材料力学论文
土木工程材料力学论文
滠水一桥总结报告1工程概况滠水一桥主桥采用变截面预应力混凝土连续刚构,桥跨布置为30+50+50+30=160m,采用R=5000米的竖曲线。
城关侧一桥为(3+4+4)×20m 预应力混凝土先简支后结构连续空心板+1×40m预应力混凝土简支T梁+3×30m预应力混凝土先简支后结构连续T梁,鲁台侧引桥为3×30m预应力混凝土先简支后结构连续T梁,总长600m。
跨河段:0.25m(栏杆)+2.25m(人行道)+19m(行车道)+2.25m(人行道)+0.25m(栏杆),全宽24m;城关引桥段:0.5m (栏杆)+19m(行车道)+0.5m(栏杆),全宽20m。
(照片)2先简支后连续梁桥国内外发展状况及优缺点2.1先简支后连续梁桥国内外发展状况为了解决城市桥梁建设速度问题,并保证其良好的力学性能,出现了“先简支后连续”施工法,由此形成先简支后连续梁桥结构体系。
国内约在20世纪80年代开始建造该类结构体系桥梁,90年代以后广为采用[5~6]。
国外具有代表性的先简支后连续梁桥是美国的内布拉斯加州林肯市第十街的人行天桥及第V号街天桥。
国内外对这种桥梁结构体系的理论、试验研究有以下几个阶段[7~10]:20世纪60年代的研究以波特兰混凝土协会(简称PCA)为代表。
他们对预制梁通过现浇桥面板和连续横隔板连续的方法进行了研究,并考虑不同的钢筋连接方式。
20世纪70年代,哥伦比亚大学研究了将钢绞线延伸到连接横隔板内部以形成正弯矩连接的可行性, 并进行了三种钢绞线配置的足尺模型试验。
20世纪80年代,美国施工技术试验室(简称为CTL)对此类先简支后连续梁桥进行了分析研究,并开发了程序(BridgeRM)以预测与时间相关的限制矩。
20世纪90年代早期,美国学者Rabbad和Aswad回顾了在田纳西州和其它地方采用的连续横隔板的一些标准细节(在PCA法的基础上发展而来)。
AlanR.Phipps和Q.DSpruilJr.(1990年)强调了后连续施工方法的特点。
材料力学小论文 竹竿性能分析
竹子外形和截面性能的力学分析选课序号100 姓名杨建成学号2220133836摘要:略约200字一引言在日常生活中,随处可见竹子,竹竿可视为上细下粗、横截面为空心圆形的杆件。
这样的形状赋予了竹子很强的抗弯强度。
二力学分析材料力学的任务是在满足强度、刚度和稳定性的要求下,以最经济的代价为构件确定合理的形状和尺寸,选择适宜的材料,为构件设计提供必要的理论基础的计算方法。
换句话说,材料力学是解决构件的安全与经济问题。
所谓安全是指构件在外力作用下要有足够的承载能力,即构件要满足强度、刚度和稳定性的要求。
所谓经济是指节省材料,节约资金,降低成本。
当然构件安全是第一位的,降低经济成本是在构件安全的前提下而言的。
实际工程问题中,构件都应有足够的强度、刚度和稳定性。
本文以竹子为研究对象,其简化力学模型如下图所示。
竹子体轻,质地却非常坚硬,强度比较高,竹子的顺纹抗拉强度170Pa,顺纹抗压强度达80Pa 单位质量的抗拉强度大概是普通钢材的两倍。
根据材料力学,弯曲正应力是控制强度的主要因素,自然界的竹子经常受到来自风的力,主要是弯矩,主要是弯曲正应力。
从公式可以看出,当弯矩一定的时候,正应力与惯性矩正反比。
截面为实心圆的对中性轴的惯性矩,大部分树木都是这种结构。
(假设实心和空心竹子的横截面)2.1 竹子的弯曲强度分析根据材料力学的弯曲强度理论, 弯曲正应力是控制强度的主要因素, 弯曲强度条件为maxmax []zM W σσ=≤ (1)横截面如上图所示。
实心圆截面和空心圆截面的抗弯截面模量分别为:332W d π=实 (2)341132()()D W D Dπαα=-=空 (3) 式中,d 是实心杆横截面直径,D 和D 1分别是空心杆横截面外径和内径,1D Dα=为空心杆内外径之比。
当空心杆和实心杆的两横截面的面积相同时222144(=)D d D ππ- (4)可得 2222211((=))D D d D α-=- (5)2=1-d D α(6)把上式代入式(2),得34232322(1-11-W 321W 11-)32空实()D D απααπ==> (7)空心圆截面的抗弯截面模量比等截面积的实心圆截面的抗弯截面模量大,并且空心圆截面杆的内、外直径的比值α越大,其抗弯截面模量越大,杆的抗弯强度越高。
复合材料力学论文
纤维增强复合材料力学性能研究现状文献综述鹏中北大学理学院工程力学学科部030051中国摘要:纤维增强复合材料(Fiber Reinforced Plastic,简称FRP)是由增强纤维材料,如玻璃纤维,碳纤维,芳纶纤维等,与基体材料经过缠绕,模压或拉挤等成型工艺而形成的复合材料。
根据增强材料的不同,常见的纤维增强复合材料分为玻璃纤维增强复合材料(GFRP),碳纤维增强复合材料(CFRP)以与芳纶纤维增强复合材料(AFRP)。
由于纤维增强复合材料的材料特性,因此它越来越广泛地应用于各种民用建筑、桥梁、公路、海洋、水工结构以与地下结构等领域中。
本文将综述近年来国外的学者对它的力学性能的研究现状。
关键词:纤维增强;复合材料;力学性能;材料特性;应用Composite Research Status literature review of fiber reinforced mechanical properties of materialsCUI PengCollege of Engineering Department of Mechanical Discipline North University ofChinaTaiyuan, China 030051Abstract:Fiber-reinforced composite material (Fiber Reinforced Plastic, referred FRP) is a reinforcing fiber material, such as glass fiber, carbon fiber, aramid fiber, and composite matrix material after winding, pultrusion molded or formed by molding process. Depending on the reinforcing material, a common fiber-reinforced composite