案

人教版八年级上册数学期末常考题型复习训练一.选择题1.在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中.轴对称图形是()A.B.C.D.2.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.16B.11C.3D.63.分式有意义,则x的取值范围是()A.x≠1B.x=1C.x≠﹣1)D.x=﹣14.点M(1,2)关于y轴对称点的坐标为(A.(﹣1,2)5.下列运算正确的是(A.a3•a4=a12B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1))B.(a3)2=a5D.a6÷a3=a2C.(3a2)3=27a66.如图,已知∠A CB=∠DB C,添加以下条件,不能判定△AB C≌△D CB的是()A.∠AB C=∠D C B B.∠AB D=∠D C A C.AC=D B 7.若x2+mxy+4y2是一个完全平方式,那么m的值是(A.±4B.﹣2C.±2D.AB=D C D.4)8.如图,△AB C为等边三角形,AE=C D,A D、BE相交于点P,B Q⊥A D于Q,P Q=3,PE=1.A D的长是()A .5 9.从边长为a 的正方形内去掉一个边长为 b 的小正方形(如图1),然后将剩余部分剪拼成 一个矩形(如图 2),上述操作所能验证的等式是(B .6C .7D .8)A .(a ﹣b )2=a 2﹣2ab+b 2 C .(a+b )2=a 2+2ab+b 2B .a 2﹣b 2=(a+b )(a ﹣b ) D .a 2+ab =a (a+b )10.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( )A .60°B .120°C .60°或 150°D .60°或 120°二.填空题11.计算:(6x 4﹣8x 3)÷(﹣2x 2)= 12.若分式的值为零,则 x 的值为..13.禽流感病毒的形状一般为球形,直径大约为 0.000000102m ,将 0.000000102 用科学记数 法表示为14.如果一个多边形的每个外角都等于 60°,则这个多边形的边数是15.如图,已知△ABC 是等边三角形,点 B 、C 、D 、E 在同一直线上,且 C G =C D ,DF = D E ,则∠E =度...16.已知 2 =a ,32 =b ,y 为正整数,则 23 +10 =.x y x y 17.若 a ﹣b =1,ab =2,那么 a+b 的值为 .18.繁昌到南京大约150 千米,由于开通了高铁,动车的的平均速度是汽车的2.5 倍,这样 乘动车到南京比坐汽车就要节省 1.2 小时,设汽车的平均速度为 x 千米/时,根据题意列 出方程19.如图,在△AB C 中,AB =3,A C =4,BC =5,EF 垂直平分 BC ,点 P 为直线 EF 上一 动点,则△ABP 周长的最小值是..20.如图所示,第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么设第n个图案中有白色地面砖m块,则m与n的函数关系式是.三.解答题32﹣121.计算:20200﹣()+2÷(﹣2)22.解方程:.23.如图,点E、F在BC上,BE=FC,AB=D C,∠B=∠C.求证:∠A=∠D.24.先化简,再求值:÷(x﹣2﹣),其中x=3.25.如图,在Rt△ABC中,∠ACB=90°,C D是AB边上的高,(1)尺规作图:作△ABC的角平分线AE,交C D于点F(不写作法,保留作图痕迹);(2)求证:△CEF为等腰三角形.26.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.这项工程的规定时间是多少天?27.两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形B,C,E在同一条直线上,连结D C.(1)请找出图②中的全等三角形,并给予说明(注意:结论中不得含有未标识的字母);(2)请判断D C与BE的位置关系,并证明;(3)若CE=2,B C=4,求△D C E的面积.28.