CATIA_装配部件有限元分析

合集下载

catia有限元分析

catia有限元分析

catia有限元分析声明:该文章由文鼎教育汇编、转载,版权归原作者所有.南京catia有限元分析培训CATIA有限元分析计算实例CATIA有限元分析计算实例11.1例题1 受扭矩作用的圆筒11.1,1划分四面体网格的计算,1,进入【零部件设计】工作台启动CATIA软件。

单击【开始】?【机械设计】?【零部件设计】选项,如图11,1所示,进入【零部件设计】工作台。

图11,1 单击【开始】?【机械设计】?【零部件设计】选项单击后弹出【新建零部件】对话框,如图11-2所示。

在对话框内输入新的零件文鼎教育集团—南京声明:该文章由文鼎教育汇编、转载,版权归原作者所有.名称,在本例题中,使用默认的零件名称【Part1】。

点击对话框内的【确定】按钮,关闭对话框,进入【零部件设计】工作台。

,2,进入【草图绘制器】工作台在左边的模型树中单击选中【xy平面】, 如图11-3所示。

单击【草图编辑器】工具栏内的【草图】按钮,如图11-4所示。

这时进入【草图绘制器】工作台。

图11,2 【新建零部件】对话框图11,3 单击选中【xy平面】,3,绘制两个同心圆草图点击【轮廓】工具栏内的【圆】按钮,如图11-5所示。

在原点点击一点,作为圆草图的圆心位置,然后移动鼠标,绘制一个圆。

用同样分方法再绘制一个同心圆,如图11-6所示。

文鼎教育集团—南京声明:该文章由文鼎教育汇编、转载,版权归原作者所有.图11,4 【草图编辑器】工具栏图11,5 【轮廓】工具栏下面标注圆的尺寸。

点击【约束】工具栏内的【约束】按钮,如图11-7所示。

点击选择圆,就标注出圆的直径尺寸。

用同样分方法标注另外一个圆的直径,如图11-8所示。

图11,6 两个同心圆草图图11,7 【约束】工具栏双击一个尺寸线,弹出【约束定义】对话框,如图11,9所示。

在【直径】数值栏内输入100mm,点击对话框内的【确定】按钮,关闭对话框,同时圆的直径尺寸被修改为100mm。

用同样的方法修改第二个圆的直径尺寸为50mm。

CATIA装配部件有限元分析

CATIA装配部件有限元分析

CATIA装配部件有限元分析CATIA(计算机辅助三维交互应用)是一种广泛应用于机械设计和制造领域的软件。

它提供了一套完整的工具和功能,用于实现产品创新、设计优化和数字化制造。

CATIA的装配部件有限元分析是其中一个功能强大的工具,可以帮助工程师评估设计的结构强度和性能。

装配部件有限元分析(FEA)是一项工程分析技术,用于通过将大型复杂结构分解为小的离散单元,然后通过求解线性和非线性方程组来模拟和预测结构的行为和响应。

在CATIA中,装配部件有限元分析可以通过定义装配体与零部件之间的约束关系和关联关系来分析和评估整个装配体的性能。

在进行装配部件有限元分析之前,首先需要定义整个装配体的几何模型。

CATIA可以通过多种方式创建几何模型,包括绘制、拉伸、旋转、剪切等操作,以及导入其他CAD软件中的模型。

一旦几何模型定义完毕,就可以将其转换为有限元网格模型。

在有限元网格模型中,装配体被分解为小的离散单元,每个单元称为有限元。

这些有限元具有一些特定的属性,如几何形状、材料特性和边界条件。

材料特性定义了材料的力学性能,如弹性模量、屈服强度和断裂韧性。

边界条件定义了固定和加载条件,如约束、力、压力等。

一旦有限元网格模型定义完毕,就可以进行装配部件的有限元分析。

CATIA提供了多种分析类型,包括静态分析、动态分析、热分析、疲劳分析和优化分析。

静态分析用于评估结构的强度和稳定性,动态分析用于分析结构的振动特性,热分析用于评估结构的热响应,疲劳分析用于评估结构在不同加载条件下的寿命,优化分析用于改进结构设计。

装配部件有限元分析的结果通常以图形和数值形式呈现。

CATIA可以生成各种图表和图形,以显示应力、应变、位移、刚度等参数的分布情况。

此外,CATIA还可以生成报告和动画,以帮助工程师更好地理解和解释分析结果。

总之,CATIA的装配部件有限元分析是一种强大的工具,可以帮助工程师评估装配体的强度、稳定性和性能。

通过使用CATIA的装配部件有限元分析,工程师可以优化设计、降低制造成本并提高产品质量。

CATIA有限元分析教程

CATIA有限元分析教程

CATIA有限元分析教程CATIA是一款强大的CAD软件,广泛应用于设计和工程领域。

它不仅可以用于3D建模和装配设计,还可以进行有限元分析(FEA),这是一种用于预测和优化结构的数值方法。

以下是一个CATIA有限元分析的简要教程。

第一步是导入CAD模型。

CATIA支持导入不同格式的CAD文件,包括STEP、IGES和CATPart等。

选择合适的导入选项,并将CAD模型导入到CATIA中。

接下来,选择适当的有限元网格划分方法。

有限元网格是将结构划分成小元素的过程,用于数值计算。

常用的方法包括四面体法和四边形法。

网格划分的质量会直接影响有限元分析的准确性和计算效率。

在划分网格之后,定义材料属性和载荷条件。

根据结构的实际情况,选择适当的材料模型,并为材料指定相应的材料参数。

在指定载荷条件时,需要确定结构受力的位置和大小,并设置相应的边界条件。

完成前面的准备工作后,可以开始进行有限元分析。

CATIA提供了各种有限元分析求解器,包括静力分析、动力分析、热分析和优化等。

选择合适的分析类型,并设置求解器的参数。

然后,运行求解器并等待计算结果。

计算完成后,可以查看并分析有限元分析的结果。

CATIA提供了各种可视化工具,用于显示结构的应力、位移、应变等结果。

还可以使用剖面功能,查看特定截面上的应力分布。

通过对结果的分析,可以评估结构的性能,并优化设计。

最后,根据分析的结果,进行必要的设计优化。

根据这些结果,可以对结构进行各种修改,例如增加材料厚度、调整构型、改变几何形状等。

然后,再次进行有限元分析,以评估优化后的设计的性能。

总结起来,CATIA是一款功能强大的CAD软件,可以用于进行有限元分析。

通过正确导入CAD模型、划分适当的有限元网格、定义合适的材料属性和载荷条件、运行有限元分析求解器并分析结果,可以对结构的性能进行评估和优化。

这些步骤可以帮助工程师更好地理解和改进设计,提高产品的质量和效率。

CATIA有限元分析计算实例-完整版.doc

CATIA有限元分析计算实例-完整版.doc

CATIA有限元分析计算实例CATIA有限元分析计算实例11.1例题1 受扭矩作用的圆筒11.1-1划分四面体网格的计算(1)进入【零部件设计】工作台启动CATIA软件。