material into glass fiber reinforced Plastic (GFRP), carbon fiber reinforced Plastic (CFRP) and aramid fiber reinforced Plastic (AFRP). Since the material properties of the fiber-reinforced composite materials, so it is increasingly widely used in various areas of civil construction, bridges, highways, marine, hydraulic structures and underground structures like. This paper will present research scholars at home and abroad in recent years, its mechanical properties. Keywords:Fiber reinforced; Composites;Mechanical Properties;Material properties;application1.引言复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。
材料力学专业相关毕业论文范文
材料力学专业相关毕业论文范文材料力学是土木工程专业的一门重要力学基础课,学习好材料力学能更进一步打好工程专业的基础。
下面是店铺为大家整理的材料力学论文,供大家参考。
材料力学论文篇文一:《浅谈土木工程专业材料力学改革》【摘要】结合土木工程专业材料力学课程教学中存在的问题,从卓越工程师的培养目标出发,把CDIO教学理念引入到材料力学教学体系中,从教学内容、教学手段和方法、考核评价等方面提出来了有效的教学改革措施,建立了基于CDIO理念的材料力学教学模式。
该教学模式对于提高学生的学习热情,培养学生的综合实践和创新能力有积极意义,是解决目前土木工程专业在力学教学中遇到问题的一个很好的借鉴途径。
【关键词】CDIO教育理念;材料力学;教学改革;课程考核体系0引言材料力学是土木工程专业的技术基础课,是研究各类工程结构中普遍存在的受力和变形现象的学科,着重培养学生的逻辑思维、分析能力和解决实际问题能力。
一直以来,我国大学中所讲授的力学课程内容大多由前苏联引进的内容,内容陈旧、枯燥、抽象、重理论轻实践。
教学方法多采用灌输式教学,造成课堂气氛死板,有时甚至枯燥无味,大大降低了学生的学习热情。
这些问题不但加剧了学生的学习惰性,也影响到其它课程的学习状况。
针对以上问题,如何为实际工程提供合格的力学人才;如何在材料力学教学中充分调动学生的主动性和积极性;在目前有限的课时下,如何对旧有材料力学课程体系进行合并、筛选等工作已经成为教学改革工作不可回避的事实。
CDIO工程教育理念提倡在实践中学习,在学习中实践,这为该问题的解决提供了一种思路。
1CDIO工程教育模式CDIO模式以产品研发到产品运行的生命周期为载体,让学生以主动的、实践的、课程之间有机联系的方式学习工程。
CDIO模式强调与社会大环境相协调的综合的创新能力,同时更关注工程实践,加强培养学生的实践能力,因此CDIO工程教育模式是提高大学生的创新和动手能力、推进产学研结合、加强实践教学环节以及加强学生参与交流与合作能力的有效途径。
新型材料力学性能论文
新型材料力学性能研究摘要:构件的强度、刚度与稳定性,不仅与构件的形状、尺寸及所受外力有关,而且与材料的力学性能有关,本文先简要介绍了材料的结构,主要研究新型材料的力学性能,并重点研究了多晶体材料力学性能特点。
关键词:材料力学性能刚度强度1 材料的结构材料的结构指的是材料的组成单元(原子或分子)之间互相吸引和互相排斥作用达到平衡时的空间分布,从宏观到微观可分为不同的层次,即宏观组织结构、显微组织结构、微观结构。
宏观组织结构是用肉眼或放大镜观察到的晶粒、相的集合状态。
显微组织结构或称为亚微观结构是借助光学显微镜、电子显微镜可观察到的晶粒、相的集合状态或材料内部的微区结构,其尺寸约为10-7~10-4m。
比显微组织结构更细的一层结构即微观结构包括原子及分子结构以及原子和分子的排列结构。
因为一般的分子尺寸很小,故把分子结构排列列为微观结构。
但对于高分子化合物,大分子本身的尺寸可达到亚微观的范围。
金属材料也可以看作是由晶体的聚集体构成的。
对纯金属一般认为是微细晶粒的聚集体;对合金可看作母相金属原子的晶体与加入的合金晶体等聚合而成的聚集体。
晶粒间的结合力要比晶粒内部的结合力要小。
软钢、铜、金、铝等之所以能够承受较大的塑性变形,是由于在发生滑移变形的同时,原子相互间的位置依次错开又形成了新的键,从整体看,是由于原子间的键难于断开的缘故。
晶粒晶界上的结合是机械结合,即金属由高温熔体凝固析晶时,相互啮合牢固地结合在一起。
晶粒间的接触面越大,结合力也越大。
2 材料的力学性能2.1 材料受牵伸时的力学性能材料断裂时均具有较大的残余变形,即均属于塑性材料。
不同的是,有些材料不存在明显的屈服阶段。
对于不存在明显屈服阶段的塑性材料,工程中通常以卸载后产生数值为0.2%的残余应变的应力作为屈服应力,称为屈服强度。
至于脆性材料,例如灰口铸铁与陶瓷等,从开始受力直至断裂,变形始终很小,既不存在屈服阶段,也无缩颈现象。
2.2 材料受压缩时的力学性能材料受压时的力学性能由压缩试验测定,一般细长试样压缩时容易失稳,因此在金属压缩试验中,通常采用短粗圆柱形试样。
材料力学论文
如何理解生物软组织力学特性中的滞后环,应力松弛以及蠕变现象摘要:软组织主要有皮肤、浅层与深层筋膜、韧带、滑膜、软骨盘和关节软骨,以及肌肉肌腱。
滑膜、软骨盘和关节软骨在关节生物力学中已经提及,这里主要讨论韧带和肌腱的生物力学特性。
生物软组织受力,产生脱离虎克定律的应力一应变曲线,即具有非线性变形。
在非线性变形中,又分为材料非线性与几何形状非线性两类。
形状、尺寸有显著变化时,是形状非线性。
在固体力学中,弹性板和弹性壳的大挠度及屈曲后的变形在解析上只考虑形状非线性即可。
然而对生物软组织的变形,在许多情况下,必需考虑两者。
皮肤覆盖于体表,是人体最大的器官,具有多种生理功能,其中许多功能的实现有赖于其生物力学特性,如粘弹性、张力、抗压力等,因此人体皮肤生物力学特性的研究有其重要意义。
