实数的运算ppt课件

合集下载

八年级数学上册 3.3 实数 第2课时 实数的运算和大小比较课件 (新版)湘教版.pptx

八年级数学上册 3.3 实数 第2课时 实数的运算和大小比较课件 (新版)湘教版.pptx

(b+c)a = ba + ca (乘法对于加法的分配律) ;
(9)实数的减法运算规定为 a -b = a + (-b)

(10)实数的除法运算(除数b≠ a ÷ b = a·
0)1,规定为 b

(11)实数有一条重要性质:如果a≠0,b≠0,那么
ab

0.
4
小提示
实数也可以比较大小:对于实数a,b,如果a-b>0, 则a大于b(或者b小于a),记作a>b(或b<a);
3.
9
2 5(精确到小数点6, 精确到小数点后面第二位得:3.16.
10
用正方形比较
不用计算器,估计 5 与2哪个大.
解: 5 ,2 分别是5,4的正方形的边长. 容易说明,面积大的正方形,它的边长也大. 因此, 5 > 2 .
5
2
11
小提示
在实数运算中,如果遇到无理数,并且要 求出结果的近似值时,可按要求的精确度用相 应的近似有限小数代替无理数,再进行计算.
12
练习
计算(精确到小数点后面第二位).
(1) 2 + 3; (2) 5 -1 ; (3) 5 .
≈1.414+1.732≈3.15.
≈2.236-1≈1.24. ≈2.236×3.14≈7.02.
同样地,如果a-b<0,则a<b.还可以得出:正实数大 于一切负实数;两个负实数,绝对值大的数反而小.
从而数轴上右边的点表示的实数比左边的点表示的 实数大.
负实数
原点
正实数
0
<
5
结论
每个正实数有且只有两个平方根,它们互 为相反数;

初中数学精品课件:实数及其运算

初中数学精品课件:实数及其运算
关的:π3,π-1 等;④规律型:1.3232232223…(每两 个“3”之间依次多一个“2”)等有规律但不循环的无 限小数.
【典例 1】 (2019·宁波)请写出一个小于 4 的无理数: ______.
【答案】 π(答案不唯一)
【类题演练 1】 (2019·衢州)在12,0,1,-9 四个数中,
【典例 1】




π 2

2

22 7

0.3333333…

0

1.732

2.1010010001…(每两个“1”之间依次多一个“0”) 中,是无理数的


【错解】 2,272,2.1010010001…(每两个“1”之间依次多一个“0”)
【析错】 无理数是无限不循环小数,而有理数可以写成 分母不为 0 的分数形式,所以272是有理数,-π2是无理数. 【正解】 -π2, 2,2.1010010001…(每两个“1”之 间依次多一个“0”)
2.初中数学中常见的非负数有:①实数的绝对值:|a|≥0; ②实数的平方:a2≥0;③非负实数的算术平方根: a ≥0(a≥0).如果 a,b,c 都是实数,且满足 a2+|b|+ c =0,那么根据非负数的性质,有 a=b=c=0.由非负 数的性质可以求出多个未知数的值.
易错点1 平方根与算术平方根概念的混淆
数,则 ab= 1 .
(4)绝对值:一个数在数轴上对应的点到原点的距离叫做这个数 的绝对值.
a(a>0), |a|=0(a=0), 以上三条反之亦成立.
-a(a<0).
|a|是一个非负数,即|a|≥0.
(5)科学记数法: 科学记数法就是把一个数表示成 a×10n(反数,则和为 0;若两数互为倒数,则积 为 1.反之亦成立.

《实数》PPT课件

《实数》PPT课件

例题
计算下列各式的值: (2)3 3 2 3 (1)( 3 2 ) 2 解: (1)( 3 2 ) 2 = 3 2 2 = 30 = 3 例2
(2)3 3 2 3
= (3 2) 3
= 5 3
在实数运算中,当遇到无理数并 且需要求出结果的近似值时,可以按 照所要求的精确度用相应的近似有限 小数去代替无理数,再进行计算。
当数从有理数扩充到实 数以后,有理数关于相反数
和绝对值的意义同样适合于
实数。
2 的相反数是 2 ;
-π的相反数是 π 0的相反数是 0
2
; ; ,0 0 ,
2 , π
数a的相反数是-a,这里a表示任意一个实数。 一个正实数的绝对值是它本身;一个负实 数的绝对值是它的相反数;0的绝对值是0。
负分数
正无理数 负无理数
正整数 正有理数 正分数
正实数 正无理数
实数 零
负有理数 负实数
负无理数
负整数
负分数
练习 把下列各数分别填在相应的集合中: 22 3 3.1415926 0 2 8 25
0.3 4 5
3