如图(1)AC⊥AB,B D⊥AB,AB=12cm,AC=B D=8cm,点P在线段AB上以2cm/s 的速度由点A向点B运动,同时,点Q在线段B D上由点B向点D运动,它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=2时,△ACP与△BP Q是否全等,请说明理由;(2)在(1)的条件下,判断此时线段PC和线段P Q的位置关系,并证明;(3)如图(2),将图(1)中的“AC⊥AB,B D⊥AB”改为“∠C AB=∠DBA=50°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BP Q全等?若存在,求出相应的x、t的值;若不存在,请说明理由.参考答案一.选择题1.解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不合题意.故选:C.2.解:设第三边的长度为x,由题意得:7﹣3<x<7+3,即:4<x<10,故选:D.3.解:根据题意可得x﹣1≠0;解得x≠1;故选:A.4.解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.5.解:A.a3•a4=a7,故本选项不合题意;B.(a3)2=a6,故本选项不合题意;C.(3a2)3=27a6,正确,故选项C符合题意;D.a6÷a3=a3,故本选项不合题意.故选:C.6.解:A、∵在△ABC和△D C B中∴△ABC≌△D C B(ASA),故本选项不符合题意;B、∵∠AB D=∠D C A,∠DB C=∠ACB,∴∠AB D+∠DB C=∠AC D+∠A CB,即∠ABC=∠D C B,∵在△ABC和△D C B中∴△ABC≌△D C B(ASA),故本选项不符合题意;C、∵在△AB C和△D C B中∴△ABC≌△D C B(SAS),故本选项不符合题意;D、根据∠ACB=∠DB C,B C=B C,AB=D C不能推出△ABC≌△D C B,故本选项符合题意;故选:D.7.解:∵x2+mxy+4y2=x2+mxy+(2y)2,∴mxy=±2x•2y,解得:m=±4.故选:A.8.解:∵△AB C为等边三角形,∴AB=CA,∠BAE=∠AC D=60°;又∵AE=C D,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS);∴BE=A D,∠CA D=∠ABE;∴∠BP Q=∠ABE+∠BA D=∠BA D+∠CA D=∠BAE=60°;∵B Q⊥A D,∴∠A QB=90°,则∠PB Q=90°﹣60°=30°;∵P Q=3,∴在Rt△BP Q中,BP=2P Q=6;又∵PE=1,∴A D=BE=BP+PE=7.故选:C.9.解:∵从边长为a的正方形内去掉一个边长为b的小正方形,剩余部分的面积是:a2﹣b2,拼成的矩形的面积是:(a+b)(a﹣b),2∴根据剩余部分的面积相等得:a﹣b=(a+b)(a﹣b),2故选:B.10.解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故选:D.二.填空题11.解;原式=6x4÷(﹣2x2)﹣8x3÷(﹣2x2)=﹣3x+4x,2故答案为:﹣3x+4x.212.解:,则|x|﹣1=0,即x=±1,且x+1≠0,即x≠﹣1.故x=1.故若分式的值为零,则x的值为1.13.解:0.000000102=1.02×10﹣7.故答案为:1.02×10.﹣714.解:360°÷60°=6.故这个多边形是六边形.故答案为:6.15.解:∵△ABC是等边三角形,∴∠ACB=60°,∠AC D=120°,∵C G=C D,∴∠C D G=30°,∠F DE=150°,∵DF=DE,∴∠E=15°.故答案为:15.16.解:∵32y=b,∴(2)=2=b5y5y∴23x+10y=2•2=(2)•(2)=a b.3x10y x35y232故答案为:a b.3217.解:把a﹣b=1,两边平方得:(a﹣b)2=a2+b2﹣2ab=1,把ab=2代入得:a+b=5,22∴(a+b)=a+b+2ab=9,222则a+b=±3,故答案为:±318.解:设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x,由题意得,故答案为:==+1.2.