皮肤是软组织,与其它生物软组织在力学特性上是相似的,如动脉、血管、心脏瓣膜和肌肉等,它们都有应力-应变关系、应力松弛、蠕变、滞后、各向异性等性质,以及需要预调。
关键字:软组织,应力一应变曲线,特性,性质软组织的主要特点是具有大量结缔组织纤维,结缔组织起源于胚胎时期的间充质,具有连接、支持、养、保护等功能。
其细胞少而排列稀疏,细胞间质非常发达。
与人体运动有关的致密结缔组织多为规则结缔组织与不规则结缔组织。
软组织的基质具有支持和固着细胞的功能,营养物质及代谢产物可自由地通过这层基质在毛细血管和细胞之间进行交换,基质的主要成分是纤维性细胞间质,间质中的纤维是由成纤维细胞合成的,它们对组织能起到支持和加固的作用,包括胶原纤维、弹性纤维。
一、软组织的滞后环:应力-应变曲线滞后:应力-应变曲线滞后指对物体作周期性加载和卸载,加载和卸载时的应力-应变曲线不重合的特性。
在同样负载下,卸载曲线的拉长比值(受载下的长度与原来长度的比值)要比加载过程中的大,只有在卸载较多负荷情况下才能恢复到原有载荷状态下的变形。
即应力-应变曲线的上升曲线与下降曲线不相重合。
材料力学论文
吊车梁强度和梁的立柱偏心压缩的研究姓名:白志同学号:201031020指导教师:王博摘要:吊车系统是工业厂房和实验室中重要的受力结构,其中包含大量的弯曲强度和稳定性的问题,我通过对吊车梁主要部位(连接部位和焊接部位等)的应力和对厂房中支撑梁的立柱偏心压缩的研究来研究吊车梁的安全性问题,并以此应用来解决提高吊车梁的强度问题,提出了几个方案。
关键词:弯曲强度,偏心压缩,连接部,截面核心,解决方案。
一、前言举一个实例,某实验室为跨长24米的工字型截面简支梁,材料为Q235钢,翼缘由多层钢板叠置组合而成,腹板为单层钢板,连接方式为铆钉连接和焊接,如果将将吊车的吨位从250t 升级至350t。
则需要对此实验室的吊车系统重新进行研究并提出提高吊车梁强度的方案。
经过资料搜集发现吊车梁的破坏有以下几个方面1、连接破坏。
2、疲劳破坏。
3、强度破坏。
4、梁的立柱的破坏。
由于本人目前为止知识水平的限制,许多方面可能会忽略掉。
如在网上搜集到吊车梁的受力特点有:①承受的吊车荷载是重复荷载,吊车荷载具有冲击和振动作用,要考虑荷载的动力特性。
②吊车荷载的偏心影响产生扭矩,要考虑扭矩的影响,制动系统与柱的连续破坏(包括制动梁与柱连接焊缝开裂,制动梁与柱连接的预埋件与柱剪切破坏等)以及制动系统本身杆件破坏。
这些方面我可能会忽略掉,在此做出提示。
二、简要分析1、本人先从简单方面入手,先进行对吊车梁的立柱强度进行计算,看是否满足其强度要求。
这里有一张实验室吊车系统图。
可以看见这个吊车系统的柱子,在材料力学书偏心拉压的课中也有此力学模型,如图(a)可看出一般力作用于F1所指的位置。
整体力学模型如图:我们知道吊车荷载是通过吊车桥架两侧的轮子分别传递到两边的吊车梁上。
在满负荷条件下,吊车的最大轮压取决于吊车主钩的位置,一般为了能简单计算我以主钩在中间位置进行计算。
并且补充一下通过原先知识了解:在工程中,对于偏心拉压问题,有时要求截面上只有一种应力,如建筑中的砖柱和石柱,要求截面上不出现拉应力。
工程材料力学性能论文毕业论文
11042102 2014
化学与化ቤተ መጻሕፍቲ ባይዱ工程系 2011 级金属材料工程 1 班
焦通
年 06 月 18 日
材料力学在非工程方面的应用
一、材料力学知识简介 材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳
定和导致各种材料破坏的极限。材料力学与理论力学、结构力学并称三大力学。 1. 研究材料在外力作用下破坏的规律; 2. 为受力构件提供强度,刚度和稳定性计算的理论基础条件; 3. 解决结构设计安全可靠与经济合理的材料力学基本假设; a) 连续性假设——组成固体的物质内毫无空隙地充满了固体的体积 b) 均匀性假设——在固体内任何部分力学性能完全一样 c) 各向同性假设——材料沿各个不同方向力学性能均相同 d) 小变形假设——变形远小于构件尺寸, 便于用变形前的尺寸和几何形状进
就要发生振动; 若传动轴的弯曲变形过大, 不仅会使齿轮很好地啮合, 还会使轴 颈与轴承产生不均匀的磨损; 输送管道的弯曲变形过大, 会影响管道内物料的正 常输送,还会出现积液、沉淀和法兰结合不密等现象;造纸机的轧辊,若弯曲变 形过大, 会生产出来的纸张薄厚不均匀, 称为废品。 另一类是要求构件能产生足 够大的变形。 例如车辆钢板弹簧, 变形大可减缓车辆所受到的冲击; 又如继电器 中的簧片, 为了有效地接通和断开电源, 在电磁力作用下必须保证触电处有足够 大的位移。 三、材料力学在生活建筑学的运用
随着高层建筑在我国的迅速发展 , 建筑高度的不断增加 , 建筑类型与功能愈 来愈复杂 , 结构体系更加多样化 , 高层建筑结构设计也越来越成为结构工程师设 计工作的重点和难点之所在。 多层和高层建筑结构都要抵抗竖向及水平荷载作用 , 但是在高层建筑中 , 要使用更多的材料来抵抗水平作用 , 抗侧力成为高层建筑结 构设计的主要问题。 在地震区 , 地震作用对高层建筑的威胁更大 , 地震灾害将会给 人民的生命财产造成巨大损失 , 所以抗震设计必须更加重视。在高层建筑结构抗 震理论和设计方法的发展过程中 , 存在着结构刚与柔的争议 , 有的认为结构柔性 一些好 , 因为场地确定后 , 结构愈柔性 , 自振周期愈长 , 地震影响系数越小 , 结构所 受到的地震作用就愈小 , 因此在结构抗震设计时 , 可将结构设计得柔性一些 , 以减 小作用于结构上的地震力 , 从而可以用较少的材料 , 抗御较强的地震 , 既合理又经 济。但有的则认为地震区的高层建筑结构应该刚性一些 , 使结构具有较大的承载 能力 , 可以抵抗较强的地震 , 而且非结构部件的连接构造简单 , 又不易破坏。从过 去的地震经验也可以看出 , 对于一般构造的高层建筑结构 , 刚性比柔性好 , 刚性结 构破坏较轻 , 而且由于地震时的结构变形小 , 隔墙、围护墙及装饰等非结构部件将 得到保护 , 破坏也会减轻。对于柔性结构 , 由于地震时将产生较大的层间侧移 , 不 但主体结构破坏较重 , 非结构部件也将大量遭到破坏 , 造成很大经济损失 , 甚至有 时还会危及人身安全 , 所以高层建筑结构应采用刚度较大的。 四、材料力学在生活桥梁学的运用
材料力学实验教学改革与论文