单击【开始】→【机械设计】→【零部件设计】选项,如图11-1所示,进入【零部件设计】工作台。

图11-1单击【开始】→【机械设计】→【零部件设计】选项单击后弹出【新建零部件】对话框,如图11-2所示。

在对话框内输入新的零件名称,在本例题中,使用默认的零件名称【Part1】。

点击对话框内的【确定】按钮,关闭对话框,进入【零部件设计】工作台。

(2)进入【草图绘制器】工作台在左边的模型树中单击选中【xy平面】, 如图11-3所示。

单击【草图编辑器】工具栏内的【草图】按钮,如图11-4所示。

这时进入【草图绘制器】工作台。

图11-2【新建零部件】对话框图11-3单击选中【xy平面】(3)绘制两个同心圆草图点击【轮廓】工具栏内的【圆】按钮,如图11-5所示。

在原点点击一点,作为圆草图的圆心位置,然后移动鼠标,绘制一个圆。

用同样分方法再绘制一个同心圆,如图11-6所示。

图11-4【草图编辑器】工具栏图11-5【轮廓】工具栏下面标注圆的尺寸。

点击【约束】工具栏内的【约束】按钮,如图11-7所示。

点击选择圆,就标注出圆的直径尺寸。

用同样分方法标注另外一个圆的直径,如图11-8所示。

图11-6两个同心圆草图图11-7【约束】工具栏双击一个尺寸线,弹出【约束定义】对话框,如图11-9所示。

在【直径】数值栏内输入100mm,点击对话框内的【确定】按钮,关闭对话框,同时圆的直径尺寸被修改为100mm。

用同样的方法修改第二个圆的直径尺寸为50mm。

修改尺寸后的圆如图11-10所示。

图11-8标注直径尺寸的圆草图图11-9【约束定义】对话框(4)离开【草图绘制器】工作台点击【工作台】工具栏内的【退出工作台】按钮,如图11-11所示。

退出【草图绘制器】工作台,进入【零部件设计】工作台。

CATIA装配件的有限元分析-小技巧

CATIA装配件的有限元分析-小技巧

CA TIA装配件的有限元分析
一.前处理:
1.在装配模块中定义相应约束,以面面贴合,中心贴合最为稳定,所以尽量选取这些约束;
2.在Generative Assembly Structural Analysis GAS模块中将相关约
束定义为“扣紧连接-Fastened connection property”;
3.定义夹紧约束,施加载荷;
二.运算
先创建实体特性,后点运算;
三.后处理:可设置显示单个部件的应力及位移情况;
单个零件应力值显示:在左边模型树中右击【V on Mises Sress.1】,选择【V on Mises Sress(nodal values).1】 【定义】命令。

选择【Selections】选项,在【Available Groups】列表中选择【OCTREE Tetrahedron
Mesh.1:rubber.1】,单击向下移动按钮,移动到【Activated Groups】列表框,单击下面的【确定】按钮,即单独显示某个零件的应力值;。

基于catia的简单零件设计及有限元分析

基于catia的简单零件设计及有限元分析

基于catia的简单零件设计及有限元分析专用汽车结构与设计课程论文摘要零件受载时的变形平衡及可靠性是工程应用中最常见的问题,汽车作为最普遍的交通工具,其中的要求更是广泛。

那么对某一具体的零部件,分析及解决这一问题的最方便最有效的方法就是有限元分析法,下面基于catia软件,对一实际的三脚连接静态受载的问题,首先进行零件实体建模,再利用有限元分析模块来解决。

在此过程中,我们可以看到解决改善这类问题的方法。

关键词零件实体建模有限元分析应力变形正文基于如下问题的解决方法探索:已知三脚连接件如下,需要分析其受载时的状况。

分析:要解决其受载变形平衡及可靠性的问题,就得首先清楚其受载情况然后在从应力应变的角度去分析,而此零件不是简单的简支梁支杆的问题,所以不能用传统的方法去解决,但是我们可以将其转化了成熟知的问题,再来解决。

有限元分析法就是基于这个目的而产生的,它的基本概念就是用较简单的问题代替复杂的问题再求解,将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解总域的满足条件(如结构的平衡条件),从而得到问题的解。

当然这个解不是准确解,而是近似解,因为实际问题被较简单的问题所近似代替。

由于大多数实际问题难以得到准确解,而有限元不仅能适应各种复杂形状,而且计算过程通过计算机完成的,精度高,速度快,因而成为行之有效的工程分析手段。

所以基于此问题,我们利用catia中的有限元分析模块来解决。

当然前提条件是实体建模已完成,因此我们将问题分两步来完成。

一.零件实体建模零件的三视图及立体图已经充分给出,根据这我们就可以做出零件实体。

1.打开catia,进入开始—机械设计—零件设计,点启用混合设计后就可以进入零件设计的界面了。

2.凸台1设计首先点击YZ平面并进入草绘,完成三脚中的一脚的剖面的设计:在进行X方向的对称拉伸:3.倒R8圆角14.钻Φ10*5的盲孔1先进入草绘选择好圆心点再完成孔的设计5.挖Φ15凹槽1先完成平面草绘再进行拉伸,选择好方向,点选直到下一个6.圆形阵列1完成另两个脚进入草绘,完成圆形阵列1的轴线圆形阵列1:7.R35平面圆角1,28.肋1先完成肋1的横截面设计,进入草绘再完成肋1纵向位移线设计,进入草绘完成肋1:9.末端Φ40*14的旋转体设计先进入草绘,完成旋转轮廓及转轴的设计完成旋转体:10.螺纹孔3的设计与第4步钻孔类似,先完成草图里圆心的位置设定,再完成螺纹孔3:选择好需要倒圆的肋的棱边,完成倒圆角2:12.旋转体上表面倒R8圆角3设置如下:完成如图:14.底面倒R1圆角15.填充材料steel最终完成零件实体的建模:二.有限元分析实体建模完成后,就可以进行有限元分析了,不过我们得先知道零件的连接受载情况,查资料可知,此三脚连接件的三个脚连接某一零件,而末端的螺纹孔连接另一个零件。

CATIA有限元分析

CATIA有限元分析

实验报告目录实验一:CATIA 中的工程分析动臂应力分析问题描述解题思路操作过程实验二:电子样机运动机构模拟四连杆运动机构模拟问题描述解题思路操作过程实验三:电子样机空间分析柴油机燃油供给系中输油泵空间分析问题描述解题思路操作过程感想实验一:装载机动臂应力分析一、问题描述装载机无偏载工作时,动臂承受一定外载荷和来自车架的约束。

动臂结构示意图见图1。

图1在建立模型时,油缸假设为柔性弹簧,A铰点作为动臂的支点,允许动臂绕通过A 铰点的轴转动,B铰点是动臂油缸支点(动臂油缸的刚度假设为2.0e7N_m)。

C铰点和D铰点是外载荷的作用点。

本实例分析的工况是正铲无偏载,载荷、结构同时对称,最好取出模型的一般,通过施加对称约束,进行有限元求解。

二、解题思路1、进入并载入源文件2、前处理(施加约束和载荷)3、求解4、后处理三、操作过程1、进入并载入源文件(1)、打开文件dongbi.CATPART。

(2)、进行有限元分析前的基本设置工作。

(3)、单击Start/Analysis Simulation/Generative Structural Analysis 进入有限元分析模块,选择Static Analysis, 进入静态有限元分析,如图2所示。

图22、前处理●在A点建立刚性虚件,如下图所示。

●限定A点自由度,如下图所示。

●B点建弹簧虚件,如下图所示。

●圆锥角约束,如下图所示。

C点建刚性虚件并施加载荷在C点处创建的刚性虚件,然后利用分布力按钮在Y轴输入-2000N,Z轴输入-2000N。

,如下图所示。

在D点施加载荷在D点处的创建柔性虚件,然后利用分布力按钮在Y轴输入-2000N,Z轴输入-2000N。

用同样的方法在D点右侧的柔性虚件上施加载荷,如下图所示。

3、自动求解●计算冯米斯应力●计算数值位移●编辑图片●排列图片●生成报告按书上步骤做的,详细步骤不在此赘述,见谅。

实验二:电子样机运动机构模拟一、问题描述选择题目一,以四连杆为例来说明在CATIA V5里如何使用DMU单元中的KIN模块的放着分析功能,在KIN模块里,创建运动仿真机构(Designing a V5 Mechanism)的过程是这样的。

CATIA装配有限元分析training

CATIA装配有限元分析training

Beam property
Model Check Virtual parts manager Virtual parts New ! Analysis Results Basic Analysis Report Historic Of Computations Listing Restraints Application
We will activate Materials so that material render styles are displayed 1- Select Render Style from the View menu
2- Click on “Apply Customized View”
3- Activate “Materials” and click OK.
p.83
p.84 p.85 p.86 p.87 p.89
6. Dynamic Pre-Processing and Computation
6.1. Creating Additional Mass Equipment 6.2. Unrestrained or Restrained Part 6.3. Computing the Analysis
4.1. Image Creation 4.2. Images Layout 4.3. Results Management 4.4. Other Capabilities 4.5. Historic of Computation 4.6. Parabolic Element Type 4.7. Global and Local Mesh Refinement 4.8. Mesh Adaptativity 4.9. Knowledgeware for Analysis