2 22 7
3 1
7
3 3
3 1
0.3131131113 (两个3之间依次多一个1 )
定义
无限不循环小数叫做无理数 有理数和无理数统称实数.
无理数的三种形式:
1).
2,
π,
3,
-π…
5...
2 ).
3). 0.101001000…(两个“1”之间依次多一个0),
-7.2121121112… (两个“2”之间依次多一个
1)
实数的分类

实数的运算(41张PPT)数学

实数的运算(41张PPT)数学
13
14
15
16
17
答案
解析
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
答案
解析
解析 由题意知b2-10=0,2a+b2=0,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
2b
解析 由数轴知b<0<a,且|b|>|a|,则a-b>0,所以原式=a-(a-b)+b=a-a+b+b=2b.故答案为2b.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
②原式=|-4|=4,符合题意;③原式=-3,不符合题意;④原式=-0.8,不符合题意;⑤原式=3,符合题意;⑥原式=3,不符合题意.故选C.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
5.以下是小明的计算过程,请你仔细观察,错误的步骤是( )
解析 若围成长方形,设长为20厘米,则宽为10厘米,长方形面积为200平方厘米;若围成正方形,正方形边长为60÷4=15(厘米),面积为225平方厘米;
1
2
3
4
5
6
7
8
9
10
11
12
13
14

实数ppt课件

实数ppt课件

方程可以看作是实数之间的一种 约束关系,实数则是满足这种约
束条件的数值解。
通过解方程,我们可以找到实数 之间的特定关系和条件。
实数与不等式的关系
不等式是表达数学大小关系的一种形 式,而实数是这些不等式中的变量。
通过解不等式,我们可以找到实数之 间的特定范围和界限。
不等式可以看作是实数之间的一种限 制关系,实数则是满足这种限制条件 的数值。
02
实数的运算规则
实数的加法运算
定义
实数的加法运算是指将两个或多个实数合并成一 个实数的运算。
规则
实数的加法运算满足交换律和结合律,即 a+b=b+a和(a+b)+c=a+(b+c)。
例子
2+3=5,(-1)+(-2)=-3。
实数的减法运算
定义
实数的减法运算是指将一个实数减去另一个实数的运算。
规则
实数的减法运算可以通过加法运算进行转化,即a-b=a+(-b)。
例子
5-3=2,(-1)-(-2)=1。
实数的乘法运算
定义
实数的乘法运算是指将两个或多个实数相乘得到一个实数的运算 。
规则
实数的乘法运算满足交换律、结合律和分配律,即ab=ba和 (a+b)c=ac+bc。
例子
2×3=6,(-1)×(-2)=2。
03
1欧元=100欧分
时间单位的换算
小时与分钟换算:1 小时=60分钟
天与小时换算:1天 =24小时
小时与秒换算:1小 时=3600秒
其他应用举例
01
02
03
温度换算
摄氏度与华氏度换算,例 如:2摄氏度=3.6华氏度

实数的概念及运算课件

实数的概念及运算课件
几何学应用
实数运算在几何学中也有着重要的应用。例如,在平面几何中,我们可以通过实数运算来 计算两点之间的距离、点到直线的距离等;在立体几何中,我们可以通过实数运算来计算 体积、表面积等。
在物理中的应用
力学研究
在物理学中,实数运算广泛应用于力学研究。例如,在经典力学中,我们可以通过实数运算来计算物体的运动轨迹、 速度、加速度等;在流体力学中,我们可以通过实数运算来计算流体的速度、压强等。
反身律
a+a=a
减法运算律
反身律
a-a=0
减法的可交换性
a-b=b-a
减法的可结合性
a - (b + c) = a - b - c
乘法运算律
交换律
01
a×b=b×a
结合律
02
(a × b) × c = a × (b × c)
反身律
03
a × a = a^2
除法运算律
反身律
a / a = 1(a ≠ 0)
举例
如2+3=3+2,(-5)*(-6)=(-6)*(-5)。
结合律
01
总结词
结合律是指实数运算中,改变运算的结合顺序,其运算结果不变。
02 03
详细描述
结合律也是数学中重要的运算性质之一,对于任何实数a、b和c,都有 (a+b)+c=a+(b+c)和(ab)c=a(bc)。这意味着加法和乘法都是可结合的 。
实数的定义和性质
定义
实数是包括有理数和无理数的所有数 ,具有连续性和完备性。
性质
实数具有加法、减法、乘法和除法的 封闭性,即这四种运算的结果仍为实 数。实数还具有顺序性、完备性和连 续性等性质。

