中考数学旋转与相似的典型类型总结

合集下载

初中数学专题复习:旋转(类型全面)

初中数学专题复习:旋转(类型全面)

旋转旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度成为与原来相等的图形,这样的图形运动叫做图形的旋转,这个定点叫做旋转中心,图形转动的角叫做旋转角.旋转特征:图形旋转时,图形中的每一点旋转的角都相等,都等于图形的旋转角。

(一)正三角形类型在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转600,使得AB与AC重合。

经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP'CP中,此时ΔP'AP也为正三角形。

例1. 如图:(1-1):设P是等边ΔABC内的一点,PA=3,PB=4,PC=5,∠APB的度数是________.(二)正方形类型在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向旋转900,使得BA与BC重合。

经过旋转变化,将图(2-1-a)中的PA、PB、PC三条线段集中于图(2-1-b)中的ΔCPP'中,此时ΔBPP'为等腰直角三角形。

例2. 如图(2-1):P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1,PB=2,PC=3。

求此正方形ABCD面积。

(三)等腰直角三角形类型在等腰直角三角形ΔABC中,∠C=90°, P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转900,使得AC与BC重合。

经过这样旋转变化,在图(3-1-b)中的一个ΔP'CP为等腰直角三角形。

例3.如图,在ΔABC中,∠ACB =900,BC=AC,P为ΔABC内一点,且PA=3,PB=1,PC=2。

求∠BPC的度数。

旋转实际上是一种全等变换,由于具有可操作性,因而是考查同学们动手能力、观察能力的好素材,也就成了近几年中考试题中频繁出现的内容。

题型多以填空题、计算题呈现。

在解答此类问题时,我们通常将其转换成全等求解。

根据变换的特征,找到对应的全等形,通过线段、角的转换达到求解的目的。

最新中考数学专项复习图形的平移、旋转、对称与位似

最新中考数学专项复习图形的平移、旋转、对称与位似

22
考法1
考法2
考法3
考法4
考法5
考法1轴对称图形和中心对称图形的判定 例1(2017· 四川成都)下列图形中,既是轴对称图形又是中心对称 图形的是( )
答案:D 解析:只有D既是轴对称图形又是中心对称图形,故D符合题意. 方法总结判断轴对称图形的关键是寻找对称轴,使图形按照某条 直线折叠后,直线两旁的部分能够完全重合;中心对称图形是要寻 找对称中心,使图形绕该点旋转180°后与原图形重合.
(1)画出△A1B1C,直接写出点A1,B1的坐标; (2)求在旋转过程中,△ABC所扫过的面积.
4
考题·初做诊断
考点一
考点二
考点三
考点四
考点二图形的旋转(高频)
概 念 要 素
性 质
平面内,一个图形绕着一个定点,旋转一定的角度,得到另一个 图形的变换,叫做旋转 旋转中心、旋转角 、旋转方向(包括顺时针方向和逆时针 方向) (1)旋转前每一组对应点与旋转中心的连线段相等,两组对应点分别 与旋转中心的连线所成的角相等,都等于旋转角 ; (3)确定旋转中心的方法 :任意两组对应点连线段的垂直平分 线 的交点即旋转中心
(1)请画出△ABC关于原点O对称的△A1B1C1; (2)请写出点B关于y轴对称的点B2的坐标,若将点B2向上平移h个单 位,使其落在△A1B1C1内部,指出h的取值范围.
21
考法·必研突破
命题点1
命题点2
命题点3
命题点4
解 (1)△A1B1C1如图所示; 4分 (2)点B2的坐标为(2,-1), 6分 由图可知,点B2到B1与A1C1的中点的距离分别为2,3.5, 所以h的取值范围为2<h<3.5. 8分
(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍, 得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1; (2)将线段A1B1,绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1; (3)以A、A1、B1、A2为顶点的四边形AA1B1A2的面积是20 个平方 单位. 14

中考数学相似三角形中的重要模型手拉手模型

中考数学相似三角形中的重要模型手拉手模型

相似三角形中的重要模型-手拉手模型相似三角形是初中几何中的重要的内容,常常与其它知识点结合以综合题的形式呈现,其变化很多,是中考的常考题型。

手拉手模型相似是手拉手模型当中相对于手拉手全等模型较难的一种模型,在实际的应用和解题当中出现时,对于同学们来说,都比较困难。

而深入理解模型内涵,灵活运用相关结论可以显著提高解题效率,本专题重点讲解相似三角形的“手拉手”模型(旋转模型)。

手拉手相似证明题一般思路方法:①由线段乘积相等转化成线段比例式相等;②分子和分子组成一个三角形、分母和分母组成一个三角形;③第②步成立,直接从证这两个三角形相似,逆向证明到线段乘积相等; ④第②步不成立,则选择替换掉线段比例式中的个别线段,之后再重复第③步。

模型1.“手拉手”模型(旋转模型)【模型解读与图示】“手拉手”旋转型定义:如果将一个三角形绕着它的项点旋转并放大或缩小(这个顶点不变),我们称这样的图形变换为旋转相似变换,这个顶点称为旋转相似中心,所得的三角形称为原三角形的旋转相似三角形。

1)手拉手相似模型(任意三角形)条件:如图,∠BAC=∠DAE=α,A DA E kA BA C==; 结论:△ADE ∽△ABC ,△ABD ∽△ACE ;E CkB D=.2)手拉手相似模型(直角三角形)条件:如图,90A O BC OD ∠=∠=︒,O C O D kO AO B==(即△COD ∽△AOB );结论:△AOC ∽△BOD ;B DkA C=,AC ⊥BD ,12A B C DS A B C D=⨯.3)手拉手相似模型(等边三角形与等腰直角三角形)条件:M 为等边三角形ABC 和DEF 的中点; 结论:△BME ∽△CMF ;B EC F条件:△ABC 和ADE 是等腰直角三角形; 结论:△ABD ∽△ACE.例1.(2022·山西·寿阳县九年级期末)问题情境:如图1所示,在△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,在图1中将ADE 绕A 点顺时针旋转一定角度,得到图2,然后将BD 、CE 分别延长至M 、N ,使DM =12BD ,EN =12CE ,得到图3,请解答下列问题:(1)猜想证明:若AB =AC ,请探究下列数量关系:①在图2中,BD 与CE 的数量关系是_________. ②在图3中,猜想∠MAN 与∠BAC 的数量关系,并证明你的猜想;(2)拓展应用:其他条件不变,若AB ,按上述操作方法,得到图4,请你继续探究:∠MAN 与∠BAC的数量关系?AM 与AN 的数量关系?直接写出你的猜想.例2.(2022•新乡中考模拟)在△ABC中,CA=CB=m,在△AED中,DA=DE=m,请探索解答下列问题.【问题发现】(1)如图1,若∠ACB=∠ADE=90°,点D,E分别在CA,AB上,则CD与BE的数量关系是,直线CD与BE的夹角为;【类比探究】(2)如图2,若∠ACB=∠ADE=120°,将△AED绕点A旋转至如图2所示的位置,则CD 与BE之间是否满足(1)中的数量关系?说明理由.【拓展延伸】(3)在(1)的条件下,若m=2,将△AED绕点A旋转过程中,当B,E,D三点共线.请直接写出CD的长.例3.(2022·山东·九年级课时练习)【问题发现】如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D为斜边BC上一点(不与点B,C重合),将线段AD绕点A顺时针旋转90°得到AE,连接EC,则线段BD与CE的数量关系是______,位置关系是______;【探究证明】如图2,在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,将△ADE绕点A旋转,当点C,D,E在同一条直线上时,BD与CE具有怎样的位置关系,说明理由;【拓展延伸】如图3,在Rt△BCD中,∠BCD=90°,BC=2CD=4,过点C作CA⊥BD于A.将△ACD绕点A顺时针旋转,点C的对应点为点E.设旋转角∠CAE为α(0°<α<360°),当C,D,E在同一条直线上时,画出图形,并求出线段BE的长度.例4.(2022·山东·东营市一模)【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.例5.(2022•长垣市一模)在△AB=AC,点D为AB边上一动点,∠CDE=∠BAC=α,CD=ED,连接BE,EC.(1)问题发现:如图①,若α=60°,则∠EBA=,AD与EB的数量关系是;(2)类比探究:如图②,当α=90°时,请写出∠EBA的度数及AD与EB的数量关系并说明理由;(3)拓展应用:如图③,点E为正方形ABCD的边AB上的三等分点,以DE为边在DE上方作正方形DEFG,点O为正方形DEFG的中心,若OA=,请直接写出线段EF的长度.例6.(2022·成都市·九年级课时练习)一次小组合作探究课上,老师将两个正方形按如图所示的位置摆放(点E 、A 、D 在同一条直线上),发现B ED G=且B ED G⊥.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形A E F G 绕点A 按逆时针方向旋转(如图1),还能得到B E D G=吗?若能,请给出证明,请说明理由;(2)把背景中的正方形分别改成菱形A E F G 和菱形A B C D ,将菱形A E F G 绕点A 按顺时针方向旋转(如图2),试问当E A G ∠与B A D ∠的大小满足怎样的关系时,B ED G=;(3)把背景中的正方形分别改写成矩形A E F G 和矩形A B C D ,且23AE AB AGAD==,2A Ea=,2A Bb=(如图3),连接D E ,B G .试求22D E B G+的值(用a ,b 表示).课后专项训练1.如图,在△ABC与△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE,连接BD、CE,若AC:BC=3:4,则BD:CE为()A.5:3B.4:3C.√5:2D.2:√32.如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB与DE交于点O,AB=4,AC=3,F是DE的中点,连接BD,BF,若点E是射线CB上的动点,下列结论:①△AOD∽△FOB,②△BOD∽△EOA,③∠FDB+∠FBE=90°,④BF=56AE,其中正确的是()A.①②B.③④C.②③D.②③④3、如图,正方形A B C D的边长为8,线段C E绕着点C逆时针方向旋转,且3C E=,连接B E,以B E为边作正方形B E F G,M为A B边的中点,当线段F M的长最小时,ta n E C B∠=______.4.(2022•虹口区期中)如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.(1)求证:△ABC∽△ADE;(2)判断△ABD与△ACE是否相似?并证明.5.(2023·浙江·九年级课时练习)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,求证:P A=DC;(2)如图2,当α=120°时,猜想P A和DC的数量关系并说明理由.(3)当α=120°时,若AB=6,BP D到CP的距离.6.(2022·重庆·九年级课时练习)观察猜想(1)如图1,在等边A B C中,点M 是边B C 上任意一点(不含端点B 、C ),连接A M ,以A M 为边作等边A M N,连接C N ,则A B C ∠与A C N ∠的数量关系是______. (2)类比探究:如图2,在等边A B C中,点M 是B C 延长线上任意一点(不含端点C ),(1)中其它条件不变,(1)中结论还成立吗?请说明理由. (3)拓展延伸:如图3,在等腰A B C中,B AB C=,点M 是边B C 上任意一点(不含端点B 、C ),连接A M ,以A M 为边作等腰A M N,使顶角A M NA B C∠=∠.连按C N .试探究A B C ∠与A C N ∠的数量关系,并说明理由.7.(2022·江苏·九年级课时练习)【问题发现】如图1,在Rt △ABC 中,∠BAC =90°,AB =AC ,D 为斜边BC 上一点(不与点B ,C 重合),将线段AD 绕点A 顺时针旋转90°得到AE ,连接EC ,则线段BD 与CE 的数量关系是______,位置关系是______;【探究证明】如图2,在Rt △ABC 和Rt △ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,将△ADE 绕点A 旋转,当点C ,D ,E 在同一条直线上时,BD 与CE 具有怎样的位置关系,说明理由;【拓展延伸】如图3,在Rt △BCD 中,∠BCD =90°,BC =2CD =4,过点C 作CA ⊥BD 于A .将△ACD 绕点A 顺时针旋转,点C 的对应点为点E .设旋转角∠CAE 为α(0°<α<360°),当C ,D ,E 在同一条直线上时,画出图形,并求出线段BE 的长度.8.(2022·山东·九年级课时练习)如图,A B C和A D E是有公共顶点直角三角形,90B A C D A E ∠=∠=︒,点P 为射线B D ,C E 的交点.(1)如图1,若A B C和A D E是等腰直角三角形,求证:C PB D⊥;(2)如图2,若30A D EA B C ∠=∠=︒,问:(1)中的结论是否成立?请说明理由.(3)在(1)的条件下,4A B =,3A D =,若把A D E 绕点A 旋转,当90E A C ∠=︒时,请直接写出P B 的长度9.(2023·广东·深圳市九年级期中)(1)如图1,Rt △ABC 与Rt △ADE ,∠ADE =∠ABC =90°,12A BA DB CD E==,连接BD ,CE .求证:5B DC E=.(2)如图2,四边形ABCD ,∠BAD =∠BCD =90°,且12A B A D=,连接BC ,BC 、AC 、CD 之间有何数量关系?小明在完成本题中,如图3,使用了“旋转放缩”的技巧,即将△ABC 绕点A 逆时针旋转90°,并放大2倍,点B 对应点D .点C 落点为点E ,连接DE ,请你根据以上思路直接写出BC ,AC ,CD 之间的关系. (3)拓展:如图4,矩形ABCD ,E 为线段AD 上一点,以CE 为边,在其右侧作矩形CEFG ,且12A B C EB CE F==,AB=5,连接BE,BF.求BE的最小值.510.(2023·绵阳市·九年级专题练习)在△ABC中,AB=AC,∠BAC=α,点P是△ABC外一点,连接BP,将线段BP绕点P逆时针旋转α得到线段PD,连接BD,CD,AP.观察猜想:的值为,直线CD与AP所成的较小角的度数为°;(1)如图1,当α=60°时,C DA P的值及直线CD与AP所成的较小角的度数;类比探究:(2)如图2,当α=90°时,求出C DA P拓展应用:(3)如图3,当α=90°时,点E,F分别为AB,AC的中点,点P在线段FE的延长线上,点A,D,P三点在一条直线上,BD交PF于点G,CD交AB于点H. 若CD=2BD的长.11.(2023·湖北·九年级专题练习)在A B C和A D E中,B A B C∠=∠=,点=,D A D E=,且A B C A D EαE在A B C的内部,连接EC,EB,EA和BD,并且90∠+∠=︒.A C E AB Eα=︒时,线段BD与CE的数量关系为__________,线段EA,EB,EC的【观察猜想】(1)如图①,当60数量关系为__________.α=︒时,(1)中的结论是否依然成立?若成立,请给出证明,若不成立,【探究证明】(2)如图②,当90请说明理由;【拓展应用】(3)在(2)的条件下,当点E在线段CD上时,若B C=B D E的面积.12.(2023··广西一模)如图,A C B△和D C E均为等腰直角三角形,,.现将D C E绕点C旋转.∠=∠=︒==A CB DC E A C B CD CE C90,(1)如图1,若,,A D E三点共线,A D=B到直线C E的距离;(2)如图2,连接,A EB D,点F为线段B D的中点,连接C F,求证:A E C F⊥;(3)如图3,若点G在线段A B上,且8,==,在A C G内部有一点O,请直接写出A C A G22O C A G++的最小值.13.(2022•南山区校级一模)(1)【问题发现】如图①,正方形AEFG 的两边分别在正方形ABCD 的边AB 和AD 上,连接CF .填空:①线段CF 与DG 的数量关系为 ;②直线CF 与DG 所夹锐角的度数为 .(2)【拓展探究】如图②,将正方形AEFG 绕点A 逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.(3)【解决问题】如图③,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,AB =AC =10,O 为AC 的中点.若点D 在直线BC 上运动,连接OE ,则在点D 的运动过程中,线段OE 长的最小值为 (直接写出结果).14、某校数学活动小组在一次活动中,对一个数学问题作如下探究:(1)问题发现:如图1,在等边A B C 中,点P 是边B C 上任意一点,连接A P ,以A P 为边作等边A P Q,连接CQ ,BP 与CQ 的数量关系是________; (2)变式探究:如图2,在等腰A B C中,A BB C=,点P 是边B C 上任意一点,以A P 为腰作等腰A P Q,使A PP Q=,A P QA B C∠=∠,连接C Q ,判断A B C ∠和A C Q ∠的数量关系,并说明理由;(3)解决问题:如图3,在正方形A D B C 中,点P 是边B C 上一点,以A P 为边作正方形A P E F ,Q 是正方形A P E F 的中心,连接C Q .若正方形A P E F 的边长为5,2C Q =A DBC 的边长.15、如图,四边形ABCD 和四边形AEFG 都是正方形,C ,F ,G 三点在一直线上,连接AF 并延长交边CD 于点M .(1)求证:△MFC ∽△MCA ;(2)求证△ACF ∽△ABE ; (3)若DM =1,CM =2,求正方形AEFG 的边长.16、已知,ABC 中,AB =AC ,∠BAC =2α°,点D 为BC 边中点,连接AD ,点E 为线段AD 上一动点,把线段CE绕点E顺时针旋转2α°得到线段EF,连接FG,FD.(1)如图1,当∠BAC=60°时,请直接写出B F的值;(2)如图2,当∠BAC=90°时,(1)中的结论是A E否仍然成立?若成立,请给出证明;若不成立,请写出正确的结论,并说明理由;(3)如图3,当点E在AD上移动时,请直接写出点E运动到什么位置时D F的值最小.最小值是多少?(用含α的三角函数表示)D C。

