最新高一数学集合与函数知识点总结

合集下载

高中数学必修1-第一章-集合与函数概念-知识点

高中数学必修1-第一章-集合与函数概念-知识点

第一章集合与函数概念一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。

把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。

2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。

(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

a、列举法:将集合中的元素一一列举出来 {a,b,c……}b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{x∈R| x-3>2} ,{x| x-3>2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合。

4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A(2)元素不在集合里,则元素不属于集合,即:a¢A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集 Z有理数集 Q实数集 R6、集合间的基本关系(1).“包含”关系(1)—子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的A⊆(或B⊇A)子集。

记作:BA⊆有两种可能(1)A是B的一部分;注意:B(2)A与B是同一集合。

⊆/B或B⊇/A反之: 集合A不包含于集合B,或集合B不包含集合A,记作A(2).“包含”关系(2)—真子集A⊆,但存在元素x∈B且x¢A,则集合A是集合B的真子集如果集合B如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)读作A真含与B(3).“相等”关系:A=B “元素相同则两集合相等”如果A⊆B 同时 B⊆A 那么A=B(4). 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

高一数学知识点集 合与函数概念

高一数学知识点集 合与函数概念

高一数学知识点集合与函数概念高一数学知识点:集合与函数概念在高一数学的学习中,集合与函数概念是非常重要的基础知识。

理解和掌握这些概念,对于后续数学知识的学习和应用有着至关重要的作用。

接下来,让我们一起深入探讨一下这两个重要的数学知识点。

一、集合(一)集合的定义集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体。

这些对象称为集合的元素。

比如说,一个班级里的所有学生可以组成一个集合,这个集合中的元素就是每个学生。

(二)集合的表示方法1、列举法把集合中的元素一一列举出来,写在大括号内。

例如,由元素 1,2,3 组成的集合,可以表示为{1,2,3}。

2、描述法用确定的条件表示某些对象是否属于这个集合。

比如,所有小于 5的正整数组成的集合,可以表示为{x | x 是小于 5 的正整数}。

(三)集合间的关系1、子集如果集合 A 的所有元素都是集合 B 的元素,那么称集合 A 是集合B 的子集,记作 A ⊆ B。

例如,集合 A ={1,2},集合 B ={1,2,3},则 A 是 B 的子集。

2、真子集如果集合 A 是集合 B 的子集,且 B 中至少有一个元素不属于 A,那么称集合 A 是集合 B 的真子集,记作 A ⊂ B。

比如,集合 A ={1,2},集合 B ={1,2,3},A 是 B 的真子集。

(四)集合的运算1、交集由属于集合 A 且属于集合 B 的所有元素组成的集合,称为集合 A 与集合 B 的交集,记作A ∩ B。

例如,集合 A ={1,2,3},集合 B ={2,3,4},则A ∩ B ={2,3}。

2、并集由属于集合 A 或属于集合 B 的所有元素组成的集合,称为集合 A 与集合 B 的并集,记作 A ∪ B。

比如,集合 A ={1,2,3},集合 B ={2,3,4},则 A ∪ B ={1,2,3,4}。

3、补集设 U 是一个全集,A 是 U 的一个子集,由 U 中所有不属于 A 的元素组成的集合,称为集合 A 在 U 中的补集,记作∁UA。

高一数学知识点总结(15篇)

高一数学知识点总结(15篇)

高一数学知识点总结总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它能帮我们理顺知识结构,突出重点,突破难点,因此好好准备一份总结吧。

总结怎么写才不会流于形式呢?以下是小编精心整理的高一数学知识点总结,希望能够帮助到大家。

高一数学知识点总结1一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B 的映射,记作f:A→B。

注意点:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。

主要是含绝对值函数四.函数的奇偶性1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。

如果对于任意∈A,都有,则称y=f(x)为奇函数。

2.性质:①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称②看f(x)与f(-x)的关系五、函数的单调性1、函数单调性的定义:2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M 上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。

高一数学知识点全部归纳

高一数学知识点全部归纳

高一数学知识点全部归纳一、集合1. 集合的概念:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合。

2. 集合中元素的特性:确定性、互异性、无序性。

3. 集合的表示方法:列举法、描述法、图示法。

4. 集合间的关系:子集、真子集、相等。

5. 集合的运算:交集、并集、补集。

二、函数1. 函数的概念:设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B的一个函数。

2. 函数的三要素:定义域、值域、对应法则。

3. 函数的表示方法:解析法、列表法、图象法。

4. 函数的单调性:设函数 f(x)的定义域为 I,如果对于定义域I 内某个区间 D 上的任意两个自变量的值 x₁,x₂,当 x₁ x₂时,都有 f(x₁) f(x₂)(或 f(x₁) > f(x₂)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。

5. 函数的奇偶性:设函数 f(x)的定义域为 D,如果对于定义域D 内任意一个 x,都有x∈D,且 f(x) = f(x)(或 f(x) = f(x)),那么函数 f(x)就叫做奇函数(或偶函数)。