CATIA有限元分析模块

CATIA有限元分析模块

CATIA有限元分析模块CATIA是法国达索公司开发和销售的一款三维设计软件,主要应用于航空、汽车、船舶、机械等工业领域。

CATIA的有限元分析模块是CATIAV5软件中的一个重要组成部分,它可以帮助工程师对产品进行结构、热分析,从而评估产品的性能和安全性。

有限元分析(Finite Element Analysis,简称FEA)是一种工程分析方法,通过将复杂结构分割为许多简单的有限元单元,将物理问题转化为离散的代数方程求解,从而得到结构的应力、变形、热分布等参数。

有限元分析在产品设计、优化和验证过程中起着至关重要的作用。

1.建模与前处理:CATIA可以创建复杂的几何模型,并提供了多种建模工具,如草图、曲线、曲面等。

在建模完成后,可以使用前处理工具对几何模型进行网格划分,生成有限元模型。

2.材料与属性:CATIA提供了广泛的材料库和属性设置功能,使用户可以选择适当的材料属性,并为每个单元指定材料属性。

这些属性主要包括杨氏模量、泊松比、密度等。

3.载荷与边界条件:CATIA允许用户定义各种载荷和边界条件,如力、压力、热源等。

用户可以在几何模型上指定这些载荷和边界条件,以模拟实际工作条件。

4.分析类型:CATIA支持多种分析类型,包括静态分析、动态分析、热分析、模态分析等。

用户可以根据需求选择合适的分析类型,并进行参数设置。

5.求解器:CATIA使用强大的求解器来解决有限元模型的代数方程。

这些求解器可以通过迭代方法求解大型和复杂的方程组,并提供准确的结果。

6.可视化和后处理:CATIA提供了丰富的可视化工具,可以对分析结果进行可视化展示,并为用户提供方便的后处理功能。

用户可以从不同角度观察结果,进行剖面分析,生成报告等。

7.优化与验证:CATIA的有限元分析模块还提供了优化和验证工具,可以对设计进行优化,以提高产品性能和效率,并验证设计是否满足规定的要求。

除了以上主要功能外,CATIA的有限元分析模块还具有易学易用的特点,用户可以通过图形界面进行操作,并提供了详细的帮助文档和教程。

CATIA装配有限元分析training

CATIA装配有限元分析training

COPYRIGHT DASSAULT SYSTEMES 2002
11
User Settings - Highlighting Faces and Edges
This enhances the visualization of selected faces.
2- Click “Display” 1- Select “Options…” from the Tools menu 3- Click “Navigation”
1- Start
3- Modal or Static Analysis. A new CATAnalysis document is created.
2- Analysis & Simulation Be sure that the Part being studied has a material applied. This action can only be performed in the Part Design Workbench
COPYRIGHT DASSAULT SYSTEMES 2002
6
1.2. User Interface - Toolbars
Restraints
Images External Storage Management
Model Manager
COPYRIGHT DASSAULT SYSTEMES 2002
Objectives of the course
In this course you will learn how to perform Static and Modal Analyses (create analysis documents, compute and visualize) on a single Part.