最全相似模型专题(中考数学必考)

最全相似模型专题(中考数学必考)

几何模型09——相似模型三角形相似是每一年中考必考的知识点,相似模型主要包括:“A”型和“X”型相似,母子模型相似(共边共角型),一线三等角,双垂直模型和旋转相似,中考命题者经常把这些模型放在圆,四边形,或函数图象当中,特别要留意母子模型相似的一种特殊情况:射影定理中的知二求四和一线三垂直(k型相似),下面对这些类型做如下总结:一、“A”型和“X”型相似例1.如图,在△ABC中,点D是AC上的点,且AD=2CD,过D作DE∥BC交AB于E,过D作DF∥AB交BC于F.(1)若BC=15,求线段DE的长.(2)若△ADE的面积为16,求△CDF的面积.变式1.如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC.(2)设,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.变式2.如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.变式3.如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D,连接OD.作BE⊥CD于点E,交半圆O于点F.已知CE=12,BE=9.(1)求证:△COD∽△CBE.(2)求半圆O的半径r的长.变式4.如图,AG是∠HAF的平分线,点E在AF上,以AE为直径的⊙O交AG于点D,过点D作AH的垂线,垂足为点C,交AF于点B.(1)求证:直线BC是⊙O的切线;(2)若AC=2CD,设⊙O的半径为r,求BD的长度.变式5.如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A、C重合,直线MN 交AC于O.(1)求证:△COM∽△CBA;(2)求线段OM的长度.变式6.如图,已知AB为⊙O的直径,F为⊙O上一点,AC平分∠BAF且交⊙O于点C,过点C作CD⊥AF于点D,延长AB、DC交于点E,连接BC、CF.(1)求证:CD是⊙O的切线;(2)若AD=6,DE=8,求BE的长;变式7.如图,在△ABC中,∠C=90°,点O在CB上,⊙O经过点C,且与AB相切于点D,与CB的另一个交点为E.(1)求证:DE∥OA;(2)若AB=10,tan∠DEO=2,求⊙O的半径.例2.如图,在Rt△ABC中,∠A=90°,AC=9,BC=15.(1)求BC边上的高AD的长度;(2)正方形的一边FG在BC上,另两个顶点E、H分别在边AB、AC上,求正方形EFGH 的边长.(相似比等于高之比)例3.如图,⊙O的半径为5,点P在⊙O外,PB交⊙O于A、B两点,PC交⊙O于D、C 两点.求证:PA•PB=PD•PC(割线定理);变式1.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.变式2.如图,以△ABC 的边BC 为直径的⊙O 分别交AB ,AC 于点D ,E ,且点E 是的中点,连接DE .(1)求证:△ABC 是等腰三角形.(2)若BC =10,CE =6,求线段AD 的长.变式3.如图,在△ABC 中,AB =AC ,以AB 为直径的半圆O 分别交BC ,AC 于点D ,E ,连结EB ,OD ,DE .(1)求证:OD ⊥EB .(2)若DE =,AB =10,求AE 的长.例4.如图,在△ABC 中,D ,E 分别是边AC ,AB 的中点,BD 与CE 交于点O ,连接DE . 求证:2OE CO OD BO ==变式1.如图,AB 、CD 相交于点O ,连接AC 、BD ,点E 、F 分别为AC 、BD 的中点,连接OE 、OF ,若∠A =∠D ,OA =OF =6,OD =9,求OE 的长.变式2.如图,已知圆O,弦AB、CD相交于点M.(1)求证:AM•MB=CM•MD;(相交弦定理)(2)若M为CD中点,且圆O的半径为3,OM=2,求AM•MB的值.变式3.如图,在⊙O中,弦AB、CD相交于点P,且PD<PC.(1)求证:△P AD∽△PCB;(2)若P A=3,PB=8,CD=10,求PD.例5.如图,过△ABC的边AC的中点D作直线交AB于E,交BC的延长线于F.求证:=;(梅捏劳斯定理特殊情况)变式1.如图,已知△ABC的边AB上有一点D,边BC的延长线上有一点E,且AD=CE.DE 交AC于点F,试证明:AB•DF=BC•EF.变式2.如图,△ABC中,D为BC的中点,过D的直线交AC于E,交AB的延长线于F.求证:=.变式3.如图,△ABC中,D是BC边的中点,过点D的直线交AB于点E,交AC的延长线于点F,且BE=CF.求证:AE=AF.二、共边共角型相似例1.如图,在△ABC中,D为BC边上的一点,且∠CAD=∠B.(1)求证:;(2)若AC=2,BC=4,设△ADC面积为S1,△ABD面积为S2,求证:S2=3S1.变式1.如图,在△ABC中,D为边AB上一点,∠ACD=∠B,若AC=6,BC=5,CD=4,求AD,AB的长.变式2.如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1)求证:△BDG∽△DEG;(2)若EG•BG=4,求BE的长.变式3.如图,在Rt△ABC中,∠C=90°,以AB上一点O为圆心,OA的长为半径作⊙O,交AC、AB分别于D,E两点,连接BD,且∠A=∠CBD.若CD=1,BC=2,求AD 的长度.例2.如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.(1)求证:AG=CG.(2)求证:AG2=GE•GF.变式1.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于点E,交BA的延长线于点F.(1)求证:PC2=PE•PF;(2)若菱形边长为8,PE=2,EF=6,求FB的长.例3.如图,CD是⊙O的切线,点C在直径AB的延长线上.(切割线模型)(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.变式1.如图,O为线段PB上一点,以O为圆心,OB长为半径的⊙O交PB于点A,点C 在⊙O上,连接PC,满足PC2=P A•PB.若AB=3P A,求的值.例4.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.(1)(射影定理)求证:AC2=AD•AB;BC2=BD•BA;CD2=AD•BD;(2)若AD=2,DB=8,求AC,BC,CD的长;(知二求四)(3)若AC=6,DB=9,求AD,CD,BC的长;(知二求四)(4)求证:AC•BC=AB•CD.(等面积法)变式1.如图,AB是⊙O的直径,点C是圆上一点,连接AC和BC,过点C作CD⊥AB于点D.若CD=4,BD=3,求⊙O的半径长.(直径所对的圆周角为直角)变式2.如图,在Rt△ABC中,∠BAC=90°,∠BAD=∠C,点D在BC边上,以AD为直径的⊙O交AB于点E,交AC于点F.已知:AB=6,AC=8,求AF的长.变式3.在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,点E是边BC的中点,连结DE.(1)求证:DE是⊙O的切线;(2)若AD=4,BD=9,求⊙O的半径.例4.如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC的中点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若AB=3DE,求tan∠ACB的值.(射影定理知二求四)(3)若AB=5CE,求tan∠ACB的值.(射影定理知二求四)变式1.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求证:DF是⊙O的切线;(2)若AC=2DE,求tan∠ABD的值.三、双垂直例1.如图,在矩形ABCD中,点E在边BC上,AF⊥DE,垂足为F,AD=4,CE=2,DE =2,求DF的长.变式1.如图,点P是正方形ABCD边AD上一点,Q是边BC延长线上一点,若AB=12,P A=5,PQ⊥BP.求CQ的长.变式2.如图,△ABC中,BD、CE分别是AC、AB边上的高,若AE=5,AD=6,CD=2.求EB的长.变式3.如图,在Rt△ABC中,∠ABC=90°,E是边AC上一点,且BE=BC,过点A作BE的垂线,交BE的延长线于点D,求证:△ADE∽△ABC.四、一线三等角例1.已知:如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;例2.如图,E是正方形ABCD的边AB上的点,过点E作EF⊥DE交BC于点F.(1)求证:△ADE∽△BEF;(2)若AB=6,AE=2,求线段CF的长.变式1.如图,将一个直角的顶点P放在矩形ABCD的对角线BD上滑动,并使其一条直角边始终经过点A,另一条直角边与边BC相交于点E.且AD=8,DC=6,则=.五、旋转相似例1.如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.变式1.如图,△ABC和△CEF中,AB=BC,CF=EF,∠CBA=∠CFE=90°,E在△ABC 内,∠CAE+∠CBE=90°,连接BF.(1)求证:△CAE∽△CBF;(2)若BE=1,AE=2,求EF的长.。

中考数学几何专项——相似模型(相似三角形)

中考数学几何专项——相似模型(相似三角形)

中考数学几何专项——相似模型(相似三角形)相似模型相似模型一:A字型特征:DE∥BC模型结论:根据A字型相似模型,可以得出以下结论:C∠B=∠XXXAC²=AD×AB相似模型二:X型特征:AC∥BD模型结论:根据X型相似模型,可以得出以下结论:AO×OB=OC×ODBOC∽△DOACAOC∽△DOB相似模型三:旋转相似特征:成比例线,段共端点模型结论:根据旋转相似模型,可以得出以下结论:BEF∽△BCDDEF∽△DABAEB∽△DEC相似模型四:三平行模型特征:AB∥EF∥CD模型结论:根据三平行模型,可以得出以下结论:ABE∽△CDF相似模型五:半角模型特征:90度,45度;120度,60度模型结论:根据半角模型,可以得出以下结论:ABN∽△MAN∽△MCAABD∽△CAE∽△CBA相似模型六:三角形内接矩形模型特征:矩形EFGH或正方形EFGH内接与三角形模型结论:根据三角形内接矩形模型,可以得出以下结论:ABC∽△EFH相似模型七:十字模型特征:正方形HDGB模型结论:根据十字模型,可以得出以下结论:若AF=BE,则AF⊥BE,且为长方形若AF⊥BE,则AF=BEBDBC平行四边形,且△GME∽△HNF,△MED≌△BFA。

下面给出几个几何问题。

1.在△ABC中,AB=AC,且有以下七个结论:①D为AC中点;②AE⊥BD;③BE:EC=2:1;④∠ADB=∠CDE;⑤∠AEB=∠CED;⑥∠BMC=135°;⑦BM:MC=2:1.求AC和CD的比值。

2.在平行四边形ABCD中,AB∥CD,线段BC,AD相交于点F,点E是线段AF上一点且满足∠BEF=∠C,其中AF=6,DF=3,CF=2,求AE的长度。

3.在Rt△ABD中,过点D作CD⊥BD,垂足为D,连接XXX于点E,过点E作EF⊥BD于点F,若AB=15,CD=10,求4.在□ABCD中,E为BC的中点,连接AE,AC,分别交BD于M,N,求5.在平行四边形ABCD中,AB∥CD,AD,BC相交于点E,过E作EF∥AB交BD于点F。

中考数学压轴题之旋转(中考题型整理,突破提升)及详细答案

中考数学压轴题之旋转(中考题型整理,突破提升)及详细答案
【答案】解:(1)CG=EG (2)(1)中结论没有发生变化,即 EG=CG. 证明:连接 AG,过 G 点作 MN⊥AD 于 M,与 EF 的延长线交于 N 点.
在△ DAG 与△ DCG 中, ∵ AD=CD,∠ ADG=∠ CDG,DG=DG, ∴ △ DAG≌ △ DCG. ∴ AG=CG. 在△ DMG 与△ FNG 中, ∵ ∠ DGM=∠ FGN,FG=DG,∠ MDG=∠ NFG, ∴ △ DMG≌ △ FNG. ∴ MG=NG 在矩形 AENM 中,AM=EN. 在 Rt△ AMG 与 Rt△ ENG 中, ∵ AM=EN, MG=NG, ∴ △ AMG≌ △ ENG. ∴ AG=EG ∴ EG=CG. (3)(1)中的结论仍然成立.
4.如图(1)所示,将一个腰长为 2 等腰直角△ BCD 和直角边长为 2、宽为 1 的直角△ CED 拼在一起.现将△ CED 绕点 C 顺时针旋转至△ CE’D’,旋转角为 a. (1)如图(2),旋转角 a=30°时,点 D′到 CD 边的距离 D’A=______.求证:四边形 ACED′ 为矩形; (2)如图(1),△ CED 绕点 C 顺时针旋转一周的过程中,在 BC 上如何取点 G,使得 GD’=E’D;并说明理由.
【答案】(1)详见解析;(2)FE·sin( -90°) 【解析】 【分析】 (1)由四边形 ABCD 是平行四边形得 AF∥ BE,所以∠ FAE=∠ BEA,由折叠的性质得 ∠ BAE=∠ FAE,∠ BEA=∠ FEA,所以∠ BAE=∠ FEA,故有 AB∥ FE,因此四边形 ABEF 是平行四 边形,又 BE=EF,因此可得结论; (2)根据点 M 在线段 BE 上和 EC 上两种情况证明∠ ENG=90°- ,利用菱形的性质得到