三、指数函数和对数函数1. 指数函数:一般地,函数 y = a^x(a > 0 且a ≠ 1)叫做指数函数。

指数函数的图象和性质:当 a > 1 时,函数在 R 上单调递增;当 0 a 1 时,函数在 R 上单调递减。

2. 对数函数:一般地,如果 a^x = N(a > 0 且a ≠ 1),那么数 x 叫做以 a 为底 N 的对数,记作 x = logₐN。

函数 y = logₐx (a > 0 且a ≠ 1)叫做对数函数。

对数函数的图象和性质:当 a > 1 时,函数在(0, +∞) 上单调递增;当 0 a 1 时,函数在(0, +∞) 上单调递减。

高一数学集合知识点总结(二篇)

高一数学集合知识点总结(二篇)

高一数学集合知识点总结集合及其表示1、集合的含义:“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。

数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。

所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。

比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

2、集合的表示通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。

a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作dA。

有一些特殊的集合需要记忆:非负整数集(即自然数集)N正整数集N-或N+整数集Z有理数集Q实数集R①列举法:{a,b,c……}③语言描述法:例:{不是直角三角形的三角形}强调:描述法表示集合应注意集合的代表元素3、集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。

例题:集合A={1,2},B={a,b},若A=B,求a、b的值。

解:____,A=B注意:该题有两组解。

(2)互异性指集合中的元素不能重复,A={2,2}只能表示为{2}(3)确定性集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。

高一数学集合知识点总结(二)集合的分类(1)按元素属性分类,如点集,数集。

(2)按元素的个数多少,分为有/无限集关于集合的概念:(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。

(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。

(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。

高一数学集合及函数基本性质归纳总结

高一数学集合及函数基本性质归纳总结

高一数学知识点归纳总结一——集合及函数基本性质集合及集合的应用1. 掌握集合的有关基本定义概念运用集合的概念解决问题2. 掌握集合的包含关系子集、真子集3. 掌握集合的运算(交、并、补)4. 在解决有关集合问题时要注意各种思想方法数形结合、补集思想、分类讨论的运用. 【知识梳理】一、集合的有关概念(一) 集合的含义(二) 集合中元素的三个特性1.元素的确定性2.元素的互异性3.元素的无序性如{a,b,c}和{a,c,b}是表示同一个集合.(三) 集合的表示集合的表示方法列举法与描述法.常用数集及其记法非负整数集即自然数集记作:N;正整数集:N*或N+整数集:Z;有理数集:Q;实数集:R.1列举法{a,b,c,…}2描述法将集合中的元素的公共属性描述出来写在大括号内表示集合的方法.如{x属于R| x-3>2},{x|x-3>2}.3语言描述法如{不是直角三角形的三角形}.4.Venn图.(四) 集合的分类1.有限集: 含有有限个元素的集合;2.无限集: 含有无限个元素的集合;3.空集: 不含任何元素的集合;如{x|x2=-5.二、集合间的基本关系1. “包含”关系——子集注意A∈B有两种可能1A是B的一部分2A与B是同一集合.2. “相等”关系A=B (5≥5且5≤5则5=5).实例设A={x|x2-1=0}B={-1,1}. 则A=B.元素相同则两集合相等,即①任何一个集合是它本身的子集②真子集:如果A∈B,且A≠B,那就说集合A是集合B的真子集③如果A∈B, B∈C ,那么A∈C④如果A∈B, 同时B∈A ,那么A=B.3. 不含任何元素的集合叫做空集规定: 空集是任何集合的子集空集是任何非空集合的真子集. 含有n个元素的集合有2n个子集,2n-1个真子集.三、集合的运算运算类型交集、并集、补集【方法归纳】一、对于集合的问题要确定属于哪一类集合(数集点集或某类图形集),然后再确定处理此类问题的方法.二、关于集合中的运算一般应把各参与运算的集合化到最简形式然后再进行运算.三、含参数的集合问题多根据集合的互异性处理有时需要用到分类讨论、数形集结合的思想.四、处理集合问题要多从已知出发多从特殊点出发来寻找突破口. 课堂精讲练习题考点一集合的概念与表示{3x x22x}中x应满足的条件是___________.【解题思路】x≠1且x≠0且x≠3.难度分级A类函数的图象及基本性质1理解函数概念2了解构成函数的三个要素3会求一些简单函数的定义域与值域4理解函数图象的意义5能正确画出一些常见函数的图象6会利用函数的图象求一些简单函数的值域、判断函数值的变化趋势7理解函数单调性概念8掌握判断函数单调性的方法会证明一些简单函数在某个区间上的单调性9会证明一些较复杂的函数在某个区间上的单调性10能利用函数的单调性解决一些简单的问题11了解函数奇偶性的含义12熟练掌握判断函数奇偶性的方法13熟练单调性与奇偶性讨论函数的性质14能利用函数的奇偶性和单调性解决一些问题.【知识梳理】1函数的定义设,AB是两个非空数集如果按某种对应法则f,对于集合A中的每一个元素x在集合B 中都有惟一的元素y和它对应,这样的对应叫做从A到B的一个函数记为y=f(x),其中输入值x组成的集合A叫做函数y=f(x)的定义域所有输出值y的取值集合叫做函数y=f(x)的值域.2函数的图象y=f(x)自变量的一个值x0作为横坐标相应的函数值作为纵坐标就得到坐标平面上的一个点(x0,f(x0)),当自变量取遍函数定义域内的每一个值时,所有这些点组成的图形就是函数y=f(x)的图象3函数y=f(x)的图象与其定义域、值域的对应关系y=f(x)的图象在x轴上的射影构成的集合对应着函数的定义域在y轴上的射影构成的集合对应着函数的值域4用列表来表示两个变量之间的函数关系的方法叫列表法,其优点是函数的输入值与输出值一目了然用等式来表示两个变量之间的函数关系的方法叫解析法(这个等式通常叫函数的解析表达式简称解析式),其优点是函数关系清楚容易从自变量求出其对应的函数值便于用解析式研究函数的性质用图象来表示两个变量之间的函数关系的方法叫图象法其优点是能直观地反映函数值随自变量变化的趋势8偶函数的定义:如果对于函数y=f(x)的定义域内的任意一个x都有f(-x)=f(x),那么称函数y=f(x)是偶函数9奇函数的定义如果对于函数y=f(x)的定义域内的任意一个x都有f(-x)=-f(x),那么称函数y=f(x)是奇函数10函数图象与单调性奇函数的图象关于原点对称偶函数的图象关于y轴对称一、求函数的定义域的常用求法(一)给出函数解析式的函数的定义域是使解析式有意义的自变量的取值集合常见类型有1. 分式的分母不为零.2. 偶次根式的被开方数大于或等于零.3. 对数的真数大于零,底数大于零且不等于1.4. 零次幂的底数不为零.5. 正切函数的定义域是x≠kπ+π/2(k属于Z)(二)已知fx的定义域求f(g(x))的定义域或已知f(g(x))的定义域求f(x)的定义域抓住两点1. 复合函数f(g(x))定义域都是指最内层函数即g(x)的x的取值范围.2. 内层函数的值域都应是外层函数定义域的子集.(三)实际问题中函数的定义域除了使式子本身有意义之外还应使实际问题有意义.二、函数的值域(一)弄清函数的类型几种常见函数类型1. 基本初等函数2. 有几个基本初等函数复合的函数(三)对于由几个初等函数复合而成的函数可以采用换元法求解.(四)处理复杂函数的值域问题可借助函数的单调性来处理.(五)处理分段函数的值域问题时分别求出每一段的值域然后取并集.四、函数的单调性(一)函数单调性的证明定义法是证明函数单调性的常用方法主要有以下步骤1. 根据题意在区间上设x1<x22. 比较f(x1)与f(x2)的大小3. 下结论“函数在某个区间上是单调增(或减)函数对于第二步常见的思路是作差,变形,定号其中变形主要指的是分解因式、通分、有理化等.(二)复合函数的单调性处理复合函数单调性问题的基本原则是同增异减.一般步骤:1. 写出符合函数的内层函数t=g(x)和外层函数y=f(t)2. 求出内外层函数的单调区间注意求外层函数的单调区间时要将t的范围转化成x的范围.3. 根据同增异减的原则利用取交集的方式求出复合函数的单调区间.三函数单调性的应用1. 比较大小若要比较大小的两个数结构、形式相同、可构造函数利用函数的单调性比较.2. 求函数的值域若函数的单调性可以求出则值域可求.3. 解不等式或方程若不等式方程的两边分别可以看出同一个函数的函数值可以利用单调性得出其自变量的大小关系从而得到简化的不等式方程.五、函数的奇偶性(一)函数奇偶性的判断:判断函数的奇偶性主要是定义法.一般步骤1.判断函数的定义域是否关于原点对称这是函数具有奇偶性的前提.2.判断f(x)和f(-x)是否相等或相反.(二)利用函数的奇偶性求函数的解析式已知函数在某区间解析式,要求其对称区间的解析式。