CATIA有限元分析计算实例 完整版

CATIA有限元分析计算实例 完整版

CATIA有限元剖析盘算实例【1 】CATIA有限元剖析盘算实例例题1 受扭矩感化的圆筒-1划分四面体网格的盘算(1)进入【零部件设计】工作台启动CATIA软件.单击【开端】→【机械设计】→【零部件设计】选项,如图11-1所示,进入【零部件设计】工作台.图11-1单击【开端】→【机械设计】→【零部件设计】选项单击后弹出【新建零部件】对话框,如图11-2所示.在对话框内输入新的零件名称,在本例题中,运用默认的零件名称【Part1】.点击对话框内的【肯定】按钮,封闭对话框,进入【零部件设计】工作台.(2)进入【草图绘制器】工作台在左边的模子树中单击选中【xy平面】, 如图11-3所示.单击【草图编辑器】对象栏内的【草图】按钮,如图11-4所示.这时进入【草图绘制器】工作台.图11-2【新建零部件】对话框图11-3单击选中【xy平面】(3)绘制两个齐心圆草图点击【轮廓】对象栏内的【圆】按钮,如图11-5所示.在原点点击一点,作为圆草图的圆心地位,然后移动鼠标,绘制一个圆.用同样分办法再绘制一个齐心圆,如图11-6所示.图11-4【草图编辑器】对象栏图11-5【轮廓】对象栏下面标注圆的尺寸.点击【束缚】对象栏内的【束缚】按钮,如图11-7所示.点击选择圆,就标注出圆的直径尺寸.用同样分办法标注别的一个圆的直径,如图11-8所示.图11-6两个齐心圆草图图11-7【束缚】对象栏双击一个尺寸线,弹出【束缚界说】对话框,如图11-9所示.在【直径】数值栏内输入100mm,点击对话框内的【肯定】按钮,封闭对话框,同时圆的直径尺寸被修正为100mm.用同样的办法修正第二个圆的直径尺寸为50mm.修正尺寸后的圆如图11-10所示.图11-8标注直径尺寸的圆草图图11-9【束缚界说】对话框(4)分开【草图绘制器】工作台点击【工作台】对象栏内的【退出工作台】按钮,如图11-11所示.退出【草图绘制器】工作台,进入【零部件设计】工作台.图11-10修正直径尺寸后的圆图11-11【工作台】对象栏(5)拉伸创建圆筒点击【基于草图的特点】对象栏内的【凸台】按钮,如图11-12所示.弹出【凸台界说】对话框,如图11-13所示.在【第一限制】选项组内的【长度】数值栏内输入50mm,点击对话框内的【肯定】按钮,生成一个圆筒体,如图11-14所示.在左边的模子树上消失【填充器.1】元素.图11-12【基于草图的特点】对象栏图11-13【凸台界说】对话框(6)对零件付与材料属性在左边的模子树中点击选中零件名称【Part1】,如图11-15所示.点击【运用材料】对象栏内的【运用材料】按钮,如图11-16所示.先弹出一个【打开】警告新闻框,如图11-16所示,这是因为运用简化汉字界面,但没有响应的简化汉字材料库造成的,点击警告新闻框内的【肯定】按钮,封闭新闻框.弹出【库(只读)】对话框,如图11-18所示.点击【Metal】(金属)选项卡,在列表中选择【Steel】(钢)材料.点击对话框内的【肯定】按钮,将钢材料付与零件.图11-14拉伸创建的一个圆筒体图11-15选中的零件名称【Part1】图11-16【运用材料】对象栏图11-17【打开】警告新闻框图11-18【库(只读)】对话框假如对软件内钢铁材料的属性不懂得,可以检讨界说的材料属性,也可以修正材料属性参数.在左边的模子树上双击材料名称【Steel】,如图11-19所示.弹出【属性】对话框,如图11-20所示.图11-19材料名称【Steel】图11-20【属性】对话框(7)进入【Advanced Meshing Tools】(高等网格划分对象)工作台点击菜单中的【开端】→【剖析与模仿】→【Advanced Meshing Tools】(高等网格划分对象)选项,如图11-21所示.点击落后入了【高等网格划分对象】工作台.进入工作台后,生成一个新的剖析文件,并且弹出一个【新剖析算题】对话框,如图11-22所示.点击后,在对话框内选择【Static Analysis】(静态剖析算题),然后点击【肯定】按钮.图11-21【开端】→【剖析与模仿】→【Advanced Meshing Tools】(高等网格划分对象)选项点击【Meshing Method】(网格划分办法)对象栏内的【Octree Tetrahedron Mesher】(Octree 四面体网格划分)按钮,如图11-23所示.须要在【Meshing Method】(网格划分办法)对象栏内点击中央按钮的下拉箭头才干够显示出【Octree Tetrahedron Mesher】(Octree 四面体网格划分)按钮.图11-22【新剖析算题】对话框图11-23【Meshing Method】(网格划分办法)对象栏在图形区左键点击选择圆筒三维实体模子,如图11-24所示.选择实体后弹出【OCTREE Tetrahedron Mesher】(Octree 四面体网格划分器)对话框,如图11-25所示.点击【Global】(全局)选项卡,在【Size】(尺寸)栏内输入5mm作为网格的尺寸;点击选中【Absolute sag】(绝对垂度)选项,在该数值栏内输入;在【Element type】(单元类型)选项区内选中【Paraboic】二次单元.点击对话框内的【肯定】按钮,完成设置,封闭对话框.图11-24选择圆筒三维实体模子图11-25【OCTREE Tetrahedron Mesher】(Octree 四面体网格划分器)对话框在左边的模子树上右击【】元素,如图11-26所示.在弹出的右键快捷菜单中选择【Update Mesh】(更新网格)选项,如图11-27所示.程序开端划分网格,划分后的四面体网格如图11-28所示.图11-26右击【】元素图11-27选择【Update Mesh】(更新网格)选项(8)进入【Generative Structural Analysis】(创成式构造剖析)工作台点击主菜单中的【开端(S)】→ 【剖析与模仿】→【Generative Structural Analysis】(创成式构造剖析)选项,如图11-29所示,进入【创成式构造剖析】工作台.图11-28划分后的四面体网格图11-29点击【开端(S)】→ 【剖析与模仿】→【Generative Structural Analysis】(创成式构造剖析)选项(9)指定3D属性点击【Model Manager】(模子治理器)对象栏内的【3D Property】(三维属性)按钮,如图11-30所示.点击后弹出【3D Property】(三维属性)对话框,如图11-31所示.在左边的模子树上点击选择【】元素,点击对话框内的【肯定】按钮,封闭对话框,将3D属性指定到三维零件上.图11-30【Model Manager】(模子治理器)对象栏图11-31【3D Property】(三维属性)对话框(10)设置固支鸿沟前提点击【Restraints】(束缚)对象栏内的【Clamp】(固支)按钮,如图11-32所示.在图形区选择圆筒体的一个底面,如图11-33所示.弹出【Clamp】(固支)对话框,如图11-34所示.点击对话框内的【肯定】按钮,对圆筒体的一个底面增长了固支束缚.图11-32【Restraints】(束缚)对象栏图11-33图11-34【Clamp】(固支)对话框(11)对圆筒施加扭矩点击【Loads】(载荷)对象栏内的【Moment】(扭矩)按钮,如图11-35所示.弹出【Moment】(扭矩)对话框,如图11-36所示.在【Moment Vector】(扭矩分量)选项区内的【Z】数值栏内输入100Nxm,即设置扭矩z偏向的分量为100Nxm.在图形区点击选择圆筒的内概况,如图11-37所示,即设置内概况上的扭矩为100Nxm.点击对话框内的【肯定】按钮,封闭对话框.图11-35【Loads】(载荷)对象栏图11-36【Moment】(扭矩)对话框同理,用同样的办法设置圆筒的外概况,对外部施加相反偏向的扭矩,即要把z偏向的扭矩设置为-100Nxm.设置完成后,显示的模子如图11-38所示.图11-37图11-38添加两个扭矩和固支束缚后的模子(12)盘算模子点击【Compute】(盘算)对象栏内的【Compute】(盘算)按钮,如图11-39所示.弹出【Compute】(盘算)对话框,如图11-40.点击勾选【Preview】(预览)选项,点击对话框内的【肯定】按钮,开端盘算剖析.点击后会弹出两个对话框,一个是【Computing】(正在盘算)过程显示框,如图11-41所示,显示盘算过程;别的一个是【Computation】(盘算)框,显示当前的盘算步折衷已经运用的盘算时光,如图11-42所示.图11-39【Compute】(盘算)对象栏图11-40【Compute】(盘算)对话框图11-41【Computing】(正在盘算)过程显示框图11-42【Computation】(盘算)框当盘算过程把网格划分完毕,并盘算完成刚度矩阵后,会弹出一个【Computation Resource Estimation】(盘算资本估量)对话框,如图11-43所示,显示须要的CPU时光.须要的内存.须要的硬盘储存量,并且讯问用户是否持续盘算,假如点击【No】(否)按钮,则退出盘算,假如点击【Yes】(是)按钮,则盘算持续.假如用户在图11-40【Compute】(盘算)对话框内未选中【Preview】(预览)选项,则不会弹出【Computation Resource Estimation】(盘算资本估量)对话框,直接运行盘算.对于比较庞杂的构造,盘算时光比较长时,建议用户选中该选项,如许可以大致懂得算题所须要的时光和盘算机资本,用户本身也估算,盘算机设置装备摆设是否可以或许知足请求.点击对话框内【Yes】(是)按钮,持续盘算.程序从新弹出【Computing】(正在盘算)过程对话框,此时,假如用户想终止盘算,仍然可以点击该对话框内的【撤消】按钮,撤消盘算过程.图11-43【Computation Resource Estimation】(盘算资本估量)对话框(10)显示模子盘算成果在左边的模子树中鼠标右击【】,如图11-44所示.在消失的菜单中选择【Generate Image】(生成图像)选项,如图11-45.选择后弹出【Image Generation】(图像生成)对话框,如图11-46所示.在对话框内选择【Stress full tensor component】(应力张量的分量)选项,选择后,消失应力张量图像,如图11-47所示.图11-44右击【】图11-45选择【Generate Image】(生成图像)选项图11-46【Generate Image】(生成图像)选项图11-47应力张量图应力张量图中,含有网格.鸿沟前提,同时未显示为黑色,下面临图像进行修正.在图像区或者模子树上点击选中固支束缚和扭矩载荷名称或者符号,然后在【视图(v)】对象栏内点击【隐蔽/显示】按扭,如图11-48所示.将固支鸿沟前提.扭矩载荷前提隐蔽起来.将图例移动到图形旁边.在图例上点击左键,然后在图例上按下中央键不松开,即可移动图例.移动到适合地位后,再点击左键.图形区从新处于激活状况.在【视图(v)】对象栏内点击【带材料着色】按扭,如图11-49所示,显示材料.最终修正后显示的应力张量图如图11-50所示.图11-48【视图(v)】对象栏内图11-49【视图(v)】对象栏内点击【带材料着色】按扭图11-50修正后显示的应力张量图下面将圆筒剖开,检讨其内部应力散布情形.点击【Analysis Tools】(剖析对象)对象栏内的【Cut Plane Analysis】(剖切平面剖析)按钮,如图11-51所示.弹出【Cut Plane Analysis】(剖切平面剖析)对话框,如图11-52所示,不选中对话框内的【Show cutting plane】(显示剖切面)选项,在图形区不显示出剖切面.同时在图形区显示罗盘,用户可以操纵罗盘,对应力散布图进行不合偏向的剖切,如图11-53所示.图11-51【Analysis Tools】(剖析对象)对象栏图11-52【Cut Plane Analysis】(剖切平面剖析)对话框图11-53剖切的应力散布图(13)修正网格的参数从图中可以看出,圆筒内部的应力较高.为了使盘算成果加倍精确,对圆筒内壁的有限元网格进行细化处理.在左边的模子树上双击【】元素,如图11-54所示.双击后弹出【OCTREE Tetrahedron Mesh】对话框,如图11-55所示.点击【Local】(局部)选项卡,在【Available specs】(可用的特定参数)区内,点击选择【Local size】(局部尺寸)选项,然后点击【Add】(添加)按钮,弹出【Local Mesh Size】(局部网格尺寸)对话框,如图11-56所示.在【Value】(数值)栏内输入2mm,在图形区选择圆筒的内概况,然后点击对话框内的【肯定】按钮,封闭对话框,返回到【OCTREE Tetrahedron Mesh】对话框.图11-54双击的【】元素图11-55【OCTREE Tetrahedron Mesh】对话框图11-56【Local Mesh Size】(局部网格尺寸)对话框在【OCTREE Tetrahedron Mesh】对话框内,在【Available specs】(可用的特定参数)区内,点击选择【Local sag】(局部垂度)选项,如图11-57所示.然后点击【Add】(添加)按钮,弹出【Local Mesh Sag】(局部网格垂度)对话框,如图11-58所示.在【Value】(数值)栏内输入2mm,在图形区选择圆筒的内概况,然后点击对话框内的【肯定】按钮,封闭对话框,返回到【OCTREE Tetrahedron Mesh】对话框.图11-57选择【Local sag】(局部垂度)选项图11-58【Local Mesh Sag】(局部网格垂度)对话框在左边的模子树上右击【】元素,在弹出的右键快捷菜单中选择【Update Mesh】(更新网格)选项.程序开端划分网格,从新划分后的四面体网格如图11-59所示,可以看到,圆筒内壁的网格显著比其它部分细化.图11-59从新划分后的四面体网格点击【Compute】(盘算)对象栏内的【Compute】(盘算)按钮.弹出【Compute】(盘算)对话框,开端进行盘算.从新盘算的应力张量成果如图11-60所示.应力值有所进步.图11-60从新盘算的应力张量成果-2 划分构造化六面体网格盘算剖析(1)进入【线框和曲面设计】工作台启动CATIA软件.