材料力学实验教学的改革与探索【摘要】本文针对学生对材料力学实验的兴趣不高、重视不够以及材料力学实验室条件不足、考核制度单一等主要问题及其原因进行详细分析,提出一些有效的教学改革措施。
【关键词】材料力学实验;实验教学;教学改革;改革措施材料力学是工科机械类、土木类专业的一门专业基础课,对学好后序专业课程至关重要。
而材料力学的实验对于学生掌握材料力学理论知识起着很重要的作用,它实际上是材料力学教学的重要组成部分,对学生进行科学实验训练,加深理解所学理论知识,提高学生动手能力,科学创新思维能力起着积极和重要的作用。
近几年来,随着教学改革的不断深入,材料力学实验教学从实验内容、实验方法到实验手段等方面均发生了很大的变化,基本实验质量得到了全面提升,一批新开发的综合型、设计型实验逐渐走向成熟,并取得了阶段性成果。
但是,在改革过程中,还暴露出一些问题,值得教育者们进行深入思考和探讨。
1 实验教学的现状1.1 学生的学习积极性不高目前材料力学的主要教学模式是验证性实验,实验教学始终处于从属地位。
学生首先接受理论方面的知识,然后再通过实验验证所学知识的正确性,因此学生不能充分认识到材料力学实验的重要性。
由于实验之前已经了解了理论知识从而知道实验结果,所以学生对实验普遍失去兴趣,缺乏应有的积极性和主动性。
并且,在材料力学课程的最后成绩中要么不考虑实验,要么只作为一种参考,这一现象进一步导致学生对实验课的重视不够。
1.2 实验条件不足随着社会经济的快速发展,大部分院校招生规模扩大,学生人数日益增多,而材料力学实验教学的实验场地、实验设备、实验人员却难以大幅度增加,这对实验教学的质量带来很大的问题。
并且,部分高校采用多处校区的发展格局,使得原本不足的实验资源进一步分散,使得材料力学实验的教学质量受到很大的限制和影响。
由于实验条件的限制,学生上实验课时往往很多人围着一台设备,使得多数人是在“看”实验,很少有机会能动手“做”实验,这样很难达到实验的目的,更谈不上提高教学质量了,失去了实验教学在培养学生动手能力、创造能力、分析问题和解决实际问题能力方面的优势。
材料力学论文
《材料力学》实验论文姓名:班级:学号:指导老师:日期:目录压杆稳定性的研究 (3)摘要 (3)关键词:压杆稳定工程实例 (3)正文 (3)参考文献 (6)仿生材料的研究与应用 (7)摘要 (7)关键词:仿生材料研究进展 (7)正文 (7)参考文献: (10)冷作硬化非调质钢螺栓的形变强化效应 (11)摘要 (11)关键词:形变强化非调质钢螺栓 (11)正文 (11)参考文献 (14)关于钢管结构中合理选材的探讨 (15)摘要 (15)关键词:钢管结构发展无缝钢管焊接钢管径厚比残余应力延性成型工艺 (15)正文 (15)参考文献 (21)材料试验机在工程领域的应用拓展 (22)摘要 (22)关键词:材料试验机疲劳测试断裂测试应用拓展 (22)正文 (22)参考文献 (26)压杆稳定性的研究摘要细长的受压杆当压力达到一定值时,受压杆可能突然弯曲而破坏,即产生失稳现象。
由于受压杆失稳后将丧失继续承受原设计荷载的能力,而失稳现象又常是突然发生的,所以,结构中受压杆件的失稳常造成严重的后果,甚至导致整个结构物的倒塌。
随着社会经济的发展,工程中受压的杆件越来越多,例如许多建筑立柱、各种液压机械活塞杆,机床的丝杆等等,都有平衡构建的稳定性问题。
工程上出现较大的工程事故中,有相当一部分是因为受压构件失稳所致,因此对受压杆的稳定问题绝不容忽视。
关键词:压杆稳定工程实例正文早在文艺复兴时期,伟大的艺术家、科学家和工程师达·芬奇对压杆做了一些开拓性的研究工作。
荷兰物理学教授穆申布罗克(Musschenbroek P van)于1729年通过对于木杆的受压实验,得出“压曲载荷与杆长的平方成反比的重要结论”。
【1】众所周知,细长杆压曲载荷公式是数学家欧拉首先导出的。
他在1744年出版的变分法专著中,曾得到细长压杆失稳后弹性曲线的精确描述及压曲载荷的计算公式。
当细长杆件受压时,却表现出与强度失效全然不同的性质。
例如一根细长的竹片受压时,开始轴线为直线,接着必然是被压弯,发生颇大的弯曲变形,最后折断。
材料力学小论文
材料力学小论文h材料力学论文跳水板的性能分析大连理工大学姓名:班级:运船学号:跳水板的性能分析姓名: 班级: 学号:]关键字:跳板;弯矩;剪力;挠曲线;转角;最大冲力;拉力传感器,静态应变仪成果简介:最常见的在跳水比赛中使用的跳水板是个典型的跳板使用例子,其结构和性能的好坏与运动员的比赛安全和水平能否正常发挥息息相关,所以研究跳板的结构和性能有了必要性和时代性。
就目前我们掌握的材料力学的知识和有关的资料,我对跳板的结构和性能进行思考和探索;通过思考和探索,知道了在一定条件下(一定温度一定湿度等条件),怎么通过现有的知识判断:跳板需要什么样的结构和结构是否合理,具有什么性质的材料才能保证跳板工作的安全行性能的可行性。
正文:目前在跳水比赛中使用的三米跳板结构如图:全长4898mm,板宽500mm,前支点到后支点的的距离为1883m,有合金或玻璃钢制成,表面覆盖有防滑材料,其弹性极好。
跳板是末端被固定的杠杆,杠杆原理中有距离支点越远,力臂越长,弹力越大。
在跳板中,运动员会想尽办法让自己最大限度地使用跳板的弹力。
运动员在踩在跳板上,从下蹲到双脚离开跳板上升过程中,从能量转化角度来说是,运动员最终获得的动能并上升,首先是由运动员下减少的蹲重力势能和化学能转化为跳板的弹性势能,其次是起跳过程人的化学能和跳板的弹性势能转为远动员上升时的机械能。
在日常生活中,我们会发现运动员只经过一次上述的过程是不能够上升到足够高的高度来来完成所需完成的比赛动作的,所以一般上述的下蹲起跳动作会不止一次发生,也就是说,跳板还要多次承受向下的冲力的作用(变形也是多次发生,但有一次变形是最大的),这最大冲力和跳板能承受的最大冲力以及如何保证运动员不从板上掉下是我们研究的主要问题。
假设运动员的重力为G(跳水板的重量不大,为了方便分析就忽略了),跳板的长度为L,宽度为b,许用应力为,,,跳水板截面的面积A,截面型心纵坐标Y,型心主惯性矩I, 现在对跳板的受力如图:其扭矩图为:弯矩图为:剪力图为:各点由于平面弯曲引起的应力变与弯矩的关系为:如图,拉力传感器连在跳板端点处,这样施加不同的拉力值时,不同截面的应变值就可以通过静态应变仪测得。
材料力学性能论文