高一数学集合、函数知识点总结、相应试题及答案

高一数学集合、函数知识点总结、相应试题及答案

第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:1)元素的确定性如:世界上最高的山2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B 注意:B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A⊆A②真子集:如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集例题:1.下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 .4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是 5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。

高一数学集合及函数知识点

高一数学集合及函数知识点

高一数学集合及函数知识点高一数学集合及函数学问点一.学问归纳:1.集合的有关概念。

1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素留意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必需符号条件2)集合的表示〔方法〕:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。

4)常用数集:N,Z,Q,R,N2.子集、交集、并集、补集、空集、全集等概念。

1)子集:若对x∈A都有x∈B,则AB(或AB);2)真子集:AB且存在x0∈B但x0A;记为AB(或,且)3)交集:A∩B={x|x∈A且x∈B}4)并集:A∪B={x|x∈A或x∈B}5)补集:CUA={x|xA但x∈U}留意:①?A,若A≠?,则?A;②若,,则;③若且,则A=B(等集)3.弄清集合与元素、集合与集合的关系,把握有关的术语和符号,特殊要留意以下的符号:(1)与、?的区分;(2)与的区分;(3)与的区分。

4.有关子集的几个等价关系①A∩B=AAB;②A∪B=BAB;③ABCuACuB;④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

5.交、并集运算的性质①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n1个非空子集,2n2个非空真子集。

二.例题讲解:【例1】已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},则M,N,P满意关系A)M=NPB)MN=PC)MNPD)NPM分析一:从推断元素的共性与区分入手。

高一数学必修一集合-函数知识点归纳

高一数学必修一集合-函数知识点归纳

高一数学必修一集合-函数知识点归纳(总2页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除高一数学必修一(集合、函数)知识点归纳1、集合三要素(三大特性) 确定性 无异性 无序性2、元素与集合之间的关系 属于∈与不属于∉ 例如:N ∈0 , *0N ∉。