单击【开端】→【机械设计】→【线框和曲面设计】选项,如图11-61所示,进入【线框和曲面设计】工作台.图11-61【开端】→【机械设计】→【线框和曲面设计】选项单击后弹出【新建零部件】对话框,如图11-62所示.在对话框内输入新的零件名称,在本例题中,运用零件名称为【Part1-2】.点击对话框内的【肯定】按钮,封闭对话框,进入【线框和曲面设计】工作台.(2)界说点点击【线框】对象栏内的【点】按钮,如图11-63所示.点击后弹出【点界说】对话框,如图11-64所示.在【Y=】数值栏内输入50mm,即在(0,50,0)地位创建一个点.点击对话框内的【肯定】按钮,创建一个点.图11-62【新建零部件】对话框图11-63【线框】对象栏用同样的办法创建第二个点(0,100,0),第三个点(0,0,0).(3)创建线段点击【线框】对象栏内的【直线】按钮,弹出【直线界说】对话框,如图11-65所示.在图形区选择【点1】和【点2】,如图11-66所示.点击对话框内的【肯定】按钮,创建一条线段.图11-64【点界说】对话框图11-65【直线界说】对话框持续创建第二条线段,但办法与第一条线段出创建办法不合.点击【线框】对象栏内的【直线】按钮,弹出【直线界说】对话框,在图形区选择第三个点,然后再选择【xy plane】参考平面,如图11-67所示.此时,【直线界说】对话框内【线型】下拉列表框主动更改为【点-偏向】,如图11-68所示.在【停止】数值栏内输入20mm,即线段的长度为20mm.图11-66选择【点1】和【点2】图11-67选择第三个点【xy plane】参考平面(4)扭转创建面点击【曲面】对象栏内的【扭转】按钮,如图11-69所示.弹出【扭转曲面界说对话框】,如图11-70所示.在图形区选择【直线.1】作为轮廓,选择【直线.2】作为扭转轴,如图11-71所示.图11-68【线型】下拉列表框主动更改为【点-偏向】图11-69【曲面】对象栏图11-70【扭转曲面界说对话框】图11-71选择【直线.1】作为轮廓,选择【直线.2】作为扭转轴(5)拉伸创建曲面点击【曲面】对象栏内的【拉伸】按钮,如图11-72所示.弹出【拉伸曲面界说】对话框,如图11-73所示.选择上一步扭转创建的曲面内圆作为轮廓,选择第二条线段【直线.2】作为偏向,在【拉伸限制】区内的【限制1】【尺寸】数值栏内输入50mm,即拉伸的高度为50mm.预览生成的拉伸曲面如图11-74所示.图11-72【曲面】对象栏内的【拉伸】按钮图11-73【拉伸曲面界说】对话框用同样的办法拉伸外侧的圆弧,最终形成的图形如图11-75所示.(6)付与钢铁材料在左边的模子树中点击选中零件名称【Part1】.点击【运用材料】对象栏内的【运用材料】按钮.先弹出一个【打开】警告新闻框点击警告新闻框内的【肯定】按钮,封闭新闻框.弹出【库(只读)】对话框.点击【Metal】(金属)选项卡,在列表中选择【Steel】(钢)材料.点击对话框内的【肯定】按钮,将钢材料付与零件.图11-74预览生成的拉伸曲面图11-75最终形成的图形(7)进入【ADCANCED MESHING TOOLS】(高等网格划分对象)工作台单击【开端】→【剖析与模仿】→【ADCANCED MESHING TOOLS】(高等网格划分对象)选项,如图11-76所示,进入【ADCANCED MESHING TOOLS】(高等网格划分对象)工作台.图11-76【开端】→【剖析与模仿】→【ADCANCED MESHING TOOLS】(高等网格划分对象)选项(8)划分底面网格点击【Meshing Method】(网格划分办法)对象栏内的【Advanced Surface Mesher】(高等曲面划分器)按钮,如图11-77所示.点击后在图形区选中底面,如图11-78所示.图11-77【Advanced Surface Mesher】(高等曲面划分器)按钮图11-78选中的底面留意!只选择底面.选中底面后,弹出【Global Parameter】(全局参数)对话框,如图11-79所示.点击【Mesh】(网格)选项卡,在【Mesh Type】(网格类型)栏内点击四边形网格按钮,在【Element type】(单元类型)栏内勾选【Parabolic】(二次网格)选项,在【Mesh Size】(网格尺寸)数值栏内输入5mm,勾选【Minimize triangle】(最小化三角形)选项.全体设置完成后,点击对话框内的【肯定】按钮,封闭对话框,完成平面网格划分设置.平面轮廓的边沿显示为绿色,如图11-80所示.图11-79【Global Parameter】(全局参数)对话框图11-80平面轮廓的边沿显示为绿色点击【Execution】(履行)对象栏内的【Mesh The Part】(对零件划分网格)按钮,如图11-81所示.程序开端对底面划分四边形网格,划分完成后,弹出【Mesh The Part】(对零件划分网格)对话框,如图11-82所示.对话框显示网格的尺寸,节点数目,单元数目,以及划分网格的成果.在本例题中,划分的四边形网格,网格尺寸为5mm,创建了3437个节点,创建了1083个单元,划分网格成果是正常完成.对底面划分的四边形网格如图11-83所示.图11-81【Execution】(履行)对象栏图11-82【Mesh The Part】(对零件划分网格)对话框点击【Exit】(退出)对象栏内的【Exit】(退出)按钮,如图11-84所示.退出【Surface MESHING TOOLS】(曲面网格划分)工作台,进入【ADCANCED MESHING TOOLS】(高等网格划分对象)工作台.图11-83对底面划分的四边形网格图11-84【Exit】(退出)对象栏(8)拉伸生成六面体网格点击【Mesh Transformation】(网格变换)对象栏内的【Extrude Mesher with Translation】(平动拉伸网格)按钮,如图11-85所示.点击后弹出【Extrude Mesher with Translation】(平动拉伸网格)对话框,如图所示.11-86在图形区选择上一步划分的四边形网格,点击选择第二条线段作为拉伸六面体网格的轴,在【Start】(开端)数值栏内输入0mm,在【End】(停止)数值栏内输入50mm,在【Distribution】(散布)选项区内,在【Type】(类型)下拉列表框内选择【Uniform】(平均)选项,在【Layers number】(层数)数值栏内输入23.点击对话框内的【肯定】按钮,封闭对话框,完成拉伸六面体网格的设置.在左边的模子树上右击【】元素,如图11-87所示.在弹出的右键快捷菜单中选择【Update Mesh】(更新网格)选项,如图11-88所示.程序开端更新六面体网格,拉伸创建的六面体网格如图11-89所示.图11-85【Mesh Transformation】(网格变换)对象栏图11-86【Extrude Mesher with Translation】(平动拉伸网格)对话框图11-87右击的【】元素图11-88选择【Update Mesh】(更新网格)选项(9)使平面网格处于非激活状况在左边的模子树上右击【】元素,如图11-90所示.在弹出的右键快捷菜单中选择【Active/Deactive】(激活/非激活)选项,如图11-91所示.履行本操纵后,平面网格处于非激活状况.换句话说,就是在有限元盘算剖析过程中,其实不盘算平面网格.假如用户没有履行本步调的操纵,在后面的有限元盘算中,会提醒,有些单元未赋单元属性,盘算无法进行.图11-89拉伸创建的六面体网格图11-90右击的【】元素图11-91选择的【Active/Deactive】(激活/非激活)选项(10)进入【Generative Structural Analysis】(创成式构造剖析)工作台单击【开端(S)】→【剖析与模仿】→【Generative Structural Analysis】(创成式构造剖析)选项,如图11-92所示,进入【Generative Structural Analysis】(创成式构造剖析)工作台.图11-92【开端(S)】→【剖析与模仿】→【Generative Structural Analysis】(创成式构造剖析)选项(11)对六面体网格指定3D属性点击【Model Manager】(模子治理器)对象栏内的【3D Property】(3D属性)按钮,如图11-93所示.弹出【3D Property】(3D属性)对话框,如图11-94所示.在图形区点击选择六面体网格,或者在左边的模子树上点击选择六面体网格的名称.点击对话框内的【肯定】按钮,封闭对话框,将六面体网格指定3D属性.图11-93【Model Manager】(模子治理器)对象栏图11-94【3D Property】(3D属性)对话框(12)创建曲面组对于拉伸或者其它变换创建的六面体网格,因为不象经由过程对实体直接划分网格一样,实体直接划分四面体网格时,实体的面和四面体的外轮廓等都有一一对应关系,而六面体是经由过程对平面网格进行操纵才完成的,没有一一对应的几何外形,为了便利施加载荷和鸿沟前提,须要界说面组,使六面体网格与几何图形之间保持对应关系.为了便利选择曲面,可以将六面体网格隐蔽起来,并把在【线框和曲面设计】工作台内创建的曲面都显示出来,具体操纵办法是运用【显示/隐蔽】按钮,在此处不再进行具体介绍.隐蔽六面体网格之后的几何图形显示如图11-95所示.点击【Groups】(组)对象栏内的【Surface Group by Neighborhood】(由相邻部分构成的曲面组)按钮,如图11-96所示.图11-95隐蔽六面体网格之后的几何图形显示图11-96【Groups】(组)对象栏点击后弹出【Surface Group】(曲面组)对话框,如图11-97所示.在图形区选择几何图形的底面,在【Tolerance】(公役)数值栏内输入,点击对话框内的【肯定】按钮,完成面组设置.用同样的办法界说界说圆筒表里两个圆弧面的面组.(13)创建固支鸿沟前提点击【Restraints】(束缚)对象栏内的【Clamp】(固支)按钮,如图11-98所示.弹出【Clamp】(固支)对话框,如图11-99所示.在左边的模子树上选择第一个面组【】,如图11-100所示.点击对话框内的【肯定】按钮,对第一个面组施加了固支束缚.图11-97【Surface Group】(曲面组)对话框图11-98【Restraints】(束缚)对象栏图11-99【Clamp】(固支)对话框图11-100选择的第一个面组【】(14)对内概况的面组施加扭矩点击【Loads】(载荷)对象栏内的【Moment】(扭矩)按钮.弹出【Moment】(扭矩)对话框,如图11-101所示.在【Moment Vector】(扭矩分量)选项区内的【Z】数值栏内输入100Nxm,即设置扭矩z偏向的分量为100Nxm.在左边的模子树上点击选择第二个面组【】,如图11-102所示,即设置内概况的所对应的面组上的扭矩为100Nxm.点击对话框内的【肯定】按钮,封闭对话框.图11-101【Moment】(扭矩)对话框图11-102选择的第二个面组【】同样的办法界说外概况所对应的第三个面组上的扭矩,留意第三个面组上扭矩值为负.(15)盘算模子点击【Compute】(盘算)对象栏内的【Compute】(盘算)按钮.弹出【Compute】(盘算)对话框.点击勾选【Preview】(预览)选项,点击对话框内的【肯定】按钮,开端盘算剖析.点击后会弹出两个对话框,一个是【Computing】(正在盘算)过程显示框,显示盘算过程;别的一个是【Computation】(盘算)框,显示当前的盘算步折衷已经运用的盘算时光.(16)显示模子盘算成果在左边的模子树中鼠标右击【】,如图11-103所示.在消失的菜单中选择【Generate Image】(生成图像)选项,如图11-104所示.选择后弹出【Image Generation】(图像生成)对话框,如图11-105所示.在对话框内选择【Stress full tensor component】(应力张量的分量)选项,选择后,消失应力张量图像,如图11-106所示.图11-103右击【】图11-104【Generate Image】(生成图像)选项图11-105【Image Generation】(图像生成)对话框图11-106应力张量图像读者同伙可以本身对内孔概况进行网格细化处理.11.2 例题2 推却内压的法兰11.2-1 划分四面体网格的盘算(1)进入【零部件设计】工作台启动CATIA软件.单击【开端】→【机械设计】→【零部件设计】选项,进入【零部件设计】工作台.(2)绘制圆草图点击【轮廓】对象栏内的【圆】按钮,如图11-107所示.在原点点击一点,作为圆草图的圆心地位,然后移动鼠标,绘制一个圆.下面标注圆的尺寸.点击【束缚】对象栏内的【束缚】按钮.点击选择圆,就标注出圆的直径尺寸.双击一个尺寸线,弹出【束缚界说】对话框.在【直径】数值栏内输入160mm,点击对话框内的【肯定】按钮,封闭对话框,同时圆的直径尺寸被修正为160mm.修正尺寸后的圆如图11-108所示.图11-107【轮廓】对象栏图11-108圆的直径尺寸修正为160mm(3)分开【草图绘制器】工作台点击【工作台】对象栏内的【退出工作台】按钮.退出【草图绘制器】工作台,进入【零部件设计】工作台.(4)拉伸创建圆柱体点击【基于草图的特点】对象栏内的【凸台】按钮.弹出【凸台界说】对话框,如图11-109所示.在【第一限制】选项组内的【长度】数值栏内输入20mm,点击对话框内的【肯定】按钮,生成一个圆筒体.在左边的模子树上消失【填充器.1】元素.(5)创建第二个圆草图在图形区点击选中圆筒体的上底面,如图11-110所示.单击【草图编辑器】对象栏内的【草图】按钮,进入【草图绘制器】工作台.图11-109【凸台界说】对话框图11-110选中圆筒体的上底面点击【轮廓】对象栏内的【圆】按钮.在原点点击一点,作为圆草图的圆心地位,然后移动鼠标,绘制一个圆.用和第二步同样的办法,标注并调剂圆草图的直径为80mm,如图11-111所示.点击【工作台】对象栏内的【退出工作台】按钮.退出【草图绘制器】工作台,进入【零部件设计】工作台.(6)拉伸创建第二个圆柱体点击【基于草图的特点】对象栏内的【凸台】按钮.弹出【凸台界说】对话框,如图11-112所示.在【第一限制】选项组内的【长度】数值栏内输入150mm,点击对话框内的【肯定】按钮,生成第二个圆柱体.在左边的模子树上消失【填充器.2】元素.。