《材料力学性能》学习之收获与体会通过开学至今近两个月对材料力学性能的学习,对本课程学习内容作出以下总结:一、材料的拉伸性能:拉伸试验虽然是简单的、但却是最重要的应用最广泛的力学性能试验方法。
拉伸试验可以测定材料的弹性、强度、塑性、应变硬化和韧性等许多重要的力学性能指标。
这些性能指标统称为拉伸性能。
它是材料的基本力学性能。
根据拉伸性能可以预测材料的其他力学性能。
本章主要介绍了在室温大气中,在单向拉伸载荷作用下,用用光滑试件测定的具有不同变形和硬化特性的材料的应力-应变曲线和拉伸性能参数。
二、弹性变形与塑性变形:任何构件在服役过程中都要承受一定的应力,但又不能产生塑性变形。
对于某些零构件,例如精密机床的构件,即使是微小的弹性变形也不允许,否则就会降低零件的加工精度。
零构件的刚度决定于两个因素:构件的几何和材料的刚度。
表征材料的力学性能指标是弹性模量。
当应力超过极限,金属就开始塑性变形。
塑性是材料的一种非常重要的力学性能。
正是因为金属有塑性,才能利用不同的加工方法将其制成各种几何形状的零件。
在加工过程中,应当提高材料的塑性,降低塑性变形应力——弹性极限和屈服强度。
在服役过程中,应当提高材料的弹性极限和屈服强度,使零构件能承受更大的应力,同时也要有相当的塑性以防止脆性断裂。
本章联系金属的微观结构讨论了弹性性能、弹性不完善性、塑性变形、应变硬化及有关的力学性指标和测定方法以及它们在工程中的实用意义。
三、其它静加载下的力学性能:机械和工程的很多零件是在扭曲、弯矩或轴向压力作用下服役的。
因此,需要测定材料在扭转、弯曲和轴向压缩加载下的力学性能,作为零件设计,材料选用和制订热处理工艺的根据。
若不考虑零件服役时的力学状态,采用不恰当的力学性能指标来评价材料,很有可能造成材料选用不合理,热处理工艺不当,以致零件的早期失效。
在工程中往往还应用一些低塑性、以至脆性材料,如高碳工具钢、铸造合金和结构陶瓷等,制作工具和零件。
材料力学课程论文
关于剪切模量G、弹性模量E和泊松比v的关系证明及其应用姓名:学号:班级:摘要:众所周知,材料力学在工科专业中发挥着不可忽视的重要基础作用,前人们也对此进行了深入的研究和探索,为我们现在的快速计算打下了良好的基础,胡克定律的发明极大方便了弹力的计算,而剪切模量、弹性模量和泊松比的发现也方便了我们对应力的计算,三者关系的得出更是提升了我们的计算效率。
本文首先对剪切模量、弹性模量和泊松比的重要意义进行了说明,然后证明了三者之间的关系,最后简要谈一些相关应用。
关键词:剪切模量、弹性模量、泊松比、应用引言:笔者在学习《材料力学》到第四章扭转时,学到了弹性胡克定律:σ=Eε,式中σ为正应力,E为弹性模量(Young's Modulus),ε为线应变;泊松比:v=ε1ε2,式中v为泊松比(Poisson's ratio),ε1为横向线应变,ε2为轴向线应变;剪切胡克定律:τ=Gγ,式中τ为切应力,γ为切应变,G为切变模量(shear modulus)。
笔者又看到,对各向同性材料,材料的三个弹性常数:弹性模量E、泊松比ν和切变模量G之间存在下列关系G=E2(1+ν)。
但是教材中并没有给出证明,当时才疏学浅,无法证明,但是笔者当学习到第八章时,有了一些个人见解。
刨根问底是笔者的一贯风格,为此,笔者对本公式进行了探讨证明。
剪切模量是材料常数,是剪切应力与应变的比值。
又称切变模量或刚性模量。
材料的力学性能指标之一。
是材料在剪切应力作用下,在弹性变形比例极限范围内,切应力与切应变的比值。
它表征材料抵抗切应变的能力。
模量大,则表示材料的刚性强。
剪切模量的倒数称为剪切柔量,是单位剪切力作用下发生切应变的量度,可表示材料剪切变形的难易程度。
[1]材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。
弹性模量的单位是达因每平方厘米。
[2]泊松比是材料横向应变与纵向应变的比值的绝对值(即比值的负数),也叫横向变形系数,它是反映材料横向变形的弹性常数。
材料力学论文
由剪切胡克定律中切变模量G展开的一系列分析讨论运航0901 兰聪超200973605(负责文献查找及分析运算)王文骏200973627 (负责理论研究及分析运算)赵东阳200973621 (负责教学建议及分析运算)引言:笔者在学习《材料力学》第四章扭转时,学到了剪切胡克定律:τ=Gγ,式中,G为材料的弹性常数,称为切变模量(shear modulus)。
笔者又看到,对各向同性材料,材料的三个弹性常数:弹性模量E、泊松比ν和切变模量G之间存在下列关系。
两位笔者从这个公式入手,展开了一系列的研究和讨论工作。
材料的三个弹性常数:切变模量,是剪切应力与应变的比值。
是材料在剪切应力作用下,在弹性变形比例极限范围内,切应力与切应变的比值。
它表征材料抵抗切应变的能力。
模量大,则表示材料的刚性强。
切变模量的倒数称为剪切柔量,是单位剪切力作用下发生切应变的量度,可表示材料剪切变形的难易程度。
材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。
弹性模量的单位是达因每平方厘米。
“弹性模量”是描述物质弹性的一个物理量,是一个总称,包括“杨氏模量”、“剪切模量”、“体积模量”等。
所以,“弹性模量”和“体积模量”是包含关系。
泊松比,材料在单向受拉或受压时,横向正应变与轴向正应变的绝对值的比值。
笔者对公式有很大的兴趣,然而课本当中没有给出相关的推导证明。
两位笔者在查阅相关资料和计算之后给予了简单的证明:考虑在特殊情况下, 选择纯剪切平面应力状态单元体, 如图1 所示。
在纯剪切应力状态下,由于σ1=τxy,σ3=-τxy,根据主应力的广义胡克定律,得主应变ε1=(σ1-σ3)=τxy而由单元体内任意斜面上的线应变公式εa=(εx+εy)+(εx-εy)cos2α+γxycos2α其中任意斜面上的线应变公式推导为:在下图中2已知εx,εy,γxy,欲求εa图2 图3有图3可得: 。
图4 图5有图四可得:有图5可得:xy x d θεα1=x x s d d sin =εααx cos sin y 2θ θεα2=y y s d d cos =εααy sin cos θγα3=xy x s d d cos =γαxy cos 2d (d d d ∆l x y x x y xy )cos sin sin =+-εαεαγαεα=d (d ∆l s )=+-εαεαγαx y xy x s y s x s d d d d d d cos sin sin =+-εαεαγααx y xy cos sin sin cos 22=++--εεεεαγαx y x y xy 22222cos sin令α=45°εx=εy=0,则单元体中45°方向的应变为ε45°=,因为45°方向是最大主应变方向,所以二者相等,即ε45°=ε1,结合剪切胡克定律τ=Gγ就可以证得这三个弹性常数的关系。