3、集合与集合之间的关系 包含⊆ 真包含⊂≠ 例如:{}{}10<⊆<x x x x ,{}0<x x ⊂≠{}1<x x , 若A ⊆B 则范围B范围A ≥,A 为B 的子集 若A ⊂≠B 则范围B >范围A ,A 为B 的真子集。

4、集合的运算 交集 由所有属于A 且属于B 的元素所组成的集合 例如:B A并集 由所有属于集合A 或属于集合B 的元素所组成的集合 例如:B A补集 设S 是一个集合,A 是 S 的一个子集,由S 中所有不属于A 的元素组成的集合例如:S= {}1<x x A={0<x x 5、若一个集合里面有n 个元素,则此集合的子集个数为n 2个,真子集个数12-n 非空真子集个数22-n 例如:集合{}2,1,0子集有23个:Φ,{}0,{}1,{}2,{}1,0,{}2,0,{}2,1,{}3,2,1真子集有123-个:Φ,{}0,{}1,{}2,{}1,0,{}2,0,{}2,1 非空真子集有223-个:{}0,{}1,{}2,{}1,0,{}2,0,{}2,16就是说函数)(x f 在定义域R 上单调递增,当0<k ,y 随x 的增大而减小,y 随x 的减小而增大,也就是说函数)(x f 在定义域R 上单调递减。

当k=0,y 不随x 的变化而变化,即是)(x f 在定义域R 上不具备单调7、反比例函数:)(x f =x b (x ≠0且x R ∈),当0>b ,图像在1,3象限,函数)(x f 在定义域()0,∞-⋃()+∞,0上单调递增,当0<b ,图像在2,4象限,函数)(x f 在定义域()0,∞-⋃()+∞,0上单调递减,b=0,图像是一条与y 轴重合的直线,不具备单调。

高一数学必修一知识点梳理与总结

高一数学必修一知识点梳理与总结

高一数学必修一知识点梳理与总结鹏博教育高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念集合是由一些元素组成的整体。