中考数学解答题压轴题突破 重难点突破八 几何综合题 类型六:旋转在几何综合题中的应用

中考数学解答题压轴题突破 重难点突破八 几何综合题 类型六:旋转在几何综合题中的应用

(2)证明:BE=AH+DF.
(2)证明:将△ABH绕着点B顺时针旋转90° 得到△BCM,∵四边形ABCD是正方形, ∴AD=BC,∠ADC=∠C=90°,∴∠ADF=∠C, ∵AF∥BE,∴∠F=∠BEC,∴△ADF≌△BCE(AAS), ∴DF=CE.又由旋转可知AH=CM,∠AHB=∠M,∠BAH=∠BCM=90°, ∵∠BCD=90°,∴∠BCD+∠BCM=180°, ∴点E,C,M在同一直线.∴AH+DF=EC+CM=EM.
类型六:旋转在几何综合 题中的应用
模型一:旋转构造基本图形 【解题方法模型构建】 若题干中出现“共顶点、等线段(相邻等线段)”这一特征.常考虑构造 旋转,通过旋转可以将线段转移,将已知条件集中,从而解决问题.
1.遇60°旋转60°,构造等边三角形(等边三角形旋转模型).
通过旋转可将线段AP,BP,CP转移在同一个三角形中(△CPP′). 注:根据“旋转的相互性”也可绕A点旋转△APC,或绕B,C点旋转相应 三角形(还有5种构造方法).
模型二:旋转构造模型 【解题方法模型构建】 1.如图,在△OAB中,OA=OB,在△OCD中,OC=OD,∠AOB=∠COD=
α,将△OCD绕点O旋转一定角度后,连接AC,BD,相交于点E.简记 为:双等腰,共顶点,顶角相等,旋转得全等.
【结论】(1)△AOC≌△BOD(SAS); (2)AC=BD; (3)两条拉手线AC,BD所在直线的夹角与∠AOB相等或互补.
【结论】△ABD≌△AEC;△ABE∽△ADC.
2.请阅读下列材料: 问题:如图①,在等边三角形ABC内有一点P,且PA=2,PB= 3 ,PC= 1,求∠BPC度数的大小和等边三角形ABC的边长. 李明同学的思路:将△BPC绕点B逆时针旋转60°,画出旋转后的图形 (如图②),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角 三角形(由勾股定理的逆定理可证),∴∠AP′B=150°,而∠BPC=∠ AP′B=150°,进而求出等边角形ABC的边长为 7,问题得到解决.

中考数学常见的几种旋转模型

中考数学常见的几种旋转模型

旋转常见模型一、遇60°旋转60°, 构造等边三角形1.点P是等边△ABC内一点, 且PC=3, PB=4, PA=5。

求∠BPC的度数。

2.如图6-2, 是等边外一点, 若, 求的度数。

图6-23.(2018年广州市节选)如图, 在四边形ABCD 中,∠B ( 60( ,∠D ( 30( ,AB ( BC.(1)∠A ∠C= °(2)连接BD , 探究AD , BD , CD 三者之间的数量关系, 并说明理由.二、遇90°旋转90°, 构造等腰直角三角形1.如图, 在正方形ABCD内部有一点P, PA= , PB= , PC=1, 求∠BPC的度数。

2.在△ABC中,∠BAC=90°,AB=AC,P是△ABC内一点,PA=2,PB=1,PC=3,求∠APB的度数.三、遇等腰旋转顶角, 构造旋转全等FED CBA GABCDEABCDEF1.在 中, , ( ), 将线段 绕点 逆时针旋转60°得到线段 . (1)如图1, 直接写出 的大小(用含 的式子表示); (2)如图2, , 判断 的形状并加以证明; (3)在(2)的条件下, 连结 , 若 , 求 的值.四、半角模型说明: 旋转半角的特征是相邻等线段所成角含一个二分之一角, 通过旋转将另外两个和为二分之一的角拼接在一起, 成对称全等。

秘籍: 角含半角要旋转: 构造两次全等FED CBAG FED CBA1.如图, 在正方形ABCD 中, E 、F 分别在BC.CD 上, 且∠EAF=45°连接EF. 求证:EF=BE+DF.如图, 在正方形ABCD中, E、F分别在BC.CD上, 且∠EAF=45°连接AD, 与AE、AF分别交于M、N,求证: MN2=BM2+DM23.如图, 在正方形ABCD 的边长为2, 点E, 点F分别在边AD,CD上, 若∠EBF=45°,则△EDF的周长等于。

九年级数学中考知识点归纳复习 第24讲 平移、对称、旋转与位似 视图和投影

九年级数学中考知识点归纳复习 第24讲  平移、对称、旋转与位似 视图和投影
图形关于原点成位似变换
在平面直角坐标系内,如果两个图形的位似中心为原点,相似比为k,那么这两个位似图形对应点的坐标的比等于k或-k.
视图与投影
二、知识清单梳理
知识点一:三视图内容
关键点拨
1.三视图
主视图:从正面看到的图形.
俯视图:从上面看到的图形.
左视图:从左面看到的图形.
例:长方体的主视图与俯视图如图所示,则这个长方体的体积是36 .
4.图形的中心对称
(1)把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么这两个图形关于这个点对称或中心对称,该点叫做对称中心.
(2)①关于中心对称的两个图形是全等形;②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等.
2.三视图的对应关系
(1)长对正:主视图与俯视图的长相等,且相互对正;
(2)高平齐:主视图与左视图的高相等,且相互平齐;
(3)宽相等:俯视图与左视图的宽相等,且相互平行.
3.常见几何体的三视图常见几何体的三视图
正方体:正方体的三视图都是正方形.
圆柱:圆柱的三视图有两个是矩形,另一个是圆.
圆锥:圆锥的三视图中有两个是三角形,另一个是圆.
第七单元图形与变换
第24讲平移、对称、旋转与位似视图和投影
一、知识清单梳理
知ห้องสมุดไป่ตู้点一:图形变换
关键点拨与对应举例
1.图形的轴对称
(1)定义:①轴对称:把一个图形沿某一条直线翻折过去,如果它能够与另一个图形重合,那么就称这两个图形关于这条直线对称.
②轴对称图形:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.

中考数学专题复习《旋转与位似》知识点梳理及典例讲解课件

中考数学专题复习《旋转与位似》知识点梳理及典例讲解课件
列网格中画出你拼成的四边形(注:①网格中每个小正方形的
边长为1;②所拼的图形不得与原图形相同;③四边形的各顶
点都在格点上).
第6题图
解:如图:
第6题图
7.(2023·福建)如图1,在△ABC中,∠BAC=90°,AB=AC,
D是AB边上不与A,B重合的一个定点.AO⊥BC于点O,交CD
于点E.DF是由线段DC绕点D顺时针旋转90°得到的,FD,CA
正方形
对角线交点

圆心
正2n边形(n为正整数)
中心
注意点
①常见的既是轴对称又是中心对称的图形:菱形、矩形、正方
形、正六边形、圆等;
②旋转是一种全等变换,旋转改变的是图形的位置,图形的大
小关系不发生改变,所以在解答有关旋转的问题时,要注意挖
掘相等线段、角,因此特殊三角形性质的运用、锐角三角函数
建立的边角关系起着关键的作用.
旋转角为∠AOA'或∠BOB';
②直线AB和直线A'B'所在直线相交所成的锐角为∠C,则∠C=
∠AOA'=∠BOB';
③△AOA'∽△BOB'且△AOA',△BOB'为等腰三角形;
④其中点A,C,O,A'四点共圆,点B,C,O,B'四点共圆.
图形的中心对称
1.中心对称与中心对称图形
中心对称图形
把一个图形绕某一点旋转
区别
中心对称
中心对称图形是指具有特 中心对称是指两个全等图
殊形状的一个图形
形之间的位置关系
中心对称图形可分割为关于某点成中心对称的两部
联系
分;若把成中心对称的两个图形看作一个整体,则它

中考数学几何专项——相似模型(相似三角形)

中考数学几何专项——相似模型(相似三角形)

相似模型【相似模型一:A 字型】 特征 模型结论DE ∥BCCBCBBC D E ADA E DA AD:AB=AE:AC=DE:BC 顺着比∠B=∠AEDCB CBDA EDAAD:AC=AE:AB=DE:BC 反着比AD×AB=AE×AC 顺着乘∠B =∠ACDCBED AAD:AC=AC:AB=CD:BC AC²=AD×AB当∠ BAC=90°AD B CB①△ABD ∽△CBA AB ²=BD×BC ②△ACD ∽△BCAAC²=CD×BC③△ADB ∽△CDA AD²=BD×CD特征 模型结论AC ∥BDAD B CO DB A CC A OD BAD B CODBACCAO D B① △BD0∽△ACO ② DO:0C=BO:0A=BD:AC 交叉比③ △AOD 与△C0B 不相似∠B=∠C(也叫蝴蝶型相似)A D BC ODBACCAD B CODBACC① △AOC ∽△DOB② AO:OD=0C:0B=AC:BDAO×OB=OC×0D 顺着比,交叉乘 ③ △BOC∽△DOA特征 模型 结论成比例线段共端点① △ABC ∽△ADE② △ABD∽△ACE特征 模型结论AB ∥EF ∥CDFEBCD AF EDCBA图2① 有两对A 字型相似△BEF ∽△BCD △DEF∽△DAB ② 有一对X 型相似△AEB ∽△DEC ③111AB CD EF+=特征模型结论ECD BAA BDC EEDCBA90度,45度; 120度,60度60°45°图2图1旋转N M 60°120°E D CB A 45°ED C B A ①△ABN ∽△MAN ∽△MCA ②△ABD ∽△CAE ∽△CBA【相似模型六:三角形内接矩形模型】 特征模型结论矩形EFGH 或正方形EFGH 内接与三角形H G FED C BA【相似模型七:十字模型】 特征 模型 结论正方形①若AF=BE,则AF ⊥BE ②若AF ⊥BE ,则AF=BE,长方形PEAB CD矩形ABCD 中,CE ⊥BD ,则△CDE ∽△BCD ,CE CDBD BC平行四边形△GME ∽△HNF△MED ≌△BFA三角形MED CAB在△ABC 中,AB =AC ,AB ⊥AC ,①D 为中点,②AE ⊥BD ,③BE :EC=2:1,④∠ADB =∠CDE ,⑤∠AEB =∠CED ,⑥∠BMC =135°,⑦2BMMC =,这七个结论中,“知二得五”【A 型,X 型,三平行模型】1.如图,在△ABC 中,EF ∥DC ,∠AFE =∠B ,AE =6,ED =3,AF =8,则AC =_________,CDBC=_________.F E DCBABCDE FA2.如图,AB ∥CD ,线段BC ,AD 相交于点F ,点E 是线段AF 上一点且满足∠BEF =∠C ,其中AF =6,DF =3,CF =2,则AE =_________.3.如图,在Rt △ABD 中,过点D 作CD ⊥BD ,垂足为D ,连接BC 交AD 于点E ,过点E 作EF ⊥BD 于点F ,若AB =15,CD =10,则BF :FD =_____________.FEBCAN MEDCBA4.如图,在□ABCD 中,E 为BC 的中点,连接AE ,AC ,分别交BD 于M ,N ,则BM :DN =_____________.5.如图所示,AB ∥CD ,AD ,BC 相交于点E ,过E 作EF ∥AB 交BD 于点F .则下列结论:①△EFD ∽△ABD ;②EF BF CD BD =;③1EF EF FD BF AB CD BD BD +=+=;④111AB CD EF+=.其中正确的有___________. F EDCBA图26.在△ABC 中,AB=9,AC=6,点M 在边AB 上,且AM=3,点N 在AC 边上.当AN= 时,△AMN 与原三角形相似.7.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC 上,使得△ADP 与△ABC 相似,则线段AP 的长为 .8.如图,已知O 是坐标原点,点A.B 分别在y x 、轴上,OA=1,OB=2,若点D 在x 轴下方,且使得△AOB 与△OAD 相似,则这样的点D 有 个.9.如图,在Rt △ACB 中,∠C=90°,AC=16cm ,BC=8cm ,动点P 从点C 出发,沿CA 方向运动;动点Q 同时从点B 出发,沿BC 方向运动,如果点P 的运动速度均为4cm/s ,Q 点的运动速度均为2cm/s ,那么运动几秒时,△ABC 与△PCQ 相似.10.将△ABC的纸片按如图所示的方式折叠,使点B落地边AC上,记为点B',折叠痕为EF,已知AB=AC=8,BC=10,若以点B'.F.C为顶点的三角形与△ABC相似,那么BF的长度是.11.如图,在中,,,是角平分线.求证:(1)(2)12.如图,四边形中,平分,,,为的中点.(1)求证:;(2)与有怎样的位置关系?试说明理由;(3)若,,求的值.13.如图,在中,为上一点,,,,于,连接.(1)求证:;(2)找出图中一对相似三角形,并证明.14.如图,在中,,分别是,上的点,,的平分线交于点,交于点.(1)试写出图中所有的相似三角形,并说明理由(2)若,求的值.15.如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABNM的面积.16.如图,在中,于点,于点,连接,求证: ..17.如图,在△ABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,若EG=3,则AC=________.图1 图218..如图,平行于BC的直线DE把△ABC分成的两部分面积相等.则ADAB= _________.19.如图所示,AD=DF=FB, DE∥FG∥BC,则S1:S2:S3=__________.20.如图,在矩形ABCD中,对角线AC,BD相交于点O,OE⊥BC于点E,连接DE交OC于点F,作FG⊥BC于点G,则线段BG与GC的数量关系是___.21. 如图,已知点C 为线段AB 的中点,CD ⊥AB 且CD=AB=4,连接AD ,BE ⊥AB ,AE 是∠DAB 的平分线,与DC 相交于点F ,EH ⊥DC 于点G ,交AD 于点H ,则HG 的长为 .22.如图1,在△ABC 中,点D 、E 、Q 分别在边AB 、AC 、BC 上,且DE ∥BC ,AQ 交DE 于点P . (1)求证: ;(2)如图,在△ABC 中,∠BAC =90°,正方形DEFG 的四个顶点在△ABC 的边上,连接AG 、AF ,分别交DE 于M 、N 两点.如图2,若AB =AC =1,直接写出MN 的长;如图3,求证MN 2=DM【母子型】1、已知:如图,△ABC 中,∠ACB=90°,CD ⊥AB 于D ,S △ABC=20,AB=10。