catia有限元分析模块

catia有限元分析模块
catia有限元分析模块
目 录
• catia有限元分析模块简介 • catia有限元分析模块的基本操作 • catia有限元分析模块的高级功能 • catia有限元分析模块的案例分析 • catia有限元分析模块的未来发展
01 catia有限元分析模块简 介
什么是有限元分析
有限元分析(FEA)是一种数值分析方法,用于模拟和分析复 杂结构的力学行为。它通过将连续的结构离散化为有限个小的 单元(或称为元素),然后利用数学方法来求解这些单元的响 应,从而得到整个结构的性能。
1. 建立汽车整体和局部结构的有限元模型。
03
2. 定义材料属性,包括各材料的弹性模量、泊松比、 密度和抗撞性能参数等。
案例二:汽车碰撞安全性分析
01
02
03
04
3. 设定碰撞条件,如碰 撞速度、碰撞角度等。
4. 进行碰撞模拟,记录 碰撞过程中各节点的应 力、应变和位移等数据。
5. 分析碰撞结果,评估 汽车结构的安全性能。
03 catia有限元分析模块的 高级功能
非线性分析
非线性分析
能够模拟复杂的非线性行为,如塑性变形、弹性变形、超弹性等。
材料非线性
支持多种非线性材料模型,如弹塑性、粘塑性、损伤和断裂模型等。
边界条件和载荷非线性
能够处理复杂的边界条件和载荷,如随时间变化的载荷和位移约束。
动力学分析
模态分析
计算系统的固有频率和模态形状,用于评估系统 的振动特性。
CATIA有限元分析模块提供了强大的前后处理工具,可以 方便地创建和编辑模型、划分网格、定义边界条件和载荷 等,提高了分析的效率和精度。
多种求解器支持
CATIA有限元分析模块支持多种求解器,如Nastran、 Abaqus、Marc等,可以满足用户不同的分析需求。