元素具有确定性、互异性和无序性。

例如,{a,b,c}和{a,c,b}表示同一集合。

集合可以用列举法和描述法表示。

例如,集合A可以表示为A={我校的篮球队员},或者用描述法表示为A={x R|x-3>2}。

常用的数集有非负整数集N、正整数集N*或N+、整数集Z、有理数集Q和实数集R。

二、集合间的基本关系集合间有包含关系和相等关系。

如果集合A包含于集合B,则称A为B的子集,记作A B。

如果A与B是同一集合,则记作A=B。

空集是不含任何元素的集合,记为Φ。

空集是任何集合的子集,也是任何非空集合的真子集。

三、集合的运算集合的运算有交集、并集和补集。

交集是由所有属于A且属于B的元素所组成的集合,记作A B。

并集是由所有属于集合A或属于集合B的元素所组成的集合,记作A B。

补集是由S中所有不属于A的元素组成的集合,记作A的补集。

1.定义集合B为由集合A和集合B'中的元素组成的集合,即B={x|x∈A或x∈B'}。

如图1所示。

2.定义集合CSA为由集合S中属于A的元素和不属于A但属于S的元素组成的集合,即CSA={x|x∈S且(x∈A或x∉A)}。

如图2所示。

3.关于集合A的性质:A与自身的交集等于A本身,即A∩A=A。

A与空集的交集等于空集,即A∩Φ=Φ。

A与集合B的交集包含于A和B中元素共有的部分,即A∩B⊆A且A∩B⊆B。

A与集合B的并集包含于A和B中所有元素的集合,即A∪B包含于A和B的并集。

A与集合B的并集等于A和B中所有元素的集合加上A和B中共有的元素的集合,即A∪B=(A∖B)∪(B∖A)∪(A∩B)。

A与集合B的并集等于集合B与A的补集的补集的并集,即A∪B=(CuA')∩(CuB')。

4.选择题答案:A。

5.集合{a,b,c}的真子集共有7个。

集合与函数概念知识点归纳

集合与函数概念知识点归纳

集合与函数概念知识点归纳
一、集合
1、定义:集合是一种特殊的数学概念,由一组无序的、相互独立的、具有相同特征的对象构成的。

2、术语:元素是集合中的每一个成员,例如:集合{1,2,3}中1,2,3
都是它的元素。

一个集合的元素称为它的子集,可以用一对大括号表示:{x,y,z}。

3、集合的关系:
(1)子集:如果一个集合包含另一个集合中的全部元素,称前者是
后者的子集。

(2)真子集:如果一个集合中包含另一个集合中的其中一元素,称
前者是后者的真子集。

(3)并集:并集是指两个集合中元素的总和,称为两个集合的并集。

(4)交集:交集是指两个集合中都包含的元素,称为两个集合的交集。

(5)补集:补集是指一个集合之外的其他元素,称为另一个集合的
补集。

4、集合的操作:
(1)加法:将元素加入到一些集合中,使得其包含的元素增加。

(2)减法:从一些集合中删除元素,使其包含的元素减少。

(3)求幂:将一些集合中的元素以其中一种方式考虑,得到一个新
的集合。

(4)合并操作:将两个集合中的元素合并成一个集合。

二、函数
1、定义:函数是一种特殊的数学概念,它表示两个变量之间的关系,当给定一个输入时,它可以将输入映射到一个输出。

2、术语:函数由函数表达式组成。

高一数学必修一集合与函数知识点总结

高一数学必修一集合与函数知识点总结

必修一 集合与函数知识点第二章函数1. 函数三要素:(1)解析式 (2)定义域 (3)值域2. 函数定义域的求法:(1)分式的分母不得为零; (2) 偶次方根的被开方数不大于零;(3)对数函数的真数必须大于零; (4) 指数函数和对数函数的底数必须大于零且不等于1;(5)0)()]([0≠=x f x f y ,要求; (6)抽象函数求定义域:①f[g(x)]的定义域为[a,b],指的是x 的取值范围为[a,b],而不是g(x)的范围为[a,b],如f(3x-1)的定义域为[1,2],指的是f(3x-1)中的范围是21≤≤x .②f[g(x)]与f[h(x)]联系的纽带是g(x)与h(x)的值域相同。

(7)对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。

3. 函数值域的求法:①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型),(,)(2n m x c bx ax x f ∈++=的形式;集合知识网络集 合定 义 特 征 一组对象的全体形成一个集合 确定性、互异性、无序性 表示法 分 类列举法{1,2,3,…}、描述法{x|P} 有限集、无限集数 集 关 系 自然数集N 、正整数集+*N 或N 、整数集Z 、有理数集Q 、实数集R 、空集φ 元素和集合的关系是”或“∉∈如N 3M 2∉∈或 集合与集合之间的关系是",,,,, ,"A C u =⊄⊆⊂运 算性 质交集 A ∩B ={x|x ∈A 且x ∈B}; 并集 A ∪B ={x|x ∈A 或x ∈B}; 补集 A C U ={x|x ∉A 且x ∈U},U 为全集A ⊆A ; φ⊆A ; 若A ⊆B ,B ⊆C ,则A ⊆C ;A ∩A =A ∪A =A ; A ∩φ=φ;A ∪φ=A ;A ∩B =A ⇔A ∪B =B ⇔A ⊆B ; A ∩C U A =φ; A ∪C U A =I ;C U ( C U A)=A方 法韦恩示意图 数轴分析注意:① 区别∈与⊂、⊂与⊆、a 与{a}、φ与{φ}、{(1,2)}与{1,2};② A ⊆B 时,A 有两种情况:A =φ与A ≠φ4.③ 对于任意集合B A ,,则 =B C A C U U )(B A C U ;B C A C U U )(B A C U =;④ 若集合A 中有n 个元素,则集合A 的所有不同的子集个数为n 2,所有真子集的个数是12-n ,所有非空子集的个数是12-n,所有非空真子集的个数是22-n 。

高一数学必修1知识点总结--集合与函数

高一数学必修1知识点总结--集合与函数

高中数学必修1知识点总结第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:x 把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 B{x A A = ∅=∅ B A ⊆ B B ⊆并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ A B B ⊇BA补集AC U{|,}x x U x A ∈∉且)()()()()()(B C A C B A C B C A C B A C UA C A A C A U U U U U U U U ===∅=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x << ∅ ∅〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法如果对于属于定义域I 内某个区间上的任意两个自变量的值x1、x2,当x1< x2.....时,都有f(x1)>f(x2)...........,那么就说f(x)在这个区间上是减.函数... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图像与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象 判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数.... (1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称)yxo如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.1.下列四组对象,能构成集合的是 ( )A 某班所有高个子的学生B 著名的艺术家C 一切很大的书D 倒数等于它自身的实数 2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 .4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。

高一 集合 与 函数 知识点小结

高一 集合 与 函数 知识点小结

高中数学必修1知识点总结第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集【补充知识】含绝对值的不等式与一元二次不等式的解法0)【1.2.1】函数的概念(1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数()f x和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作:f A B→.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设,a b是两个实数,且a b<,满足a x b≤≤的实数x的集合叫做闭区间,记做[,]a b;满足a x b<<的实数x的集合叫做开区间,记做(,)a b;满足a x b≤<,或a x b<≤的实数x的集合叫做半开半闭区间,分别记做[,)a b,(,]a b;满足,,,x a x a x b x b≥>≤<的实数x的集合分别记做[,),(,),(,],(,) a a b b+∞+∞-∞-∞.注意:对于集合{|}x a x b<<与区间(,)a b,前者a可以大于或等于b,而后者必须a b<.(3)求函数的定义域时,一般遵循以下原则:①()f x是整式时,定义域是全体实数.②()f x是分式函数时,定义域是使分母不为零的一切实数.③()f x是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tany x=中,()2x k k Zππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x的定义域为[,]a b,其复合函数[()]f g x的定义域应由不等式()a g x b≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值③判别式法:若函数()y f x=可以化成一个系数含有y的关于x的二次方程2()()()0a y xb y xc y++=,则在()0a y≠时,由于,x y为实数,故必须有2()4()()0b y a yc y∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记作:f A B→.②给定一个集合A到集合B的映射,且,a Ab B∈∈.如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法o②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,-∞、)+∞上为增函数,分别在[,0)、(0,]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 作max ()f x M =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。

高中数学必修一最全知识点汇总

高中数学必修一最全知识点汇总

高中数学必修一最全知识点汇总高中数学必修1知识点第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示集合是由元素组成的整体,其中的元素具有确定性、互异性和无序性。