中考数学满分之路(四)—旋转全等与旋转相似

中考数学满分之路(四)—旋转全等与旋转相似

中考数学满分之路(四)——旋转全等与旋转相似一、旋转全等有公共顶角顶点且顶角相等的两个等腰三角形组成的图形中,必有全等三角形.旋转的性质 一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等. 如图,已知AB =AC ,AD =AE ,∠BAC =∠DAE . 求证:△ABD ≌△ACE . 证明:∵∠BAC =∠DAE ,∴∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE , ∵AB =AC ,∠BAD =∠CAE ,AD =AE , ∴△ABD ≌△ACE .如图,若△ABD ≌△ACE ,则AB =AC ,∠BAD =∠CAE (进而∠BAC =∠DAE ),AD =AE . 其中△ACE 可看作是由△ABD 绕点A 逆时针旋转∠BAC 得到的.所以,将一个三角形绕其一个顶点旋转一定角度(旋转角α满足α<360°且α≠180°)后,会得到有公共顶角顶点且顶角相等的两个等腰三角形.EE1. 如图,点C 为线段AE 上一动点(不与A ,E 重合),在AE 同侧分别作正△ABC 和正△CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ,OC . 以下6个结论:①AD =BE ;②AP =BQ ;③DE =DP ;④∠AOB =60°;⑤PQ ∥AE ;⑥OC 平分∠AOE . 其中,恒成立的有______.(把你认为正确的结论的序号都填上)2. 如图所示,以Rt △ABC 的斜边BC 为一边在△ABC 同侧作正方形BCEF ,设正方形的中心为O ,连接AO ,如果AB =2,AO =tan ∠AOB 的值为______.3. 如图,已知点C 为线段BD 上一点(不与端点重合),△ABC ≌△CDE ,且∠ABC =∠CDE =90°,连接AE ,点M 为AE 的中点,连接MB ,MD . 请判断△BMD 的形状,并说明理由.二、旋转相似将一个三角形绕其一个顶点旋转一定角度(旋转角α满足α<360°且α≠180°)并放大(或缩小),再连接对应点后会得到另一组相似三角形. (简述为:旋转相似一拖二) 如图,△ABC ∽△ADE ⇔△ABD ∽△ACE ,(可用SAS 判定相似).圆中的旋转相似已知,△ABC 内接于⊙O ,AD 是BC 边上的高,AE 是直径. 求证:AB AC AD AE ⋅=⋅.已知,△ABC 内接于⊙O ,角平分线AD 的延长线交⊙O 于E. 求证:AB AC AD AE ⋅=⋅.进一步推导,2()AB AC AD AE AB AC AD AD DE AD AB AC AD DE AB AC BD DC ⋅=⋅⇒⋅=⋅+⇒=⋅−⋅=⋅−⋅. 即若AD 是△ABC 的角平分线,则2AD AB AC BD DC =⋅−⋅. (三角形的角平分线长公式)B4. 如图,已知AC为正方形ABCD的对角线,点P是平面内不与点A,B重合的任意一点,连接AP,将线段AP绕点P顺时针旋转90°得到线段PE,连接AE,BP,CE.(1)求证:△APE∽△ABC;(2)当线段BP与CE相交时,设交点为M,求BPCE的值以及∠BMC的度数;(3)若正方形ABCD的边长为3,AP=1,当点P,C,E在同一直线上时,求线段BP的长.P备用图5. 如图,在Rt △ABC 中,90C ∠=,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G .(1)求证:BC 是⊙O 的切线;(2)设AB x =,AF y =,试用含x ,y 的代数式表示线段AD 的长; (3)若8BE =,5sin 13B =,求DG 的长.6. 已知锐角MBN ∠的余弦值为35,点C 在射线BN 上,25BC =,点A 在MBN ∠内部,且90BAC ∠=,BCA MBN ∠=∠,过点A 的直线DE 分别交射线BM ,射线BN 于点D ,E ,点F 在线段BE 上(点F 不与点B 重合),且EAF MBN ∠=∠.(1)如图1,当AF ⊥BN 时,求EF 的长;(2)如图2,当点E 在线段BC 上时,设BF x =,BD y =,求y 关于x 的函数解析式并写出函数的定义域;(3)连接DF ,当△ADF 与△ACE 相似时,请直接写出BD 的长.图1 图2 备用图三、旋转相似与旋转全等共锐角顶点的两个处于旋转位置的相似三角形组成的图形中,连接对应点后会得到另一组相似三角形;以该公共顶点为等腰三角形的顶角顶点可构造出有公共顶角顶点且顶角相等的两个等腰三角形,从而构造出全等三角形.EEE7. 如图,以△ABC的AB,AC边为斜边在△ABC外部作Rt△ABP和Rt△ACQ,且使∠ABP=∠ACQ,M 是BC的中点,连接MP,MQ. 求证:PM=QM且∠PMQ=2∠ABP.P8. 已知:等边△ABC 中,CE 平分∠ACB ,D 为BC 边上一点,且DE =DC ,连接BE . (1)如图1,若BC =,4CE =,求BE 的长;(2)如图2,取BE 中点P ,连接AP 、PD 、AD ,求证:AP PD ⊥且AP ;(3)在(1)的条件下,将△CDE 绕点C 顺时针旋转,如图3,连接BE ,取BE 中点P ,连接AP 、AD ,当EC ∥AD 时,求AP 的长.图1图2图39. 如图 1,已知等腰Rt △ABC 中,E 为边AC 上一点,过E 点作EF ⊥AB 于F 点,以EF 为边作正方形EF AG ,且AC =4,EF =2(1)如图1,连接CF ,求线段CF 的长(2)将等腰Rt △ABC 绕A 点旋转至如图2的位置,连接BE ,M 点为BE 的中点,连接MC 、MF ,求MC 与MF 的关系(3)将△ABC 绕A 点旋转一周,请直接写出点M 在这个过程中的运动路径长为______.图1BC图2。

2023学年人教中考数学重难点题型分类 专题05 旋转重难点题型分类

2023学年人教中考数学重难点题型分类 专题05 旋转重难点题型分类

专题05 旋转重难点题型分类专题简介:本份资料包含《旋转》这一章在各次期中、期末考试中常考的填空、选则题和主流中档大题,具体包含的题型有中心对称图形、利用旋转的性质求角度和边长、坐标系中的图形旋转、旋转的中档大题、旋转的综合压轴题这五类题型。