+1.2.19.解:∵EF垂直平分BC,∴B、C关于EF对称,连接AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,∴△ABP周长的最小值是4+3=7.故答案为:7.20.解:首先发现:第一个图案中,有白色的是6个,后边是依次多4个.所以第n个图案中,是6+4(n﹣1)=4n+2.∴m与n的函数关系式是m=4n+2.故答案为:4n+2.三.解答题21.解:原式=1﹣3+8÷4=1﹣3+2=0.22.解:去分母得:2=x2+2x﹣x2+4,解得:x=﹣1,经检验x=﹣1是分式方程的解.23.证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=D C,∠B=∠C,∴△ABF≌△D C E(SAS),∴∠A=∠D.===÷•.当x=3时,原式=1.25.(1)解:如图线段AE即为所求;(2)证明:∵CD⊥AB,∴∠B D C=∠ACB=90°,∴∠AC D+∠D C B=90°,∠D CB+∠B=90°,∴∠AC D=∠B,∵∠CFE=∠ACF+∠CAF,∠CEF=∠B+∠EAB,∠CAF=∠EAB,∴∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.26.解:设这项工程的规定时间是x天,根据题意得解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.27.解:(1)△ABE≌△AC D,∵△ABC和△A D E是等腰直角三角形,∴AB=AC,AE=A D,∠BA C=∠EA D=90°,∴∠BAC+∠EA C=∠DAE+∠EA C,∴∠BAE=∠CAD,在△ABE和△ACD中,∴△ABE≌△ACD(SAS).(2)∵△ABE≌△AC D,∴∠AEB=∠A D C.∵∠A D C+∠AF D=90°,∴∠AEB+∠AF D=90°.∵∠AF D=∠CFE,∴∠AEB+∠CFE=90°,∴∠FCE=90°,∴D C⊥BE;(3)∵CE=2,B C=4,∴BE=6,∵△ABE≌△ACD,∴C D=BE=6,∴△D CE的面积=CE•C D=×2×6=6.28.解:(1)△AC P与△BP Q全等,理由如下:当t=2时,AP=B Q=4cm,则BP=12﹣4=8cm,∴BP=AC=8cm,又∵∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).(2)PC⊥P Q,证明:∵△ACP≌△BP Q,∴∠ACP=∠BPQ,∴∠APC+∠BP Q=∠APC+∠ACP=90°.∴∠CP Q=90°,即线段PC与线段P Q垂直.(3)①若△ACP≌△BP Q,则AC=BP,AP=B Q,∴12﹣2t=8,解得,t=2(s),则x=2(cm/s).②若△ACP≌△BQ P,则AC=B Q,AP=BP,则2t=×12,解得,t=3(s),则x=8÷3=(cm/s),故当t=2s,x=2cm/s或t=3s,x=cm/s时,△AC P与△BP Q全等.∴CE=CF,∴△CEF是等腰三角形.26.解:设这项工程的规定时间是x天,根据题意得=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.27.解:(1)△ABE≌△AC D,∵△ABC和△A D E是等腰直角三角形,∴AB=AC,AE=A D,∠BA C=∠EA D=90°,∴∠BAC+∠EA C=∠DAE+∠EA C,∴∠BAE=∠CAD,在△ABE和△ACD中,∴△ABE≌△ACD(SAS).(2)∵△ABE≌△AC D,∴∠AEB=∠A D C.∵∠A D C+∠AF D=90°,∴∠AEB+∠AF D=90°.∵∠AF D=∠CFE,∴∠AEB+∠CFE=90°,∴∠FCE=90°,∴D C⊥BE;(3)∵CE=2,B C=4,∴BE=6,∵△ABE≌△ACD,∴C D=BE=6,∴△D CE的面积=CE•C D=×2×6=6.28.解:(1)△AC P与△BP Q全等,理由如下:当t=2时,AP=B Q=4cm,则BP=12﹣4=8cm,∴BP=AC=8cm,又∵∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).