常用的数集有自然数集N、正整数集N*或N+、整数集Z、有理数集Q、实数集R。

集合与元素之间的关系可以表示为a∈M或a∉M。

集合的表示法有自然语言法、列举法、描述法和图示法。

集合可以分为有限集、无限集和空集(∅)。

1.1.2 集合间的基本关系集合间的基本关系包括子集、真子集和集合相等。

子集表示为A⊆B,真子集表示为A⊂B,集合相等表示为A=B。

已知集合A有n(n≥1)个元素,则它有2个子集,2^(n-1)个真子集,2^(n-1)个非空子集和2^n-2个非空真子集。

1.1.3 集合的基本运算集合的基本运算包括交集、并集和补集。

交集表示为A∩B,并集表示为A∪B,补集表示为A的补集。

补集的性质为A∪A的补集=全集,A∩A的补集=空集。

2.补充知识:含绝对值的不等式与一元二次不等式的解法含绝对值的不等式|x|0)的解集为{-aa(a>0)的解集为{xa}。

一元二次不等式的解法与一元二次方程类似,可以通过移项、配方法和求根公式等方式求解。

1.解一元二次不等式将$ax+b$看作一个整体,化成$|x|c(c>0)$,$|x|>a(a>0)$型不等式来求解。

2.解一元二次不等式的方法通过判别式$\Delta=b^2-4ac$,确定二次函数$y=ax^2+bx+c(a>0)$的图像,分类讨论$\Delta>\Delta'$,$\Delta=\Delta'$和$\Delta0)$的根$x_1,x_2$(其中$x_10$和$y<0$的解集。

3.函数及其表示3.1 函数的概念设$A$、$B$是两个非空的数集,如果按照某种对应法则$f$,对于集合$A$中任何一个数$x$,在集合$B$中都有唯一确定的数$f(x)$和它对应,那么这样的对应(包括集合$A$、$B$以及$A$到$B$的对应法则$f$)叫做集合$A$到$B$的一个函数,记作$f:A\to B$。

高中数学集合与函数概念知识点总结

高中数学集合与函数概念知识点总结

高中数学集合与函数概念知识点总结第一章集合与函数概念1.1.1集合的含义与表示一、集合的含义我们先看一些实例:①1~20以内的所有质数(素数);有限集②到直线 l 的距离等于定长 d 的所有的点;③全体自然数;无限集④方程 x2+3x+2=0 的所有实数根;⑤某中学2019年9月入学的所有高一新生.分别归纳概括出它们具有什么共同特征?一般地,我们把研究的对象统称为元素,把一些元素组成的总体叫做集合(简称为集).通常用大写的拉丁字母 A,B,C,…表示集合,小写的拉丁字母 a,b,c ,…表示集合中的元素.注意:几种特殊的数集问题:如何理解“把一些元素组成的总体叫做集合”,这些集合里的元素必须具备什么特性?二、集合中元素的特性先思考以下两个问题:① 高一级身高较高的同学,能否构成集合? 否② 高一级身高160cm以上的同学,能否构成集合? 能③ 2, 4, 2 这三个数能否组成一个集合?否1.确定性:集合中的元素必须是确定的。

即确定了一个集合,任何一个元素是不是这个集合的元素也就确定了。

(具有某种属性)如:高一级身高160cm以上的同学组成的集合.2.互异性:集合中的元素是互异的。

即集合元素是没有重复现象的。

(互不相同)如:2, 4, 2 这三个数不能组成一个集合,但2,4可组成集合.3.无序性:集合中的元素是不讲顺序的。

即元素完全相同的两个集合,不论元素顺序如何,都表示同一个集合。

(不考虑顺序)如:集合A:大西洋,太平洋,印度洋组成的集合集合B:印度洋,大西洋,太平洋组成的集合集合相等:只要构成两个集合的元素是一样的,我们就称这两个集合相等.三、元素与集合的关系高一级所有的同学组成的集合记为A, a是高一(7)班的同学,b是高二(7)班的同学,那么a与A,b与A之间各自有什么关系?四、集合的表示(1)自然语言表示法1~20以内的质数组成的集合(2)列举法例如,地球上四大洋组成的集合:{太平洋,大西洋,印度洋,北冰洋}例1、用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程 x2=x 的所有实数根组成的集合;(3)由1~20以内既能被2整除,又能被3整除的所有自然数组成的集合.解:(1)设小于10的所有自然数组成的集合为A,则A={0,1,2,3,4,5,6,7,8,9}(2)设方程 x2=x 的所有实数根组成的集合为B,则B={0,1}(3)设所求集合为C,则C={6,12,18}集合的分类:有限集,无限集:你能用列举法表示不等式 x -7< 3 的解集吗?无限集(3).描述法:用集合所含元素的共同特征表示集合的方法称为描述法。

高一数学集合与函数知识点总结

高一数学集合与函数知识点总结

高中课程复习专题——数学会合与函数专题一、会合有关观点1、会合中元素的特征⑴ 元素确实定性:构成会合的元素一定是确立的。

⑵ 元素的互异性:会合中不得有重复的元素。

⑶ 元素的无序性:会合中元素的摆列不依据某种次序,是任意摆列的。

2、会合的表示方法⑴ 列举法:将会合中元素一一列出。

⑵ 描绘法:将会合中元素的公共属性用语言描绘出来。

⑶ 分析法:用分析式的方式描绘出会合元素的公共属性。

⑷ 图示法:用韦恩图直观的画出会合中的元素。

3、集中特别数集的表示方法自然数集:N正整数集:N+整数集: Z有理数集:Q实数集: R空集:Φ二、会合间的基本关系——子集与真子集1、自反性——任何一个会合都是它自己的子集: A ? A 。