题型一:中心对称图形1.随着人民生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A. B. C.D.【解答】解:A、是轴对称图形,也是中心对称图形,故本选项正确;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、不是轴对称图形,是中心对称图形,故本选项错误.故选:A.2.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数有()A.1个B.2个C.3个D.4个【解答】解:从左数第一、四个是轴对称图形,也是中心对称图形.第二是轴对称图形,不是中心对称图形,第三个图形是中心对称图形不是轴对称图形.故选:B.3.下列图案中既是中心对称图形,又是轴对称图形的是()A. B.C. D.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、不是轴对称图形,是中心对称图形,故本选项不合题意;C、既是轴对称图形,又是中心对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C.4.下列图形中,既是轴对称又是中心对称的图形是()A.正三角形B.矩形C.平行四边形D.正五边形【解答】解:A、正三角形是轴对称图形,不是中心对称图形,故此选项错误;B、矩形既是中心对称图形也是轴对称图形,故此选项正确;C、平行四边形不是轴对称图形,是中心对称图形,故此选项错误;D、正五边形是轴对称图形,但不是中心对称图形,故此选项错误.故选:B.题型二:利用旋转的性质求角度和边长5.如图,D是等腰Rt△ABC内一点,BC是斜边,如果将△ABD绕点A按逆时针方向旋转到△ACD′的位置,则∠ADD′的度数是()A.25°B.30°C.35°D.45°【解答】解:∵将△ABD绕点A按逆时针方向旋转到△ACD′的位置,∴AD=AD′,∠DAD′=∠BAC=90°,即△ADD′是等腰直角三角形,∴∠ADD′=45°.故选:D.6.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为()A.60°B.75°C.85°D.90°【解答】解:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F.则∠AFB=90°,∴在Rt△ABF中,∠B=90°﹣∠BAD=25°,∴在△ABC中,∠BAC=180°﹣∠B﹣∠C=180°﹣25°﹣70°=85°,即∠BAC的度数为85°.故选:C.7.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()A.15°B.10°C.20°D.25°【解答】解:∵△BCE绕点C顺时针方向旋转90°得到△DCF,∴CE=CF,∠DFC=∠BEC=60°,∠EFC=45°,∴∠EFD=60°﹣45°=15°.故选:A.8.如图,在△ABC中,AB=1,AC=2,现将△ABC绕点C顺时针旋转90°得到△A′B′C′,连接AB′,并有AB′=3,则∠A′的度数为.【解答】解:如图,连接AA′.由题意得:AC=A′C,A′B′=AB,∠ACA′=90°,∴∠AA′C=45°,AA′2=22+22=8;∵AB′2=32=9,A′B′2=12=1,∴AB′2=AA′2+A′B′2,∴∠AA′B′=90°,∠A′=135°,故答案为135°.9.一个正三角形至少绕其中心旋转度,就能与本身重合,一个正六边形至少绕其中心旋转度,就能与其自身重合.【解答】解:∵正三角形的中心角为120°,正六边形的中心角为60°,∴一个正三角形至少绕其中心旋转120度,就能与本身重合,一个正六边形至少绕其中心旋转60度,就能与其自身重合.故答案为:120;60.10.一个平行四边形ABCD,如果绕其对角线的交点O旋转,至少要旋转度,才可与其自身重合.【解答】解:平行四边形是中心对称图形,绕对角线的交点旋转180度能与原图形重合.故答案是:180.11.如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于()A.B.C.D.【解答】解:如图,设B′C′与CD相交于点E,在Rt△ADE和Rt△AB′E,,∴Rt△ADE≌Rt△AB′E(HL),∴∠EAB′=∠EAD,∵旋转角为30°,∴∠BAB′=30°,∴∠EAD=(90°﹣30°)=30°,在Rt△ADE中,ED=AD tan30°=1×=,∴这个风筝的面积=2×S△ADE=2××1×=;故选:B.题型三:坐标系中的图形旋转12.以原点为中心,把点P(1,3)顺时针旋转90°,得到的点P′的坐标为()A.(3,﹣1)B.(﹣3,1)C.(1,﹣3)D.(﹣1,﹣3)【解答】解:如图,点P(1,3)绕原点顺时针旋转90°后坐标变为(3,﹣1).故选:A.13.以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q的坐标为()A.(﹣4,5)B.(4,﹣5)C.(﹣5,4)D.(5,﹣4)【解答】解:如图所示,建立平面直角坐标系,点Q的坐标为(﹣5,4).故选:C.14.已知点A(3,n)关于y轴对称的点的坐标为(﹣3,2),那么n的值为,点A关于原点对称的点的坐标是.【解答】解:根据对称的性质,得已知点A(3,n)关于y轴对称的点的坐标为(﹣3,2),那么n=2;则点A的坐标是(3,2),所以点A关于原点对称的点的坐标是(﹣3,﹣2).15.若点A(2,a)关于原点的对称点是B(b,﹣3),则ab的值是.【解答】解:∵点A(2,a)关于原点的对称点是B(b,﹣3),∴a=3,b=﹣2,则ab的值是:﹣6.故答案为:﹣6.16.如图,已知△ABC的顶点A、B、C的坐标分别是A(﹣1,﹣1),B(﹣4,﹣3),C(﹣4,﹣1).(1)作出△ABC关于原点O的中心对称图形△A1B1C1;(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A2B2C2,画出△A2B2C2;(3)在(2)的条件下,请直接写出点A1、C2的坐标,并求出旋转过程中线段OC所扫过的面积.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.(3)A1(1,1),C2(﹣1,4).∵OC==,∠COC2=90°,∴线段OC所扫过的面积==17.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,求出A运动经过的路径的长度.【解答】解:(1)如图,△A1B1C1即为所求作.(2)如图,△A2B2C2即为所求作,点A运动经过的路径的长==π.18.如图,在平面直角坐标系中,A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC 旋转得到的.(1)请写出旋转中心的坐标是,旋转角是度;(2)以(1)中的旋转中心为对称中心,画出△A1AC1的中心对称图形.【解答】解:(1)如图所示:旋转中心的坐标是:(0,0),旋转角是:90°或270°,故答案为:(0,0),90或270;(2)如图所示:△A2B2C2即为所求.题型四:旋转的中档大题19.如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(1)旋转中心是点,旋转角度是度;(2)若连接EF,则△AEF是三角形;并证明;(3)若四边形AECF的面积为25,DE=2,求AE的长.【解答】解:(1)如图,由题意得:旋转中心是点A,旋转角度是90度.(2)由题意得:AF=AE,∠EAF=90°,∴△AEF为等腰直角三角形.(3)由题意得:△ADE≌△ABF,∴S四边形AECF=S正方形ABCD=25,∴AD=5,而∠D=90°,DE=2,∴.20.如图,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如果AF=4,AB=7.(1)求BE的长;(2)在图中作出延长BE与DF的交点G,并说明BG⊥DF.【解答】解:(1)∵△ADF旋转一定角度后得到△ABE,AF=4,∴AE=AF=4,∵∠BAE=90°,∴Rt△ABE中,BE===;(2)如图,延长BE与DF的交点G,由旋转得,∠F=∠AEB,∵Rt△ABE中,∠AEB+∠ABE=90°,∴∠F+∠ABE=90°,∴∠BGF=90°,即BG⊥DF.21.如图,点E是正方形ABCD边CD的中点,△ADE绕着点A旋转后到达△ABF的位置,其中点F落在了边CB的延长线上,连接EF.(1)求证:△AEF是等腰直角三角形.(2)若AB=4,求△AEF的面积.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵△ADE绕着点A旋转后到达△ABF的位置,其中点F落在了边CB的延长线上,∴AE=AF,∠EAF=∠BAD=90°,∴△AEF为等腰直角三角形;(2)解:∵四边形ABCD为正方形,∴AB=CD=AD=4,∠ADE=90°,∵点E是正方形ABCD边CD 的中点,∴DE=CD=AB=2,∴AE===2,∴S△AEF=AE2=×(2)2=10.22.如图,正方形ABCD,E,F分别为BC、CD边上一点.①若∠EAF=45°,求证:EF=BE+DF;②若△AEF绕A点旋转,保持∠EAF=45°,问△CEF的周长是否随△AEF位置的变化而变化?【解答】①证明:∵四边形ABCD为正方形,∴AB=AD=CB=CD,∠BAD=∠B=90°,∵把△ABE绕点A逆时针旋转90°可得到△ADE′,∴AE′=AE,DE′=BE,∠E′AE=90°,∠ADE′=∠ADC=90°,∵∠EAF=45°,∴∠E′AF=∠E′AE﹣∠EAF=45°,∴∠E′AF=∠EAF,在△E′AF和△EAF中,,∴△E′AF≌△EAF(SAS),∴E′F=EF,∵E′F=DE′+DF=BE+DF,∴EF=BE+DF;②解:不变化;理由如下:△CEF的周长=CE+CF+EF=CE+CF+BE+DF=CB+CD.∴△CEF的周长不随△AEF位置的变化而变化.题型五:旋转的综合压轴题23.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?(直接写出答案)【解答】(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形.(2)解:当α=150°时,△AOD是直角三角形.理由是:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴△BOC≌△ADC,∴∠ADC=∠BOC=150°,又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=∠ADC﹣∠ODC=90°,∵∠α=150°,∠AOB=110°,∠COD=60°,∴∠AOD=360°﹣∠α﹣∠AOB﹣∠COD=360°﹣150°﹣110°﹣60°=40°,∴△AOD不是等腰直角三角形,即△AOD是直角三角形.(3)解:①要使AO=AD,需∠AOD=∠ADO,∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO =α﹣60°,∴190°﹣α=α﹣60°,∴α=125°;②要使OA=OD,需∠OAD=∠ADO.∵∠OAD=180°﹣(∠AOD+∠ADO)=180°﹣(190°﹣α+α﹣60°)=50°,∴α﹣60°=50°,∴α=110°;③要使OD=AD,需∠OAD=∠AOD.∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠OAD==120°﹣,∴190°﹣α=120°﹣,解得α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.24.如图,正方形ABCD,E、F分别为BC、CD边上一点.(1)若∠EAF=45°.求证:EF=BE+DF.(2)若△AEF绕A点旋转,保持∠EAF=45°,问△CEF的周长是否随△AEF位置的变化而变化?(3)已知正方形ABCD的边长为1,如果△CEF的周长为2.求∠EAF的度数.【解答】(1)证明:如图,延长CD至E',使DE'=BE,连接AE',∵四边形ABCD 为正方形,∴AB=AD=CB=CD,∠BAD=∠B=90°,∴∠ADE'=90°=∠ABE,在△ADE'和△ABE中,,∴△ADE'≌△ABE(SAS),∴AE'=AE,∠DAE'=∠BAE,∵∠EAF=45°,∴∠DAF+∠BAE=45°,∴∠DAF+∠DAE'=∠E'AF=45°=∠EAF,在△E′AF和△EAF中,,∴△E′AF≌△EAF(SAS),∴E′F=EF,∵E′F=DE′+DF=BE+DF,∴EF=BE+DF;(2)解:不变化;理由如下:由(1)知,EF=BE+DF,∴△CEF的周长=CE+CF+EF=CE+CF+BE+DF =CB+CD=2BC.∴△CEF的周长不随△AEF位置的变化而变化;(3)延长CD至E'使DE'=BE,连接AE',由(1)知,△ADE'≌△ABE(SAS),∴AE'=AE,∠DAE'=BAE,设BE=x,DF=y,∵正方形ABCD的边长为1,∴CE=1﹣x,CF=1﹣y,∵△CEF的周长为2,∴CE+CF+EF=2,∴1﹣x+1﹣y+EF=2,∴EF=x+y=BE+DF=DE'+DF=E'F,在△E'AF和△EAF中,,∴△E'AF≌△EAF(SSS),∴∠E'AF=∠EAF,∴∠DAE'+∠DAF=∠BAE+∠DAF=∠EAF,∵∠DAF+∠EAF+∠BAE=90°,∴∠EAF=45°.25.问题:如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF =45°,试判断BE、EF、DF之间的数量关系.(1)发现证明小文把△ADF绕点A顺时针旋转90°至△ABG,从而发现BE、EF、DF之间的数量关系为;若正方形ABCD的边长为a,则△CEF的周长为;(2)类比探究如图②,在等腰△ABC中,AB=AC=2,∠BAC=120°,以BC为边向BC下方作等边△DBC,点E,F分别是边BD,DC上的动点,且∠EAF=60°.①试判断BE、EF、CF之间的数量关系,并说明理由.②试判断当点E,F的位置变化时,△EDF的周长是否发生变化,若变化,试说明怎么变化;若无变化,请直接写出△DEF的周长.(3)拓展延伸在(2)的条件下,以BC为边向BC上方作等边△DBC,点E,F分别是边BD,DC上的动点,且∠EAF=60°,当△DEF是直角三角形时,请直接写出DE的长度.【解答】解:(1)如图①中,∵四边形ABCD是正方形,∴AB=BC=CD=AD=a,∠BAD=90°,∵△ADF≌ABG,∴AF=AG,∠DAF=∠BAG,∵∠EAF=45°,∴∠DAF+∠BAE=∠BAG+∠BAE=45°,∴∠EAF=∠EAG=45°,∵AE=AE,∴△EAF≌△EAG(SAS),∴EF=EB,∴EF=GB+BE=DF+BE,∴△ECF的周长=EF+EC+CF=BE+EC+CF+DF=BC+CD=2a,故答案为EF=BE+DF,2a.(2)①结论:EF=BE+CF.理由:如图,延长FC到T,使得CT=BE,连接AT.∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∵△BCD是等边三角形,∴∠DBC=∠DCB=60°,∴∠ABD=∠ACD=90°,∴∠ABE=∠ACT=90°,∵AB=AC,BE=CT,∴△ABE≌△ACT(SAS),∴BE=CT,∠BAE=∠CAT,AE=AT,∴∠EAT=∠BAC=120°,∵∠EAF =60°,∴∠AEF=∠TAF=60°,∵AF=AF,∴△AFE≌△AFT(SAS),∴EF=FT,∴EF=CF+CT =BE+CF.②△DEF的周长不变.理由:∵AB=AC=2,∠BAC=120°,∴BC=2AB•cos30°=6,∵△DEF的周长=EF+DE+DF=BE+CF+DE+DF=BD+CD=2BC=12.(3)如图③中,连接EF,当∠EFD=90°时,延长F A交BC于M,延长EA交BC于N.∵∠EAF=60°,∠BAC=120°,∴∠EAF+∠BAC=180°,∴∠BAE+∠CAF=180°,∵∠CAF+∠CAM=180°,∴∠BAE=∠CAM,∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB =30°,∵△DBC是等边三角形,∴∠DBC=60°,∴∠ABE=∠ACM=30°,∴△BAE≌△CAM(ASA),∴BE=CM,AE=AM,∵BD=BC,∴DE=BM,同法可证,DF=CN,AF=AN,∵∠EAF=∠MAN,∴△EAF≌△MAN(SAS),∴EF=NM,∴DE+DF+EF=BM+CN+MN=6,∵∠D=60°,∠EFD=90°,∴∠DEF=30°,∴DE=2DF,设DF=x,则DE=2x,EF=x,∴3x+x=6,∴x=3﹣,∴DE=2x=6﹣2.当∠DEF=90°时,同法可得DE=3﹣,综上所述,满足条件的DE的值为3﹣或6﹣2.26.定义:有一组对角互补的四边形叫做互补四边形.(1)互补四边形ABCD中,若∠B:∠C:∠D=2:3:4,求∠A的度数;(2)如图1,在四边形ABCD中,BD平分∠ABC,AD=CD,BC>BA.求证:四边形ABCD是互补四边形;(3)如图2,互补四边形ABCD中,∠B=∠D=90°,AB=AD=,点E,F分别是边BC,CD 的动点,且∠EAF=∠BAD=60°,△CEF周长是否变化?若不变,请求出不变的值;若有变化,说明理由;(4)如图3,互补四边形ABCD中,∠A=∠C=90°,AB=BC,∠B=150°,将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平,若铺平后的图形中有一个是面积为2的平行四边形,求CD的长.【解答】(1)解:∵四边形ABCD是互补四边形,∴∠B+∠D=180°,∵∠B:∠C:∠D=2:3:4,∴∠B=60°,∠C=90°,又∵∠A+∠B+∠C+∠D=360°,∴∠A=180°﹣∠C=90°;(2)证明:在BC上截取BE=BA,连接DE,如图1所示:在△BAD和△BED中,,∴△BAD≌△BED(SAS),∴∠A=∠DEB,AD=DE.∵AD=CD,∴DE=DC.∴∠C=∠DEC.∵∠BED+∠DEC=180°,∴∠A+∠C=180°,∴四边形ABCD是互补四边形;(3)解:不变.理由如下:延长CB到G,使BG=DF,连接AG,AC,如图2所示:∵∠EAF=∠BAD=60°,∴∠BAD=120°,∵四边形ABCD是互补四边形,∠B=∠D=90°,∴∠BCD=180°﹣∠BAD=60°,在Rt△ACD和Rt△ACB中,,∴Rt△ACD≌Rt△ACB(HL),∴∠ACD=∠ACB=30°,CD=BC=AB=6,∵∠ABE=∠D=90°,∴∠ABG=∠D=90°,在△ABG 和△ADF中,∴△ABG≌△ADF(SAS),∴∠BAG=∠DAF,AG=AF,∵∠EAF=∠BAD,∴∠DAF+∠BAE=∠EAF,∴∠EAF=∠EAG,在△AEF和△AEG中,,∴△AEF≌△AEG(SAS),∴EF=EG=EB+BG=EB+DF.∴EF+CE+CF=BC+CD=6+6=12,即△CEF的周长为12;(4)解:分两种情况:①如图3所示:四边形BMDN是平行四边形,∴BM∥AD,∴∠MBD=∠NDB,同(3)得:Rt△BCD≌Rt△BAD(HL),∴∠MDB=∠NDB,∴∠MBD=∠MDB,∴BM=DM,∴四边形BMDN是菱形,∴BN=BM=DM,∠MBN=∠ADC=30°,设BM=BN=DM=2x,作NH⊥BM于H,则NH=BN=x,∵菱形BMDN的面积=BM•NH=2x•x=2,解得:x=1,或x=﹣1(舍去),∴BM=DM=2,∵∠BMC=∠ADC=30°,∠BCD=90°,∴BC=BM=1,CM=BC=,∴CD=DM+CM=2+;②如图4所示:同①得:△BAD≌△BCD,四边形ABCE是菱形,AB=AE=2,∴AD=CD,∠ABD=∠AEB=75°,∴∠BAE=30°,∵∠BAD=90°,∴∠DAE=60°,作EF⊥CE交CD于F,则∠CFE=30°,∴CF=2CE=4,∴EF=AE=2,由三角形的外角性质得:∠FED=∠FDE=15°,∴DF=EF=2,∴CD=CF+DF=4+2;综上所述:CD的长为2+或4+2.。