材料力学论文
我对大桥倒塌的看法这座桥就像一个纽带,维系着海峡两岸的沟通。
因为它的存在,人们不必坐船就可以很容易地在两个地方旅行。
例如,宁波杭州湾大桥将宁波至上海的距离缩短了120公里。
世界上有许多著名的桥梁,如明石开京大桥、旧金山金门大桥、伦敦塔桥、威尼斯叹息桥和悉尼海港大桥。
这些历史悠久的桥梁在交通和桥梁建设的发展中发挥了不可磨灭的作用。
不幸的是,世界上还有许多桥梁。
虽然它们经过精心设计,但还没有到使用寿命的尽头,但它们已经倒塌了。
1907年,加拿大魁北克附近的圣劳伦斯河完工。
它可以说是世界上最长的拱桥。
这座桥采用了一种比较新的悬臂结构,很受欢迎。
尽管魁北克大桥只比苏格兰爱丁堡第四条河上非常成功的悬臂桥稍长,但它遇到了设计问题,在竣工前就倒塌了。
桥的倒塌造成了巨大的经济损失。
针对这个问题,我做了具体的分析。
随着经济的发展,交通量的增加和荷载水平的变化,使原有桥梁超载。
此外,早期设计的指导思想是以节约材料和降低安全性为重点。
一般来说,会导致断面薄,安全储备低。
最典型的是双曲拱桥,如砖拱桥,其耐久性和老化性能较差。
近年来修建的桥梁,由于设计不当或施工质量差,是桥梁倒塌的原因。
接下来,我将运用所学的材料力学原理来分析桥梁倒塌的原因。
对桥梁模型进行了简化,将桥梁的流动作为定流,即桥梁的荷载为Q,即简支梁的应力问题。
可以分析,桥体是由钢筋和水泥组成的,应力是导致桥梁倒塌的原因。
我看到朱宏飞QL QX qxql QX采用的应力公式是:最大最大最大最大值最大最大最大值当桥梁的重量超过材料的许用应力时,实际情况比较复杂。
通过对上述简化模型的分析,可以考虑桥梁加固问题。
一般来说,可以减小内力或增大截面,也可以采用新的加固材料。
例如,为了使桥梁空心化,降低应力,并采用碳纤维复合材料(CFRP)等新材料,它具有以下优点:1。
不会增加静载荷和截面尺寸。
不要减小桥下净空。
方便模板的结构和成型可以适应不同部位形状的构件;弯矩图:我的观点是桥梁倒塌17-12-44,环氧树脂粘结,无地脚螺栓,对原有结构无新的损伤;5。
任务二材料力学范文
任务二材料力学范文力学是一门研究物体的运动和受力情况的学科,是物理学的分支之一、在工程领域中,材料力学则是力学在材料学中的应用,研究材料在外部力的作用下的变形和破坏规律。
材料力学的研究对于材料的选择、设计和性能优化具有重要意义,广泛应用于航空航天、汽车、建筑、电子等各个领域。
在材料力学的研究中,常用的分析工具包括应力分析、应变分析、材料本构关系分析等。
应力是指物体内部的分子间受力状态,通常用张力、剪切力、压力等形式表示。
应变是指物体受到外力影响而发生的形变,通常用线性应变或者非线性应变来描述。
材料本构关系则是描述材料受力时应力和应变之间的关系,可以是线性的也可以是非线性的,取决于材料的特性。
材料力学的研究可以帮助工程师理解材料在不同环境条件下的行为,指导设计和制造过程中的方案选择。
例如,在航空航天领域,材料力学可以帮助工程师设计出轻量化、高强度的航天材料,提高飞行器的性能和安全性。
在汽车工程中,材料力学可以帮助提高汽车的碰撞安全性,减轻车辆的重量,提高燃油效率。
在建筑领域,材料力学可以帮助设计出更加耐久和抗震的建筑结构,保障建筑物的安全性。
材料力学的研究也对于材料的性能评价和改进起到至关重要的作用。
通过对材料在受力状态下的行为进行分析,可以评估材料的强度、韧性、硬度等性能指标,为材料的选择和改进提供参考依据。
例如在金属材料的研究中,通过对金属晶体结构和变形机制的理解,可以设计出优良的金属合金,提高其强度和耐腐蚀性。
在高分子材料的研究中,可以通过控制分子链的排列和交联结构,改进高分子材料的强度和韧性。
材料力学在工程领域中有着广泛的应用,对于提高工程结构的性能和可靠性起着关键的作用。
通过材料力学的研究,可以为各种工程领域提供具有挑战性的解决方案,推动工程技术的发展和进步。
在未来,随着工程领域的不断发展和变化,材料力学研究将继续发挥其重要作用,为人类创造出更加安全、耐久和高效的工程产品和技术。
土木工程专业材料力学教学改革论文
土木工程专业材料力学教学改革论文土木工程专业材料力学教学改革论文摘要:为提高土木工程专业材料力学的教学效果,针对教学过程中发现的一些问题,在教师队伍专业性,教学内容时效性、拓展性,教学手段结合性、细节性,教学方法灵活性,实验教学层次性,课程考核多样性六个方面作出了有益的探索和尝试。
实践表明:这些教改措施增强了学生的学习兴趣、学习动力、动手能力、解决实际问题的能力,有利于土木工程专业材料力学教学质量的提高。
关键词:土木工程;材料力学;教学改革;教学内容;课程考核引言材料力学是固体力学中最早发展起来的一个分支。
一般认为,1638年,意大利著名数学家、天文学家、理学家伽利略出版的名著《关于两门新科学的谈话和数学证明》标志着材料力学的开端。
书中,首次提出了材料的力学性质和强度的计算方法。
对于土木工程专业来说,材料力学是一门非常重要的专业基础课。
其以解决材料的强度问题、刚度问题、稳定性问题为总纲,具有较强的理论性和实践性。
一、现状及存在的问题目前,国内各高校土木工程专业多选用张如三、孙训方、刘鸿文主编的《材料力学》作为指定教材,或者选用在这三本《材料力学》基础上重新编写的教材。
采用的课堂教学方法基本都是从简单的拉伸(压缩)、剪切、扭转和弯曲四种基本变形开始,然后归纳到一般的应力应变状态分析与强度理论、组合变形以及压杆稳定问题。
在讲授完课堂相关理论知识后,由实验指导教师指导学生进行轴向拉伸、压缩以及平面弯曲等实验。
总体上,土木工程专业的材料力学教学内容已经比较稳定,课堂学时一般在60~74个之间,实验学时一般在4~8个学时之间,学分在3.2~4.0分之间。
针对材料力学的教改问题,很多同行进行了研究,也取得了一定的成果。
但结合我们前些年的教学实践,也发现了一系列的问题,具体如下:1.教师队伍缺乏专业性。
材料力学是土木工程专业、机械类专业、信息类专业等很多工科专业都开设的一门专业基础课,因此很多学校(包括作者所在学校前些年)均统一安排基础学部的力学教师来讲授材料力学。