2、假如 A ? B 且 A≠B,则, A 是 B 的真子集。

3、传达性:假如 A ? B, B ? C,则 A ? C。

4、假如 A? B 且 B? A,则 A=B 。

5、空集是任何会合的子集,空集是任何非空会合的真子集。

6、有 n 个元素的会合,有2n个子集,有2n-1 个真子集。

三、会合间的运算运算交集并集补集种类由全部属于会合 A 且属于集由全部属于会合 A 或属于集定合 B 的元素构成的会合称为合 B 的元素构成的会合称为义 A 和 B 的交集( A∩B)。

A 和 B 的并集( A ∪B)。

即 A∩B={x ∣x∈ A 且 x∈ B}即 A ∪B={x ∣ x ∈A 或 x ∈ B}设S 是一个会合,A 是S 的一个子集,由 S 中不属于 A 的元素构成的会合称为 S 中 A 的补集( C S A )。

即 C S A ={ x ∣ x ∈S 且 x A }图示性质A∩A=A A ∪A=A C S A∩ C S B= C S( A∪ B)A∩Φ =ΦA∪Φ=A C S A∪ C S B= C S( A∩B)A∩ B=B∩A A∪B=B ∪A A ∪C S A=SA∩B ?A A ? A ∪ B A∩C S A=ΦA∩B B B?A ∪B?1、函数:设 A 、B 为非空会合,假如依据某个特定的对应关系 f ,使对于会合 A 中的任意一个数x,在会合 B 中都有独一确立的数f(x) 和它对应,那么就称 f :A→B为从会合A 到会合 B 的一个函数,写作y=f(x) ,x∈ A ,此中, x 叫做自变量, x 的取值范围 A 叫做函数的定义域,与x 相对应的y 的值叫做函数值,函数值的会合B={f(x) ∣x∈ A } 叫做函数的值域。

高一数学集合与函数概念知识点总结 高一数学集合知识点

高一数学集合与函数概念知识点总结 高一数学集合知识点

高一数学集合与函数概念知识点总结高一数学集合知识点高一数学知识点:集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}高一数学知识点:集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中课程复习专题——数学集合与函数专题
一、集合相关概念
1、集合中元素的特性
⑴元素的确定性:组成集合的元素必须是确定的。

⑵元素的互异性:集合中不得有重复的元素。

⑶元素的无序性:集合中元素的排列不遵循某种顺序,是随意排列的。

2、集合的表示方法
⑴列举法:将集合中元素一一列出。

⑵描述法:将集合中元素的公共属性用语言描述出来。

⑶解析法:用解析式的方式描述出集合元素的公共属性。

⑷图示法:用韦恩图直观的画出集合中的元素。

3、集中特殊数集的表示方法
自然数集:N 正整数集:N+
整数集:Z 有理数集:Q
实数集:R 空集:Φ
二、集合间的基本关系——子集与真子集
1、自反性——任何一个集合都是它本身的子集:A⊆A。

2、如果A⊆B 且A≠B,则,A是B的真子集。

3、传递性:如果A⊆B,B⊆C,则A⊆C。

4、如果A⊆B且B⊆A,则A=B。

5、空集是任何集合的子集,空集是任何非空集合的真子集。

6、有n 个元素的集合,有2n个子集,有2n-1 个真子集。

三、集合间的运算
x
1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A 到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A }叫做函数的值域。

★2、函数定义域的解题思路:
⑴若x处于分母位置,则分母x不能为0。

⑵偶次方根的被开方数不小于0。

⑶对数式的真数必须大于0。

⑷指数对数式的底,不得为1,且必须大于0。

⑸指数为0时,底数不得为0。

⑹如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。

⑺实际问题中的函数的定义域还要保证实际问题有意义。

3、相同函数
⑴表达式相同:与表示自变量和函数值的字母无关。

⑵定义域一致,对应法则一致。

4、函数值域的求法
⑴观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。

⑵图像法:适用于易于画出函数图像的函数已经分段函数。

⑶配方法:主要用于二次函数,配方成y=(x-a)2 +b 的形式。

⑷代换法:主要用于由已知值域的函数推测未知函数的值域。

5、函数图像的变换
⑴平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。

⑵伸缩变换:在x前加上系数。

⑶对称变换:高中阶段不作要求。

6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的y与之对应,那么就称对应f:A→B为从集合A到集合B的映射。

⑴集合A中的每一个元素,在集合B中都有象,并且象是唯一的。

⑵集合A中的不同元素,在集合B中对应的象可以是同一个。

⑶不要求集合B中的每一个元素在集合A中都有原象。

7、分段函数
⑴在定义域的不同部分上有不同的解析式表达式。

⑵各部分自变量和函数值的取值范围不同。

⑶分段函数的定义域是各段定义域的交集,值域是各段值域的并集。

8、复合函数:如果(u∈M),u=g(x) (x∈A),则,y=f[g(x)]=F(x) (x∈A),称为f、g 的复合函数。

1、函数的局部性质——单调性
设函数y=f(x)的定义域为I,如果对应定义域I内的某个区间D内的任意两个变量x1、x2,当x1< x2时,都有f(x1)<f(x2),那么y=f(x)在区间D上是增函数,D是函数y=f(x)的单调递增区间;当x1< x2时,都有f(x1)>f(x2),那么那么y=f(x)在区间D上是减函数,D是函数y=f(x)的单调递减区间。