(2)PC⊥P Q,证明:∵△ACP≌△BP Q,∴∠ACP=∠BPQ,∴∠APC+∠BP Q=∠APC+∠ACP=90°.∴∠CP Q=90°,即线段PC与线段P Q垂直.(3)①若△ACP≌△BP Q,则AC=BP,AP=B Q,∴12﹣2t=8,解得,t=2(s),则x=2(cm/s).②若△ACP≌△BQ P,则AC=B Q,AP=BP,则2t=×12,解得,t=3(s),则x=8÷3=(cm/s),故当t=2s,x=2cm/s或t=3s,x=cm/s时,△AC P与△BP Q全等.∴CE=CF,∴△CEF是等腰三角形.26.解:设这项工程的规定时间是x天,根据题意得=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.27.解:(1)△ABE≌△AC D,∵△ABC和△A D E是等腰直角三角形,∴AB=AC,AE=A D,∠BA C=∠EA D=90°,∴∠BAC+∠EA C=∠DAE+∠EA C,∴∠BAE=∠CAD,在△ABE和△ACD中,∴△ABE≌△ACD(SAS).(2)∵△ABE≌△AC D,∴∠AEB=∠A D C.∵∠A D C+∠AF D=90°,∴∠AEB+∠AF D=90°.∵∠AF D=∠CFE,∴∠AEB+∠CFE=90°,∴∠FCE=90°,∴D C⊥BE;(3)∵CE=2,B C=4,∴BE=6,∵△ABE≌△ACD,∴C D=BE=6,∴△D CE的面积=CE•C D=×2×6=6.28.解:(1)△AC P与△BP Q全等,理由如下:当t=2时,AP=B Q=4cm,则BP=12﹣4=8cm,∴BP=AC=8cm,又∵∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).(2)PC⊥P Q,证明:∵△ACP≌△BP Q,∴∠ACP=∠BPQ,∴∠APC+∠BP Q=∠APC+∠ACP=90°.∴∠CP Q=90°,即线段PC与线段P Q垂直.(3)①若△ACP≌△BP Q,则AC=BP,AP=B Q,∴12﹣2t=8,解得,t=2(s),则x=2(cm/s).②若△ACP≌△BQ P,则AC=B Q,AP=BP,则2t=×12,解得,t=3(s),则x=8÷3=(cm/s),故当t=2s,x=2cm/s或t=3s,x=cm/s时,△AC P与△BP Q全等.∴CE=CF,∴△CEF是等腰三角形.26.解:设这项工程的规定时间是x天,根据题意得=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.27.解:(1)△ABE≌△AC D,∵△ABC和△A D E是等腰直角三角形,∴AB=AC,AE=A D,∠BA C=∠EA D=90°,∴∠BAC+∠EA C=∠DAE+∠EA C,∴∠BAE=∠CAD,在△ABE和△ACD中,∴△ABE≌△ACD(SAS).(2)∵△ABE≌△AC D,∴∠AEB=∠A D C.∵∠A D C+∠AF D=90°,∴∠AEB+∠AF D=90°.∵∠AF D=∠CFE,∴∠AEB+∠CFE=90°,∴∠FCE=90°,∴D C⊥BE;(3)∵CE=2,B C=4,∴BE=6,∵△ABE≌△ACD,∴C D=BE=6,∴△D CE的面积=CE•C D=×2×6=6.28.解:(1)△AC P与△BP Q全等,理由如下:当t=2时,AP=B Q=4cm,则BP=12﹣4=8cm,∴BP=AC=8cm,又∵∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).(2)PC⊥P Q,证明:∵△ACP≌△BP Q,∴∠ACP=∠BPQ,∴∠APC+∠BP Q=∠APC+∠ACP=90°.∴∠CP Q=90°,即线段PC与线段P Q垂直.(3)①若△ACP≌△BP Q,则AC=BP,AP=B Q,∴12﹣2t=8,解得,t=2(s),则x=2(cm/s).②若△ACP≌△BQ P,则AC=B Q,AP=BP,则2t=×12,解得,t=3(s),则x=8÷3=(cm/s),故当t=2s,x=2cm/s或t=3s,x=cm/s时,△AC P与△BP Q全等.。