【材料力学论文——“泰坦尼克”号沉没事故的案例分析】
材料力学论文——“泰坦尼克”号沉没事故的案例分析{前言:本科生材料力学作业及论文可以用到。
欢迎借鉴,大篇幅抄袭有风险}众所周知,“泰坦尼克”号沉没事件是人类历史上最严重的海难事故之一。
1912年4月14日晚,号称“永不沉没”的当时世界第一豪华游轮“泰坦尼克”号,在北大西洋洋面上撞上了冰山而沉入海底。
1500多人在此次事故中丧生。
这场悲剧即便已经过去了一百多年,回想起来仍然令人扼腕叹息。
而从材料力学的角度,分析此次事故的原因,还是能够找到非常多的经验教训的。
一.事故背景——船速太快“泰坦尼克”号的重量约为46000吨,当时航行速度是22.3节(约41.3km/h),很大程度的超出了夜间海面航行的安全速度。
这样快的速度与巨大的质量,形成了巨大的动量,使得船体在与冰山碰撞时产生了极大的冲击力,并在碰撞处形成巨大的局部应力。
二.碰撞前——躲避方向错误发现冰山后,船员立即作出躲避措施,大副下达了“左满舵、全船推进器紧急倒退”这两个指令。
后来证实,第二个指令“减速”是正确的选择,而第一个命令“左满舵”是一个致命的错误。
“泰坦尼克”号的设计上,船底被分成一个个防漏隔舱,即便4个防漏隔舱灌满海水船身依然可以保持不沉没,多于4个则不行。
大副下令37秒后,”泰坦尼克”号与冰山相撞。
碰撞不是发生在船头正面,而是侧面的右舷。
船头的钢板比较厚,而且下方只有一个防漏隔舱,如果正面撞击冰山,即便船头撞毁也不会发生沉没的事故。
但“左满舵”后,船体没能躲开冰山,右舷与冰山相撞,并且被剖开了一道长达93m 的巨大口子。
这道大口子横亘6个防漏隔舱,超过了船体的防沉极限。
海水汹涌灌入,并且随着船的向前倾斜漫过一个个隔舱,使得船体重力越来越大过浮力。
这时候,沉船已经是必然的命运,只是个时间的问题。
三.碰撞时——船身材料太差“泰坦尼克”号船体的铆钉与钢板质量太差可能是导致这场海难的主要原因。
“泰坦尼克”号不是正面撞在冰山上的,而是船体侧面与冰山相檫,侧舷船壳钢板受到了强大的剪应力与挤压应力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国古代的材料与结构一、前言中国是一个历史悠久、文化源远流长的国家。
经历了绵绵五千年的历史沉积,中国文化在中华民族的传承中不断得到发展。
而文化的沉淀,不仅仅凝聚在优雅的诗词和动人心弦的历史故事中,更多的是以建筑的物质形象存在于我们身边,以具体的技术体现在我们使用的工具中。
中国古代没有现在高端的技术与高效精密的工具设备,使用的材料也都是通过粗制加工后得到,然而中国古代的许多建筑在经历了几千年的风吹雨打后仍屹立于世,备受世人感叹。
它们不仅是前人的智慧的结晶,更是世界的瑰宝。
二、中国古代建筑的材料与结构放眼中国古代的建筑,可谓是丰富多彩。
其中最常见的有木结构、石木结构,如布达拉宫等藏式古建筑;有石结构,如石牌楼、石桥及部分地区的长城等;有土结构,如秦汉时期的长城、延安陕北地区的窑洞等;有砖结构,如影壁、围墙等;还有竹建筑,如南方少数民族地区的竹楼等。
而根据不同建筑的结构特点,中国古建筑所用的建筑材料主要有:木材、砖瓦、石材、土、竹子等。
(一)中国古建筑的发展历史1.原始雏形早在五十万年前的旧石器时代,中国原始人就已经知道利用天然的洞穴作为栖身之所,北京、广东、湖北、浙江等地均发现有原始人居住过的崖洞。
到了新石器时代,黄河中游的氏族部落,利用黄土层为墙壁,用木构架、草泥建造半穴居住所,进而发展为地面上的建筑,并形成聚落。
长江流域,因潮湿多雨,常有水患兽害,因而发展为干栏式建筑。
据考古发掘,约在距今六、七千年前,中国古代人已知使用榫卯构筑木架房屋,如浙江余姚河姆渡遗址。
木构架的形制已经出现,房屋平面形式也因功用不同而有圆形、方形、吕字形等。
这是中国古建筑的草创阶段。
春秋、战国时期,中国的大地上先后营建了许多都邑,夯土技术已广泛使用于筑墙造台。
此时木构技术较之原始社会已有很大提高。
春秋、战国的各诸侯国均各自营造了以宫室为中心的都城。
这些都城均为夯土版筑,墙外周以城濠,辟有高大的城门。
宫殿布置在城内,建在夯土台之上,木构架已成为主要的结构方式,屋顶已开始使用陶瓦。
这标志着中国古代建筑已经具备了雏形,不论是夯土技术、木构技术还是建筑的平面布局、以及建筑材料的制造与运用,都达到了雏形阶段。
2.第一个高潮西元前221年,秦始皇统一六国,建立秦朝,动用全国的人力、物力在咸阳修筑都城、宫殿、陵墓。
此外,又修筑通达全国的驰道,筑长城以防匈奴南下,凿灵渠以通水运。
汉代继秦,也进入大规模营造建筑时期。
汉武帝刘彻先后五次大规模修筑长城,又兴建长安城内的桂宫和西南郊的上林苑。
总秦、汉五百年间,中国古建筑在自己的历史上出现了第一次发展高潮。
其结构主体的木构架已趋于成熟,重要建筑物上普遍使用斗栱。
屋顶形式多样化,庑殿、歇山、悬山、攒尖、囤顶均已出现,有的被广泛采用。
制砖及砖石结构和拱券结构有了新的发展。
3.第二个高潮隋朝虽然是一个不足四十年的短命王朝,但在建筑上颇有作为。
它修建了都城大兴城,营造了东都洛阳,开凿了南起余杭(杭州),北达涿郡(北京),东始江都,西抵长安(西安),长约2500公里的大运河。
炀帝大业年间,名匠李春在现今河北赵县修建了一座世界上最早的敞肩券大石桥安济桥。
赵州桥唐代在都城和地方城镇兴建了大量寺塔、道观,并继承前代续凿石窟佛寺、西安慈恩寺大雁塔、荐福寺小雁塔、兴教寺玄奘塔等。
此期间,建筑技术更有新的发展,木构架已能正确地运用材料性能,建筑设计中已知运用以「材」为木构架设计的标准。
(二)中国古建筑的材料使用与建筑结构1.以木材为主的木结构中国古代建筑惯用木构架作房屋的承重结构。
木构结构大体可分为抬梁式、穿斗式、井干式,以抬梁式采用最为普遍。
抬梁式结构是沿房屋进深在柱础上立柱,柱上架梁,梁上重叠数层瓜柱和梁,再于最上层梁上立脊瓜柱,组成一组屋架。
平行的两组构架之间用横向的枋联结于柱的上端,在各层梁头与脊瓜柱上安置檩,以联系构架与承载屋面。
檩间架椽子,构成屋顶的骨架。
这样,由两组构架可以构成一间。
斗栱是中国木构架建筑中最特殊的构件。
斗是斗形垫木块,栱是弓形短木,它们逐层纵横交错叠加成一组上大下小的托架,安置在柱头上用以承托梁架的荷载和向外挑出的屋檐。
到了唐、宋,斗栱发展到高峰,从简单的垫托和挑檐构件发展成为联系梁枋置于柱网之上的一圈「井」字格形复合梁。