中考数学旋转知识点总结

中考数学旋转知识点总结

中考数学旋转知识点总结一、旋转的基本概念1. 旋转的定义旋转是几何变换的一种,它将图形绕某一定点进行旋转,使得原图形经过旋转后仍符合原图形的性质。

在平面几何中,这一定点通常被称为旋转中心,而旋转的角度则是旋转的重要参数。

2. 旋转的表示在数学中,旋转可以通过不同的表示方法来描述。

最常见的是使用坐标系中的点和向量表示旋转,也可以使用矩阵来进行描述。

3. 旋转的性质旋转具有许多重要的性质,比如旋转是等距变换,旋转后的图形与原图形的关系等。

这些性质对于理解旋转的本质和应用都具有重要的意义。

二、旋转的基本公式1. 二维平面的旋转公式在平面几何中,二维平面上的点可以通过旋转变换而成。

对于坐标系中的点(x, y),绕原点逆时针旋转θ度后的新坐标可以根据公式进行计算。

2. 三维空间的旋转公式在三维空间中,点的旋转也是常见的几何变换。

旋转的角度可以沿着不同轴进行,因此三维空间中的旋转公式相对复杂一些,但也是可以通过矩阵等方式进行描述的。

三、旋转的应用1. 图形的旋转在几何中,通过旋转可以使得图形的位置和方向发生变化。

通过学习旋转的原理和公式,可以对图形的旋转进行分析和计算,从而更好地理解和掌握图形的性质和特点。

2. 向量的旋转在向量几何中,旋转是常见的几何变换。

向量的旋转不仅可以通过公式进行计算,还可以通过向量的性质和几何特点进行分析,从而更深入地理解向量的旋转。

3. 坐标系的旋转在空间几何和三维几何中,经常需要对坐标系进行旋转变换。

通过学习旋转的原理和方法,可以更清晰地理解坐标系的旋转规律,从而更好地应用于实际问题的解决中。

四、旋转的相关定理1. 旋转对称性质在平面几何中,旋转对称是一种重要的对称方式。

通过学习旋转对称的定理和性质,可以更好地理解和应用旋转对称在几何图形中的作用。

2. 旋转角度的性质旋转角度的性质是旋转的重要定理和性质之一。

通过学习旋转角度的性质,可以更深入地理解和应用旋转的基本特点。

3. 旋转的复合变换旋转可以与其他几何变换进行复合,比如平移、翻转等。

专题39 旋转相似问题(解析版)-2021年中考数学二轮复习经典问题专题训练

专题39  旋转相似问题(解析版)-2021年中考数学二轮复习经典问题专题训练

专题39 旋转相似问题【规律总结】“旋转型”相似三角形,如图.若图中∠1=∠2,∠B=∠D(或∠C=∠E),则△ADE ∽△ABC ,该图可看成把第一个图中的△ADE 绕点A 旋转某一角度而形成的【典例分析】例1.(2020·丹东第十中学九年级月考)如图,正方形ABCD 中,点F 是BC 边上一点,连接AF ,以AF 为对角线作正方形AEFG ,边FG 与正方形ABCD 的对角线AC 相交于点H ,连接DG .以下四个结论:①EAB GAD ∠=∠;②AFC AGD ∆∆∽;③22AE AH AC =⋅;④DG AC ⊥.其中正确的个数为( )A .1个B .2个C .3个D .4个【答案】D【分析】 ①四边形AEFG 和四边形ABCD 均为正方形,∠EAB 、∠GAD 与∠BAG 的和均为90°,即可证明∠EAB 与∠GAD 相等;②由题意易得AD=DC ,AG=FG ,进而可得AC AF AD AG=,∠DAG=∠CAF ,然后问题可证;③由四边形AEFG 和四边形ABCD 均为正方形,可求证∠HAF∠∠FAC ,则有AF AC AH AF =,然后根据等量关系可求解;④由②及题意知∠ADG=∠ACF=45°,则问题可求证.【详解】解:①∠四边形AEFG 和四边形ABCD 均为正方形∠∠EAG=∠BAD=90°又∠∠EAB=90°-∠BAG ,∠GAD=90°-∠BAG∠∠EAB=∠GAD∠①正确②∠四边形AEFG 和四边形ABCD 均为正方形∠AD=DC ,AG=FGAD ,AG∠AC AD =,AF AG=即AC AF AD AG= 又∠∠DAG+∠GAC=∠FAC+∠GAC∠∠DAG=∠CAF∠AFC AGD ∆∆∽∠②正确③∠四边形AEFG 和四边形ABCD 均为正方形,AF 、AC 为对角线∠∠AFH=∠ACF=45°又∠∠FAH=∠CAF∠∠HAF∠∠FAC ∠AF AC AH AF=即2·AF AC AH =又∠22AE AH AC =⋅∠③正确④由②知AFC AGD ∆∆∽又∠四边形ABCD 为正方形, AC 为对角线∠∠ADG=∠ACF=45°∠DG 在正方形另外一条对角线上∠DG∠AC∠④正确故选:D .【点睛】本题主要考查相似三角形的判定与性质综合运用,同时利用到正方形相关性质,解题关键在于找到需要的相似三角形进而证明.例2.(2019·浙江杭州市·八年级期末)已知正方形DEFG 的顶点F 在正方形ABCD 的一边AD的延长线上,连结AG ,CE 交于点H ,若3AB =,DE =CH 的长为________.【分析】连接EG,与DF交于N,设CD和AH交于M,证明∠ANG∠ADM,得到DM ADNG AN=,从而求出DM的长,再通过勾股定理算出AM的长,通过证明∠ADG∠∠CDE得到∠DAG=∠DCE,从而说明∠ADM∠∠CHM,得到AD AMCH CM=,最后算出CH的长.【详解】解:连接EG,与DF交于N,设CD和AH交于M,∠∠GNA=90°,DN=FN=EN=GN,∠∠MAD=∠GAN,∠MDA=∠GNA=90°,∠∠ANG∠ADM,∠DM AD NG AN=,∠DE=∠DF=EG=2,∠DN=NG=1,∠AD=AB=3,∠3 131 DM=+,解得:DM=34,∠MC=94,=,∠∠ADM+∠MDG=∠EDG+∠CDG,∠∠ADG=∠EDC ,在∠ADG 和∠CDE 中,AD CD ADG CDE DG DE =⎧⎪∠=∠⎨⎪=⎩,∠∠ADG∠∠CDE (SAS ),∠∠DAG=∠DCE ,∠∠AMD=∠CMH ,∠∠ADM=∠CHM=90°,∠∠ADM∠∠CHM , ∠AD AM CH CM=,即3494CH=, 解得:.【点睛】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,正方形的性质,勾股定理,综合性较强,解题的关键是找到合适的全等三角形和相似三角形,通过其性质计算出CH 的长.例3.(2020·浙江金华市·九年级期末)如图1,在Rt ABC 中,90ACB AC BC ︒∠==,,在斜边AB 上取一点D ,过点D 作//DE BC ,交AC 于点E .现将ADE 绕点A 旋转一定角度到如图2所示的位置(点D 在ABC 的内部),使得90ABD ACD ︒∠+∠=.(1)①求证:ABD ACE ∽;②若1,CD BD ==,求AD 的长;(2)如图3,将原题中的条件“AC BC =”去掉,其它条件不变,AC AE k AB AD==设,若13CD BD ==,,4=AD ,求k 的值;(3)如图4,将原题中的条件“90ACB ︒∠=”去掉,其它条件不变,若23AC AE AB AD ==,设CD m =,BD n AD p ==,,试探究m n p ,,三者之间满足的等量关系.(直接写出结果,不必写出解答过程)【答案】(1)①见解析;②(2)k =;(3)4p 2=9m 2+4n 2. 【分析】(1)①先利用平行线分线段成比例定理得AE AD AC AB =,进而得出结论; ②利用①得出的比例式求出CE ,再判断出∠DCE=90°,利用勾股定理即可得出结论;(2)同(1)的方法判断出∠ABD∠∠ACE ,即可得出AE=4k ,CE=3k ,同(1)的方法得出∠DCE=90°,利用勾股定理得出DE 的平方,用DE 的平方建立方程求解即可;(3)同(2)的方法得出22249=+DE m n ,23==DE AE p 即可得出结论; 【详解】解:(1)①∠DE∠BC , ∠AE AD AC AB =, 由旋转知,∠EAC=∠DAB ,∠∠ABD∠∠ACE ,②在Rt∠ABC 中,AC=BC ,∠AB =,由①知,∠ABD∠∠ACE ,∠∠ABD=∠ACE ,∠∠ACD+∠ABD=90°,∠∠ACE+∠ACD=90°,∠∠DCE=90°,∠∠ABD∠∠ACE ,AB AD BD AC AE CE∴===∠AD =,BD =∠BD =∠CE =在Rt∠CDE 中,1,==CD CE 根据勾股定理得,DE=2,在Rt∠ADE 中,AE=DE ,∠==AD (2)由旋转知,∠EAC=∠DAB , AC AE AB AD=, ∠∠ABD∠∠ACE ,.∴===AC AE CE k AB AD BD∠AD=4,BD=3,∠AE=kAD=4k ,CE=kBD=3k ,∠∠ABD∠∠ACE ,∠∠ABD=∠ACE ,∠∠ACD+∠ABD=90°,∠∠ACE+∠ACD=90°,∠∠DCE=90°,在Rt∠CDE 中,DE 2=CD 2+CE 2=1+9k 2,在Rt∠ADE 中,DE 2=AD 2-AE 2=16-16k 2,∠1+9k 2=16-16k 2,∠k =或k =, (3)由旋转知,∠EAC=∠DAB , AC AE AB AD = ∠∠ABD∠∠ACE ,23AC AE CE AB AD BD ∴=== ∠AD=p ,BD=n ,∠2222,3333AE AD p CE BD n ====, ∠∠ABD∠∠ACE ,∠∠ABD=∠ACE ,∠∠ACD+∠ABD=90°,∠∠ACE+∠ACD=90°,∠∠DCE=90°,在Rt∠CDE 中,2222249DE CD CE m n =+=+, ∠23==DE AE p , 2224499p m n ∴=+, ∠4p 2=9m 2+4n 2.【点睛】此题是相似三角形综合题,主要考查了旋转的性质,相似三角形的判定和性质,勾股定理,直角三角形的判定,解本题的关键是得出∠DCE=90°和利用两边对应成比例夹角相等来判断两三角形相似的方法应用.【好题演练】一、单选题1.(2020·广西贵港市·九年级其他模拟)在Rt△ABC 中,△BAC =90°,AD 是△ABC 的中线,△ADC =45°,把△ADC 沿AD 对折,使点C 落在C ′的位置,C ′D 交AB 于点Q ,则BQ AQ的值为( )A B C D【答案】A【分析】根据折叠得到对应线段相等,对应角相等,根据直角三角形的斜边中线等于斜边一半,可得出AD=DC=BD,AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,进而求出∠C、∠B的度数,求出其他角的度数,可得AQ=AC,将BQAQ转化为BQAC,再由相似三角形和等腰直角三角形的边角关系得出答案.【详解】解:如图,过点A作AE∠BC,垂足为E,∠∠ADC=45°,∠∠ADE是等腰直角三角形,即AE=DE AD,在Rt∠ABC中,∠∠BAC=90°,AD是∠ABC的中线,∠AD=CD=BD,由折叠得:AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,∠∠CDC′=45°+45°=90°,∠∠DAC=∠DCA=(180°﹣45°)÷2=67.5°=∠C′AD,∠∠B=90°﹣∠C=∠CAE=22.5°,∠BQD=90°﹣∠B=∠C′QA=67.5°,∠AC′=AQ=AC,由∠AEC∠∠BDQ得:BQAC=BDAE,∠BQ AQ =BQ AC =AD AE . 故选:A .【点睛】考查直角三角形的性质,折叠轴对称的性质,以及等腰三角形与相似三角形的性质和判定等知识,合理的转化是解决问题的关键.2.(2019·全国九年级课时练习)如图,在矩形ABCD 中,E 是AD 边的中点,BE △AC 于点F ,连接DF ,给出下列四个结论:①△AEF △△CAB ;②CF =2AF ;③DF =DC ;④S △ABF :S 四边形CDEF =2:5,其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】D【分析】 ①根据四边形ABCD 是矩形,BE∠AC ,可得∠ABC=∠AFB=90°,又∠BAF=∠CAB ,于是∠AEF∠∠CAB ,故①正确;②根据点E 是AD 边的中点,以及AD∠BC ,得出∠AEF∠∠CBF ,根据相似三角形对应边成比例,可得CF=2AF ,故②正确;③过D 作DM∠BE 交AC 于N ,得到四边形BMDE 是平行四边形,求出BM=DE=12BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故③正确;④根据∠AEF∠∠CBF得到EF与BF的比值,以及AF与AC的比值,据此求出S∠AEF=12S∠ABF,S∠ABF=1 6S矩形ABCD,可得S四边形CDEF=S∠ACD-S∠AEF=512S矩形ABCD,即可得到S四边形CDEF=52S∠ABF,故④正确.【详解】如图,过D作DM∠BE交AC于N,∠四边形ABCD是矩形,∠AD∠BC,∠ABC=90°,AD=BC,∠BE∠AC于点F,∠∠EAC=∠ACB,∠ABC=∠AFE=90°,∠∠AEF∠∠CAB,故①正确;∠AD∠BC,∠∠AEF∠∠CBF,∠AEBC=AFCF,∠AE=12AD=12BC,∠AFCF=12,∠CF=2AF,故②正确,∠DE∠BM,BE∠DM,∠四边形BMDE是平行四边形,∠BM=DE=12BC,∠BM=CM,∠CN=NF,∠BE∠AC于点F,DM∠BE,∠DN∠CF,∠DF=DC,故③正确;∠∠AEF∠∠CBF,∠EFBF=AEBC=12,∠S∠AEF=12S∠ABF,S∠ABF=16S矩形ABCD,∠S∠AEF=112S矩形ABCD,又∠S四边形CDEF=S∠ACD﹣S∠AEF=12S矩形ABCD﹣112S矩形ABCD=512S矩形ABCD,∠S∠ABF:S四边形CDEF=2:5,故④正确;故选:D.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线是解题的关键.二、填空题3.(2018·山西九年级专题练习)如图,已知四边形ABCD 与四边形CFGE 都是矩形,点E 在CD 上,点H 为AG 的中点,3AB =,2BC =, 1.5CE =,1CF =,则DH 的长为______ .【分析】延长GE 交AB 于点M ,作DN AG ⊥于.N 首先求出AG 、AH ,由ADN ∠GAM △,得AD AN DN AG MG AM==,求出DN 、AN ,HN ,在Rt DHN 中利用勾股定理即可解决问题. 【详解】延长GE 交AB 于点M ,作DN AG ⊥于N .四边形ABCD 与四边形CFGE 都是矩形,∴四边形BFGM 是矩形,213MG BF BC CF ∴==+=+=,1.5BM CE FG ∴===,1.5AM AB BM ∴=-=,AG ∴==点H 为AG 的中点,12AH AG ∴== //AD MG ,DAN AGM ∴∠=∠,AND AMG ∠=∠,ADN ∴∠GAM △,AD AN DN AG MG AM∴==, 23332AN DN ==,AN ∴=DN =HN AN AH ∴===, ∴在Rt DHN中,DH ===.. 【点睛】本题考查矩形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.4.(2019·甘肃白银市·九年级期末)如图,在矩形ABCD 中,E 是AD 边的中点,BE△AC 于点F ,连接DF ,分析下列五个结论:①△AEF△△CAB ;②CF =2AF ;③DF =DC ;④S 四边形CDEF =52S △ABF ,其中正确的结论有_____个.【答案】4【分析】①四边形ABCD是矩形,BE∠AC,则∠ABC=∠AFB=90°,又∠BAF=∠CAB,于是∠AEF∠∠CAB,故①正确;②由AE=12AD=12BC,又AD∠BC,所以AEBC=AFFC=12,故②正确;③过D作DM∠BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=12BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故③正确;④根据∠AEF∠∠CBF得到12EF AEBF BC==,求出S∠AEF=12S∠ABF,S∠ABF=16S矩形ABCD S四边形CDEF=S∠ACD﹣S∠AEF=12S矩形ABCD﹣112S矩形ABCD=512S矩形ABCD,即可得到S四边形CDEF=52S∠ABF,故④正确.【详解】解:过D作DM∠BE交AC于N,∠四边形ABCD是矩形,∠AD∠BC,∠ABC=90°,AD=BC,∠BE∠AC于点F,∠∠EAC=∠ACB,∠ABC=∠AFE=90°,∠∠AEF∠∠CAB,故①正确;∠AD∠BC,∠∠AEF∠∠CBF,∠AEBC=AFFC=12,∠AE=12AD=12BC,∠AFCF=12,∠CF=2AF,故②正确,∠DE∠BM,BE∠DM,∠四边形BMDE是平行四边形,∠BM=DE=12 BC,∠BM=CM,∠CN=NF,∠BE∠AC于点F,DM∠BE,∠DN∠CF,∠DF=DC,故③正确;∠∠AEF∠∠CBF,∠12 EF AEBF BC==,∠S∠AEF=12S∠ABF,S∠ABF=16S矩形ABCD∠S ∠AEF =112S 矩形ABCD , 又∠S 四边形CDEF =S ∠ACD ﹣S ∠AEF =12S 矩形ABCD ﹣112S 矩形ABCD =512S 矩形ABCD , ∠S 四边形CDEF =52S ∠ABF ,故④正确; 故答案为:4.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线,根据相似三角形表示出图形面积之间关系是解题的关键.三、解答题5.(2020·河南南阳市·九年级期中)将ABC 绕点A 逆时针方向旋转θ,并使各边长变为原来的n 倍,得到AB C ''△,我们将这种变换记为[],n θ.(1)问题发现如图①,对ABC 作变换60⎡︒⎣得AB C ''△,则:AB C ABC S S ''=△△______;直线BC与直线B C ''所夹的锐角度数为______.(2)拓展探究如图②,ABC 中,35BAC ∠=︒且:AB AC =,连结BB ',CC '.对ABC 作变换60⎡︒⎣得AB C ''△,求:ABB ACC S S ''△△的值及直线BB '与直线CC '相交所成的较小角的度数,并就图②的情形说明理由.(3)问题解决如图③,ABC 中,30BAC ∠=︒,90ACB ∠=︒,对ABC 作变换[],n θ得AB C ''△,使点B 、C 、C '在同一直线上,且四边形ABB C ''为矩形,请直接写出n 的值.【答案】(1)3:1,60;(2)35︒,理由见解析;(3)2n =.【分析】(1)利用新定义得出[],n θ的意义,利用旋转的性质得到AB C ''△∠ABC ,且相似比为,60BAB '∠=︒,进而求出面积比,通过外角的性质得到DEB '∠即可求出直线BC 与直线B C ''所夹的锐角度数;(2)利用新定义得出[],n θ的意义,得到::AB AB AC AC ''==35BAC B AC ''∠=∠=︒,进而可以得到BAB CAC ''∠=∠,下证BAB '△∠CAC '△,通过题中给的相似比即可求出面积之比,延长CC '交BB '于D ,通过DEB AEC ''∠=∠,BB A CC A ''∠=∠,可以证得DEB '△∠AEC ',从而得到C DB ''∠的度数,即可得直线BB '与直线CC '相交所成的较小角的度数;(3)由四边形ABB C ''为矩形,得到90BAC '∠=︒,进而求出CAC '∠的度数,利用含30角的直角三角形的性质即可得到AC AC'的值,进而求出n 的值. 【详解】解:(1)由题意可知:对ABC 作变换60⎡︒⎣得AB C ''△,∴AB C ''△∠ABC ,60BAB '∠=︒,∴B B '∠=∠,∴()2:3:1AB C ABC S S ''==, ADE B BAB '∠=∠+∠,ADE B DEB ''∠=∠+∠,∴60DEB BAB ''∠=∠=︒,即直线BC 与直线B C ''所夹的锐角度数为:60︒.故答案为:3:1,60.(2)根据题意得:::1:AB AB AC AC ''==35BAC B AC ''∠=∠=︒, ∴BAC B AC B AC B AC ''''∠+∠=∠+∠,∴BAB CAC ''∠=∠,∴BAB '△∠CAC '△,∴相似比AB k AC=,BB A CC A ''∠=∠,:AB AC =,∴2:2ABB ACC S S ''==,延长CC '交BB '于D ,如图,设CC '交AB '于E .DEB AEC ''∠=∠,BB A CC A ''∠=∠,∴DEB '△∠AEC ',∴35C DB B AC ''''∠=∠=︒,∴:2ABB ACC S S ''=△△,直线BB '与直线CC '相交所成的较小角的度数为35︒. (3)四边形ABB C ''为矩形,∴90BAC '∠=︒,30BAC ∠=︒,∴60CAC BAC BAC ''∠=∠-∠=︒,90ACB ∠=︒,∴90ACC '∠=︒,在Rt ACC '△中,12AC AC '=, ∴21AC AC '=, ∴2AC n AC '==, 即n 的值为2.【点睛】本题考查了图形的旋转,相似三角形的判定和性质,新定义运算,三角形的外角性质以及含30角的直角三角形的性质,解题的关键是根据题意得出[],n θ的意义.6.(2019·辽宁葫芦岛市·九年级一模)如图,在Rt ABC ∆中,△AC8=90°,△BAC=a ,点D 在边AC 上(不与点A 、C 重合)连接BD ,点K 为线段BD 的中点,过点D 作DE AB ⊥于点E ,连结CK ,EK ,CE ,将△ADE 绕点A 顺时针旋转一定的角度(旋转角小于90度)(1)如图1.若a=45︒,则BCK ∆的形状为__________________;(2)在(1)的条件下,若将图1中的三角形ADE 绕点A 旋转,使得D ,E ,B 三点共线,点K 为线段BD 的中点,如图2所示,求证:2BE AE CK -=;(3)若三角形ADE 绕点A 旋转至图3位置时,使得D ,E ,B 三点共线,点K 仍为线段BD 的中点,请你直接写出BE ,AE ,CK 三者之间的数量关系(用含a 的三角函数表示)【答案】(1)等腰直角三角形;(2)见解析;(3)BE -AE=2CK ;【分析】(1)利用直角三角形斜边中线的性质及等腰直角三角形的性质证明EK=KC ,∠EKC =90°即可; (2)在BD 上截取BG=DE ,连接CG ,设AC 交BF 于Q ,结合等腰直角三角形的性质利用SAS 可证∠AEC∠∠BGC ,由全等三角形对应边、对应角相等的性质易证∠ECG 是等腰直角三角形,由直角三角形斜边中线的性质可得CK=EK=KG ,等量代换可得结论.(3)在BD 上截取BG=DE ,连接CG ,设AC 交BE 于Q ,根据等角的余角相等可得∠CAE=∠CBG ,由tanα的表示可得BC BG AC AE=,易证∠CAE∠∠CBG ,由直角三角形斜边中线的性质等量代换可得结论.【详解】(1)等腰直角三角形;理由:如图1中,∠∠A=45°,∠ACB=90°,∠∠A=∠CBA=45°,∠CA=CB,∠DE∠AB,∠∠DEB=90°,∠DK=KB,∠EK=KB=DK= 12 BD,∠∠KEB=∠KBE,∠∠EKD=∠KBE+∠KEB=2∠KBE,∠∠DCB=90°,DK=KB,∠CK=KB=KD= 12 BD,∠∠KCB=∠KBC,EK=KC,∠∠DKC=∠KBC+∠KCB=2∠KBC,∠∠EKC=∠EKD+∠DKC=2(∠KBE+∠KBC)=2∠ABC=90°,∠∠ECK是等腰直角三角形.(2)证明:如图2中,在BD上截取BG=DE,连接CG,设AC交BF于Q.∠∠α=45°,DE∠AE,∠∠AED=90°,∠DAE=45°,∠∠ADE是等腰直角三角形,∠DE=AE=BG,∠∠1+∠3=∠2+∠4=90°,∠1=∠2,∠∠3=∠4,∠AC=BC,∠∠AEC∠∠BGC(SAS),∠CE=CG,∠5=∠BCG,∠∠ECG=∠ACB=90°,∠∠ECG是等腰直角三角形,∠KD=KB,DE=BG,∠KE=KG,∠CK=EK=KG,∠BE-AE= BE-BG=EG=EK+KG =2CK.(3)解:结论:BE-AE•tanα=2CK.理由:如图3中,在BD上截取BG=DE,连接CG,设AC交BE于Q.∠DE∠AE ,∠ACB=90°,∠∠CAE+∠EQA=90°,∠CBG+∠CQB=90°∠∠EQA=∠CQB ,∠∠CAE=∠CBG ,在Rt∠ACB 中,tanα=BC AC, 在Rt∠ADE 中,tanα= EDE AE BG A , ∠=BC BG AC AE, DE=AE·tanα ∠∠CAE∠∠CBG ,∠∠ACE=∠BCG ,∠∠ECG=∠ACB=90°,∠KD=KB ,DE=BG ,∠KE=KG ,∠EG=2CK ,∠BE -BG=EG=2CK ,∠BE -DE=2CK ,∠BE -AE•tanα=2CK .【点睛】本题考查了等腰直角三角形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质、锐角三角函数等,灵活的利用等腰直角三角形的判定和性质是解题的关键.。