新人教版八年级上册数学常考题型 ppt课件

新人教版八年级上册数学常考题型 ppt课件

新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学
常考题目类型总结
新人教版八年级上册数学常考题型
三角形
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型

新人教版八年级上册数学常考题型【精编】

新人教版八年级上册数学常考题型【精编】

新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学
常考题目类型总结
新人教版八年级上册数学常考题型
三角形
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型
新人教版八年级上册数学常考题型

初中数学人教版八年级上册常考易错点汇总(共 8个常考题型65条)

初中数学人教版八年级上册常考易错点汇总(共 8个常考题型65条)

八年级数学上册易错点一、数与式(8条)【易错点】1.有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆,以及绝对值的分类讨论。

(每年选择题必考)【易错点】2.实数的运算关键是把好符号关;在较复杂的运算中,不注意运算优先级或者不合理使用运算律,从而使运算出现错误。

【易错点】3.平方根、算术平方根、立方根的区别。

(每年填空题必考)【易错点】4.求分式值为零时学生易忽略分母不能为零。

【易错点】5.分式运算时要注意运算法则和符号的变化。

当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。

【易错点】6.非负数的性质.几个非负数的和为0,每个式子都为0;初中阶段就学过三个非负数.绝对值、二次根式、完全平方式。

【易错点】7.0指数幂,底数不为0。

【易错点】8.代入求值要使式子有意义。

最常考的是分式的化简求值,要注意每个分式的分母不为0,还要注意除号“÷”后面的式子也不能为0。

一定要注意计算顺序,先观察从哪里开始计算。

二、方程(组)与不等式(组)(8条)【易错点】1.二元一次方程组有可能无解,无解的条件可以用对应的两条一次函数图像平行。

【易错点】2.运用等式性质时,两边同除以一个数必须要注意不能为0的情况。

【易错点】3.解不等式时,当做到系数化为1时,两边如果是乘以或除以负数,容易忘记改变不等号方向,而导致结果出错。

(事实上考不等式几乎只考有变号的题,你细品。

)【易错点】4.关于含参一元二次方程的取值范围的题目,易忽视二次项系数不为0导致出错。

【易错点】5.关于含参一元一次不等式(组)有解无解、几个整数解的条件,易忽视相等的情况。

【易错点】6.确定不等式(组)的解集的方法画数轴,解集用“<”连接。

【易错点】7.解分式方程时,第一步去分母,分子的括号要还原(分式自带括号功能),最后一步易忘记检验根。

【易错点】8.利用函数图象求不等式的解集和方程的解,要注意图像交点,它决定了分类区间。

人教版初中数学八年级上册三角形常考题型例题

人教版初中数学八年级上册三角形常考题型例题

人教版初中数学八年级上册三角形常考题型例题单选题1、下列说法中,正确的个数有()①若三条线段中有两条线段之和大于第三条线段,则以这三条线段为边可作一个三角形;②一个三角形中,至少有一个角不小于60°;③三角形的外角大于与它不相邻的任意一个内角;④一个多边形的边数每增加一条,这个多边形的内角和就增加180°;A.1个B.2个C.3个D.4答案:C解析:分别根据三角形的三边关系,三角形的内角和定理,三角形的外角性质以及多边形的内角和公式逐一判断即可.解:①若三条线段中有两条线段之和大于第三条线段,则以这三条线段为边可作一个三角形,说法错误;改正为:若任意两条线段之和大于第三条线段,则以这三条线段为边可作一个三角形;②一个三角形中,至少有一个角不小于60°,说法正确;③三角形的外角大于与它不相邻的任意一个内角,说法正确;④一个多边形的边数每增加一条,这个多边形的内角和就增加180°,说法正确.所以正确的个数有3个.故选:C.小提示:本题主要考查了三角形的三边关系,三角形的内角和定理,多边形的内角与外角以及三角形的外角性质,熟记相关知识是解答本题的关键.2、如图,将一张含有30°角的三角形纸片的两个顶点叠放在长方形的两条对边上,若∠2=44°,则∠1的大小为()A.14°B.16°C.90°−αD.α−44°答案:A解析:如图,根据平行线的性质可得∠2=∠3,根据三角形外角的性质即可得答案.如图,∵长方形的对边平行,∴∠2=∠3=44°,∵∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选:A.小提示:本题考查平行线的性质及三角形外角性质,三角形的一个外角等于与它不相邻的两个内角的和;根据平行线的性质得出∠3的度数是解题关键.3、如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是()A.