CATIA有限元分析模块

CATIA有限元分析模块

CATIA有限元分析模块CATIA是一款强大的三维建模和设计软件,旗下的有限元分析模块是其核心功能之一、有限元分析是一种数值分析方法,用于评估和预测实际物体在不同载荷下的结构行为。

CATIA的有限元分析模块为用户提供了全面的工具和功能,以帮助他们进行准确和可靠的结构分析。

1.强大的建模功能:CATIA可以创建复杂的几何体和零件,包括曲面、实体和薄壳结构等。

用户可以使用多种建模技术,如实体建模、曲面建模和造型术,来创建几何体。

2.多种分析类型:CATIA的有限元分析模块支持多种分析类型,包括静力学、热学、模态和疲劳分析等。

用户可以根据需要选择不同类型的分析来评估结构的不同方面。

3.高度精确的求解器:CATIA使用的求解器是基于有限元法的,能够提供高度精确的结果。

该求解器使用高级算法和技术来求解非线性问题、大形变问题和非稳态问题等。

4.广泛的材料库:CATIA的有限元分析模块内置了广泛的材料库,包括金属、塑料、复合材料等。

用户可以根据实际需要选择合适的材料,并使用其机械性能数据进行分析。

5.图形化结果展示:CATIA可以以图形化的方式展示分析结果,包括应力、应变、位移等。

用户可以通过图形界面来查看和分析结果,更直观地了解结构的行为。

6.与设计集成:CATIA的有限元分析模块与其它建模和设计功能集成在一起。

这意味着用户可以直接在CATIA的界面上进行建模、分析和设计,无需导入导出数据,提高了工作效率。

7.自动化分析流程:CATIA的有限元分析模块支持自动化分析流程。

用户可以设置分析的参数和条件,并自动执行分析计算。

这使得重复性分析的执行更加高效和可靠。

总之,CATIA的有限元分析模块为用户提供了一种快速、准确和可靠的结构分析工具。

它不仅具有强大的建模功能和多种分析类型,还集成了图形结果展示和自动化分析流程等功能。

无论是进行结构设计、优化还是性能评估,CATIA的有限元分析模块都能帮助用户取得良好的效果。

CATIA有限元工程结构分析

CATIA有限元工程结构分析

CATIA有限元工程结构分析引言有限元分析是一种用于工程结构和材料的计算方法,它将连续物体分割为许多小的有限元,然后通过数值方法对这些有限元进行计算,以模拟真实物体的行为。

CATIA是一种常用的三维建模和分析软件,它提供了强大的工具和功能,可用于进行有限元工程结构分析。

本文将介绍CATIA中有限元分析的基本原理、使用方法和应用场景,并讨论一些常见的有限元分析模型和技术。

有限元分析基本原理有限元分析的基本原理是将连续物体离散化为有限个小的、相互连接的有限元,并通过数值方法对这些有限元进行计算,以模拟物体的静态或动态行为。

在CATIA中,有限元分析主要涉及以下几个方面:1.几何建模:CATIA提供了丰富的建模工具,可以创建各种复杂的三维几何形状。

在有限元分析中,首先需要将实际物体的几何形状建模成CATIA中的几何实体,以供后续分析使用。

2.网格划分:在有限元分析中,连续物体被划分为许多小的有限元,这些有限元之间通过节点相连形成网格。

CATIA提供了网格划分工具,可以自动或手动将几何实体划分为网格。

3.材料特性定义:有限元分析需要定义物体的材料特性,例如弹性模量、泊松比和密度等。

CATIA提供了材料库和材料编辑工具,可以方便地定义和管理材料特性。

4.约束和加载条件设置:在有限元分析中,需要设置物体的约束条件和加载条件,以模拟外部加载对物体的影响。

CATIA提供了丰富的约束和加载条件设置工具,可以灵活地定义各种约束和加载条件。

5.计算和后处理:CATIA可以使用各种数值方法对有限元模型进行计算,并根据计算结果生成分析报告和可视化结果。

CATIA提供了强大的后处理功能,可以对分析结果进行可视化、动画展示和数据分析。

CATIA有限元分析使用方法CATIA的有限元分析功能主要通过工作台的“CAE”模块提供。

下面是进行CATIA有限元分析的基本步骤:1.建立几何模型:使用CATIA提供的3D建模工具创建物体的几何模型。

CATIA有限元分析模块

CATIA有限元分析模块

CATIA有限元分析模块1.模型准备:包括几何造型、网格划分和边界条件的定义。

几何造型可通过CATIA提供的建模工具进行创建,也可以导入其他CAD软件的模型。

网格划分则是将模型离散化为有限元网格,用于后续的分析计算。

边界条件包括载荷、约束和初始条件等。

2.材料与属性:用户可以定义材料的力学性质、热性质和电磁性质等。

CATIA提供了广泛的材料数据库,用户可以选择其中的材料,也可以自行定义新的材料。

此外,用户还可以定义各种属性,如几何属性、连接属性、质量属性等。

3.分析设置:用户可以选择分析类型,如静力分析、模态分析、热分析等。

对于静力分析,用户可以定义加载类型(点载荷、均匀载荷等)和边界条件(约束、支座等)。

对于模态分析,用户可以定义振型数量和分析频率范围等。

对于热分析,用户可以定义初始温度、边界温度等。

4.求解与后处理:CATIA使用有限元方法对模型进行求解,并生成与分析相关的结果。

用户可以进行应力、应变、位移、频率、模态等结果的查看和分析。

CATIA还提供了丰富的可视化工具,如动画显示、图表绘制等,用于更直观地分析结果。

使用CATIA的有限元分析模块,用户可以更准确地评估产品或结构的性能和可靠性。

例如,在机械设计中,用户可以通过有限元分析模块进行强度、刚度、振动等方面的评估,查找潜在的设计缺陷。

在航空航天领域,用户可以通过有限元分析模块对飞机结构进行轻量化设计,提高燃油效率和安全性能。

总结来说,CATIA的有限元分析模块是一种强大的工具,可以帮助用户进行结构和振动分析、热分析、多物理场分析等。

它具有灵活的建模能力、丰富的材料与属性库、多种分析类型选择、高效的求解能力和直观的后处理工具。

无论是工程师、设计师还是研究人员,都可以通过CATIA的有限元分析模块,提高产品设计的质量和效率,减少试错成本。

CATIA有限元的分析报告计算实例完整版

CATIA有限元的分析报告计算实例完整版

CATIA有限元分析计算实例CATIA有限元分析计算实例11.1例题1 受扭矩作用的圆筒11.1-1划分四面体网格的计算〔1〕进入【零部件设计】工作台启动CATIA软件。