中考数学旋转与相似典型类型总结

中考数学旋转与相似典型类型总结

旋转与全等、相像的典型种类总结25. 含 30°角的直角三角板ABC中,∠A=30 °.将其绕直角极点C顺时针旋转角(0120且≠90°),获取Rt△ A 'B 'C,A 'C边与AB所在直线交于点D,过点D作DE∥ A 'B '交CB ' 边于点 E,连接 BE.(1)如图 1,当A' B '边经过点B时,=°;( 2)在三角板旋转的过程中,若∠ CBD的度数是∠ CBE度数的m倍,猜想m的值并证明你的结论;( 3)设 BC=1,AD=x,△ BDE的面积为S,以点 E 为圆心, EB为半径作⊙ E,当 S= 1S ABC3时,求 AD 的长,并判断此时直线A'C 与⊙E的地址关系.如图,在△ ABC中,∠ A=90°,AB=8,AC=6, M 是 AB 上的动点(不与 A、B 重合),过 M 点作 MN ∥ BC交 AC 于点 N.以 MN 为直径作⊙O,并在⊙ O 中作内接矩形 AMPN.令 AM=x.(1)用含 x 的代数式表示△ MNP 的面积 S;(2)当 x 为何值时,⊙ O 与直线 BC 相切(3)在点 M 的运动过程中,设△ MNP 与梯形 BCNM 重合的面积为 y,求 y 关于 x 的函数关系式,并求 x 为何值时, y 的值最大,最大值是多少.A AM N M NO OP PB C B C(第 24 题)(第24题)已知:在四边形ABCD中, AD∥ BC,∠ BAC=∠ D,点 E、F 分别在 BC、CD 上,且∠ AEF=∠ACD,试试究 AE 与 EF 之间的数量关系.(1)如图①,若AB= BC= AC,则 AE与 EF 之间的数量关系为________.(2)如图②,若 AB= BC,你在 (1)中获取的结论可否发生变化写出你的猜想,并加以证明.(3)如图③,若AB= kBC,你在 (1)中获取的结论可否发生变化写出你的猜想,并加以证明.第25题图在△ ABC中,∠ ACB为锐角.点 D 为射线 BC上一动点,连接 AD,将线段AD绕点A逆时针旋转90 o 获取 AE,连接 EC.(1)若是 AB=AC,∠ BAC=90o.①当点 D 在线段 BC上时(与点 B 不重合),如图 1,请你判断线段CE、 BD 之间的地址和数量关系(直接写出结论);②当点 D 在线段 BC 的延长线上时,请你在图 2 画出图形,判断① 中的结论可否依旧成立,并证明你的判断;AAEBC BD图2C图 1( 2)如图 3,当点 D 在线段 BC 上运动时, DF⊥ AD 交线段 CE于点 F,且∠ACB=45 o , AC=3 2 ,试求线段CF长的最大值.EAFBD C图3已知:在△ ABC中,∠ACB=90°, CD⊥ AB 于点 D,点 E 在 AC 上, BE交 CD于点 G,EF⊥ BE 交 AB 于点 F.如图甲,当AC=BC,且 CE=EA时,则有EF=EG;( 1)如图乙①,当 AC=2BC,且 CE=EA时,则线段EF 与 EG 的数量关系是:EF EG;(2)如图乙②,当 AC=2BC,且 CE=2EA时,请研究线段 EF与 EG的数量关系,并证明你的结论;(3)当 AC=mBC,且 CE=nEA时,请研究线段 EF 与 EG 的数量关系,直接写出你的结论(不用证明C C CE EG EG GA F D BA F DB AF DB图甲图乙①图乙②(第 25 题)已知正方形 ABCD ,边长为 3,对角线 AC , BD 交点 O,直角 MPN 绕极点 P 旋转,角的两边分别与线段 AB,AD 交于点 M ,N (不与点 B ,A ,D 重合). 设 DN=x ,四边形 AMPN 的面积为 y .在下面状况下, y 随 x 的变化而变化吗若不变,央求出头积 y 的值;若变化,央求出 y 与 x 的关系式.( 1)如图 1,点 P 与点 O 重合;( 2)如图 2,点 P 在正方形的对角线 AC 上,且 AP=2PC ;( 3)如图 3,点 P 在正方形的对角线BD 上,且 DP=2PB .A NDANDA NDMMOOO(P )M PPBCCBC图1B图2图 3125.在 Rt △ ABC 中,∠ ACB=90 °, tan ∠ BAC= . 点 D 在边 AC 上(不与 A ,C 重合),连接 BD , F 为 BD 中点 .2( 1)若过点 D 作 DE ⊥ AB 于 E ,连接 CF 、 EF 、 CE ,如图 1. 设 CF kEF ,则 k = ;( 2)若将图 1 中的△ ADE 绕点 A 旋转,使得 D 、 E 、B 三点共线,点 F 仍为 BD 中点,如图 2 所示.求证: BE-DE=2CF ;( 3)若 BC=6,点 D 在边 AC 的三均分点处, 将线段 AD 绕点 A 旋转, 点 F 向来为 BD 中点,求线段 CF 长度的最大值.AAADEEDFFCBCBCB图 1图 2备图东城24. 等 △ABC6,P BC 上一点,∠ MPN=60 °,且 PM 、PN 分 于 AB 、 AC 交于点 E 、 F. ( 1)如 1,当点 P BC 的三均分点,且 PE ⊥ AB ,判断 △ EPF 的形状;( 2)如 2,若点 P 在 BC 上运 ,且保持 PE ⊥ AB , BP=x ,四 形 AEPF 面 的 y ,求 y 与 x 的函数关系式,并写出自 量 x 的取 范 ;( 3)如 3,若点 P 在 BC 上运 ,且∠MPN 点 P 旋 ,当CF=AE=2 ,求 PE 的 .1 2 3已知:如 ,正方形 ABCD 中, AC , BD 角 ,将BAC 点 A 逆 旋 °( 0 45 ),旋 后角的两 分 交 BD 于点 P 、点 Q ,交 BC,CD 于点 E 、点 F , EF , EQ . ( 1)在 BAC 的旋 程中, AEQ 的大小可否改 ,若不 写出它的度数,若改 ,写出它的 化范 (直接在答 卡上写出 果,不用 明) ;( 2)研究△ APQ 与△ AEF 的面 的数量关系,写出 并加以 明.ADQFPBCE24. 解:(1)不 ; ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 分45°;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分 ( 2) : S △AEF =2 S △APQ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分明:AD∵ AEQ 45°,EAF45H Q∴EQA90 ⋯⋯⋯⋯⋯⋯⋯⋯∴ AE 2 AQ⋯⋯⋯⋯⋯⋯⋯⋯F⋯⋯⋯ 4分同理 AF2AP⋯⋯⋯⋯⋯⋯⋯⋯P⋯⋯⋯5分点 P 作PH AF 于 H ⋯⋯⋯⋯⋯⋯⋯⋯ 6分BC∴ S △AEF1AFEQ1 2 APAQE222AP AQPH AQ2S △ APQ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分222. 如 ,在V AOB 中, OAOB 8 , AOB 90 ,矩形 CDEF 的 点 C 、 D 、 E 、 F 分 在 AO 、 OB 、 AB 上。