它除了向外挑檐,向内承托天花板以外,主要功能是保持木构架的整体性,成为大型建筑不可缺的部份。
宋以后木构架开间加大,柱身加高,木构架结点上所用的斗栱逐渐减少。
到了元、明、清,柱头间使用了额枋和随梁枋等,构架整体性加强,斗栱的形体变小,不再起结构作用了,排列也较唐宋更为丛密,装饰性作用越发加强了,形成为显示等级差别的饰物。
木构架的优点是:承重结构与维护结构分开,建筑物的重量全由木构架承托,墙壁只起维护和分隔空间的作用;便于适应不同的气候条件,可以因地区寒暖之不同,随宜处理房屋的高度、墙壁的厚薄、选取何种材料,以及确定门窗的位置和大小;由于木材的特有性质与构造节点有伸缩余地,即使墙倒而屋不塌,有利于减少地震损害;便于就地取材和加工制做。
2.以石料为主的石结构、木石结构中国古代很少见到以石材为主的石结构、木石结构的房屋建筑,而石结构大多会用于建筑桥梁、陵墓、城墙等。
石结构大体上可分为板式、梁柱式、隧洞式、拱券式、筒体式等。
2.1.板式石结构较具有代表性的石板结构,是分布在今辽东半岛和山东半岛一带的巨石建筑。
这种建筑全部由巨大的石板块组成,平面呈矩形,下部由三块竖放的石板作为支承屋盖的构件,上部覆盖一块大石板,四周外伸作屋檐状悬挑。
据考证这种结构可能是坟墓的一种,因为外形很象一个巨大的石桌,所以也称石桌坟。
2.2.梁柱式石结构这种结构主要见于汉朝晚期的一些石墓和宋朝初期的石桥、石祠及石牌坊中。
梁柱式石墓多在山东、江苏、辽宁等地,其中山东沂南汉画像石墓可作为代表。
这座墓全部用加工规整的石材砌成,分前、后、中室及左、右侧室,内外墙体均用竖放的石板构成,墓正中立石柱一排,柱顶上置石斗栱,上部架设石梁,梁上再覆以石板。
泉州万安桥很著名,桥建于宋嘉祐四年,全长834米,共47跨(孔),桥墩由规整条石砌筑而成。
墩上密排石梁,石梁最长达11米,截面一般宽厚各约0.6~0.9米。
2.3.隧洞式石结构中国古代开凿的石隧洞主要用作崖墓和石窟寺。
自东汉至南北朝时期,四川一带盛行崖墓葬。
乐山地区的白崖汉墓,在长约1公里的山崖上,开凿有大小不等的56座墓窟,其中较大者深达数十米,由亭堂,壁龛,前室、后室以及棺室、灶室等组成,凿有柱、阙、藻井等,并雕刻有精细的花纹。
石窟寺是在佛教传入中国以后,盛行于南北朝时期的隧洞式宗教建筑。
石窟寺与崖墓都是依山开凿的隧洞,除用途不同外,结构上的不同在于崖墓一般开凿得深远狭长,而石窟寺一般开凿得比较浅近宽敞。
石窟寺2.4.拱券式石结构最常见的是石拱桥,其次是陵墓。
河北赵县赵州桥,是中国现存最早的石拱桥,主拱的两端之上各建两个小拱,可以减少洪水期水流的阻力,也可减轻结构自重,也使桥面平缓,便于通行。
为了加强桥的整体性,除在并列的28条纵拱肋间嵌装银锭形铁榫外,并于拱券上加伏一层石板,横向埋入五根铸铁拉条,拱顶处桥宽略窄于拱脚,使并列的纵拱肋均向内稍倾,以防止外闪。
石拱桥由于比较理想地发挥了石材性能,在相同跨度的结构中较梁柱式石结构能承受较大的荷载,用料也较小较少。
除单孔桥外,也常有多孔石拱桥,如江苏省的宝带桥,由53个连续石拱券组成。
陵墓中采用拱券式石结构,已发现较早的实物是四川成都前蜀建造的永陵,分前、中、后三个墓室,墓室结构由两侧壁柱间建起的石拱券构成,中室石拱券净跨近6米,室中设棺床,并饰以精美生动的雕刻。
明清两代帝王陵寝中的地下墓室,也采用拱券式石结构建筑,如北京市已发掘的明神宗墓──定陵,有地下宫殿之称:整座石墓规模宏伟,构建精良,在已发掘的拱券式石墓中具有一定的代表性。
2.5.筒体式石结构中国现存较早的大型石塔──山东省历城县柳埠镇神通寺四门塔,为筒体石结构。
该塔高约15米,平面呈正方形,每边长约7.4米;由大块青石砌筑的筒壁构成一个正方形筒体,壁厚约0.7米;每面正中开一个小型拱门。
塔内正中有方形石塔心柱,顶部用石板搭叠覆盖,逐层收进,构成四角攒尖式顶,檐口用五层迭涩出檐。
多层筒体式石塔以福建泉州开元寺双塔为代表。
塔身五层,平面为八角形,高40米余;外圈用大石块砌筑成筒体,中间为石块砌筑的塔心柱;塔身外壁每层设置四个壶门,上下层错开布置,以更好地保证塔身的整体性;塔心柱与外筒壁逐层以条石拉结,以保证塔体的稳定性。
3.独特的土结构中国古代人类最早应用的居住结构类型就是土结构。
原始人类以石器、棍棒等简单工具掏挖洞穴作为栖身之所。
随着工具与技术的改进,出现了夯筑、制墼等技术,推动了中国古代以土结构为主房屋建筑的发展。
中国古代建筑的土结构可以分为掏挖式土结构、夯筑式土结构与砌筑式土结构这三种类型。
3.1.掏挖式土结构通过掏挖而成的各种洞穴。
其形式主要有横穴与竖穴两种。
横穴一般就土崖开挖,洞穴的上部挖成半圆拱形,拱上土重和其他荷载沿拱趾传递于基土。
这种土窑洞适用于中国西北地区的黄土地带,在今河南、山西、陕西、甘肃等省,土窑洞仍然是民居形式之一。
小洞穴只有几平方米,大洞穴可达几十平方米。
其规模大小,主要取决于土质和使用要求,即拱的跨度大小随土的性质而不同。
竖穴是由地面向下开挖而成,口小下大,截面呈“墴”状,穴边土的侧压力沿环状穴壁分布于周围土层。
在使用中穴口覆以遮盖物,以防雨雪侵入。
竖穴在使用中逐步演变成半穴,继而成浅穴,最后完全上升到地面,形成了各种地上建筑的原型。
但用作贮藏物品的竖穴,现今在中国北方农村中仍在使用。
3.2.夯筑式土结构使用夯杵,将土捣筑坚固,加大密实度,改善土的结构,以提高其承载能力,可作为房屋的承重结构,也可作为围护结构。
原始夯土都是无模夯筑,工具也无定型。
氏族社会晚期至奴隶社会早期的夯土城垣,采用先将土分层夯筑后再将两侧面加以整削成型。
所谓版筑,即在夯土墙的两侧及两端以木板或圆木为模、并将两端锁紧,然后填土夯实;根据夯筑体需要的长度,将模板水平移动;夯实一层后,再将模板提升,夯筑另一层;直至需要的夯筑高度为止。
由无模夯土发展到版筑,是夯土结构的一个演变过程。
3.3.砌筑式土结构土砌体所用的砌块分为“土墼”和“土坯”两种。
土墼是用最佳含水量的潮湿土,放入木模中经夯筑形成。
土坯则是用水和好的湿泥,放入木模中经抹平形成;在制作中也往往有加入草筋者;它们经自然干燥后即可用来砌筑。
墼或坯的规格虽然因时代、地区之不同而有所不同,但一般都是以便于制作、搬运和砌筑决定其尺度。
墼或坯一般多以立砌为主,间以平卧的砌筑方法,这是因为墼或坯平卧砌筑较易折断;立砌时仅在上下两端用泥浆粘结,砌块的吸水面小,不致因吸水过多而软化降低结构的承载能力。