单击【开始】→【机械设计】→【零部件设计】选项,如图11-1所示,进入【零部件设计】工作台。

图11-1单击【开始】→【机械设计】→【零部件设计】选项单击后弹出【新建零部件】对话框,如图11-2所示。

在对话框内输入新的零件名称,在本例题中,使用默认的零件名称【Part1】。

点击对话框内的【确定】按钮,关闭对话框,进入【零部件设计】工作台。

〔2〕进入【草图绘制器】工作台在左边的模型树中单击选中【xy平面】, 如图11-3所示。

单击【草图编辑器】工具栏内的【草图】按钮,如图11-4所示。

这时进入【草图绘制器】工作台。

图11-2【新建零部件】对话框图11-3单击选中【xy平面】〔3〕绘制两个同心圆草图点击【轮廓】工具栏内的【圆】按钮,如图11-5所示。

在原点点击一点,作为圆草图的圆心位置,然后移动鼠标,绘制一个圆。

用同样分方法再绘制一个同心圆,如图11-6所示。

图11-4【草图编辑器】工具栏图11-5【轮廓】工具栏下面标注圆的尺寸。

点击【约束】工具栏内的【约束】按钮,如图11-7所示。

点击选择圆,就标注出圆的直径尺寸。

用同样分方法标注另外一个圆的直径,如图11-8所示。

图11-6两个同心圆草图图11-7【约束】工具栏双击一个尺寸线,弹出【约束定义】对话框,如图11-9所示。

在【直径】数值栏内输入100mm,点击对话框内的【确定】按钮,关闭对话框,同时圆的直径尺寸被修改为100mm。

用同样的方法修改第二个圆的直径尺寸为50mm。

修改尺寸后的圆如图11-10所示。

图11-8标注直径尺寸的圆草图图11-9【约束定义】对话框〔4〕离开【草图绘制器】工作台点击【工作台】工具栏内的【退出工作台】按钮,如图11-11所示。

退出【草图绘制器】工作台,进入【零部件设计】工作台。

CATIA_有限元分析

CATIA_有限元分析

CATIA_有限元分析CATIA是一款强大的三维建模和设计软件,也提供了有限元分析功能。

有限元分析是一种应用数值方法的工程分析技术,用于解决结构力学和热传导等问题。

在CATIA中,用户可以通过有限元分析功能进行应力、变形、位移、热传导等问题的模拟和求解。

有限元分析的基本原理是将复杂连续体结构划分为许多小的几何单元,称为有限元。

这些有限元通过节点连接,形成一个有限元网格。

然后,在每个有限元中使用适当的数学方程和边界条件,求解结构的应力、变形和位移等参数。

CATIA的有限元分析工具提供了一系列的分析工具和功能,可用于静力学分析、热分析、瞬态分析等。

用户可以根据需要选择适当的分析类型,并设定边界条件和材料特性等参数。

CATIA还提供了预处理和后处理工具,用于对有限元模型进行几何划分、网格划分、加载条件定义、求解结果可视化等操作。

在使用CATIA进行有限元分析时,用户需要先建立一个几何模型。

CATIA提供了丰富的建模和设计工具,用户可以通过绘制线条、体素建模、曲面建模等方式创建几何模型。

在几何模型建立完成后,用户可以将其导入到有限元分析模块中进行进一步的处理。

针对不同的分析类型,用户可以选择不同的有限元类型。

CATIA提供了多种类型的有限元,如线性静力学元件、稳态热元件、弹性动力学元件等。

用户可以根据分析的具体需求选择适当的有限元类型,并将其应用于几何模型中。

在输入有限元模型时,用户需要设置边界条件和材料特性等参数。

边界条件包括约束和加载条件。

约束条件定义了模型的固定边界和约束方向,加载条件定义了施加在模型上的外部载荷。

材料特性包括弹性模量、泊松比、热传导系数等参数。

这些参数对模型的分析结果有重要影响。

完成有限元模型的输入后,用户可以进行求解和后处理。

CATIA提供了高效的求解器,可以对有限元模型进行求解,并计算出结构的应力、变形、位移等参数。

在求解过程中,用户可以监控求解进度,并根据需要进行求解参数的调整。

装配件catia有限元分析

装配件catia有限元分析

装配件的有限元分析1、打开装配件。

2、进入工作台在菜单栏中选择【开始】→【分析与模拟】→【Generative Structural Analysis】命令,进入【结构有限元分析】工作台。

3、进入分析模块进入【结构有限元分析】工作台后,弹出窗口【New Analysis Case】,如图3-1所示,选择【Static Analysis】选项,单击【确定】按钮,生产一新分析算题。

3-1装配件有限元模型4、指定材料 (material)点击工具栏图标来指定零件材料,系统可能弹出图3-2所示对话框,提示没有中文材料库,确定即可;弹出图3-3所示对话框,左键点击【Analysis Manager】模型树内【Rubber】, 再点击材料库对话框内【Other】卡片下的【rubber】,【确定】完成橡胶主簧材料的指定。

3-2无中文材料库报错对话框3-3材料指定对话框同理定义上液室、惯性通道体、下液室均、橡胶底模为铝制材料【aluminium】,外壳为橡胶【rubber】。

5、网格划分(nodes and elements)双击模型树中的来调整rubber的单元划分参数,则弹出图3-4所示四面体网格密度定义对话框,输入图中所示数值,完成网格参数修正。

同理对其他部分划分网格。

3-4网格划分密度定义对话框6、定义约束(Restraints)装配件通过橡胶底模用螺栓固定在车身或车架上,可以用橡胶主簧和外壳的完全固定来模拟分析,单击【Restraints】工具栏中的【Clamp】按钮,弹出图3-5所示【Clamp(夹紧)】定义对话框,选择橡胶主簧上表面和外壳下表面固定,【确定】完成约束定义。

3-5、定义约束7、定义装配件接触约束定义在左边的模型树中将【Links Manager.1】展开,显示出装配件下面的约束,选择【曲面约束.1】,单击【Connection Properties】工具栏中的【Fasten Connection Property】按钮,弹出如图3-6所示对话框,对话框显示已经选择了一个约束,单击【确定】按钮,关闭窗口。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
装配部件结构 有限元分析
Generative Assembly Structural Analysis
GAS 分析流程
(1) 从部件装配模块进入有限元分析模块,或者在 有限元分析模块中导入即将分析的装配部件。
(2) 正确定义装配部件之间的连接关系。 (3) 在 Generative Structural Analysis中添加连接 特性。
接触连接 Contact Connection

接触连接创建的两个实体间的连接的特点 是:要求它们在共同的边界上不相互穿透, 并且用户可以指定接触间隙,接触连接考 虑了零件间相互作用产生的弹性变形。
扣紧连接 Fastened Connection

零件在共同的边界上相互黏结,连接后两 个实体就被看作一个实体,扣紧连接也考 虑了零件间相互作用产生的弹性变形。
(4) 在Generative Structural Analysis中划分网格、 施加约束与载荷、求解、后处理。这些步骤与 GPS完全相同。
创建连接关系

为定义连接特性做准备,因为定义连接特性需 要引用该连接关系。 零件之间的连接关系的定义的2 种方式。
部件装配中的约束; 分析连接工具栏中的工具;


创建连接特性

进行GAS分析时,零部件之间的连接关系 只是说明了零件之间的连接关系,必须转 化成有限元分析的连接特性,才能进行有 限元分析。
滑动连接体之间创建连接,其特点是:允 许它们在公共边界的法向共同移动,切平 面内允许有相对滑动,并且该滑动连接考 虑了相互作用的弹性变形的影响。
过盈配合压力连接 Pressure Fitting

用来连接两个通过过盈配合连接在一起的 两个实体。根据过盈配合或者间隙配合的 大小,能够精确地反映出相互作用产生的 应力状态。
其它几种连接





螺栓紧固连接 虚拟刚性螺栓紧固连接 虚拟柔性螺栓紧固连接 焊缝连接 焊点连接 自定义连接 …
刚性连接 Rigid Connection[选讲]

不考虑连接件间的相互作用 引起的弹性变形,即它们的 连接是完全刚性的,并且扣 紧在一起。连接后就像在两 个实体之间连接了一个完全 刚性的虚拟零件,被连接件 的网格划分可以不一致。
柔性连接 Smooth Connection [选讲]

创建了柔性连接后就像在两个实体之间连 接了一个虚拟的柔性的虚拟零件,柔性连 接考虑了相互作用产生的弹性变形的影响。
轴系GAS有限元分析实例

如图所示的某减速器中的轴与齿轮,它们 之间采用过盈连接。试分析这种过盈连接 引起的预应力和预应力与工作载荷共同作 用时在轴上产生的应力
相关文档
最新文档