线段DEB.线段BEC.线段EFD.线段FG答案:B解析:根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.根据三角形中线的定义知线段BE是△ABC的中线,其余线段DE、EF、FG都不符合题意,故选B.小提示:本题主要考查三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.4、一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°答案:C解析:首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:360°=72°.5故选C.小提示:此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.5、下图所示的五角星是用螺栓将两端打有孔的5根木条连接构成的图形,它的形状不稳定,如果在木条交叉点打孔加装螺栓的办法使其形状稳定,那么至少需要添加()个螺栓A.1B.2C.3D.4答案:A解析:用木条交叉点打孔加装螺栓的办法去达到使其形状稳定的目的,可用三角形的稳定性解释.如图,A点加上螺栓后,根据三角形的稳定性,原不稳定的五角星中具有了稳定的各边所以答案是:A.小提示:本题考查了三角形的稳定性的问题,掌握三角形的稳定性是解题的关键.6、下列长度的三条线段能组成三角形的是( )A.5cm 2cm 3cmB.5cm 2cm 2cmC.5cm 2cm 4cmD.5cm 12cm 6cm答案:C解析:根据三角形的三边关系进行分析判断.解:根据三角形任意两边的和大于第三边,得A、3+2=5,不能组成三角形,不符合题意;B、2+2=4<5,不能组成三角形,不符合题意;C、4+2=6>5,能够组成三角形,符合题意;D、5+6=11<12,不能组成三角形,不符合题意.故选:C.小提示:本题考查了能够组成三角形三边的条件,解题的关键是用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.7、下列长度的3根小木棒不能搭成三角形的是()A.2cm,3cm,4cmB.1cm,2cm,3cmC.3cm,4cm,5cmD.4cm,5cm,6cm答案:B解析:看哪个选项中两条较小的边的和大于最大的边即可.A.2+3>4,能构成三角形,不合题意;B.1+2=3,不能构成三角形,符合题意;C.4+3>5,能构成三角形,不合题意;D.4+5>6,能构成三角形,不合题意.故选B.小提示:此题考查了三角形三边关系,解题关键在于看较小的两个数的和能否大于第三个数.8、当n边形边数增加2条时,其内角和增加()A.180°B.360°C.540°D.720°答案:B解析:根据n边形的内角和定理即可求解.解:原来的多边形的边数是n,则新的多边形的边数是n+2.(n+2−2)•180−(n−2)•180=360°.故选:B.小提示:本题主要考查了多边形的内角和定理,多边形的边数每增加一条,内角和就增加180度.填空题9、已知三角形的两边长分别为2和4,第三边长为整数,则该三角形的周长最大值为_________ 答案:11解析:根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长的最大值.解:设第三边为a,根据三角形的三边关系,得:4−2<a<2+4,即2<a<6,∵a为整数,∴a的最大整数值为5,则三角形的最大周长为2+4+5=11.所以答案是:11.小提示:本题考查了三角形的三边关系,解题的关键是理解题意,灵活运用所学知识解决问题.10、如图,D,E,F分别是△ABC的边AB,BC,AC上的中点,连接AE,BF,CD交于点G,AG:GE=2:1,△ABC的面积为6,设△BDG的面积为S1,△CFG的面积为S2,则S1+S2=______.答案:2解析:根据同高三角形的面积比就是相应底的比进行推导即可求得答案.解:∵E是BC的中点∴BE=CE∵S△ABC=6∴S△ABE=S△ACE=12S△ABC=3∵AG:GE=2:1∴S△ABG=23S△ABE=2,S△ACG=23S△ACE=2∵D、F分别是AB、AC的中点∴AD=BD,AF=CF∴S△BDG=12S△ABG=1,S△CFG=12S△ACG=1∵设△BDG的面积为S1,△CFG的面积为S2∴S1+S2=2.故答案是:2小提示:本题考查了与三角形中线有关的三角形面积问题,涉及到了三角形中线的性质、三角形的面积公式、同高三角形面积之比等于相应底的比等,难度不大.11、如图,将分别含有30°、45°角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为65°,则图中角α的度数为_______.答案:140°##140度解析:如图,首先标注字母,利用三角形的内角和求解∠ADC,再利用对顶角的相等,三角形的外角的性质可得答案.