⑴函数区间单调性的判断思路
ⅰ在给出区间内任取x1、x2,则x1、x2∈D,且x1< x2。

ⅱ做差值f(x1)-f(x2),并进行变形和配方,变为易于判断正负的形式。

ⅲ判断变形后的表达式f(x1)-f(x2)的符号,指出单调性。

⑵复合函数的单调性
复合函数y=f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律为“同增异减”;多个函数的复合函数,根据原则“减偶则增,减奇则减”。

⑶注意事项
函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成并集,如果函数在区间A和B上都递增,则表示为f(x)的单调递增区间为A和B,不能表示为A∪B。

2、函数的整体性质——奇偶性
对于函数f(x)定义域内的任意一个x,都有f(x) =f(-x),则f(x)就为偶函数;
对于函数f(x)定义域内的任意一个x,都有f(x) =-f(x),则f(x)就为奇函数。

⑴奇函数和偶函数的性质
ⅰ无论函数是奇函数还是偶函数,只要函数具有奇偶性,该函数的定义域一定关于原点对称。

ⅱ奇函数的图像关于原点对称,偶函数的图像关于y轴对称。

⑵函数奇偶性判断思路
ⅰ先确定函数的定义域是否关于原点对称,若不关于原点对称,则为非奇非偶函数。

ⅱ确定f(x) 和f(-x)的关系:
若f(x) -f(-x)=0,或f(x) /f(-x)=1,则函数为偶函数;
若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,则函数为奇函数。

3、函数的最值问题
⑴对于二次函数,利用配方法,将函数化为y=(x-a)2 +b的形式,得出函数的最大值或最小值。

⑵对于易于画出函数图像的函数,画出图像,从图像中观察最值。

⑶关于二次函数在闭区间的最值问题
ⅰ判断二次函数的顶点是否在所求区间内,若在区间内,则接ⅱ,若不在区间内,则接ⅲ。

ⅱ若二次函数的顶点在所求区间内,则在二次函数y=ax2+bx+c中,a>0时,顶点为最小值,a<0时顶点为最大值;后判断区间的两端点距离顶点的远近,离顶点远的端点的函数值,即为a>0时的最大值或a<0时的最小值。

ⅲ若二次函数的顶点不在所求区间内,则判断函数在该区间的单调性
若函数在[a,b]上递增,则最小值为f(a),最大值为f(b);
若函数在[a,b]上递减,则最小值为f(b),最大值为f(a)。

六、指数和对数
1、指数的性质
⑴根式:如果x n=a,则x叫做a的n次方根,记作(n>1,n∈N+)
ⅰ负数没有偶次方根。

ⅱ 0的任何次方根都是0。

ⅲ当n为奇数时=a ,当n是偶数时= ∣a∣
⑵分数指数幂= (a>0,m、n∈N+,n>1)
负指数幂=(a>0,m、n∈N+,n>1)
0的正分数指数幂为0,0的负指数幂没有意义。

⑶实数指数幂的运算性质
a r•a s = a r+s(a>0,r、s∈R)
(a r)s = a r•s(a>0,r、s∈R)
(ab)r = a r•b r(a、b>0,r∈R)
2、对数的性质
⑴对数:如果a x=N (a>0,a≠1),那么,x叫做以a为底N的对数,记住:log a N=x,其中a为底数,N为真数。

ⅰ注意底数a的取值范围:a>0且a≠1。

ⅱ常数对数:以10为底的对数lgN;
自然对数:以e=2.71828…为底的对数lnN。

⑵对数的运算性质:如果a>0且a≠1,M>0,N>0
log a(M•N)=log a M + log a N
log a=log a M – log a N
log a M n = nlog a M (N∈R)
⑶对数的换底公式log a b = log c b / log c a (a>0且a≠1, c>0且c≠1,b>0)
则=
log a b = 1/ log b a
七、基本初等函数
1、指数函数:函数y=a x (a>0且a≠1)叫做指数函数
注意:⑴由函数的单调性可以看出,在闭区间[a,b]上,指数函数的最值为:
a>1时,最小值f(a),最大值f(b);0<a<1时,最小值f(b),最大值f(a)。

⑵对于任意指数函数y=a x (a>0且a≠1),都有f(1)=a。

2、对数函数:函数y=log x(a>0且a≠1)),叫做对数函数
3、幂函数:函数y=x (a∈R),高中阶段,幂函数只研究第I象限的情况。

⑴所有幂函数都在(0,+∞)区间内有定义,而且过定点(1,1)。

⑵a>0时,幂函数图像过原点,且在(0,+∞)区间为增函数,a越大,图像坡度越大。

⑶a<0时,幂函数在(0,+∞)区间为减函数。

当x从右侧无限接近原点时,图像无限接近y轴正半轴;
当y无限接近正无穷时,图像无限接近x轴正半轴。

幂函数总图见下页。

4、反函数:将原函数y=f(x)的x和y互换即得其反函数x=f-1(y)。

反函数图像与原函数图像关于直线y=x对称。

幂函数总图。

相关文档
最新文档