中考数学复习 瓜豆原理 ——旋转相似之主动从动

中考数学复习 瓜豆原理 ——旋转相似之主动从动

旋转相似之主动从动(瓜豆原理)例题1、如图等腰Rt△ABC,AB=AC=2,点E是半径为1的圆C上的一动点,连接AE,过点A 向左侧作AD⊥AE,且使得AE=AD。

其中点D是因E动而动,所以我们称点E为主动点,点D为从动点。

(1)问随着主动点E的运动,求从动点D的运动路径长?(2)连接CD,求CD的最大值与最小值(3)△ABC与△ADE是我们之前学过的旋转相似,那么请问:主动点E和圆心C这两点在旋转相似中我们称他们的位置关系是。

例题2、如图半径为1的圆C,圆外有一定点A,且AC=2,圆C上有一动点E,连接AE,以A 为直角顶点向左侧作等腰直角△EAD.(1)求点D的运动路径长。

(2)求CD的最大与最小值。

定义:①把主动点所在的圆心称之为:主心②把“动而形不变”的三角形中的三个顶点中的定点称之为旋转中心(公共顶点)。

总结:作主动与从动类型题目步骤:以“主动点”和“主心”为旋转同位点,将“动而形不变”的三角形绕“旋转中心”进行放大旋转,使得“主动点”与“主心”重合(即:使得同位点重合),从而构建旋转相似的两个三角形,之后就可以利用旋转相似得到”从动点”的运动轨迹了。

变式1、在△ABC中,BC=2,AC=1,以AB为边作等腰直角△ABD(B为直角顶点,C、D两点在直线AB的两侧).当∠C变化时,求线段CD长的最大值为多少?变式2、在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,以PB为边作等边∠PBM,则线段AM的长最大值为___.变式3、已知:PA=2,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB 的两侧.(1)如图,当∠APB=45°时,求AB及PD的长;(2)当∠APB变化,且其它条件不变时,求PD的最大值及相应∠APB的大小、正方形ABCD的面积.变式4、△ABC 中,AB =4,AC =2,以 BC 为边在△ABC 外作正方形 BCDE ,BD 、CE交于点 O ,则线段 AO 的最大值为 .P D CB A P DCBA例题3、如图,点O在线段AB上,OA=1,OB=3,以O为圆心,OA为半径作圆O,点M 在圆O上运动,连接MB,以MB为腰作等腰Rt△ABC,使∠MBC=90°,M,B,C三点按逆时针顺序排列,连接AC,则AC长的取值范围是_____.变式1、如图,P是圆O上一个动点,A是圆O外的的一个定点,且AO=4,连接AP,作AQ⊥AP,且AQ=AP。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

旋转与全等、相似的典型类型总结25. 含30°角的直角三角板ABC 中,∠A =30°.将其绕直角顶点C 顺时针旋转α角(0120α︒<<︒且α≠ 90°),得到Rt △''A B C ,'A C 边与AB 所在直线交于点D ,过点 D 作DE ∥''A B 交'CB 边于点E ,连接BE .(1)如图1,当''A B 边经过点B 时,α= °;(2)在三角板旋转的过程中,若∠CBD 的度数是∠CBE 度数的m 倍,猜想m 的值并证明你的结论;(3) 设 BC =1,AD =x ,△BDE 的面积为S ,以点E 为圆心,EB 为半径作⊙E ,当S =13ABC S ∆时,求AD 的长,并判断此时直线'A C 与⊙E 的位置关系.! 如图,在△ABC 中,∠A=90°,AB=8,AC=6,M 是AB 上的动点(不与A 、B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 中作内接矩形AMPN .令AM=x . (1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切(3)在点M 的运动过程中,设△MNP 与梯形BCNM 重合的面积为y ,求y 关于x 的函数关系式,并求x 为何值时,y 的值最大,最大值是多少.(`B(第24题)B(第24题)已知:在四边形ABCD中,AD∥BC,∠BAC=∠D,点E、F分别在BC、CD上,且∠AEF=∠ACD,试探究AE与EF之间的数量关系.(1)如图①,若AB=BC=AC,则AE与EF之间的数量关系为________.(2)如图②,若AB=BC,你在(1)中得到的结论是否发生变化写出你的猜想,并加以证明.(3)如图③,若AB=kBC,你在(1)中得到的结论是否发生变化写出你的猜想,并加以证明.[第25题图图1EDCBA图2CBAF 图3ED CBA在△ABC 中,∠ACB 为锐角.点D 为射线BC 上一动点,连接AD , 将线段AD 绕点A 逆时针旋转90 o 得到AE ,连结EC .(1)如果AB =AC ,∠BAC =90o .①当点D 在线段BC 上时(与点B 不重合),如图1,请你判断线段CE 、BD 之间的位置和数量关系(直接写出结论);②当点D 在线段BC 的延长线上时,请你在图2画出图形,判断①中的结论是否仍然成立,并证明你的判断;(2)如图3,当点D 在线段BC 上运动时,DF ⊥AD 交线段CE 于点F ,且∠ACB =45 o , AC=CF 长的最大值.已知:在△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,点E 在AC 上,BE 交CD 于点G ,EF ⊥BE 交AB 于点F . 如图甲,当AC=BC ,且CE=EA 时,则有EF=EG ;(1)如图乙①,当AC=2BC ,且CE=EA 时,则线段EF 与EG 的数量关系是:EF EG ;(2)如图乙②,当AC=2BC ,且CE=2EA 时,请探究线段EF 与EG 的数量关系,并证明你的结论;(3)当AC=mBC ,且CE=nEA 时,请探究线段EF 与EG 的数量关系,直接写出你的结论(不必证明图乙②图乙①图甲(第25题)已知正方形ABCD ,边长为3,对角线AC ,BD 交点O ,直角MPN 绕顶点P 旋转,角的两边分别与线段AB ,AD 交于点M ,N (不与点B ,A ,D 重合). 设DN =x ,四边形AMPN 的面积为y .在下面情况下,y 随x 的变化而变化吗若不变,请求出面积y 的值;若变化,请求出y 与x 的关系式. (1)如图1,点P 与点O 重合;(2)如图2,点P 在正方形的对角线AC 上,且AP =2PC ; (3)如图3,点P 在正方形的对角线BD 上,且DP =2PB .25.在Rt △ABC 中,∠ACB =90°,tan ∠BAC =12. 点D 在边AC 上(不与A ,C 重合),连结BD ,F 为BD 中点. (1)若过点D 作DE ⊥AB 于E ,连结CF 、EF 、CE ,如图1. 设CF kEF ,则k = ;(2)若将图1中的△ADE 绕点A 旋转,使得D 、E 、B 三点共线,点F 仍为BD 中点,如图2所示.求证:BE -DE =2CF ;(3)若BC =6,点D 在边AC 的三等分点处,将线段AD 绕点A 旋转,点F 始终为BD 中点,求线段CF 长度的最大值.东城图1(P )N DM OC B A 图2PA B C O MD N 图3P A B C OM D N B CADE FB DEA FCBAC1图2图备图24. 等边△ABC 边长为6,P 为BC 边上一点,∠MPN =60°,且PM 、PN 分别于边AB 、AC 交于点E 、F . (1)如图1,当点P 为BC 的三等分点,且PE ⊥AB 时,判断△EPF 的形状;(2)如图2,若点P 在BC 边上运动,且保持PE ⊥AB ,设BP =x ,四边形AEPF 面积的y ,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)如图3,若点P 在BC 边上运动,且∠MPN 绕点P 旋转,当CF =AE =2时,求PE 的长.图1 图2 图3已知:如图,正方形ABCD 中,,AC BD 为对角线,将BAC ∠绕顶点A 逆时针旋转α°(045α<<),旋转后角的两边分别交BD 于点P 、点Q ,交,BC CD 于点E 、点F ,联结,EF EQ .(1)在BAC ∠的旋转过程中,AEQ ∠的大小是否改变,若不变写出它的度数,若改变,写出它的变化范围(直接在答题卡上写出结果,不必证明);(2)探究△APQ 与△AEF 的面积的数量关系,写出结论并加以证明.QP FEDC BA24. 解:(1)不变; ……………………………………………………………………1分45°;………………………………………………………………………2分(2)结论:S △AEF =2 S △APQ ………………………………………………………………3分 证明:∵AEQ ∠=45°,45EAF ∠=︒∴90EQA ∠=︒ …………………… ∴2AE AQ =…………………… ………4分同理2AF AP = …………………… ………5分 过点P 作PH AF ⊥于H …………… ………6分∴S △AEF 11222AF EQ AP AQ =⋅=⨯⋅222AP AQ PH AQ S =⋅=⋅=△APQ …………………………………7分22. 如图,在AOB 中,8OA OB ==,90AOB ∠=︒,矩形CDEF 的顶点C 、D 、E 、F 分别在边AO 、OB 、AB 上。

HQ P FE DC B A图1O E D CB A R Q P 图2O E D C B A (1)若C 、D 恰好是边AO ,OB 的中点,求矩形CDEF 的面积; (2)若4tan 3CDO,求矩形CDEF 面积的最大值。

24. 如图1,在△ABC 中,AB =BC =5,AC =6. △ECD 是△ABC 沿CB 方向平移得到的,连结AE ,AC 和BE 相交于点O . (1)判断四边形ABCE 是怎样的四边形,并证明你的结论; (2)如图2,P 是线段BC 上一动点(不与点B 、C 重合),连接PO 并延长交线段AE 于点Q ,QR ⊥BD ,垂足为点R .①四边形PQED 的面积是否随点P 的运动而发生变化若变化,请说明理由;若不变,求出四边形PQED 的面积; ②当线段BP 的长为何值时,以点P 、Q 、R 为顶点的三角形与△BOC 相似23. 如图,在△ABC 中,BC =3,AC =2,P 为BC 边上一个动点,过点P 作PD ∥AB ,交AC 于点D ,连结BD . (1)如图1,若∠C =45°,请直接写出:当BPPC= 时, △BDP 的面积最大; (2)如图2,若∠C =α为任意锐角,则当点P 在BC 上何处时, △BDP 的面积最大24.现场学习:我们知道,若锐角α的三角函数值为sin α = m ,则可通过计算器得到角α的大小,这时我们用arc sin m 来表示α,记作:α=arc sin m ;若cos α = m ,则记α = arc cos m ;若tan α = m ,则记α = arc tan m .解决问题:如图,已知正方形ABCD ,点E 是边AB 上一动点,点F 在AB 边或其延长线上,点G 在边AD 上.连结ED ,FG ,交点为H .(1)如图1,若AE =BF =GD ,请直接写出∠EHF = °;图1AB C DP 图2ABPC D(2)如图2,若EF =25CD ,GD =25AE ,设∠EHF =α.请判断当点E 在AB 上运动时, ∠EHF 的大小是否发生变化若发生变化,请说明理由;若不发生变化,请求出α.24.已知在△ABC 和△DBE 中,AB =AC ,DB =DE ,且∠BAC =∠BDE .(1)如图1,若∠BAC =∠BDE =60°,则线段CE 与AD 之间的数量关系是 ;(2)如图2,若∠BAC =∠BDE =120°,且点D 在线段AB 上,则线段CE 与AD 之 间的数量关系是__________________; (3)如图3,若∠BAC =∠BDE =α,请你探究线段CE 与AD 之间的数量关系(用含α的式子表示),并证明你的结论..已知:AOB △中,2AB OB ==,COD △中,3CD OC ==,ABO DCO =∠∠. 连接AD 、BC ,点M 、N 、P 分别为OA 、OD 、BC 的中点.图1H FG ED CB A 图2A B CD EG FH ADB图1BACDE图3E BAC D图2图1 图2(1) 如图1,若A 、O 、C 三点在同一直线上,且60ABO =∠,则PMN △的形状是________________,此时ADBC=________; (2) 如图2,若A 、O 、C 三点在同一直线上,且2ABO α=∠,证明PMN BAO △∽△,并计算ADBC的值(用含α的式子表示);(3) 在图2中,固定AOB △,将COD △绕点O 旋转,直接写出PM 的最大值..如图1,在□ABCD 中,AE ⊥BC 于E ,E 恰为BC 的中点,2tan =B .(1)求证:AD =AE ;(2)如图2,点P 在BE 上,作EF ⊥DP 于点F ,连结AF .求证:AF EF DF 2=-;(3)请你在图3中画图探究:当P 为射线E C 上任意一点(P 不与点E 重合)时,作EF ⊥DP 于点F ,连结AF ,线段DF 、EF 与AF 之间有怎样的数量关系直接写出你的结论.如图10-1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系: (1)①请直接写出图10-1中线段BG 、线段DE 的数量关系及所在直线的位置关系;图1E B C A D 图3 E B C A D 图2 E C B A DF P②将图10-1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图10-2、如图10-3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图10-2证明你的判断.(2)将原题中正方形改为矩形(如图10-4~10-6),且kb CG ka CE b BC a AB ====,,, )0,( k b a ≠ ,试判断(1)①中得到的结论哪个成立,哪个不成立并写出你的判断,不必证明. (3)在图10-5中,连结DG 、BE ,且21,2,4===k b a ,则22BE DG += .(1)已知:如图1,△ABC 中,分别以AB 、AC 为一边向△ABC 外作正方形ABGE 和ACHF ,直线AN ⊥BC 于N ,若EP AN ⊥于P ,FQ AN ⊥于Q . 判断线段EP FQ 、的数量关系,并证明;(2)如图2,梯形ABCD 中,AD ∥BC , 分别以两腰AB 、CD 为一边向梯形ABCD 外作正方形ABGE 和DCHF ,线段AD 的垂直平分线交线段AD 于点M ,交BC 于点N ,若EP MN ⊥于P ,FQ MN ⊥于Q .(1)中结论还成立吗请说明理由.图2FF图1HN Q GHMPEPQGEDC BA N CBA已知:如图,在Rt ACB △中,90C ∠=,4cm AC =,3cm BC =,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为(s)t (02t <<),解答下列问题:(1)当t为何值时,PQ BC∥(2)设AQP△的面积为y(2cm),求y与t 之间的函数关系式;(3)是否存在某一时刻t,使线段PQ恰好把△的周长和面积同时平分若存在,求出Rt ACB此时t的值;若不存在,说明理由;!。

相关文档
最新文档