解:如图,标注字母,由题意得:∠ACB=90°−65°=25°,∵∠A=60°,∴∠BDE=∠ADC=180°−60°−25°=95°,∵∠B=45°,∴α=∠B+∠BDE=45°+95°=140°.所以答案是:140°小提示:本题考查的是三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键.12、若三角形的两边长是5 和2 ,且第三边的长度是偶数,则第三边长可能是_____________.答案:4或6.解析:能够根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是偶数这一条件,求得第三边的值.解:根据三角形的三边关系,得:第三边的取值范围是大于3而小于7,又∵第三边的长是偶数,则第三边的长为4或6,所以答案是:4或6.小提示:此题主要考查了三角形的三边关系,关键是掌握三角形三边关系.13、已知正n边形的一个外角是45°,则n=____________答案:8解析:解:∵多边形的外角和为360°,正多边形的一个外角45°,∴多边形得到边数360÷45=8,所以是八边形.故答案为8解答题14、问题情景:如图1,在同一平面内,点B和点C分别位于一块直角三角板PMN的两条直角边PM,PN上,点A与点P在直线BC的同侧,若点P在ΔABC内部,试问∠ABP,∠ACP与∠A的大小是否满足某种确定的数量关系?(1)特殊探究:若∠A=55°,则∠ABC+∠ACB=_________度,∠PBC+∠PCB=________度,∠ABP+∠ACP=_________度;(2)类比探索:请猜想∠ABP+∠ACP与∠A的关系,并说明理由;(3)类比延伸:改变点A的位置,使点P在ΔABC外,其它条件都不变,判断(2)中的结论是否仍然成立?若成立,请说明理由;若不成立,请直接写出∠ABP,∠ACP与∠A满足的数量关系式.答案:(1)125,90,35;(2)∠ABP+∠ACP=90°-∠A,证明见解析;(3)结论不成立.∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP - ∠ABP =90°-∠A.解析:(1)根据三角形内角和即可得出∠ABC+∠ACB,∠PBC+∠PCB,然后即可得出∠ABP+∠ACP;(2)根据三角形内角和定理进行等量转换,即可得出∠ABP+∠ACP=90°-∠A;(3)按照(2)中同样的方法进行等量转换,求解即可判定.(1)∠ABC+∠ACB=180°-∠A=180°-55°=125度,∠PBC+∠PCB=180°-∠P=180°-90°=90度,∠ABP+∠ACP=∠ABC+∠ACB -(∠PBC+∠PCB)=125°-90°=35度;(2)猜想:∠ABP+∠ACP=90°-∠A;证明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠ABP+∠PBC,∠ACB=∠ACP+∠PCB,∴(∠ABP+∠PBC)+(∠ACP+∠PCB)=180°-∠A,∴(∠ABP+∠ACP)+(∠PBC+∠PCB)=180°-∠A,又∵在Rt△PBC中,∠P=90°,∴∠PBC+∠PCB=90°,∴(∠ABP+∠ACP)+90°=180°-∠A,∴∠ABP+∠ACP=90°-∠A.(3)判断:(2)中的结论不成立.证明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠PBC-∠ABP,∠ACB=∠PCB-∠ACP,∴(∠PBC+∠PCB)-(∠ABP+∠ACP)=180°-∠A,又∵在Rt△PBC中,∠P=90°,∴∠PBC+∠PCB=90°,∴∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP - ∠ABP =90°-∠A.小提示:此题主要考查利用三角形内角和定理进行等角转换,熟练掌握,即可解题.15、(1)如图1,D1是△ABC的边AB上的一点,则图中有哪几个三角形?(2)如图2,D1,D2是△ABC的边AB上的两点,则图中有哪几个三角形?(3)如图3,D1,D2,…,D10是△ABC的边AB上的10个点,则图中共有多少个三角形?答案:(1)3;(2)6;(3)66.解析:(1)根据三角形的概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形进行分析即可;(2)根据三角形的定义结合图形进行分析即可得;(3)根据直线AB上有几条线段就有几个三角形,由线段的计数方法进行计算即可得答案.(1)图中三角形有:△ABC、△AD1C、△AD1B共3个;(2)图中三角形有:△ACD1、△ACD2、△ABC、△D1CD2、△D1CB、△D2CB共6个;(3)∵直线AB上有12个点,∴直线AB上的线段共有:12×(12−1)=66(条),即图中共有66个三角形.2小提示:本题考查了三角形,规律题,关键在数三角形个数时要做到不重不漏.。