实数的运算-七年级数学上册课件(浙教版)

实数的运算-七年级数学上册课件(浙教版)
(1)a+b =
(加法交换律);
b+a
(2)(a+b)+c =
(3)a+0 = 0+a =
a
(4)a+(-a) = (-a)+a =
(5)ab =
(加法结合律);
a+(b+c)
ba

0

(乘法交换律);
(6)(ab)c = a(bc)
(乘法结合律);
(7) 1 ·a = a ·1 =
a

(8)a(b+c) = ab+ac (乘法对于加法的分配律),
如果遇到括号, 则先进行括号里的运算.
例3:计算:
(1)2 (3 5)+4-2 5;(2) 2 ( 1 ) ( 3 2)
2
(1)2 (3 5)+4-2 5
解:
(2) 2+(-1) ( 3 2)
=2 3+2 5+4-2 5
= 2 3 2
=6+4+2 5-2 5
③倒数
如果两个数的积是1,则这两个数互为倒数 .
思考:无理数也有相反数吗?怎么表示?有绝对值吗?怎么表示?有倒
数吗?怎么表示?
在实数范围内 ,相反数、倒数、绝对值的意义和有
理数范围内的相反数、倒数、绝对值的意义完全一样.
例如:
2
3
5


2
1
3
5
互为相反数
互为倒数
| 3 | 3, | 0 | 0, | |
∴“7喜数”有4个:21、42、63、84.
课堂总结
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

答:最多大约能看到65.3千米远
10
探索与思考
1.数轴上 A , B两点分别表示 2 和 2 1,
求 A, B两点之间的距离. 1
2.写出两个无理数,使它们的和为6。
11
归纳小结
通过这节课的学习,你有那些收获, 能与我们一起分享吗?
12
作业布置
书本P82页A和B组
13
14
3.分配律: a× (b+c)= a×b+ a×c
5
例1:计算
(1) 2 3 5 4 — 2 5
(2) 3 7 2 7 — 5 7
实数运算顺序:先算乘方与开方,再算 乘除,最后算加减计算器计算
8 — 7 (1)
3
(精确到0.001)
(2) 3 — 2 (4 3)(精确到0.01)
注意:在最使终用结计果算后器,再的将情显况示下的,数一据般按先预算定出
精确度取近似值。 7
2
4 18
(精确到0.1) (精确到0.01)
10 7 3
(精确到0.01)
答案:
(1)4.4
(2)
2.24(3)
0.49 8
2 12 3 2
3.4实数的运算
1
看谁能口答!
1. 16 3 0.064 2. 16 3 0.064
4 0.4
4.4
4 0.4 3.6
3.
1 81

3

1 27
1 ( 1 ) 93
1 27
4.
81
3

1 27
9 ( 1 )
3
27
2
试一试:
2
2

16 (2 2 3 64)
4 4 (2 2 4) 1(2 8) 回顾:有理数5的运算顺序是怎样的呢?
先算乘方,再算乘除,最后算加减。
如有括号,先进行括号里的运算。
思考:
实数范围内的运算顺序又是怎样的呢?
先算乘方与开方,再算乘除,最后算加减。
如有括号,先进行括号里的运算。
3
有理数的运算与实数的运 算有何相同与不同之处?
运算法则:
运算

运算律:
运算顺序:
相同点:有理数的运算
法则和运算律在实数 范围内仍然成立。
不同点:在实数范围内
增加了开方运算;运算 顺序为:括号---开方和 乘方---乘除---加减。 4
有理数运算律:
1.交换律 : 加法 a+b=b+a 乘法a×b=b×a
2.结合律: 加法(a+b)+c=a+(b+c) 乘法(a×b)×c=a×(b×c)
(精确到0.01)
提示:
如能简化算式,则应先化简, 再用计算器计算。
9
例3.俗话说,登高望远。从理论上说, 当人站在距地面h千米高处时,能看到
的最远距离约为d=112 × h 千米。
上海金茂大厦观光厅高340米,人在观
光厅里最多能看多远
(结果精确到0.1千米)?
数学来源于生活, 应用于生活。
解:d 112 h 112 0.340 65.3
相关文档
最新文档