(全面)新人教版八年级上册数学期末考试简单题型整理

(全面)新人教版八年级上册数学期末考试简单题型整理

(全面)新人教版八年级上册数学期末考试简单题型整理一、科学记数法1、某种感冒病毒的直径是0.00000012米,用科学记数法表示为米2、用科学记数法表示0.000 000 406,结果是3、同学们都知道,蜜蜂建造的蜂房既坚固又省料.那你知道蜂房蜂巢的厚度吗?事实上,蜂房的蜂巢厚度仅仅约为0.000073m.此数据用科学记数法表示为()4、某细胞的直径为0.000 000 7毫米,这个数用科学记数法表示为____________毫米5、自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这就是“纳米技术”,已知68个纳米的长度为0.0000000068米,用科学记数法表示这个数为米.7、H7N9型禽流感病毒的直径是0.00000012米,用科学记数法表示为米。

二、三角形(三边关系、内外角、等腰三角形、多边形)1、已知:等腰三角形三边长分别是4,,则此三角形的周长等于()A. 6或10或18B. 6C.10 D. 6或182、若三条线段中a=3,b=5,c为奇数,那么由a,b,c为边组成的三角形共有()A. 1个B. 3个C. 无数多个D. 无法确定3、下列长度的各组线段首尾相接能构成三角形的是()A.3、5、8 B.3、5、6C.3、3、6 D.3、5、108、以下列各组线段长为边能组成三角形的是()A、1cm,2cm,4cmB、8cm,6cm,4cmC、12cm,5cm,6cmD、2cm,3cm,6cm15、一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是()A.5B.6C.7D.816、若一个多边形的内角和等于,则这个多边形的边数是()(A)8 (B)7 (C)6 (D)5 17、如果一个正多边形的一个内角是135°,则这个正多边形是()A.正五边形 B.正六边形 C.正八边形 D.正十边形18、一个正多边形的每个外角都是,这个正多边形是()A.正六边形 B.正八边形 C.正十边形 D.正十二边形19、学校计划购买一批完全相同的正多边形地砖铺地面,不能进行镶嵌的是()A、正三角形B、正方形C、正五边形D、正六边形6、点A关于x轴的对称点坐标为(3,-5),则A点坐标为()A.(-3,5) B.(-3,-5) C.(3,5) D.(3,-5)7、点A(2,-1)关于x轴对称的点的坐标在第__________象限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档